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ABSTRACT

We obtain a general class of time-dependent, asymptotically de Sitter backgrounds

which solve the first order bosonic equations that extremize the action for supergrav-

ity with gauged non-compact R-symmetry. These backgrounds correspond only to

neutral fields with the correct sign of kinetic energy. Within N=2 five-dimensional

supergravity with vector-superfields we provide examples of multi-centered charged

black holes in asymptotic de Sitter space, whose spatial part is given by a time-

dependent hyper-Kähler space. Reducing these backgrounds to four dimensions yields

asymptotically de Sitter multi-centered charged black hole backgrounds and we show

that they are related to an instanton configuration by a massive T-duality over time.

Within N=2 gauged supergravity in four (and five)-dimensions with hyper-multiplets

there could also be neutral cosmological backgrounds that are regular and correspond

to the different de Sitter spaces at early and late times.
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1 Introduction

Time-dependent backgrounds in fundamental theory are much less understood than

stationary solutions. In addition these solutions are typically singular, leading cos-

mological singularities of the big bang or big crunch type.

The purpose of this paper is to provide a large class of cosmological solutions

that have an interpretation of solutions of gauged supergravity with non-compact

R-symmetry gauged. In this case the positive cosmological constant leads to asymp-

totically de Sitter space. The obtained class of solutions satisfies first order bosonic

equations that extremize the action, and can be in a broader sense referred to as

supersymmetric (see [1, 2, 3] and references therein).

Gauging of non-compact R-symmetry introduces an effective imaginary gauge

coupling via Wick rotation g = iλ, and thus the covariant derivatives for charged

fields are typically complex. In order to have a real Lagrangian, one would have to

impose further Wick rotation for the charged matter fields or the gauge fields. In

either case, this will change the sign of the kinetic energy terms for their respective

fields, which in fact is the case for the supergravity models based on supergroups that

include the de Sitter group [4].

In this paper we shall consider only the neutral backgrounds that have the correct

signs of the kinetic energy terms. Nevertheless at the quantum level one has to face

the problem with the ghost-like contribution from charged sectors. We do not have

much to say about this problem, and focus only on the neutral, bosonic part, where

the classical backgrounds are turned on.

The time-dependent asymptotically de Sitter backgrounds of supergravity the-

ory with non-compact R-symmetry gauged inherit a number of properties of the

static, asymptotically flat BPS solutions of ungauged supergravity: there exist multi-

centered solutions, and the flat transverse space can be replaced by a general hyper-

Kähler space.

In order to motive the basic set-up, we start with the static asymptotically flat

BPS solution of five- (or four-) dimensional ungauged supergravity and then generate

the corresponding cosmological solution, that solves the same first order integrability

conditions, but now for (non-compact) gauged supergravity with the positive cosmo-

logical constant.
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As an illustration let us demonstrate the generating technique for five-dimensional

N=2 ungauged supergravity without couplings to matter supermultiplets. The static

BPS black hole solution is given by

ds2 = − 1

H2
dt2 + Hdxmdxm , A =

dt

H
(1)

where H is a harmonic function in the transverse four-dimensional space and A is the

U(1) gauge field one-form. For H = 1 + q

|x|2
this is the extreme Reissner-Nordström

black hole in an asymptotically flat Minkowski space.

If one shifts H by a general linear function in the time, i.e.

H(x) → λ t + H(x) (2)

the asymptotic space becomes de Sitter and the solution (1) solves the equations

coming for the five-dimensional bosonic action

S5 =

∫

[R

2
− 1

4
F 2 +

3

2
λ2

]

. (3)

To verify this, one can calculate the Ricci tensor for the general function H = H(r, t)

and if we separate terms proportional to time derivatives, the Einstein equations

become

R n
m → R n

m + [(∂0H)2 + 1
2

H∂2
0H ] g n

m = (F 2) n
m − 1

6
g n

m F 2 + λ2g n
m ,

R 0
0 → R 0

0 + (∂0H)2 + 2H∂2
0H = (F 2) 0

0 − 1
6
F 2 + λ2 ,

R m
0 ∼ ∂m∂0H = 0 .

(4)

If ∂2
0H = ∂m∂0H = 0 the positive cosmological constant is compensated by the linear

time-dependent part in H . Note, the gauge field equations are not effected by the

cosmological constant and with F0m = ∂mH
H2 one finds

∂0(
√

gF 0m) = ∂0∂mH = 0 , ∂m(
√

gFm0) = ∂m∂mH = 0 . (5)

Thus the equations of motion are in fact solved with the Ansatz (2) and the solution

becomes after time reparameterization equivalent to the ones found in [5].

If one turns off the U(1) gauge field charge, H(x) = 1, and the space-time metric

becomes

ds2 = − dt2

(λ t + 1)2
+ (λ t + 1)dxmdxm (6)
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which corresponds to the five-dimensional de Sitter space.

We shall see that the harmonic function Ansatz of the type (2) solves the equations

of motion even for more general Lagrangians, that involve more U(1) gauge fields and

the scalar fields. In a more general set-up, we focus on the prototype example of five-

dimensional N=2 gauged supergravity with vector-superfields. We will also allow

for the initial configuration to be stationary. In Section 2 we discuss multi-centered,

multiple charged Abelian black holes with asymptotic de Sitter space, which have

been found in [6] as solutions of first order equations that extremize the action.

In Subsection 3.1 we further reduce these solutions to four-dimensions, by first re-

placing the spatial part of the five dimensional solution with a specific time-dependent

hyper-Kähler space with U(1) isometry. Reduction of these backgrounds to four di-

mensions yields four-dimensional, asymptotically de Sitter multi-centered charged

black hole backgrounds.

By turning off the gauge fields we further discuss the backgrounds with only scalar

fields coupled to gravity in Subsection 3.2. These backgrounds correspond to the

cosmological flows, that are complementary to the BPS domain walls for supergravity

theories with gauged compact symmetry 3, i.e. renormalization group (RG) flows [10]

in the context of AdS/CFT correspondence [11].

In Subsection 3.3 we also address the possible resolutions of the early time (cosmo-

logical) singularity that are generic in the set up with vector-supermultiplets. Within

N=2 gauged supergravity coupled to hyper-multiplets, one can also obtain regular

cosmological backgrounds with a different value of the de Sitter cosmological constant

at early and late times and we comment on this possibility.

Examples of four-dimensional charged de Sitter black hole backgrounds can be

obtained by performing (massive) T-duality over the time if one starts with the BPS

instanton solution of ungauged supergravity. We discuss the procedure in Section

4. We also note that the obtained five- and four-dimensional gauged supergravity

backgrounds should be related to a specific reduction of D=10 type II? theories [1]

on non-compact spaces.

Conclusions and open questions are addressed in Section 5.

3BPS domain wall solutions of supergravity theory we first found in the context of N=1 D=4

ungauged supergravity in [7]. (See also [8] for generalizations and [9] for a review.)
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2 Cosmological background in five dimensions

In the Introduction we demonstrated that in the case of static BPS solutions of N=2

ungauged supergravity without couplings to matter multiplets, time-dependent back-

grounds of gauged supergravity with a positive cosmological constant can be obtained

by replacing the integration constants in the harmonic functions by a function linear

in time (2). Via this procedure static, asymptotically flat BPS solutions of ungauged

supergravity become time-dependent, asymptotically de Sitter solutions of gauged

supergravity (with non-compact R-symmetry gauged).

In this section we will show that such time-dependent backgrounds, in a general

set-up, solve first order differential equations which extremize the action. As a proto-

type example we shall focus on the five-dimensional N=2 gauged supergravity which

couples to vector-supermultiplets, only.

The gravity supermultiplet has, besides the graviton and gravitino, one Abelian

vector field and each vector-supermultiplet has one Abelian vector field and a (real)

scalar field φA (A = 1, ..., nv) that parameterize a manifold M defined by the con-

straint

V =
1

6
CIJKXIXJXK = 1 (7)

with I = 0, 1, ..., nv. The constants CIJK enter the Chern-Simons term of the action

S5 =

∫

[R

2
− g2V − 1

2
gAB∂φA∂φB − 1

4
GIJF I · F J

]

+
1

12

∫

CIJKF I ∧ F J ∧ AK (8)

and F I are the field strength for the U(1) gauge fields and the potential reads

V = 6
(3

4
gAB∂AW∂BW − W 2

)

. (9)

The couplings in the Lagrangians are now defined by

GIJ =
1

2
∂I∂JV

∣

∣

∣

V=1
, gAB = ∂AXI∂BXJGIJ (10)

where ∂AXI ≡ d
dφA XI(φA). With this definitions one finds the relations

XI = 2
3
GIJXJ , dXI = −2

3
GIJdXJ ,

V = XIXI = 1 , XIdXI = XIdXI = 0 .

(11)

Unbroken supersymmetry implies the existence of at least one Killing spinor ε which

gives a zero for the gravitino and gaugino supersymmetry variation. If one includes
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an Abelian gauging of the SU(2)-R-symmetry with the gauge field A = αIA
I (with

αI = const.), these variations contain a superpotential of the form [12]

W = αIX
I . (12)

With the definition of the scalar field metric, we can write gABdφB = −3
2
∂AXIdXI

and ∂AW = ∂AXIαI and the supersymmetry variations become

δΨµ =
[

Dµ + i
8

(

Γ αβ
µ − 4δ α

µ Γβ
)

XIF
I
αβ + 1

2
g Γµ W

]

ε = 0 ,

δλA = 3i
2
∂AXI

[

Γµ∂µXI + 2i
3
GIJF J

µνΓ
µν + 1

2
gαI

]

ε = 0 ,

Dµ = ∂µ + 1
4
ωab

µ Γab − 3i
2
gαIA

I
µ .

(13)

To keep the notation as simple as possible we have not used symplectic Majorana

spinors but used instead the conventions of [12]. Solutions of these first order differ-

ential equation solve the equations of motion if in addition the gauge field equations

are satisfied, i.e.

dF I = 0 , d (GIJ
?F J +

1

2
CIJKAJ ∧ F K ) = 0 . (14)

Let us recall first the supersymmetric solution in the ungauged case (g = 0). It

has a time-like isometry and can be written in a proper coordinate system as [13, 14]

ds2 = −e−4U (dt + ω)2 + e2Udxmdxm ,

AI = e−2UXI(dt + ω) ,

e2UXI = 1
3
HI , dω + ?dω = 0 .

(15)

The one-form ω = ωmdxm corresponds to U(1) fibration of the transversal space and

without specifying the functions HI , these fields solve the equations (13). However, in

order to fulfill the equations of motion we have to consider the gauge field equations

(14) that are solved only if

∂m∂mHI . (16)

Recall, the fields XI are subject to the constraint (7) so the nv + 1 harmonic func-

tions determine the scalar fields φA as well as the metric function e2U . Note, g = 0

corresponds to the case of ungauged supergravity.
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If we consider a gauging of non-compact R-symmetry, i.e. g2 < 0, the equations

of motion arising from the action (8) are solved if

(−∂2
0 + ∂m∂m)HI = 0 , ∂0HI = αIλ , g = iλ (17)

are i.e. HI is now harmonic in all five coordinates and the vacuum, given by stationary

point of the superpotential (dW = 0), yield now a de Sitter space (since g2 < 0). Note

that we are tacitly assuming that the first order equations arising from the fermionic

supersymmetry variations (13) are formally still valid, in spite of the fact that g = iλ

is an imaginary coupling.

The proof that the equations of motion are solved with the above Ansatz for the

modified harmonic functions has already been given in [6] (partly based on [5]). In

our context we use a different time parameterization where HI depend linearly on

time. We have summarized the proof that the first order equations (13) are in fact

solved in the Appendix.

In the following we shall discuss only the gauge field equations (14), which yield

harmonic functions as a solution. Using the form for the gauge field strength (57),

the Chern-Simon term can be written as

1

2
CIJKF J ∧ F K = d

[

e−6UHI(dt + ω) ∧ dω
]

(18)

and moreover, using the explicit form (60) (and ωm∂mHI = ωm∂mU = 0) we find

∂n

(

GIJ

√
gF I n0

)

= ∂n∂nHI − ∂n

(

e−6UHIωm∂[nωm]

)

, (19)

∂µ

(

GIJ

√
gF I µn

)

= ∂0(ωn∂0HI) − ∂0∂nHI − ∂µ

(

e−6UHIωm∂[nωm]

)

(20)

where µ = 0, 1, 2, 3, 4. For trivial ω, these equations agree with (5) and are obviously

solved, but if ω is non-trivial we have to use the fact that dω is anti-selfdual in order

to verify that the equations are solved if (17) holds.

It is obvious from eq. (17) that the equations of motion are also satisfied for

the multi-centered solution, and that the flat transverse space can be replaced by

a hyper-Kähler space (see the next Section). Therefore, these asymptotically de

Sitter solutions inherit features of the asymptotically flat BPS solutions of ungauged

supergravity.
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3 Cosmological background in four dimensions

The procedure, described in the previous Section to obtain time-dependent back-

grounds from BPS solutions can of course also be applied to other dimensions. Again,

one has to shift the harmonic functions by functions linear in time, combined with

the replacement g = iλ. Again, we consider a truncation to the neutral sector only

where all kinetic terms have the correct sign.

We shall however not give a general proof of the procedure, but will focus instead

on deriving the four-dimensional cosmological background by dimensional reduction

of the five-dimensional one described in the previous Section.

3.1 Transversal hyper-Kähler space and the reduction to four dimensions

Following the calculations in the Appendix, it is straightforward to realize that one

can replace the flat transversal space of the five-dimensional metric in (15) by any

four-dimensional hyper-Kähler space. To see this, let us write the metric as

ds2 = −e−4U (dt + ω)2 + e2Uhmndxmdxn . (21)

This yield instead of (63) the equation

[∇(h)
µ + (∂µU)]ε = 0 . (22)

with the covariant derivative corresponding to the metric

ds2 = −dt2 + hmndxmdxn . (23)

As a solution one finds that hmn can be any Ricci-flat metric. On any constant time

slice, the integrability condition for this equation means that the Riemann tensor has

to be self-dual and hence the space is hyper-Kähler (and therefore Ricci flat).

For concreteness we consider the four-dimensional Gibbons-Hawking metric [15]

hmndxmdxn =
1

V
(dχ + σ)2 + V dxidxi , ∂iV = εijk∂jσk (24)

with the isometry ∂χ. The equation for V is solved with any harmonic function in the

three-dimensional space spanned by the coordinates xi. We are however interested in

8



a time-dependent functions, i.e. V = V (t, x). Inserting in (23) one can verify by an

explicit calculation that the five-dimensional space remains Ricci-flat as long as

∂0∂0V = ∂0∂iV = 0 . (25)

Thus, this harmonic function is on equal footing to the harmonic functions introduced

in (17).

Assuming that ∂χ is also an isometry of the complete five-dimensional metric, it is

straightforward to reduce the model to four dimensions. In order to obtain a diagonal

metric in four dimensions, which may be most interesting from the cosmological point

of view, we identify the U(1) fibre (dχ+σ) with ω in the five-dimensional metric (see

also [16]), which yield the four-dimensional metric

ds2 = −e−2Ûdt2 + e2Ûdxidxi . (26)

In order to obtain the Einstein-frame metric (26) after the reduction, there is a

conformal rescaling of the metric, and the function Û is given by

e4Û = V e6U . (27)

We expect, that the general four-dimensional solution can also be obtained directly

as a generalization of the general BPS solution [17], where the complex scalar fields

zA = Y A

Y 0 and the metric function e2Û are now a solution of the equations

e2Û = i(Ȳ IFI − Y IF̄I) ,

i(Y I − Ȳ I) = HI(t, x) , i(FI − F̄I) = HI(t, x)

(28)

with: (HI(t, x) = λ βI t+hI(x) and HI(t, x)) = λ αI t+hI(x)). As in five dimensions,

these equations should solve the BPS equations of four-dimensional supergravity with

a gauged R-symmetry (and with g = iλ). Note, in this solution the symplectic section

(Y I , FI) is rescaled so that it becomes invariant under Kähler transformations (see [18,

17] for details). A number of explicit solutions of these algebraic equations have been

discussed in the literature [19]. [Note, (hI(x), hI(x)) is again a set of any harmonic

functions and includes especially also multi-center black holes.] We will show in the

next Section that the shift by a linear function in time is the result of a massive
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T-duality over time applied on an instanton solution of ungauged supergravity. The

massive T-duality generates in the dual theory the correct potential.

We conclude this Subsection by presenting a specific example where the Chern-

Simons cubic form (7) reads

V = X1X2X3 . (29)

This is the so-called STU model (S = X1, T = X2, U = X3) with three Abelian

gauge fields and two real scalars, e.g., by φ1 = X2/X1 and φ2 = X3/X1. For the

single center case, one obtains for the five-dimensional solution reads

e6U = H1H2H3 =
(

λ t +
q1

r2

)(

λ t +
q2

r2

)(

λ t +
q3

r2

)

, ω = 0 , (30)

XI =
e2U

HI

, AI =
dt

HI

. (31)

In order to reduce this model to four dimensions, we will replace the transversal

space by a specific hyper-Kähler space given by the Gibbons-Hawking metric. This

requires, that the harmonic function in e6U do not depend on χ, which has to be a

isometric direction. Hence, we have to replace the harmonic functions: (λ t + qi

r2 ) →
(λ t+ qi

r
), where r is now the three-dimensional radial direction (dxidxi ≡ dr2+r2dΩ2).

Denoting V = λt + q0

r
the four-dimensional metric function becomes

e4Û =
(

λt +
q0

r

)(

λ t +
q1

r

)(

λ t +
q2

r

)(

λ t +
q3

r

)

. (32)

Of course we can replace qm

r
by any harmonic function giving a general multi-center

solution living in an asymptotic de Sitter space. This is the de Sitter analog of the

four-charge black hole of ungauged supergravity [20]. In fact, for large t the metric

(26) becomes

ds2 = − dt2

(λ t)2
+ (λ t)2dxidxi . (33)

On the other hand, if we go back in time, we will necessarily reach the point where

e4Û becomes zero giving a curvature singularity, i.e. a big bang singularity.

3.2 Cosmological renormalization group flow

If we turn off the U(1) gauge fields, the background becomes only time-dependent

(any dependence on the spatial coordinates disappears) and we can interpret the time

evolution as a cosmological renormalization group (RG) flows within in the proposed
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dS/CFT correspondence [21]. Let us formulate the flow equations in D dimension

and write the (Robertson-Walker) metric as

ds2 = −dτ 2 + e2A(τ) dxidxi . (34)

If we write the Lagrangian as

SD =

∫

[R

2
− g2V − 1

2
gAB∂φA∂φB

]

(35)

where the potential is given in terms of a real superpotential W̃

V =
(D − 2)2

2
∂AW̃∂AW̃ − (D − 1)(D − 2)

2
W̃ 2 . (36)

In five dimensions (35) corresponds to Lagrangian (8) without U(1) gauge fields. In

four dimensions the W̃ is related to the complex superpotential by W̃ 2 = eKWW̄ .

Because g2 = −λ2 the potential has the opposite sign and we can square the action

for the time-dependent metric (34) in the same way as for BPS domain walls (see

also [22, 7]) and we find

S = Sbulk + Sboundary

Sbulk =
∫

e(D−1)A
[

− (D − 1)(D − 2)(Ȧ − λW̃ )2 + 1
2
|∂φA + (D − 2) λ gAB∂BW̃ |2

]

.

(37)

From here we obtain the first order equations

Ȧ = W̃ , φ̇A = −(D − 2) gAB∂BW̃ . (38)

Extrema of W̃ correspond obviously to dS vacua and the solution fulfilling these first

order flow equations extremizes the action and de Sitter vacua are approached with

vanishing velocity with no oscillations.

These first order equations corresponds to the cosmological RG-flow equations.

Regular flow requires necessarily a superpotential W̃ with at least two (connected)

extrema. For the examples at hand (i.e. vector-multiplets, only), one can however

show [23] that on any given component of the scalar manifold, there is at most one

critical point and therefore a given solution will always run towards a singularity

related to a pole in W̃ . In the cosmological setting this means that the big bang

singularity is un-avoidable in these models. However one should of course ask, whether
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one can trust the model all the way to the singularity or whether one should replace

the model by a different one – as it has been discussed for the cusp singularity for

ordinary AdS domain walls.

3.3 Resolution of the singularities

There are different ways in dealing with a singularity, e.g.:

(i) it may be an artifact of the approximation or truncation of the theory,

(ii) it appears in a non-physical region, which should be replaced or

(iii) the singularity could be smoothed out by a second de Sitter space.

Let us comment on either case.

Case (i): It is well known that the appearance of singularities in supergravity

reflects often the failure of the approximation. However, in most interesting exam-

ples one is forced to consider certain approximations as e.g., the restriction to the

lowest order in the expansions in α′ and/or gs. It is likely that higher derivative

corrections coming from the α′ expansion can smooth out singularities, e.g., as it is

known in Born-Infeld instead of Maxwell theory. Another source of singularities is

the truncation to Abelian gauge fields instead of non-Abelian, which yields a regular

background, such as an example discussed in [24].

Another interesting way to regulate supergravity solutions is via the so-called

transgression mechanism [25], where the incorporation of additional differential forms

yield a regular background due to corrections coming from the Chern-Simons term.

For five-dimensional supergravity, this mechanism was in fact used in [16] to obtain

regular BPS solutions in ungauged supergravity. In our derivation it was important

that e−2Udω as well as the spatial components of the gauge fields are anti-selfdual,

which yielded the harmonic equations for HI . In the case with no time-dependence

(λ = 0), it was shown in [16] that one can add a self-dual 2-form G(+) to e−2Udω as well

as to the spatial components of the gauge field strength. As a result, the Chern-Simons

transgression term gives an additional contribution from G(+) ∧ G(+) = |G(+)|2 and

the gauge field equations do not yield the harmonic equation for HI , but: ∂m∂mH ∼
|G(+)|2. This modification via the transgression term resolves singularities [25] related

to poles in H . However, for λ 6= 0 the cosmological singularity appears if one goes

back in time, i.e. H decreases and may eventually vanish. At this point however,
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the time-derivatives of H are still smooth and hence, the transgression mechanism

cannot resolve these singularities. Note, that even for the pole singularities, this

mechanism seems to fail if one includes the time-dependence (λ 6= 0), this however

deserves further investigations.

Case (ii). The cosmological singularity of the discussed solutions is reminiscent of

the repulson singularity discussed for black holes [26]. This singularity appears in the

supergravity solution as a zero of the metric function e2U (or e2Û in four dimensions)

due to a vanishing or negative harmonic function. Since the harmonic functions

parameterize the radii of the internal cycles, this singularity indicates interesting

physics related to gauge symmetry enhancement, flop or conifold transitions. By using

a probe analysis for time independent black holes one can show, that even before one

reaches the repulson singularity the tension of the probe brane becomes tensionless

and at the enhancement point the supergravity solution cannot be trusted anymore

and additional massless degrees of freedom have to be taken into account [27]. An

analogous mechanism does also apply for (static) domain walls, where the enhancon

locus appears before one reaches the space-time singularity [28] and integrating-in the

additional modes, the singularity can be avoided (see [29] and references therein).

We would like to argue that also for the cosmological solutions at hand the repulson

singularity is only an artifact of the approximation and can be smoothed out. For the

four-dimensional case discussed in Subsection 3.1 there is a powerful tool to regulate

supergravity solutions, by including the term proportional to the Euler number in the

prepotential. This is an α′-correction which is added to the prepotential as

F = −i
χζ(3)

2(2π)3
(Y 0)2 + F̃ (Y ) = −i(Y 0)2

[

c + F(z)
]

(39)

with c = χζ(3)
2(2π)3

and χ is the Euler number of the internal space. Recall, we use the

rescaled section (FI(Y ), Y I), which ensures that the supergravity solution is invariant

under Kähler transformations (by rescaling of the section with the supersymmetry

central charge [18]). In this rescaled section we should not set Y 0 = 1 because this

would eliminate one harmonic function in (28). Now, if the scalars flow to smaller

values and even if one reaches the point where F(z) vanishes, the metric will still be

regular as long as c ∼ χ 6= 0 (see also [19]). In fact, if we solve the equations (28) for
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this prepotential the metric function becomes

e2Û ∼ H2
0 for F(z) ' 0 . (40)

and we obtain a de Sitter space if we choose H0 = λ(t − t0). [In the context of

transgression mechanism for the static BPS configurations the α′ correction due to

the gravitational Chern-Simons term, proportional to the Euler number of the internal

space, was studied in [30].]

Another form of singularity is of course given by scalars that run to infinite values,

which do not correspond to divergencies of the internal space but correspond to a

large volume limit. In this case, the singularity reflects the appearance of an extra

dimension and the corresponding higher dimensional solution should be regular. We

have not much to say about this singularity (see [31] for a recent discussion), but this

remark also brings us to a discussion of the situation in five dimensions. There, the

supergravity solution describes also a flow with a de Sitter vacuum at late time and

may run towards a phase transition point. In five dimensions however, we do not have

the Euler number term in the pre-potential and hence the mechanism as described in

four dimensions is not applicable. Nevertheless, the solution is regular as long as at

least some cycles stay finite as, e.g., at the flop transition point [32, 33], but also at

boundaries of the vector moduli space. Note, that although scalars disappear at this

point, other scalars may continue to flow along this boundary to infinity, indicating

the appearance of additional large extra dimensions.

Case (iii). The resolution that we discussed so far, rely on the picture that

scalar fields parameterize cycles of an internal space and the model may change if

the scalars vanish. From the supergravity point of view however, all these flows

are singular. To regularize the flow, one has to consider a superpotential with a

second extremum. Complementary to BPS domain walls, this flow would interpolate

between two anti de Sitter vacua; in this case we would have a cosmological flow

connecting an early de Sitter phase with a late time de Sitter space. In fact, if one

includes hyper-supermultiplets it is possible to construct smooth flow [34], which

represents a truncation of the flow found in [10] on N=2 supergravity. However, we

have to truncate the model onto the neutral scalar sector and one should investigate

if this can be done consistently. Similarly, it would be interesting to see whether the

superpotential yielding a realization of the Randall-Sundrum model in supergravity
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[35] can be employed to obtain a regular time-dependent solution. Since in this case

the warp factor is exponentially small at both sides of the wall, it would describe a

bubble that first exponentially expands followed by an collapse.

4 Time-like “massive” T-duality in D=4

We will now show that the cosmological solution described in Section 3 can be ob-

tained from a BPS configuration of ungauged supergravity by a T-duality along the

time. It is however not the usual T-duality transformation, but the “massive” one,

where one takes into account a linear dependence with respect to the isometry direc-

tion [36]. For concreteness we will use a “massive” generalization of the c-map, which

maps type IIA and IIB superstring compactification on the same internal space onto

each other and which is nothing but a time-like T-duality [37, 38].

To explain the procedure we start with the simple case, where we have only

the gravity supermultiplet, but no vector-supermultiplets and no potential. In this

case, the BPS solution is just the Reissner-Nordström black-hole (with or without

rotation). As a result from the c-map, the two on-shell degrees of freedom of the

metric as well as of the two degrees of freedom of the gauge field combine to four

scalars of the universal hyper-supermultiplet. Therefore, in type II compactifications

two scalars are in the NS-NS sector and two coming from the RR sector and the BPS

configuration becomes an instanton solution with a flat Einstein frame metric (see

[39]). The scalars of the classical universal hyper-supermultiplet spans a manifold

given by the coset SU(2,1)
U(2)

and can be decomposed into two complex scalars. For a

BPS configuration, one complex scalar is trivial (constant) and the other is fixed by

the BPS equations and parameterizes the coset SU(1,1)
U(1)

as given by the sigma model

∂S∂S̄

(ImS)2
. (41)

There are now two different possibilities to embed this coset into SU(2,1)
U(2)

. In one case

one combines the two NS-NS-scalars into the complex field

S = a + ie−2ϕ (42)

which is the well-known combination in heterotic string models, where the axion a is

dual to the anti-symmetric tensor field and ϕ is the dilaton. The other possibility is
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to combine one NS-NS and one RR-scalar yielding

S = a + ie−ϕ (43)

which is the combination appearing in type IIB compactifications. This is also the

representation that we obtain after the c-map of the type IIA model.

As the next step, we show that a solution of the instanton equation can be mapped

onto cosmological solutions as given in eqs. (26) with e2Û as a harmonic function.

Following [40] we are looking for an instanton solution in Euclidean time with a

vanishing energy-momentum tensor. Due to the Wick rotation the sign of the axionic

part in the Lagrangian is changed

∂S∂S̄

(ImS)2
= (∂ϕ)2 + e2ϕ(∂a)2 −→ ∂S+∂S−

1
2
(S+ − S−)2

= (∂ϕ)2 − e2ϕ(∂a)2 (44)

with S± = e−ϕ ±a. For the instanton configuration the energy momentum tensor has

to vanish, implying ∂a = ±∂e−ϕ and the equations of motion for the axion becomes

∂µ(e2ϕ∂µa) = ±∂µ∂µeϕ = 0 (45)

and therefore the solution is expressed in terms of a harmonic function H

eϕ = H , a = ± 1

H
+ const. (46)

In general the harmonic function can depend on all four Euclidean coordinates, but

for the case at hand we do not consider a dependence on the Euclidean time.

If one is doing the standard T-duality along the Euclidean time followed by a

Wick rotation to the Minkowskean time one obtains the static Reissner-Nordström

black hole [39]. In order to generate a time-dependence we will employ the massive

T-duality, which, as the usual T-duality, defines a map of two models dimensionally

reduced over inverse radii, where one model is massless (i.e. no potential) and the

other is massive (i.e. with a potential). To make the map explicit one has to use

the Scherk-Schwarz reduction [41]. This is a generalized dimensional reduction where

one allows for a linear dependence on the coordinate along which one makes the

reduction, but in a way that the reduced model is still independent of this coordinate.

As a consequence one obtains the correct potential of massive supergravity, at least

as long as one is doing the T-duality along the spatial direction [42, 36, 43]. For the
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above instanton solution this implies, that we have to perform the usual dimensional

reduction along the Euclidean time followed by an inverse Scherk-Schwarz reduction

over the inverse radius. The correct time dependence can be fixed using the global

symmetries. Namely, the time independence of the reduced model is ensured if it

can be absorbed into a SL(2, R) symmetry transformation of the scalar matrix of the

form [43]

M = eϕ





|S|2 a

a 1



 −→ Ω−1(t)MΩ(t) , Ω−1(t) ∂0Ω(t) = C (47)

where Ω ∈ SL(2, R) and the mass matrix C has to be time independent, yielding the

potential [43]

V ∼ tr(C2 + CTMCM−1) . (48)

Next, the harmonic function that defines the solution in (46) can be shifted by a

constant H → H + h by the following SL(2, R) transformation

Ω = Ω−1
1 Ω2 Ω1 =





1 0

h
2

1



 (49)

with the two generators Ω1 : S± → S−1
± and Ω2 : S± → S± + h

2
(see [44] where

this transformation was used in type IIB string theory). In order to fix the time-

dependence of Ω we have to ensure that the mass matrix C does not depend on time,

which is the case for h = g t. So, as result of the “massive” T-duality we added to H

a linear function in time and the potential (48) reads

V ∼ g2e2ϕ . (50)

Finally, to obtain a Minkowski signature one has to perform a Wick rotation in the

time (t → it) and in g = iλ, so that H remains real, which in turn changes the sign

of the potential. Applying standard rules of T-duality, one finds that the new dilaton

is constant and e2Û = e2ϕ and hence the factor e2ϕ in the potential is nothing but
√

det(gmn) for the Reissner-Nordström black hole (see eq. (26)). Therefore there is

only a positive cosmological constant in the dual Lagrangian.

The procedure that we described here for the supergravity supermultiplet can

be generalized to include any number of vector-supermultiplets, which for ungauged
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supergravity was done in [39, 45]. In this case one obtains nV +1 hyper-supermultiplet

with the scalar fields: S, zA, ξI , ξ̃I (recall: I = 0, 1, ..., nV , A = 1, ..., nV ). The explicit

transformation Ω is now much more involved, but it is again basically given by shifts

of the axionic scalars (ξI , ξ̃I), which represent isometries of the scalar manifold and

which are related to harmonic functions (see also [45]). However, we do not need the

explicit form of Ω; the correct form of the potential can also be derived if one replaces

the axionic scalars as follows

(ξ̃I , ξ
I) → (ξ̃I + gαIt , ξI + gβIt) (51)

which for the single axion a in (44) yields exactly the potential (50). Note, that up

to a U-duality transformation (inversion of the dilaton field) the transformation Ω

corresponds precisely to a linear time shift in the axion. Using the notation from [46]

the corresponding part of the hyper-supermultiplet Lagrangian reads

e2ϕ(∂ξ̃I + NIL∂ξL)(ImN−1)IJ(∂ξ̃J + N̄JK∂ξK) (52)

where the complex matrix N defines the gauge field couplings in the Lagrangian.

This yields, after the time shifts (51), the potential

V ∼ g2e2ϕ(αI + NILβL)(ImN−1)IJ(αJ + N̄JKβK) (53)

which can be written in the standard potential form appearing in gauged supergravity

[46]. As before, after the time-like T-duality one has to do a Wick rotation in time,

combined with the replacement g = iλ, which changes the sign of the potential

resulting in a de Sitter instead of anti de Sitter vacuum.

In addition to the shifts in the axionic scalars (ξ̃I , ξI) one could also allow for

shifts in the axion S + S̄, but as result, the dilaton now appears in the potential and

hence, as a result of the c-map one obtains a model that contains also a universal

hyper-supermultiplet. It is of course interesting to explore this possibility further.

In summary, we have seen that a time-dependent background can be obtained by

a time-like (massive) T-duality, which includes a Scherk-Schwarz reduction over time.

In comparison to massive T-duality over a space-like direction, the overall sign of the

potential has changed, but otherwise it is the same potential. Hence, it is similar to

the models introduced by Hull [1].
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5 Discussion

In this paper we presented a procedure to generate time-dependent backgrounds start-

ing from stationary BPS solutions of ungauged supergravity. We focused on examples

of N=2 supergravity coupled to vector-supermultiplets. These solutions are given

by a set of harmonic functions that can be shifted by linear functions in time and

solve the first order differential equations which coincides with the BPS equations of

gauged supergravity, but with an imaginary gauge coupling g = iλ. Since only the R-

symmetry is gauged, an imaginary g reflects the non-compactness of the R-symmetry.

Since the bosonic fields are not charged under the R-symmetry, the bosonic model is

well-defined. All kinetic terms in the bosonic Lagrangian have the correct sign, but

the potential has the opposite sign yielding stable de Sitter vacua, instead of anti de

Sitter vacua known from supergravity with compact R-symmetry.

We also showed in Section 4 that for the four-dimensional case, these solutions can

be generated by a “massive” T-duality over the time, which employs Scherk-Schwarz

reductions to map the two models. The model is similar to the type II? models

introduced by Hull [1]. In our case all kinetic terms have the correct sign and this

was possible due to a truncation of the model on the bosonic sector.

Prototype examples of solutions of five- and four-dimensional are of the form

ds5 = −e−4Udt2 + e2Udx2
4 , e6U =

∏3
i=1[αi t + hi(x)]

ds4 = −e−2Ûdt2 + e2Ûdx2
3 , e4Û =

∏4
i=1[αi t + hi(x)]

(54)

where hi(x) are arbitrary harmonic functions of the four- or three-dimensional flat

transversal spatial space. If all constants αi vanish, we get back the well-known BPS

solutions of ungauged supergravity as, e.g., the multi-center extremal black holes. On

the other hand, if these constants are non-zero these multi-center black holes live in

an space-time that asymptots at late time to a de Sitter space with the cosmological

constant given by
∏

i αi.

These solutions are not supersymmetric, at least not in the usual sense. However,

they inherit properties well known from supersymmetric solutions, e.g., the existence

of multi-center solutions and the appearance of hyper-Kähler spaces. Hence, we ex-

pect that this de Sitter solution is stable, especially because this the solution satisfies

first order equations that coincide with the BPS equations for a non-compact R-
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symmetry. The existence of multi-center solutions implies a balance of forces, namely

the de Sitter expansion compensates the gravitational attraction of the black holes.

Moreover, in the asymptotic de Sitter space the solution is in a minimum of the

potential with no tachyonic directions. The potential coincides, up to the overall sign,

with the potential appearing in gauged supergravity with compact R-symmetry and

this potential has a number of interesting properties [23]. First of all, there is only

one extremum of the superpotential on a given component of the scalar manifold and

it corresponds to a maximum of the potential. For the model at hand the potential

thus has a stable minimum. Also, there are no flat directions, due to the fact, that in

the vacuum all scalars of the vector-supermultiplets are fixed. However, the situation

changes if one takes into account also scalar fields of hyper-supermultiplets, which

cannot be fixed completely in gauged supergravity.

In general, there are no static coordinates to describe these backgrounds. One

can introduce static coordinates only around a given center or for the single-center

solution [6]. Otherwise, this solution is intrinsically time-dependent and if we naively

continue to early times, it exhibits a big bang singularity where the spatial part of

the metric collapses to a point. Depending on the choice for the harmonic function,

the qualitative behavior near the singularity differs. If e.g. in eq. (54) e4Û or e6U

vanishes quadratically (setting hi(x) = const.) the solution exhibits a singularity as

in the Milne universe, otherwise the cosmological expansion near the singularity is

decelerating for a single zero or accelerating4. Note also, there is no reason to stick

to a time t ≥ 0 in the solutions above, and the singularity is a repulson-type. If

this solution can be understood as coming from a compactification, the scalar fields

cannot naively be extended to negative values. In fact, the solution may run towards

a phase transition point which has to be treated with care. In Subsection 3.3 we

argued that, due to α′ corrections, the solution can run towards a regular de Sitter

space at early time.

A different way of dealing with the singularity is to cut-off the region by intro-

ducing a space-like brane at t = 0, which is done by replacing: t → |t|. This however

is a subtle issue, because such a replacement requires a brane source. However, one

should allow for variations of the location of the brane source and is seems that this

4We would like to thank Miguel S. Costa for a discussion on this point.
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will necessarily move the brane towards the singularity, or at least to the point where

it becomes tensionless. Although the solution remains basically the same, these s-

branes may provide a physical picture of the endpoint of the flow. [Note, the s-branes

appearing in our context are closely related to the ones discussed in [47, 1], however,

they are of different nature as the ones discussed in [48, 49] and references therein.

In addition, the de Sitter vacua appearing in our context are of different nature as

the ones discussed for non-compact gaugings as, e.g., in [50].]

We mentioned also the possibility that the flow becomes completely regular if one

considers more general models with hyper-multiplets where the superpotential has

two continuously connected extrema [10, 35]. These potentials would describe a cos-

mological scenario with an early and late time de Sitter vacuum, where, depending on

the nature of the fixed point, the space-time is exponentially large or small. However,

one should investigate whether for this case the truncation to the neutral sector can

consistently been done.

Moreover, the examples that we presented here are closely related to BPS solutions

and it would be interesting whether the non-extreme solutions as, e.g., discussed in

[51], have also a cosmological analog. Moreover, for the four-dimensional model we

considered only the models with diagonal metrics, which may be of most interest.

However, it remains to be shown that the general stationary BPS solutions can also

be generalized to cosmological backgrounds.
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Appendix

In this appendix, we will show that the fields given in eqs. (15) and (17) solve in fact

the first order differential equations (13). Basically, we will repeat the calculations

done in [6], but we use a different notation and in order to compare both results one

has to rescale the harmonic functions combined with a reparameterization of the time

(e−gt → gt).

Since we know the BPS solution as given in eq. (15) and (16) [14], it is sufficient

to look at the terms, which are proportional to time-like derivatives – all other terms

will cancel, because our starting point was a BPS configuration. Using the relation

XIdXI , see (11), and the harmonic functions as given in eq. (17) one finds

∂0e
2U = XI∂0(e

2UXI) = λαIX
I = λW . (55)

This yields for the term containing the superpotential

gΓ0W = g Γ0 e−2UW = g

λ
U̇ Γ0 ,

gΓm W = (e−2UωmΓ0 + eUΓm) W = (ωmΓ0 + e3UΓm) 1
λ
U̇ W

(56)

where we have underlined the tangent space indices. Moreover, the gauge field com-

ponent gives

GIJF I = −1

2
e−4U [dHI ∧ (dt + ωmdxm) − HIdω] (57)

and because XIdHI = 3de2U we find for the time-like component (note factors of 2/3

in (11)!)

XIF
I
0m = (∂0e

−2U)e2UXIA
I
m − XI∂mAI

0 = −2 U̇e−2Uωm − ∂me−2U . (58)

Using the inverse metric

g00 = −e4U + e−2Uωmωm , g0n = −e−2Uωn , gmn = e−2Uδmn (59)

we can also calculate the field strength with upper indices. The fact that ωm∂mHI =

ωm∂mU = 0 means that F I mn does not contain any time derivatives and that

GIJF J 0n = e−2U
[

∂nHI − ωn∂0HI − e−6UHIωm∂[nωm]

]

. (60)

With these expressions it is now straightforward to calculate the expression appearing

in (13). We get

XI(Γ0mnF I mn − 4F I
0nΓn) = 8 e−3U U̇ωnΓn + ...

XI(2 Γmn0F
I n0 − 4F I

m0Γ
0) = −2 U̇Γmn0 ωn − 8 U̇ωm(Γ0 − e−3UωnΓ

n) + ...
(61)
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(we dropped all terms that have no time derivatives). Next, for the covariant deriva-

tive: ∇µε = (∂µ + 1
4
ωmn

µ Γmn) ε we find the modifications due to the time-dependence

∇0 ε = (∇̂0 + e−3U U̇ωmΓ0Γ
m) ε ,

∇m ε = (∇̂m + U̇ [e−3Uωmωn − 1
2
e3Uδmn]Γ0Γ

n − 1
4
U̇ωnΓ n

m ) ε .
(62)

Inserting all terms into (13) one gets finally the differential equation for ε

[∂µ + (∂µU)] ε = 0 (63)

which gives ε = e−U ε0 with the constant spinor ε0 fulfilling the projector equation

Γ0ε0 = iε0 . (64)

As next step, we have to verify the second equation in (13). Inserting the field XI

from eq. (15) we find

∂AXI
[

Γµ∂µXI

]

= ∂AXI
[

(Γ0 − e−3UωmΓm)
1

3
αIλ + ...

]

(65)

∂AXI
[

GIJF J µmΓµm

]

= ∂AXI
[

− e−3UωmΓ0m

1

3
αIλ + ...

]

(66)

and with the projector (64) we have verified also this equation.
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[17] K. Behrndt, D. Lüst, and W. A. Sabra, “Stationary solutions of N = 2

supergravity,” Nucl. Phys. B510 (1998) 264–288, hep-th/9705169.

[18] S. Ferrara, R. Kallosh, and A. Strominger, “N=2 extremal black holes,” Phys.

Rev. D52 (1995) 5412–5416, hep-th/9508072. S. Ferrara and R. Kallosh,

“Supersymmetry and attractors,” Phys. Rev. D54 (1996) 1514–1524,

hep-th/9602136.

[19] K. Behrndt, D. Lüst, and W. A. Sabra, “Moving moduli, Calabi-Yau phase

transitions and massless BPS configurations in type II superstrings,” Phys.

Lett. B418 (1998) 303–311, hep-th/9708065.
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