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Abstract

We extend recent remarkable progress in the comparison of the dynamical en-
ergy spectrum of rotating closed strings in AdS5×S5 and the scaling weights
of the corresponding non-near-BPS operators in planar N = 4 supersym-
metric gauge theory. On the string side the computations are feasible, using
semiclassical methods, if angular momentum quantum numbers are large.
This results in a prediction of gauge theory anomalous dimensions to all or-
ders in the ‘t Hooft coupling λ. On the gauge side the direct computation of
these dimensions is feasible, using a recently discovered relation to integrable
(super) spin chains, provided one considers the lowest order in λ. This one-
loop computation then predicts the small-tension limit of the string spectrum
for all (i.e. small or large) quantum numbers. In the overlapping window of
large quantum numbers and small effective string tension, the string theory
and gauge theory results are found to match in a mathematically highly non-
trivial fashion. In particular, we compare energies of states with (i) two large
angular momenta in S5, and (ii) one large angular momentum in AdS5 and
S5 each, and show that the solutions are related by an analytic continuation.
Finally, numerical evidence is presented on the gauge side that the agreement
persists also at higher (two) loop order.
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1 Introduction

It is believed that free type IIB superstring theory on the AdS5 × S5 background is
exactly dual to planar N = 4 supersymmetric SU(N) quantum gauge theory [1]. Here

4πgs =
λ

N
= 0 for N = ∞ , λ = Ng2

YM
= fixed , (1.1)

and λ is the ’t Hooft coupling constant. Since the exact quantization of string theory in
this curved background is not yet understood, most of the results on the string side of
the duality obtained until a year and a half ago were in the (classical) supergravity limit
of infinite string tension 1

2πα′
→ ∞, which corresponds, via the “effective string tension”

identification √
λ =

R2

α′
, (1.2)

to the strong coupling limit on the planar gauge theory side. Since in string theory little
could be done at finite α′ andR, while in gauge theory little could be done at finite λ, until
recently the perception was that any dynamical test of the AdS/CFT correspondence
should be very hard to perform. A notable exception were some successful studies of four-
point functions (involving BPS operators on the gauge side and supergravity correlators
on the string side) where some dynamical modes appear in intermediate channels [2].
This situation has dramatically improved due to new ideas and techniques on both sides
of the correspondence, which were largely influenced by the seminal work of [3] (which,
in turn, was based on [4]). Very recent progress points towards the exciting prospect
that the free AdS5 ×S5 string alias planar gauge theory is integrable and thus might be
exactly solvable.

On the string theory side, it was understood that in the case when some of the
quantum numbers of the string states become large, the AdS5 × S5 string sigma model
can be efficiently treated by semi-classical methods [5, 6] (see also [7] and [8]). It was
then suggested [9, 10] that a novel possibility for a quantitative comparison with SYM
theory in non-BPS sectors appears when one considers classical solutions describing
closed strings rotating in several directions in the product space AdS5 × S5 with the
metric ds2

10 = (ds2)AdS5
+ (ds2)S5

(ds2)AdS5
= dρ2 − cosh2 ρ dt2 + sinh2 ρ (dθ2 + cos2 θ dφ2

1 + sin2 θ dφ2
2)

(ds2)S5 = dγ2 + cos2 γ dϕ2
3 + sin2 γ (dψ2 + cos2 ψ dϕ2

1 + sin2 ψ dϕ2
2) (1.3)

Here t is the global AdS5 time, which, together with the 5 angles (φ1, φ2;ϕ1, ϕ2, ϕ3),
correspond to the obvious “linear” isometries of the metric, i.e. are related to the 3+3
Cartan generators of the SO(2, 4)×SO(6) bosonic isometry group. Rotating strings can
thus carry the 2+3 angular momentum charges (spins) Qi = (S1, S2; J1, J2, J3), while t
is associated with the energy E. Once such classical solutions representing string states
with several charges are found [6, 9–12], one may evaluate the energy as a function of
the spins and λ: E = E(Qi, λ). A remarkable feature of string solutions in AdS5 is
that their energy grows, for large charges, linearly with the charges [13,5,6]. Corrections
to subleading terms in the classical energy can then be computed using the standard
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semiclassical (inverse string tension) expansion [6, 10]. For certain string states with
large total spin J = J1 + J2 + J3 on S5 for which 1

J ≫ 1 ,
λ

J2
≪ 1 , Qi ∼ J , (1.4)

it turns out that string sigma model loop corrections to the energy are suppressed by
powers of 1

J
(see [10–12]). In these cases the leading, O(J), contribution to the energy is

given already by the classical string expression, i.e. one does not even need to quantize the
string sigma model. Furthermore, as follows from the string action, classically, all charges
(including the energy) appear only in the combination Qi/

√
λ. It was shown in [9–12]

that the classical energy E admits an expansion in powers of the small parameter λ/J2.
The upshot of the semiclassical string analysis is then that in the limit (1.4) the string-
state energy is given by

E(Qi, λ) = S + J

(

1 +
λ

J2
ǫ1(Qi/J) +

λ2

J4
ǫ2(Qi/J) + . . .

)

+ O(J0), (1.5)

where ǫn(Qi/J) are some functions of the spin ratiosQi/J , and O(J0) stands for quantum
string sigma model corrections.

Considering string states represented by the classical solutions with several charges
(S1, S2; J1, J2, J3) has the added advantage that it helps significantly in identifying the
corresponding gauge theory operators. As is well known, N = 4 supersymmetric gauge
theory is superconformally invariant, and the bosonic subgroup of the full superconformal
group PSU(2, 2|4) is SO(2, 4) × SO(6). The energy E of a string state is expected to
correspond to the scaling dimension ∆ of the associated conformal operator on the gauge
theory side:

E(Qi, λ)string = ∆(Qi, λ)gauge . (1.6)

The dimension ∆ is, in general, a non-trivial function of the ’t Hooft coupling λ. It is
not yet known how to compute ∆ exactly, except for supersymmetric BPS operators (for
which dimensions are protected, i.e. independent of λ) and for certain near-BPS operators
with large charge J3 [3,14]. In principle, one can compute the dimension ∆ perturbatively
at small λ as an eigenvalue of the matrix of anomalous dimensions. Obtaining and
diagonalizing this matrix is a task where the complexity increases exponentially with the
number L of constituent fields. At this point, a comparison to string theory energies
may appear almost hopeless, since, on the string side, the total SO(6) charge J = L is
required to be large.

Fortunately, it was recently discovered that planar N = 4 SYM theory is integrable

at the one-loop level [15,16]. We can therefore make use of the Bethe ansatz for a corre-
sponding spin chain model to obtain directly the eigenvalues of the matrix of anomalous
dimensions. This observation proves to be especially useful in the (“thermodynamic”)
limit L ≫ 1, i.e. for a very long spin chain, where the algebraic Bethe equations are

1Here Qi ∼ J means that Qi = γiJ , where γi are arbitrary constants which can be numerically large,
small or even zero. Then we can set up a power counting scheme in 1/J and λ/J2. While we keep all
orders of λ/J2, we systematically drop terms of subleading orders in 1/J .
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approximated by integral equations. For a large number of fields J = L, the dimension
∆ appears to have a loop expansion equivalent to the one in (1.5), 2

∆(Qi, λ) = S + J

(

1 +
λ

J2
δ1(Qi/J) +

λ2

J4
δ2(Qi/J) + . . .

)

+ O(J0) . (1.7)

Again, the coefficients δn are functions of the spin ratios Qi/J .
The string semiclassical expression (1.5), while formally valid for

√
λ≫ 1, is actually

exact, since, as was mentioned above, all sigma model corrections are suppressed by 1
J
.

Assuming the conditions (1.4) are satisfied, one should be able to compare directly the
classical O(J) term in the string energy (1.5) to the O(J) scaling dimension in gauge
theory (1.7), and to show that

ǫn(Qi/J) = δn(Qi/J). (1.8)

Such a comparison at O(λ/J2) order was indeed successfully carried out in [17, 11, 12],
where a spectacular agreement between the string theory and gauge theory results for the
energy or dimension was found for several two-spin string states represented by circular
and folded closed strings rotating in S5.

The contents of the present paper is the following. In Section 2 we review the results
of the semi-classical computation of the energy of folded strings rotating in two planes on
S5, the “(J1, J2)” solution [11]. We also review the results of the Bethe ansatz calculations
of the anomalous dimensions of the corresponding gauge theory operators [17]. We then
present a full analytic proof that in the region of large quantum numbers the relevant
terms in the string energy and the gauge operator dimension match, i.e that ǫ1 and
δ1 are indeed the same as functions of the spin ratio. This goes beyond the previous
“experimental” evidence of matching series expansions. The central part of the present
paper is Section 3, where we show that the “(J1, J2)” state represented by the string
rotating in two planes in S5 can be analytically continued, in both string and gauge
theory, to an “(S, J)” state represented by a string rotating in just one plane in S5, but
having also one large spin in AdS5 [6]. On the gauge theory side, this requires the use
of a recently constructed [16] supersymmetric extension of the above Bethe ansatz. As a
result, we find the agreement between the string theory and gauge theory expressions of
the energy/dimension also for the “(S, J)” solution. In Section 4 we study the possibility
to check the matching (1.8) beyond the leading order n = 1. Using the expression [18]
for the gauge theory two-loop dilatation operator, we present numerical evidence that
the matching between the string theory and gauge theory results in the case of the
(J1, J2) state extends to at least to the n = 2 (two-loop) level. Section 5 contains some
concluding remarks, The Appendices contain some general remarks and technical details.
In particular, in Appendix B we explain the relation between the (J1, J2) and (S, J)
string solutions, and in Appendix C we discuss the solution of the Bethe ansatz system
of equations for the spin chain which appeared in Section 3 in connection with the (S, J)
case. In Appendix D we compare circular strings on S5 with a different “imaginary”

2For the O(λ) term the 1/J dependence can be read off from the thermodynamic limit of the Bethe
ansatz. For higher-loops, there are some numerical indications for this 1/J dependence, but so far there
is no general proof (which, perhaps, may be given using maximal supersymmetry of the theory).

3



solution of the Bethe equations. Finally, in Appendix E we consider the dependence of
string energy on the ratio of two spins.

2 Strings rotating on S5

Let us start with a discussion of a particular (J1, J2) state corresponding to a folded string
rotating in two planes on the five-sphere. This folded solution should have minimal value
of the energy for given values of the spins. Our aim will be to demonstrate the equivalence
between the leading correction to the classical string-theory energy and the one-loop
gauge theory anomalous dimension at the functional level, i.e. going beyond particular
expansions and limits considered previously in [17, 11]. The solution in question [11]
has the following non-zero coordinates in (1.3): t = κτ, ϕ1 = w1τ, ϕ2 = w2τ, γ =
π
2
, ψ = ψ(σ) and ψ satisfies a 1-d sine-Gordon equation in σ. The string is stretched in
ψ with the maximal value ψ0 (we refer to Appendices A and B for details on the string
solutions). The classical energy and the angular momenta of the rotating string may be
written as

E =
√
λ E , Ji =

√
λJi. (2.1)

Here and from now on, curly letters correspond to charges rescaled by the inverse effec-
tive string tension, 1/

√
λ. The parameters of the solution κ, ω1, ω2 are related via the

conformal gauge constraint and the closed string periodicity condition (we shall consider
single-fold solution). Solving these conditions one may express the energy as a function
of the spins, E(J1, J2, λ) =

√
λ E(J1,J2). The expression for the energy can then be

found as a parametric solution of the following system of two transcendental equations
(see Appendix B)

( E
K(x)

)2

−
( J1

E(x)

)2

=
4

π2
x ,

( J2

K(x) − E(x)

)2

−
( J1

E(x)

)2

=
4

π2
, (2.2)

where the auxiliary parameter x = sin2 ψ0 is the modulus of the elliptic integrals K(x) and
E(x) of the first and second kind, respectively (their standard definitions can be found
in the appendices in (B.7),(C.11)). Eliminating x, one finds the energy as a function of
J = J1 + J2, the ratio J2/J and the string tension

√
λ.

Assuming that J = J1 +J2 is large, i.e. that the condition (1.4) is satisfied, one can
expand the solution for the energy in powers of the total spin J =

√
λJ (cf. (1.5))

E = J +
ǫ1
J +

ǫ2
J 3

+ . . . , i.e. E = J + ǫ1
λ

J
+ ǫ2

λ2

J3
+ . . . , (2.3)

where ǫn = ǫn(J2/J) are functions of the spin ratio. It is a non-trivial observation that
the string energy admits [11] such an expansion which then looks like a perturbative
expansion in λ. Moreover, quantum string sigma model corrections to E are suppressed
if J ≫ 1 [10, 11].

Turning attention to the gauge theory side, the natural operators carrying the same
SO(6) charges (J1, J2) are of the general form

TrZJ1ΦJ2 + . . . , (2.4)
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where Z and Φ are two of the three complex scalars of the N = 4 super YM model. The
dots indicate that one has to consider all possible orderings of J1 fields Z and J2 fields Φ
inside the trace: only very specific linear combinations of these composite fields possess a
definite scaling dimension ∆, i.e. are eigenoperators of the anomalous dimension matrix.
These particular two-spin scalar operators do not mix with any other local operators that
contain other types of factors (fermions, field strengths, derivatives) [18]. The relation
(1.6) between the string state energy and dimension of the corresponding gauge theory
operator then predicts that there should exist an operator3 of the form (2.4) whose
exact4 scaling dimension is given, for large J , by the solution of eqs.(2.2). That means,
in particular, that eqs.(2.2) derived from classical string theory predict the anomalous
dimension of this operator to any order in perturbation theory in λ!

Can we test this highly non-trivial prediction by a direct one-loop computation in the
gauge theory? In the case where J is large, doing this from scratch by Feynman diagram
techniques is a formidable task due to the large number of possible field orderings (one
needs to diagonalize the anomalous dimension matrix whose size grows exponentially
with J). What helps is the crucial observation of ref. [15] that the one-loop anomalous
dimension matrix for the operators of the two-scalar type (2.4) can be related to a
Hamiltonian of an integrable Heisenberg spin chain (XXX+1/2 model), i.e. its eigenvalues
can be found by solving the Bethe ansatz equations of the spin chain. The upshot of the
Bethe ansatz procedure [17] is that the system of equations diagonalizing the one-loop
anomalous dimension matrix (for any, small or large, values of J1, J2) is given by

(

uj + i/2

uj − i/2

)J

=

J2
∏

k=1
k 6=j

uj − uk + i

uj − uk − i
, δ1 =

J

8π2

J2
∑

j=1

1

u2
j + 1/4

, (2.5)

where again J = J1 + J2 (we assume J1 ≥ J2). This is an algebraic system of equations
involving the auxiliary parameters uj, the so-called Bethe roots. We need to find the
J2 roots uj subject to the condition that no two roots uj, uk coincide and the further
constraint

J2
∏

j=1

uj + i/2

uj − i/2
= 1 , (2.6)

which ensures that no momentum flows around the cyclic trace. This yields the one-
loop planar anomalous dimensions λ δ1

J
for the operators (2.4). Here, we will restrict

consideration to symmetric solutions, i.e. if uj is a root then −uj must be a root as well,
this automatically solves the momentum constraint (2.6).5

Let us now pause and compare the string theory system (2.2) for the classical energy
and the gauge theory system (2.5) for the one-loop anomalous dimension. Both systems
are parametric, i.e. finding energy/dimension as a function of spins involves elimination

3Since the folded string solution happens to have lowest energy for given charges, the corresponding
operator should have the lowest dimension in this class of operators.

4By exact we mean not only all-order in λ but also non-perturbative: one does not expect instanton
effects to be relevant in the planar gauge theory.

5For a highest weight state of the desired representation [J2, J1−J2, J2] of SO(6), no roots at infinity
are allowed.
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of auxiliary parameters. The string result is valid for all λ, but restricted to large J ,
namely, J ≫

√
λ and J ≫ 1. The gauge result is valid for all J1, J2, but restricted to

lowest order in λ. Remarkably, there is a region of joint validity: large charge J and first
order in λ!

Extracting the leading-order or “one-loop” term ǫ1 from the string-theory relations
(2.2) is straightforward, as discussed in Appendix B. For large J = J1 + J2 one sets
x = x0 + x1/J 2 + . . . and solves the resulting transcendental equation for x0. One then
finds the parametric solution for ǫ1 = ǫ1(

J2

J
)

ǫ1 =
2

π2
K(x0)

(

E(x0) − (1 − x0)K(x0)
)

,
J2

J
= 1 − E(x0)

K(x0)
. (2.7)

On the gauge side, one needs to do some work to extract the lowest-energy state so-
lution [17].6 First, to be able to compare with string theory we need to consider the
“thermodynamic” limit of large spins, i.e. J ≫ 1. The idea is then to assume a con-
densation of the Bethe roots into “strings” and thus to convert the system of algebraic
Bethe equations into a continuum (integral) equation. Making an appropriate ansatz for
the Bethe root distribution selects the ground state. Solving the corresponding integral
equation (see Appendix C for some details) one finds again a system of two equations
with energy as a parametric solution δ1 = δ1(

J2

J
)

δ1 =
1

2π2
K(q)

(

2E(q) − (2 − q)K(q)
)

,
J2

J
=

1

2
− 1

2
√

1 − q

E(q)

K(q)
. (2.8)

Here the modulus q = 1− a2

b2
is related to the endpoints a, b of the “strings” of Bethe roots.

This system looks similar, but superficially not identical to that in eq.(2.7). However, if
we relate the auxiliary parameters x0 and q by 7

sin2 ψ0

∣

∣

∣

J=∞
= x0 = −(1 −√

1 − q)2

4
√

1 − q
= −(a− b)2

4ab
, (2.9)

one can show, using the elliptic integral modular transform relations

K(x0) = (1 − q)1/4K(q), E(x0) = 1
2
(1 − q)−1/4E(q) + 1

2
(1 − q)1/4K(q) , (2.10)

6It is worth noting that the Bethe equations give the energies or dimensions for all states with the
same spins, while the minimal-energy string solution corresponds to the ground state only. To select
a particular solution of the Bethe equations that should correspond to a specific (folded or circular,
with extra oscillations or without) string solution requires a number of steps: First, one needs to make
certain “topological” assumptions about the distribution of roots, which accumulate on lines presciently
termed “Bethe strings”. The possible choices correspond to “folded” and “circular” strings. Second,
one takes the logarithm on both sides of the Bethe equations. The possible branches correspond to the
various winding modes of the string.

7Note that b = a∗ (cf. Appendix C), so x0 is indeed positive. Let us note also that this relation
between the size of the folded string (ψ0) and the “length” of the Bethe “strings” (q) suggests that
a transformation between the two integrable models – string sigma model (Neumann system or 1-d
sine-Gordon system that follows from it) and the spin chain – should involve some kind of a Fourier
transform (Bethe roots are inversely related to effective 1-d momenta).
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that the systems (2.7) and (2.8) are, in fact, exactly the same. As a result, their solutions
ǫ1(

J2

J
) and δ1(

J2

J
) do become identical!

We have thus demonstrated the equivalence between the string theory and gauge
theory results for a particular two-spin part of the spectrum at the full functional level.
Previously the equality ǫ1 = δ1 was checked [17, 11] only for the first few terms in an
expansion around special values of J2

J
.

3 Strings rotating on AdS5 and S5

Recently, it was shown in [16] that the complete one-loop planar dilatation operator of
N = 4 SYM [19] is integrable.8 To diagonalize any matrix of anomalous dimensions,
the corresponding Bethe ansatz was written down in [16]. This enables one to access a
much wider class of states and perform similar comparisons between gauge theory and
semiclassical string theory.

Here we will present a first interesting example of such a novel test: we shall consider
the case of only one non-vanishing angular momentum in S5 (J = J3), but also one non-
zero spin in AdS5 (S = S1). This situation is clearly different from the one discussed in
the last section. However, on the string side, the two scenarios are, in fact, mathemati-
cally closely related, as we will explain below (see also Appendix B). Is this also true on
the gauge side? There the relevant local operators carrying the same SO(2, 4) × SO(6)
charges (S, J) have the following generic form

TrDSZJ + . . . , (3.1)

where D = D1 + iD2 is a complex combination of covariant derivatives (see [9] for a
related discussion). Can we also treat these operators by a Bethe ansatz? The integra-
bility property of anomalous dimensions of similar operators was recently discussed in
the literature [23]. In [16] the precise spin chain interpretation of these operators was
proved to lead to an integrable XXX−1/2 Heisenberg chain, and the corresponding Bethe
ansatz was obtained. Here, the derivatives D do not represent sites of the spin chain,
in contradistinction to the fields Φ of (2.4).9 In other words, each site can now a priori
(i.e. if S is sufficiently large) be in infinitely many spin states (DkZ), as compared to
only two, (Z, Φ), in (2.4). Under this identification S plays the role of the number of
excitations and J equals the number of spin sites, i.e. the length of the chain. The Bethe
ansatz equations for the one-loop anomalous dimensions then read (we use δ̃ and ǫ̃ to
distinguish the (S, J) solutions)

(

uj − i/2

uj + i/2

)J

=
S

∏

k=1
k 6=j

uj − uk + i

uj − uk − i
, δ̃1 =

J

8π2

S
∑

j=1

1

u2
j + 1/4

(3.2)

8Integrability is related to Yangians. A Yangian structure in the bosonic coset sigma model was
recently shown [20] to have a generalization to (classical) supercoset sigma model of [21]. Very recently
[22], this structure was “mapped” to planar gauge theory. Possibly, this line of thought will lead to a
deeper understanding of the matching of energies/anomalous dimensions.

9In fact, the analogy goes the opposite way: Φ should be viewed as an equivalent of DZ, whereas
D2,3,...Z are absent in the spin + 1

2
chain.
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The similarity to the system of equations (2.5) for the previous (J1, J2) case, i.e. for the
XXX+1/2 spin chain, is obvious. In fact, the system (2.5) becomes formally equivalent
to (3.2) if we make the following replacements in (2.5)

J 7→ −J , J2 7→ S , δ1(J2, J) 7→ −δ̃1(S,−J) . (3.3)

The large J solution δ1(J2/J) of (2.8) can now be analytically continued to the regime
J2/J < 0 where it gives the correct energy δ̃1(S/J) for S/J > 0. In fact, the solution of
(2.8) was first derived [17] by assuming that J2/J < 0 and then analytically continued
to J2/J > 0! For further details see Appendix C, where we also review the solution and
present some further results that were not included in the paper [17].

Let us now turn to the rotating folded (S, J) string solution [6] which would be
expected to correspond to the just discussed gauge theory operators (3.1). This rotating
string is stretched in the radial direction of AdS5 while its center of mass rotates in S5,
it has the following non-zero coordinates in (1.3): t = κτ, ρ = ρ(σ), φ1 = ω1τ, ϕ3 = w3τ
(see Appendices A and B for details). Now the energy E and the spin S can be viewed
as two “charges” in AdS5 while J – as the charge in S5. This is clearly reminiscent
of the previous example where we had two charges (J1, J2) in S5 and one charge (E)
in AdS5, and we have just found evidence on the gauge side that one should actually
expect the two solutions to be related by an analytic continuation. Indeed, as explained
in Appendices A and B, a beautiful way to see this connection on the string side stems
from the close relation between the AdS5 and S5 metrics in (1.3).

On the level of the final expressions for the string charges the relation is as follows.
The analogue of the parametric system of equations for the energy in the (J1, J2) case
here is easily found, using the relations in [6] (see Appendix B). We have again E =√
λ E , S1 ≡ S =

√
λ S, J3 ≡ J =

√
λ J , where E ,S,J depend only on the classical

parameters κ, ω1,w3 and satisfy
( J

K(x)

)2

−
( E

E(x)

)2

=
4

π2
x ,

( S
K(x) − E(x)

)2

−
( J

K(x)

)2

=
4

π2
(1 − x) . (3.4)

The parameter x = − sinh2 ρ0 here is negative definite for a physical folded rotating
string solution. The system (3.4) becomes formally equivalent to the one in (2.2) after
the following replacements done in (2.2) (we choose the same signs of the charges as in
Appendix B)

E 7→ −J , J1 7→ −E , J2 7→ S , (3.5)

and after the analytic continuation from x > 0 to x < 0 in the elliptic integrals. A formal
relation between the solutions of the two systems (2.2) and (3.4) is then

E(J1,J2) 7→ −J (−E ,S) . (3.6)

In general, this does not imply a direct relation between the energy expressions in the two
cases: one needs to perform the analytic continuation and also to invert the expression
for J . However, in the limit of large charges (the limit we are interested in) one can
show that the leading correction ǫ̃1 to the energy of the (S, J) solution

E = S + J +
ǫ̃1
J +

ǫ̃2
J 3

+ . . . , i.e. E = S + J + ǫ̃1
λ

J
+ ǫ̃2

λ2

J3
+ . . . , (3.7)
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is indeed directly related to ǫ1 (2.7) in the case of the (J1, J2) solution with the re-
placements implied by (3.5) (see Appendix B). In particular, to the leading order in
large-charge expansion one has J ≡ J1 + J2 → −E + S ≈ −J (where in the second
equality J stands for J3), so that ǫ̃1(−S

J
) = −ǫ1(J2

J
), i.e. the two functions are related by

ǫ̃1(−j) = −ǫ1(j). Remarkably, this is the same as (the “thermodynamic” limit of) the
relation (3.3) found above between the one-loop energy corrections on the gauge theory
side. This implies, in particular, that the correspondence between the string theory and
gauge theory results for the leading terms in the energy/dimension holds also in the case
of the (S, J) states.

4 Higher loop corrections

Let us now comment on a generalization of the above results to higher orders in λ (“higher
loops”). First, let us note that on the string side, we have a complete expression for
the energies to all orders in λ which follows from the systems (2.2) and (3.4). In the
interaction picture of perturbation theory, the only non-trivial system of equations is the
one determining the leading order contribution; all higher-loop terms can be expressed
through the leading order modulus x0. The two-loop energies ǫ2 for the (J1, J2) case and
ǫ̃2 for the (S, J) case are given by (see Appendix B)

ǫ2 =
2

π4
(K(x0))

3
(

(1 − 2x0)E(x0) − (1 − x0)
2K(x0)

)

,

ǫ̃2 = − 2

π4
(K(x0))

3
(

E(x0) − (1 − x2
0)K(x0)

)

. (4.1)

As implied by the relation (3.6), the two expressions are not expected to (and do not)
look similar.

Given that integrability and the Bethe ansatz allow us to obtain the exact one-loop

energies for infinite length operators, while string theory gives us an all-loop prediction,
it would be interesting to find higher-loop energies in gauge theory to compare to string
theory. Although the integrability property of the dilatation operator acting on the
states (2.4) seems to be maintained (at least) at the two-loop level [18], the corresponding
extension of the Bethe ansatz is not yet known.10 Therefore, in order to find higher-loop
anomalous dimensions of the operators (2.4) we have to rely on numerical methods of
diagonalization of the matrix of anomalous dimensions. For the states (2.4), this matrix
is generated by the planar dilatation operator [18]

D(λ) = J +
λ

8π2

J
∑

k=1

(

1 − Pk,k+1

)

(4.2)

+
λ2

128π4

J
∑

k=1

(−4 + 6Pk,k+1 − Pk,k+1Pk+1,k+2 − Pk+1,k+2Pk,k+1) + O(λ3),

10In principal agreement with the string theory result, one might express higher-loop energies in terms
of the one-loop Bethe roots. However, this would require calculating matrix elements of the higher-loop
dilatation operator between Bethe states – presently a very non-trivial issue.
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J δ1 δ2 δ3 δ′3
4 +0.303964 −0.123192 +0.087373 +0.124819
8 +0.328847 −0.155138 +0.085280 +0.075704

12 +0.337964 −0.175313 +0.126497 +0.109772
16 +0.342407 −0.185011 +0.149043 +0.128745
∞ +0.356 . . . −0.215 . . . +0.212 . . . +0.181 . . .
ǫn +0.356016 −0.212347 +0.181347 +0.181347

Table 1: SYM ground state energies for J1 = J2. We show the one-loop and two-loop results
as well as the three-loop conjectures. The value at J = ∞ is obtained by extrapolating the
values for J = 8, 12, 16 and ǫn represents the predictions from string theory.

where Pk,k′ exchanges the fields at site k and k′. We shall consider the special case of
J1 = J2 = J/2. For given J we can collect all operators of the form (2.4) and act on
them with the dilatation operator (4.2) neglecting all non-planar terms. We can then
diagonalize the matrix of anomalous dimensions and find the lowest eigenvalue of a state
in the representation [J/2, 0, J/2], see Tab. 1.

The numerical one-loop results for finite J are already reasonably close to the string
theory prediction. As proposed in [17], we can improve the results by extrapolating to
J = ∞. This is done fitting to the first two terms in the series expansion in 1/J

δn = an +
bn
J

+ . . . (4.3)

As was demonstrated in [17], there are two distinct sequences of states for even and odd
values of J2. The even values approach reasonably fast to the desired energies. Here we
use J = 8, 12, 16 to extrapolate to J = ∞.

The extrapolated values of the dimensions at one-loop and two-loop orders [18] are
found to be about 1% off the string theory prediction. These results agree very well
and we can clearly confirm that the correspondence works at O(λ2)! For the three-loop
conjecture of [18] (see also [24]) the results are somewhat inconclusive. On the one hand,
using the vertex that was constructed assuming that integrability holds at O(λ3), we get
an extrapolation, δ3, which is 17% off the string prediction. On the other hand, the vertex
that was matched to near plane-wave string theory results [25] gives an extrapolation, δ′3,
that is only 2% away. Nevertheless, we expect the three-loop energies to converge rather
slowly and the three values of J used to extrapolate are clearly not sufficient: In the
spin chain picture the three-loop interaction already extends over four lattice sites, and
finite size effects, due to the relatively small chain lengths, become more pronounced. An
indication for this is that the extrapolation is still 50% away from the input values. The
1/J2 terms which were neglected are expected to have a much stronger influence on the
finite J values as compared to O(λ) term. Therefore, a 17% mismatch seems reasonable
and we can neither confirm nor rule out any of the conjectured three-loop vertices [24]
(or the correspondence at O(λ3)).
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5 Conclusions and Outlook

In this paper we demonstrated that spectroscopy is becoming a very precise and versatile
tool for establishing the validity of the AdS/CFT duality conjecture on a quantitative,
dynamical level. Following the suggestion of [9, 10] and extending the earlier break-
through work of [17, 11, 12] we have shown that in the non-BPS sector of two large
charges, as in the near-BPS BMN sector with single large charge [3], the duality between
the SYM theory and AdS5 × S5 string theory relates perturbative results on both sides
of the correspondence and thus can be tested using existing tools.

It should be fairly evident that our derivation of mathematically highly involved
energy expressions, such as eqs.(2.7),(2.8), from both string theory and gauge theory
constitutes a “physicist’s proof” of the correspondence. We believe that the present work
is just the beginning of a much wider unraveling of dynamical details of the AdS/CFT
duality. At the end, we expect to gain much insight into superstring theory on curved
backgrounds, and into gauge theory at finite coupling.

Our work suggests a large number of further inquiries. The precise interpretation of
the circular versus folded string solutions remains somewhat obscure in the Bethe ansatz
picture. In particular, it would be important to understand the analog of the string
solution for J2 > J/2 in the Bethe ansatz and thus complete the picture outlined in
Appendix E. Furthermore, it seems that the Bethe ansatz allows for very complicated
distributions of “Bethe root strings”, involving multi-cut solutions, the role of which is
unclear so far on the string theory side.

Another obvious problem is to extend the comparison to include 1/J terms by com-
puting (as in [6,10]) the 1-loop string sigma model correction to the (J1, J2) string energy
and comparing the result to the leading correction to the “thermodynamic” limit of the
XXX+1/2 Bethe system. It would be interesting also to compute energies of excited
string states by expanding the superstring action near the ground-state two-spin (J1, J2)
solution. In contrast to the BMN case [3], here one expects (from experience with special
circular solutions [10]) that there will be many nearby states with the same charges and
with energies differing from the ground state energy by order 1

J 2 = λ
J2 terms (these are

of course negligible as compared to similar terms in the classical ground-state energy in
the limit J ≫ 1).

It should be relatively straightforward, if laborious to extend the analysis to more than
two spins. In string theory this has largely been accomplished for three non-vanishing
angular momenta on S5 in [12], but one could try to also include concurrently the two
AdS5 charges. For gauge theory, the corresponding Bethe equations are known [16],
but have not yet been analyzed in any generality. Ideally, one would like to understand
how to prove these equivalences directly, i.e. without actually solving the classical string
sigma model equations and the Bethe equations in the thermodynamic limit.

The biggest challenge clearly is to find out how to extend the calculational power on
either side of the correspondence in a way that would allow one to derive results that
are not in the overlapping window of large quantum numbers and small effective string
tension. On the string theory side, this would require to include quantum (inverse string
tension) corrections in the Green-Schwarz supercoset sigma model of [21]. For gauge
theory, we would need to understand the proper extension of the Bethe ansatz so as to
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make it applicable to all orders in Yang-Mills perturbation theory. Maybe integrability
will lead the way.
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A Rotating string solutions

Let us make some general observations on 5-spin string solutions in AdS5 × S5 pointing
out some relations between different types of solutions via an analytic continuation. The
general rotating strings carrying 2+3 charges (S1, S2; J1, J2, J3) and the energy E are
described by the following ansatz [9] (see (1.3))

t = κτ , φ1 = ω1τ , φ2 = ω2τ , ϕ1 = w1τ , ϕ2 = w2τ , ϕ3 = w3τ ,

ρ(σ) = ρ(σ + 2π) , θ(σ) = θ(σ + 2π) , γ(σ) = γ(σ + 2π) , ψ(σ) = ψ(σ + 2π).
(A.1)

Then the 3+3 obvious integrals of motion are11

S1 ≡
S1√
λ

= ω1

∫ 2π

0

dσ

2π
sinh2 ρ cos2 θ , J1 ≡

J1√
λ

= w1

∫ 2π

0

dσ

2π
sin2 γ cos2 ψ ,

S2 ≡
S2√
λ

= ω2

∫ 2π

0

dσ

2π
sinh2 ρ sin2 θ , J2 ≡

J2√
λ

= w2

∫ 2π

0

dσ

2π
sin2 γ sin2 ψ ,

E ≡ E√
λ

= κ

∫ 2π

0

dσ

2π
cosh2 ρ , J3 ≡

J3√
λ

= w3

∫ 2π

0

dσ

2π
cos2 γ .

(A.2)

They satisfy

−S1

ω1
− S2

ω2
+

E
κ

= 1 ,
J1

w1
+

J2

w2
+

J3

w3
= 1 . (A.3)

The second-order equations for (ρ, θ)

ρ′′ − sinh ρ cosh ρ (κ2 + τ ′2 − ω2
1 cos2 τ − ω2

2 sin2 τ) = 0 ,

(sinh2 ρ τ ′)′ − (ω2
1 − ω2

2) sinh2 ρ sin τ cos τ = 0 ,
(A.4)

11As discussed in [9, 12], all other (SIJ , JMN ) generators (conserved charges) of SO(2, 4) × SO(6)
except the Cartan ones E = S05, S1 = S12, S2 = S34, J1 = J12, J2 = J34, J3 = J56 should vanish in
order for the rotating string solution to represent a semiclassical string state carrying the corresponding
quantum numbers.
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and (γ, ψ)
γ′′ − sin γ cos γ (w2

3 + ψ′2 − w2
1 cos2 ψ − w2

2 sin2 ψ) = 0 ,

(sin2 γ ψ′)′ − (w2
1 − w2

2) sin2 γ sinψ cosψ = 0 ,
(A.5)

are decoupled from each other. As explained in [12], the resulting system of equations is
completely integrable, being equivalent to a combination of the two Neumann dynamical
systems. As a result, there are 2+2 “hidden” integrals of motion, reducing the general
problem to solution of two independent systems of two coupled first-order equations,
with parameters related through the conformal gauge constraint

ρ′2 − κ2 cosh2 ρ+ sinh2 ρ (θ′2 + ω2
1 cos2 θ + ω2

2 sin2 θ)

+ γ′2 + w2
3 cos2 γ + sin2 γ (ψ′2 + w2

1 cos2 ψ + w2
2 sin2 ψ) = 0 . (A.6)

Let us now observe the following symmetry of the above system. The two metrics in
(1.3) are related by the obvious analytic continuation and change of the overall sign,
which is equivalent in the present rotational ansatz (A.1) case to

ρ↔ iγ , θ ↔ ψ , κ↔ −w3 , ω1 ↔ −w1 , ω2 ↔ −w2 . (A.7)

This transformation maps the system (A.4) into the system (A.5) and also preserves
the constraint (A.6). Thus it formally maps solutions into solutions. Under (A.7) the
conserved charges (A.2) (or Cartan generators of SO(2, 4)×SO(6)) transform as follows

S1 ↔ J1 , S2 ↔ J2 , E ↔ −J3 . (A.8)

We could, of course, assume instead of (A.7) that ω1, ω2 ↔ w1,w2 but then S1, S2 ↔
−J1,−J2. Note that the transformed solutions may not necessarily have a natural physi-
cal interpretation. In order for some two physical solutions to be related by this analytic
continuation prescription at least one of them should have a non-vanishing J3 spin (which
transforms into the energy of the solution).

One can find also other transformations that map solutions into solutions by combin-
ing (A.7) with special (discrete) SO(2, 4) × SO(6) isometries that do not induce other
components of the rotation generators except the above Cartan ones (e.g., interchanging
the angular coordinates induces interchanging of the charges in (A.2), etc.). Below we
shall consider such an example.

B Relation between two-spin solutions

Let us now show that the two previously known two-spin folded string solutions are, in
fact, related by the above analytic continuation. Firstly, there is the “(S, J)” solution [6]

κ, ω1,w3 6= 0 , ρ = ρ(σ) , θ = 0 , γ = 0 , ψ = 0 , (B.1)

where the string is stretched in the radial direction ρ of AdS5 . It rotates (ω1) in AdS5

about its center of mass which in turn moves (w3) along a large circle of S5. The gauge

13



constraint (A.7) and integrals of motion (A.2) become

w2
3 + ρ′2 − κ2 cosh2 ρ+ ω2

1 sinh2 ρ = 0 , J ≡ J3 = w3 ,

S ≡ S1 = ω1

∫ 2π

0

dσ

2π
sinh2 ρ , E = κ

∫ 2π

0

dσ

2π
cosh2 ρ .

(B.2)

Secondly, we have the “(J1, J2)” solution [11] where the string located at the center of
AdS5 is stretched (ψ) along a great circle of S5 and rotates (w2) about its center of mass
which moves (w1) along an orthogonal great circle of S5:

κ,w1,w2 6= 0 , ρ = 0 , θ = 0 , γ =
π

2
, ψ = ψ(σ) . (B.3)

The gauge constraint (A.7) and integrals of motion (A.2) are then

−κ2 + ψ′2 + w2
1 cos2 ψ + w2

2 sin2 ψ = 0 ,

E = κ , J1 = w1

∫ 2π

0

dσ

2π
cos2 ψ , J2 = w2

∫ 2π

0

dσ

2π
sin2 ψ .

(B.4)

Following the discussion in Appendix A we conclude that these two solutions are related
by the following analytic continuation: 12

ρ→ iψ , κ→ −w1 , ω1 → −w2 , w3 → −κ ,
E → −J1 , S → J2 , J → −E .

(B.5)

We can, in fact, directly relate the systems of equations expressing the closed string
periodicity condition and definitions of the respective energies and spins and thus relating
the three integrals of motion in the two cases (see, respectively, [6] and [11]). In the first
case we get the following relations (we introduce the parameter x < 0 related to η in [6] by
η = −1/x, x = − sinh2 ρ0, where ρ0 is the maximal value of the radial AdS5 coordinate)

κ2 − w2
3

κ2 − ω2
1

= − sinh2 ρ0 ≡ x < 0 , E = κ+
κ

ω1
S, J = w3 ,

√

κ2 − w2
3 =

2
√−x
π

K(x) , E =
2κ

√−x
π
√

κ2 − w2
3

E(x) , (B.6)

where K(x) and E(x) are the standard elliptic integrals (see Appendix C) related to the
hypergeometric functions used in [6] by

2F1(
1
2
, 1

2
; 1, x) =

2

π
K(x) , 2F1(−1

2
, 1

2
; 1; x) =

2

π
E(x) . (B.7)

Solving for ω1 and κ in terms of J and x we find

ω2
1 = J 2 +

4

π2
(1 − x)(K(x))2, κ2 = J 2 − 4

π2
x (K(x))2 , (B.8)

12Note that here E − S − J → E − (J1 + J2). Choosing instead ω1 → w2, κ→ w1, w3 → κ we would
get E → J1, S → −J2, J → E, so that E − S − J → −E + J1 + J2.
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and then finally get the system of two equations (3.4) for the energy given in the main
text. The second of the two equations in (3.4) determines x in terms of S and J , while
the first one then gives the energy as a function of the spins.

Similarly, for the (J1, J2) solution (B.3) one finds from the expressions given in [11]
(we assume w2

2 > w2
1)

κ2 − w2
1

w2
2 − w2

1

= sin2 ψ0 ≡ x > 0 , 1 =
J1

w1
+

J2

w2
, E = κ,

J1 =
2w1

π
√

w2
2 − w2

1

E(x) ,
√

w2
2 − w2

1 =
2

π
K(x) . (B.9)

Solving for w1, w2 in terms of J1 and x

w2
1 =

(

K(x)

E(x)
J1

)2

, w2
2 =

(

K(x)

E(x)
J1

)2

+
4

π2
K(x)2 , (B.10)

we finish with the system of the two equations determining E = E(J1,J2) given in (2.2).
A manifestation of the analytic continuation relation between both two-spin solutions is
then the equivalence of the two systems (2.2) and (3.4) under the substitution (3.5) (and
a continuation from x > 0 to x < 0 in the parameter space).

Depending on the region of the parameter space (or values of the integrals of motion)
one finds different functional form of dependence of the energy on the two spins. We
discuss some aspects of this dependence in Appendix E below. A direct comparison with
gauge theory we are interested in here is possible in the case when the two spins S and
J are both large compared to

√
λ , i.e. S ≫ 1, J ≫ 1. The analogous limit [11] for

the (J1, J2) solution is when J1 ≫ 1, J2 ≫ 1. In the two cases we can then expand
the energies, e.g., in powers of the total S5 spin J . This amounts to an expansion in
powers of J ≡ J3 in the (S, J) case and in powers of J ≡ J1 + J2 in the (J1, J2) case,
respectively,

E = S + J +
λ

J
ǫ̃1(S/J) +

λ2

J3
ǫ̃2(S/J) + . . . , J ≡ J3, S ≫

√
λ ,

E = J +
λ

J
ǫ1(J2/J) +

λ

J3
ǫ2(J2/J) + . . . , J ≡ J1 + J2, J2 ≫

√
λ , (B.11)

where we introduced tildes on the correction functions ǫn in the first solution case. One
may wonder if the coefficients ǫ̃1 and ǫ1 in (B.11) are related in some way, given that the
two solutions are related by the analytic continuation. Applying formally the substitution
(B.5) in (B.11) we get, to the leading order,

E = S + J +
λ

J
ǫ̃1(S/J) + . . . → −J1 = J2 − E +

λ

(−E)
ǫ̃1(J2/(−E)) + . . . . (B.12)

Using that E = J1 + J2 + . . . in the subleading term we finish then with (where now
J ≡ J1 + J2)

E = J − λ

J
ǫ̃1(−J2/J) + . . . . (B.13)
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Comparing this to (B.11) we conclude that one should have a simple relation between
the leading-order (“one-loop”) corrections for the energies of the two solutions:

ǫ̃1(j) = −ǫ1(−j) . (B.14)

As was noted in Section 3, this is indeed the relation that one finds on the gauge theory
side (3.3).

Let us now demonstrate that (B.14) follows also from the string-theory equations
(B.6) and (B.9) or the systems (3.4) and (2.2). Expanding the parameter x for large J
as (with J being J1 + J2)

x = x0 +
x1

J 2
+
x2

J 4
+ . . . , (B.15)

one finds that for the (J1, J2) solution the leading value of the parameter x0 is given by
the solution of the transcendental equation

E(x0)

K(x0)
= 1 − J2

J
, x0 = x0(J2/J) . (B.16)

The rest of the expansion coefficients in x and the energy are then determined by linear
algebra, e.g.,

x1 = − 4(1 − x0)x0

(

K(x0) − E(x0)
)

E(x0)K(x0)
2

π2
(

(1 − x0)K(x0)2 − 2(1 − x0)K(x0)E(x0) + E(x0)2
) ,

ǫ1 =
2

π2
K(x0) (E(x0) − (1 − x0)K(x0)) , (B.17)

ǫ2 =
2

π4
K(x0)

3
(

(1 − 2x0)E(x0) − (1 − x0)
2K(x0)

)

.

In the (S, J) case, using the same expansion (B.15) for the corresponding parameter x
where now J = J3 we find the following equation for x0

E(x0)

K(x0)
= 1 +

S

J
, x0 = x0(S/J) . (B.18)

Solving this equation one finds other expansion coefficients in (B.15) and (B.11), e.g.,

x1 = − 4(1 − x0)
2x0

(

K(x0) − E(x0)
)

E(x0)
2K(x0)

π2
(

(1 − x0)K(x0)2 − 2(1 − x0)K(x0)E(x0) + E(x0)2
) , (B.19)

ǫ̃1 = − 2

π2
K(x0)

(

E(x0) − (1 − x0)K(x0)
)

,

ǫ̃2 = − 2

π4
K(x0)

3
(

E(x0) − (1 − x2
0)K(x0)

)

.

Comparing (B.16),(B.19) to (B.18),(B.17) and observing that to leading order (B.5)
implies J2 → S, J → −J , we indeed confirm the relation (B.14).
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C Gauge theory details

Here we will outline the solution of the Bethe ansatz system of equations (3.2) for the
novel case of the XXX−1/2 Heisenberg spin chain. We expect that the positions of the
roots are of order O(J), where J is the length of our non-compact magnetic chain, as
explained in Section 3. We then take the logarithm of the equations (3.2) and obtain for
large J

− J

uj

= 2πnj + 2
S

∑

k=1
k 6=j

1

uj − uk

, δ1 =
J

8π2

S
∑

j=1

1

u2
j

. (C.1)

The mode numbers nj enumerate the possible branches of the logarithm. Excitingly,
we see that these large J equations are almost identical to the ones found in [17] for
the compact XXX+1/2 chain (cf. eq.(2.7) in [17]), except for a minus sign on the left
hand side of the left equation in (C.1). It therefore does not come as a surprise that
the solution will be very similar to the previously considered case. The differences are,
however, very interesting, and we will briefly rederive the solution for the new case (C.1).

As in the case of the XXX+1/2 system, we shall start with assuming that in the large
J limit the Bethe roots accumulate on smooth contours. It is reasonable, therefore, to
replace the discrete root positions uj by a (rescaled) smooth continuum variable u and
introduce a density ρ(u) describing the distribution of the roots in the complex u-plane:

uj

J
→ u with ρ(u) =

1

J

S
∑

j=1

δ
(

u− uj

J

)

. (C.2)

For the operators in eq.(3.1) with one AdS5 charge S there are precisely S roots, and
the density is normalized to the filling fraction β = S/J ,

∫

C

du ρ(u) = β, (C.3)

where C is the support of the density, i.e. the union of contours along which the roots are
distributed. The Bethe equations (C.1) in the “thermodynamic limit” then conveniently
turn into singular integral equations:

−
∫

C

dv ρ(v) u

v − u
=

1

2
+ π nC(u) u, δ1 =

1

8π2

∫

C

du ρ(u)

u2
(C.4)

where nC(u) is the mode number at point u. It is expected to be constant along each
contour. Here and in the following the slash through the integral sign implies a principal
part prescription. In addition, we have the momentum conservation condition, resulting
from the cyclic boundary conditions of our chain:

S
∏

j=1

uj + i/2

uj − i/2
= 1 , i.e.

∫

C

du ρ(u)

u
= 0 and

∫

C

du ρ(u)nC(u) = 0, (C.5)

where the last equation is a consistency condition derived from the left eq.(C.1) by
summing both sides of that equation over all j.
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As opposed to the XXX+1/2 case, we expect the roots for the ground state to lie on
the real axis (this may be verified by explicit solution of the exact Bethe equations for
small values of J). Furthermore, we assume the distribution of roots to be symmetric
w.r.t. the imaginary axis, ρ(−u) = ρ(u). We therefore expect the support of the root
density to split into (at least) two disjoint intervals C = C− + C+ with C− = [−b,−a]
and C+ = [a, b], where a < b are both real.13 For the ground state we expect just two
contours, and the mode numbers should be n = ∓1 on C±. For this distribution of roots,
the Bethe equations (C.4) become

−
∫ b

a

dv ρ(v) u2

v2 − u2
=

1

4
− π

2
u , δ1 =

1

4π2

∫ b

a

du ρ(u)

u2
. (C.6)

Comparing to the previous solution in [17], we thus find an identical equation except
that the new filling fraction β = S

J
is related to the previous one α = J2

J
by β → −α! 14

Interestingly, we already analyzed the case of negative α, i.e. positive β as a technical
trick in [17]; here we find that this case, which did not previously correspond to a physical
situation for the spin +1

2
chain, is physical in the case of the −1

2
chain. The solution of the

integral equation (see, e.g., [26]), yielding the density ρ(u), may be obtained explicitly
(in [17] we rather eliminated the density after obtaining an integral representation for
it); it reads

ρ(u) =
2

πu
−
∫ b

a

dv v2

v2 − u2

√

(b2 − u2)(u2 − a2)

(b2 − v2)(v2 − a2)
. (C.7)

This density may be expressed explicitly through standard functions:

ρ(u) =
1

2πbu

√

u2 − a2

b2 − u2

[

b2

a
− 4u2Π

(

b2 − u2

b2
, q

)]

, q =
b2 − a2

b2
, (C.8)

where we introduced the modulus q, playing the role of an auxiliary parameter, and Π
is the elliptic integral of the third kind:

Π(m2, q) ≡
∫ π/2

0

dϕ

(1 −m2 sin2 ϕ)
√

1 − q sin2 ϕ
. (C.9)

Furthermore, we may derive two conditions determining the interval boundaries a, b as
a function of the filling fraction β:

∫ b

a

du u2

√

(b2 − u2)(u2 − a2)
=

1 + 2β

4
and

∫ b

a

du
√

(b2 − u2)(u2 − a2)
=

1

4ab
.

(C.10)
The first is derived from the normalization condition eq.(C.3), while the second is a
consistency condition, assuring the positivity of the density. These may be reexpressed

13After the analytical continuation to the spin + 1

2
case, the points a, b become a complex conjugate

pair.
14To facilitate comparison, note that here we are using a different convention for normalizing the

density.
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through standard elliptic integrals of, respectively, the second and the first kind; one
finds

E(q) ≡
∫ π/2

0

dϕ

√

1 − q sin2 ϕ =
1 + 2β

4b
, K(q) ≡

∫ π/2

0

dϕ
√

1 − q sin2 ϕ
=

1

4a
(C.11)

It is straightforward to eliminate the interval boundaries a, b from these equations; fur-
thermore, we can integrate the density and compute the energy δ1 from the right equation
in eqs.(C.6) (cf. (2.8))

δ1 =
1

2π2
K(q)

(

(2 − q)K(q) − 2E(q)
)

, β ≡ S

J
=

1

2
√

1 − q

E(q)

K(q)
− 1

2
. (C.12)

Finally, we can also express the boundaries of the Bethe strings through the modulus q:

a =
1

4K(q)
, b =

1

4
√

1 − qK(q)
. (C.13)

This completes the solution.

D The circular vs. imaginary solution

In [17] a solution different from the type discussed in Appendix C was found. The
resulting anomalous dimension matched the energy of a circular string [9] at one point of
the parameter space, J2 = J1 = J/2. Recently the circular string solution was extended
to all values of J2 [12] where it was also shown that the agreement with gauge theory
persists up to a few orders in a perturbative expansion around J2 − J/2. Here, we will
complete the analysis and prove the correspondence at the analytic level. We are grateful
to Gleb Arutyunov for his collaboration on this Appendix. Without further details of
the derivation, we present the final results starting with gauge theory.

There are two conditions on the endpoints is, it, s < t, of the Bethe strings that arise
in the solution [17] (α = J2/J):

∫ s

−s

dv v2

√

(s2 − v2)(t2 − v2)
=

1 − 2α

4
and

∫ s

−s

dv
√

(s2 − v2)(t2 − v2)
=

1

4st
. (D.1)

Notice the great similarity to (C.10)! We perform the elliptic integrals and get

K(r) − E(r) =
1 − 2α

8t
, K(r) =

1

8s
, r =

s2

t2
. (D.2)

The differences to (C.11) are due to the different regions of integration. Solving for
s, t and substituting in the expression for the energy (we use the notation δ̂ and ǫ̂ to
distinguish the circular solution)

δ̂1 =
1

32π2

(

1

s2
+

1

t2
− 2(1 − 2α)

st

)

(D.3)
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we get the one-loop result from gauge theory

δ̂1 =
2

π2
K(r)

(

2E(r) − (1 − r)K(r)
)

, α ≡ J2

J
=

√
r − 1

2
√
r

+
1

2
√
r

E(r)

K(r)
. (D.4)

The circular string is obtained by the same ansatz (B.3) as for the folded string (see
Appendices A,B). The only difference is that the function ψ(σ) is now assumed to be
periodic modulo 2π

ψ(σ + 2π) = ψ(σ) + 2π. (D.5)

Instead of folding back into itself, the string wraps completely around a great circle. The
set of equations that describes this circular string are [12]

J2 =
w2

y

(

1 − E(y)

K(y)

)

, J1 =
w1

y

(

y − 1 +
E(y)

K(y)

)

,

E2 = w2
1 +

w2
2 − w2

1

y
, K(y) =

π

2

√

w2
2 − w2

1

y
.

(D.6)

When solved for w1,w2 we get a system of two equations similar to the one in (2.2)
( E

K(y)

)2

−
(

yJ1

(1 − y)K(y)− E(y)

)2

=
4

π2
,

(

yJ2

K(y) − E(y)

)2

−
(

yJ1

(1 − y)K(y)− E(y)

)2

=
4

π2
y. (D.7)

The ansatz for the circular solution is symmetric under J1 ↔ J2, but superficially this
does not seem to apply to these equations. Indeed, a modular transformation is required
to interchange J1,J2:

K(y) =
√

1 − y′ K(y′), E(y) =
E(y′)√
1 − y′

, y = 1 − 1

1 − y′
. (D.8)

In order to make contact with gauge theory, we set y = y0 + y1/J 2 + . . . and expand the
energy in powers of 1/J 2. Using the expansion (2.3) we find

ǫ̂1 =
2

π2
K(y0)E(y0), α ≡ J2

J
=

1

y0

− E(y0)

y0 K(y0)
. (D.9)

As before, the string solution (D.9) is related to the gauge solution (D.4) through a
modular transformation

K(y0) = (1 −√
r)K(r), E(y0) = 2(1 −√

r)−1E(r) − (1 +
√
r)K(r) (D.10)

where

y0 = − 4
√
r

(1 −√
r)2

= − 4ab

(b− a)2
. (D.11)

Note that the integration constant of the circular string y is related to the integration
constant of the folded string x by y = 1/x. The gauge theory constants a = is, b = it
describe the endpoints of some Bethe strings. Remarkably, (D.11) is exactly the same
relation as in the case of the folded string (2.9)!
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Figure 1: The leading order correction to the energy ǫ1 for the folded string solution. The
region J2/J > 0 correspond to the (J1, J2) case, whereas J2/J < 0 correspond to the (S, J)
case with S/J = −J2/J and energy ǫ̃1 = −ǫ1. We also plot a mirror image under the symmetry
J1 ↔ J2 (dashed) and the energy of the circular string ǫ̂1 (dotted).

E Energy as a function of the spins

In this Appendix we shall discuss the behavior of the leading term in the classical energy
for the two-spin string solutions in different regions of the parameter space J2/J or
S/J , respectively. For the (J1, J2) solution the function ǫ1(J2/J) is defined in the region
0 ≤ J2/J < 1 whereas for the (S, J) solution ǫ̃1(S/J) is naturally defined for 0 ≤ S/J <
∞. When analytically continued, these functions are related by ǫ1(j) = −ǫ̃1(−j). In
Figure 1, we therefore plot the function ǫ1(j) in the region j ∈ (−∞, 1).

Depending on the region of the parameter space one finds different functional form
of dependence of the energy on the two spins. For example, in the case of the (S, J)
solution there are two different asymptotics that were considered in [6]: The string can
become very long and approach the boundary of AdS5, i.e. ρ0 → ∞; the energy of this
configuration is

E = S + J +
λ

2π2J
ln2 S

J
+ . . . , S ≫ J . (E.1)

In gauge theory this corresponds to the case where the two contours C± meet, i.e. a →
0, b→ ∞. A short string reproduces the energy of BMN operators correctly15 (all mode

15The BMN case corresponds to expanding near a point-like string moving along big circle of S5. In
the limit J → ∞, λ

J2 =fixed one may drop all but quadratic fluctuation terms in the string action (which
becomes then equivalent to the plane-wave action in the light-cone gauge). The energies of fluctuations
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numbers are n = ±1)

E = J + S +
λS

2J2
+ . . . , S ≪ J . (E.2)

One may also consider a “near BMN” limit S/J ≪ 1 of the two-spin solution keeping
full dependence on λ. Then we get

E = J + S

√

1 +
λ

J2
− λS2

4J3
· 2 + λ/J2

1 + λ/J2
+ . . . , S ≪ J , (E.3)

This gives the near BMN limit for a total of S excitations of modes n = ±1. Note,
however, that we must consider a large number of excitations S = O(J), i.e. S = βJ
with β small but O(J0). Therefore, we may not assume that S = βJ takes a particular,
finite value like, for example, two (in an attempt to compare to 1/J terms in [25]).
Instead, one must consider an arbitrary number of excitations S and consider only the
coefficient c in the near BMN correction (cS + c′)/J = cβ + O(1/J). The point is that
c′ is an O(1/J) correction which we presently ignore.

At S/J = 0 we make the “Wick-rotation” to the (J1, J2) solution. The energy of a
short string rotating on S5 is given by

E = J +
λ J2

2J2
+ . . . , J2 ≪ J , (E.4)

where we can explicitly see the connection to the (S, J) case. Similarly, the near BMN
limit reads (we set J1 = J to compare to BMN terminology, J2 represents the number
of excitations)

E = J1 + J2

√

1 +
λ

J2
1

− λ J2
2

4J3
1

· 2 + 3λ/J2
1

1 + λ/J2
1

+ . . . , J2 ≪ J . (E.5)

As the charge J2 increases, the string grows until for J1 = J2 we get

E = J + c
λ

J
+ . . . , c ≡ ǫ1(1/2) = 0.356016 . . . , J2 = J1 = J/2 . (E.6)

In string theory nothing special happens, the string extends over approximately 120◦ and
can grow further. In contrast, in gauge theory we made the assumption J2 ≤ J1 to solve
the Bethe ansatz. Therefore, we do not get solutions beyond this point. Nevertheless, in
terms of charges, we can freely interchange J1 and J2. The string solutions for J2 > J/2
should correspond to some gauge theory states with J2 < J/2

δ′1(J2/J) = ǫ1(1 − J2/J) , for 0 ≤ J2 ≤ J/2 . (E.7)

We see that the string energy ǫ1(J1, J2) is not symmetric with respect to J1 ↔ J2. As
a consequence, the anomalous dimensions δ′1(J1, J2) do not belong to operators with the

above the BPS ground state E = J are then determined by the string fluctuation masses given by
m2 = 1

J 2 = λ
J2 .
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minimal energy, δ1(J1, J2), but to some other set of operators with larger dimensions.
That suggests that one and the same string solution describes two different operators
in different regions of parameter space. There are some indications16 that these new
gauge theory operators are the odd, unpaired ground state solutions found in [17]. This
is an interesting possibility, as it would explain why for half-filling, J2 = J/2, the odd,
unpaired ground state has energy (E.6) as suggested by numerical evidence [17]. Further
numerical evidence shows that the anomalous dimension δ′1 of this state near J2 = 0
scales as 1/J2 instead of 1/J . Indeed, this is what happens on the string theory side.
The largest extension of the S5 solution takes place near J2 = J . Then the string extends
over half a great circle and the energy is 17

E = J +
2 λ

π2 J(1 − J2/J)
+ . . . = J +

2 λ

π2 J1
+ . . . , J2 ≈ J . (E.8)

At J2 = J the folded string becomes, in fact, equivalent to a different configuration: One
half of the string can be unfolded to give the circular string discussed in Appendix D.
It is interesting to see that also the energy of the circular solution ǫ̂1 asymptotes to the
same value

E = J +
2 λ

π2 J1
+ . . . , J2 ≈ J . (E.9)

The energy ǫ̂1 of the circular solution decreases as we decrease J2 up to half-filling
J2 = J1 = J . Unlike in the case of the folded string, the energy has a minimum

E = J +
λ

2J
+ . . . , J2 = J1 = J/2 . (E.10)

Furthermore, the solution ǫ̂1 is symmetric under J1 ↔ J2 and we can stop.
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