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Abstract

Grid technology is widely emerging. Still, there is an
eminent shartage of real Grid users, mostly due to the
lack of a “critical mass” of widely deployed and reliable
higher-level Grid services, tailored to application needs,
The Gridl.ab project aims to provide fundamentally new
capabilities for applications to exploit the power of Grid
computing, thus bridging the gap between application
needs and existing Grid middleware. We present an
overview of GridLab, a large-scale, EU-funded Grid pro-
ject spanning over a dozen groups in Europe and the
US. We first outline our vision of Grid-empowered appli-
cations and then discuss GridLab's general architecture
and its Grid Application Toolkit (GAT). We illustrate how
applications can be Grid-enabled with the GAT and dis-
cuss GridLab's scheduler as an example of GAT ser-
vices.
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1 Introduction

Computational Grids are becoming increasingly com-
mon, promising ultimately to be ubiquitous and thereby
change the way global resources are accessed and used.
However, presently there is a dearth of real Grid users, in
part because the whole concept is new, but also because
few applications have been written that can exploit Grid
resources. Although some application developers are
interested in writing Grid-enabled applications, there
are few user-level tools, high level tools for application
developers are nonexistent, and well-understood Grid
usage scenarios are rarely available,

In order to catalyze Grid usage, it is therefore impera-
tive to attract real users into the Grid community (for
example, the Global Grid Forum (GGF)) and ultimately
onto the Grid. The Applications Research Group (APPS-
RG) of the GGF (and formerly of the European Grid
Forum, EGrid) has been addressing questions about user
requirements, problems, and usage scenarios for several
years now. In 2000, the group established a pan-European
testbed (Allen et al., 2001), based on the Globus Toolkit,
for prototyping and experimenting with various applica-
tion scenarios. These testbed experiences gave inspira-
tion for an application oriented project, called GridLab,
funded by the European Commission.

The primary aim of GridLab is to provide users and
application developers with a simple and robust envi-
ronment enabling them to produce applications that can
exploit the full power and possibilities of the Grid. The
GridLab project brings together computer scientists with
computational scientists from various application areas to
design and implement a Grid Application Toolkir (GAT),
together with a set of Grid services, in a production grid
environment. The GAT will provide functionality through
a carefully constructed set of generic high-level APIs,
through which an application will be able to call the
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underlying Grid services. The project will demonstrate the
benefits of the GAT by developing and implementing
real application scenarios, illustrating compelling new
uses of the Grid. We will make extensive use of specific
application frameworks, namely Cactus (Cactus Com-
putational Toolkit home page http://www.cactuscode.org;
Goodale et al., 2003) and Triana (http://www.triana.co.uk),
as powerful and broad reaching, real-world application
examples for developing GridLab, but the GAT will be
useful for many kinds of applications and users. Our
aim is to make Crid computing accessible for the widest
possible spectrum of applications and users.

The development of the GAT is accompanied by the
establishment of a pan-European testbed (including real
production machines for the respective application user
communities) and by the development of Grid services
of varying complexity, tailored to the needs of our user
community. These services are designed to complement
and complete the existing Grid intrastructure, and to pro-
vide functionality needed by the GridLab applications in
order to be usefully deployed in such environments.

In this paper, we first present our vision of Grid-em-
powered application scenarios. We then motivate and
discuss the global architecture of the project. This is fol-
lowed by a more detailed discussion of exemplary GridLab
components: the GAT (the application interface to Grid
environments), Triana (one of the GridLab applications),
and the GridLab Scheduling Service (a GridLab service).

2 A Vision of Grid-Empowered
Application Scenarios

The advocates of Grid computing promise a world where
large, shared scientific research instruments, experimental
data, numerical simulations, analysis tools, research and
development platforms, as well as people, are closely
coordinated and integrated in “virtual organizations”. This
integration will be fostered through web-based portals,
woven together into modular wide-area distributed applica-
tions. One hypothetical scenario in astrophysics, described
in the following, illustrates such an integration. Although
sounding futuristic, many individual components have
already been prototyped, and through the GridLab pro-
ject we are striving to make such a scenario a common
occuiTence.

Gravitational wave detectors will rely on results from
large-scale simulations for understanding and interpret-
ing the enormous amounts of experimental data they
collect. The Grid infrastructure is used both to share
expensive and centralized resources among many scien-
tists, as well as to integrate experimental data sources
with the simulation codes necessary to analyze them.
For example, the GEO600 detector in Hanover detects
an event characteristic of a black hole or neutron star

collision, supernova explosion, or some other cosmic
event. Astronomers around the world are alerted and
stand by, ready to turn their telescopes to view the event
before it fades. However, the location of the event in the
sky must first be found. This requires a time-critical
data analysis with a number of templates created from
full-scale simulations.

In a research institute in Berlin, an astrophysicist
accesses the GEO600 portal and, using the performance
tool, estimates the resources required for cross-correlating
the raw data with the available templates. The brokering
tool finds the fastest affordable machines around the world.
Merely clicking to accept the portal’s choice initiates a
complex process by which executables and data files are
automatically moved to these machines by the scheduling
and data management tools. Then the analysis starts.

Twenty minutes later, on her way home, the astro-
physicist’s mobile phone receives an SMS message from
the portal’s notification unit, informing her that more tem-
plates are required and must be generated by a full-scale
numerical simulation. She immediately contacts an inter-
national collaboration of colleagues who are experts in
such simulations. Using a code composition tool in their
simulation portal, her colleagues assemble a simulation
code with appropriate physics modules suggested by the
present analysis. The portal’s performance prediction tool
indicates that, due to memory constraints, the required
simulation cannot be run on any single machine to which
they have access. The brokering tool recommends that
the simulation be run across two machines, one in the
US and the other in Germany, that are connected to
form a large enough virtual supercomputer to accom-
plish the job within the required time limit. The simula-
tion begins. After querying a Grid information server
(GIS), the simulation autonomously decides to spawn off
a number of time-critical template generating routines,
and to run asynchronously on various other machines
around the world.

An hour later, the network between the two machines
degrades and the simulation again queries the GIS, this
time deciding to migrate to a new machine in Japan
while still maintaining connections to the various template
generators at other sites. All the while, the international
team of collaborators monitor the simulation’s progress
from their workstations or wireless devices from an air-
port (where several team members happen to be), visu-
alizing the physics results as they are computed. The
template data are assembled and sent to the GEO600
experimenter in Germany for analysis, which finally yields
the likely source location for the gravitational wave sig-
nal. This triggers another Grid application which utilizes
a different virtual organization and its infrastructure to
direct the Hubble Space Telescope and various other
available instruments toward this source location. The



entire process, which could not be performed on any
single machine or at any supercomputing site available
today, takes only a few hours.

3 Requirements for a Grid Software
Environment

The main goal of the GridLab project is to provide a
software environment for Grid-enabling scientific appli-
cations. It is our aim to provide an API through which
applications access and use available resources. This API
directly reflects application needs. Among the intended
functionality is the exploration of available resources
(CPU, storage, visualization, etc.), remote data access,
application migration, etc. The API will be concentrated
in the GAT. The functionality behind the API will be
rovided by interchangeable capability providers, which
may be GridLab services or third-party services.

In this section, we will briefly define important types
of capability providers. We then summarize application
requirements and general constraints on a software archi-
tecture for the GAT, and its capability providers.

31 TERMINOLOGY

In this subsection we review the terminology used through-
out this paper. During the development of the GridLab
architecture, we realized that the standard set of terms
used in Grid environments was insufficient to represent
the whole range of our component types. Thus we tried
to refine these definitions, hopefully without introduc-
ing incompatibilities to the original terms:

Capability Provider: A capability provider is an entity
providing a specific capability. It is defined in terms
of an interface used to invoke a capability, and the
behavior expected in response to that invocation (i.e.
capability provider = interface + behavior).

Service: “A service is a network-enabled entity that
provides a specific capability. [...] A service is defined
in terms of the protocol one uses (o interact with it
and the behavior expected in response (o various
protocol message exchanges (i.e., service = protocol
+ behavior).” (Tuecke et al., 2001)

Web Service: “The term ‘web services’ describes an
important emerging distributed computing paradigm
[with] focus on simple, Internet-based standards (e.g.,
eXtensible Markup Language, XML [...]) to address
heterogeneous distributed computing. Web services
define a technique for describing software compo-
nents to be accessed; methods for accessing these
components; and discovery methods that enable the
identification of relevant service providers.” (Foster
et al., 2002)

Griq Service: “A Grid service is a web service that pro-
vides a set of well-defined interfaces and that follows
specific conventions. The interfaces address discov-
ery, dynamic service creation, lifetime management,
notification, and manageability; the conventions ad-
dress naming and upgrade-ability.” (Foster et al,
2002). Grid services are defined by the emerging
OGSA standard.

GridLab Service: A service provided by the GridLab
project. Where possible these will be Grid (0GSA)
services.

Third-party Service: A service provided outside
the scope of GridLab, either from underlying Grid
middleware, from legacy software, or from concur-
rent developments outside of the GridLab project.

Adaptor: The adaptor pattern provides programmers
with interfaces. Adaptor components implementing
an interface abstract other components, which can
have a wide variety of interfaces. Adaptors are vital
inside the GAT to allow interfacing applications to
heterogeneous capability providers.

3.2 REQUIREMENTS

The ultimate goal of the GridLab project is to provide
application programmers and users with an environment
that enables scenarios such as that from Section 2. From
such scenarios, the main application requirements to the
GridLab architecture can be drawn. A number of addi-
tional user requirernents have been specified by the Grid-
Lab application groups. They mainly deal with the usabil-
ity of the whole system and, in general terms, express their
wish for some degree of involvement in the internals of
the environment. It may not hold for all groups, but there
are for sure users, but more importantly application pro-
grammers, who would not accept working with a complex
system if that system presents itself as a black box oniy.

Other, more technical requirements are also to be
applied to our project, originating from the type of envi-
ronments our system wants to enable, and from general
arguments about administration, security and such. This
subsection lists these requirements, which are the base
for the definition of the GridLab architecture, covered
in Section 4.

(i) Abstraction of the environment:
By definition, the ultimate requirement to the GAT
is to provide an abstraction of the underlying Grid
infrastructure, its services, and its communica-
tion layers.

(ii) Adaptivity to the environment:
One of the most important requirements of the
GridLab user community is that applications utilizing
the GAT should be able to run in a wide variety



of real-world environments. These include the
Grid environments of both present and future, dis-
connected environments (e.g. laptops, developer
machines), and firewalled resources.

(iii) Interchangeability of capability providers:

Application executions, whether inside a Grid
installation or upon isolated, disconnected resourc-
es, should become alternate cases of a unified
application, supporting execution upon whichever
resources are available There should not be a
separation between “normal” and a “Grid-enabled”
versions of the application code. This requirement
demands a single GAT-API with which applica-
tions can be developed. The capability providers
relevant to the current configuration can then be
instantiated at runtime.

(iv) Complete control on all levels:

(v)

Qur users, and even more our application devel-
opers, strongly request the ability to control the
utilized environment to as much an extent as pos-
sible, This does not mean that the application pro-
grammer herself wants to take care of every detail
of the environment, but rather enables the pro-
grammer to detect errors, to prototype, and to split
complex operations into smaller, simpler pieces
if necessary and so on.

Smart adaptivity on all levels:

Grid environments are ever changing, and very
heterogeneous, which is a constant challenge to
Grid middleware. Our solutions have to be able
to adapt to such environments.

(vi) Robustness and fail safety, error tracing facil-

ities:

Complex systems as computational Grids and
distributed software systems inherit multiple points
of failure. The middleware has to be able to recover
from failures gracefully, and to report failures.
Application programmers as well as administra-
tors need to be able to verify the systems func-
tionality on all levels.

(vii) Independence from communication/architec-

ture models:

With the advent of the Open Grid Service Archi-
tecture (OGSA; Foster et al., 2002}, GridLab’s
architecture and services will revolve around
OGSA’s notion of “Grid services”. For the time
being, this seems the most widely accepted archi-
tecture and communication model for the Grid
community. However, in order to enable support
both for legacy services and future development,
the GridLab architecture itself should be inde-
pendent from any specific architecture/communi-
cation model (e.g. OGSA, Legion, CORBA, RMI,
RPC etc.).

(viii) Cleanly layered architecture:

To achieve a complete abstraction of the underlying
(Grid) environment, a cleanly layered architec-
ture seems appropriate.

(ix) Security mechanisms on a global level:
In order to get accepted in a wider community and
to reach production state, the general GridLab
architecture must enforce a flexible but tight
global security model.

(x) Third-party services are to be easily incorpo-
rated:
The GridLab project will by no means be able to
provide all types of services to its user commu-
nity — but other groups and projects do and will
continue to provide various Grid components use-
ful to the users. Also, we hope that the lifetime of
the GridLab architecture by far exceeds that of
the project itself. For these reasons, the easy uti-
lization of third party services is crucial to the
success of our approach.

4 The GridLab Architecture

The GridLab project aims to bridge the gap between
applications and Grid middleware by providing a soft-
ware layer in between. We will now describe the archi-
tecture of this software layer, consisting of the GAT and
the GridLab services.

4.1 MANDATES VERSUS POLICIES

In some respects, the above requirements and constraints
partially contradict each other. In particular, the mandate
to incorporate security mechanisms for all components
at a global level (ix) is incompatible with support for
third-party services (iii, x) and disconnected environ-
ments. To elaborate, it is difficult to enforce security
policies for third-party services; furthermore, Grid secu-
rity fundamentally depends on network access. For
third-party services, this contradiction might be resolved
by requiring accesses to any third-party service to be
performed via a (secured) GridLab service. But this is
not possible if the application is running in a minimal-
istic environment (ii). It is also impossible if the appli-
cation deliberately chooses to contact a suspicious (e.g.,
legacy) component on its own behalf, as applications
need full control on all levels (iv).

In fact, contradictions of this type are very common
in Grid environments. Middleware developers want to
have control over all aspects of the environment. This is
especially true for security issues, but also for schedul-
ing, network interfaces, communications, and so on. In
turn, the end user desires the ability to run an application
in any environment, benefiting from a Grid infrastructure
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Fig. 1 The General GridLab Architecture. The GAT will be designed to interact with all types of capability provid-
ers, via various communication channels. Security and uniformity for both types of components are recom-

mended, not mandated (see text).

if available, but also ignoring Grid resources if appropri-
ate. In particular, our experience shows that the users
must be able to deliberately ignore aspects of the envi-
ronment without loosing the benefits of the environment
at large. For many user communities, an “all- or-nothing”
bargain is not acceptable.

In the GridLab project, we explicitly distinguish be-
tween abstract architecture concepts and specific real-
izations of these concepts. Our “General Architecture”
reflects this effort. By design, our architecture allows
the incorporation of global security (ix) and the encap-
sulation of the communication models (vii) by provid-
ing a layered (viii) framework for all its components.
On the other hand, such specifications are based only on
policies, not mandates. Consequently, developers and
users are encouraged to utilize these features, but are also
free to ignore these and to incorporate components incom-
patible with these policies where necessary (i, i, iv, vit).

As a result of these considerations, the general GridLab
architecture consists of the overall design (Figure 1) and
a set of implementation policies. This combination of
design and policies is the result of intense and contro-
versial discussions. This approach is considered a main
characteristic of GridLab, attributable to the strong in-
volvement of real application groups.

4.2 THE GRIDLAB ARCHITECTURE

Global Design. As discussed above, the overall archi-
tecture diagram, presented in Figure 1, defines cleanly
layered environment providing an abstract view for the
applications, The applications, located on the highest
level of the user space, can access all capability provid-
ers they need via the GAT-APL The GAT also resides
in user space, providing interfaces to the capability pro-
viders in the capability space.



A detailed discussion of how the GAT is intended to
provide a set of well-defined capabilities by accessing
the various capability providers is presented in Section 5.
For the present discussion, only some features of the
GAT are important: the ability to access various kinds
of capability providers via adaptors specific to their
communication mechanism, and the semantics of invok-
ing specific capability providers.

As discussed above, the GridLab project distinguishes

between GridLab services and third-party services (e.g.
low-level Grid services such as GIS or GRAM, system
services, libraries), Following the requirement (iv), the
GAT is able and allowed to access all types of capabil-
ity providers, on all levels.
Implementation Policies. In addition to the presented
diagram, a set of policies ensures that the outcome of
the GridLab project itself consists of compatible, uni-
form, and consistent components, Deviations from these
policies within the GridLab project require explicit jus-
tification. The implementation policies cover the fol-
lowing areas:

(1) Communication Model. All capability provid-
ers designed and implemented in the scope and
course of the GridLab project are, by default,
required to be Grid Services. However, until
OGSA implementations become widely avail-
able (in particular for C++), GridLab services
are being implemented as Web Services and
will be converted to Grid services as soon as
possible.

(2) Capability Access. The GAT is required to access
capabilities via GridLab services, wherever pos-
sible and sensible. GridLab services are to be tai-
lored to the needs of the GAT-API GridLab
services will utilize lower-level services to imple-
ment their capabilities (such as smart adaptivity,
control, and fail safety).

(3) Security. All components designed and imple-
mented in the scope and course of the GridLab
project honor the GridLab Security Infrastruc-
ture.

These policies support the development of a clearly lay-
ered, consistent design of the GridLab software. Also,
the combination of a general architecture with strict
policies preserves the simplicity and flexibility of the
framework itself, which is necessary for the overall suc-
cess of both the GridLab approach and the GAT beyond
the lifetime of the project itself.

The next sections describe various components of the
presented architecture in more detail: the GAT itself
(Section 35), one of the major Gridlab applications,
Triana (Section 6), and a sample GridLab service, the
scheduling service (Section 7).

5 The GAT: Design and Prototype

The GAT, as the main deliverable of the GridLab pro-
ject, shall provide an application programmer with g
single interface to the (potentially Grid enabled) envi-
ronment in which her program is running. As described,
this is achieved by letting the GAT delegate all interac-
tion to external capability providers, hence abstracting
all external capabilities.

In this section we describe how we are designing the
GAT to achieve this goal. We then discuss the capabil-
ity registry, introduce several example calls from the
GAT-API, and suggest how these may be utilized by
application programmers.

5.1 GAT DESIGN OBJECTIVES

The term GAT incorporates two distinct elements: the
interface definition (the GAT-API) and the embodying
software entity (the GAT implementation). Once the
GAT-API is defined, any compliant implementation
should be usable in the domain for which the GAT was
designed. However, due to a number of constraints, we
suspect the design of the GAT as a software entity may
be restricted to the design we present here.

The constraints applying to the GAT design draw
largely from the following goals:

(1) GAT should provide and abstraction of capability
provider interfaces;

(2) GAT should be flexible;

(3) GAT should be fail safe.

The abstraction of interfaces is well supported by the
adaptor pattern. “The Adaptor Pattern tells {one] how to
convert the interface of a class into another interface cli-
ents expect. An adaptor lets classes work together that
couldn’t otherwise because of incompatible interfaces.”
(Gamma et al., 1995). In the GAT design we present,
adaptors represent each capability by interfacing them
to corresponding capability provider.

In order to provide flexibility and interchangeability of
capability providers at runtime, the GAT must be able to
choose from a pool of adaptors and invoke different
adaptors as needed. For example, multiple adaptors may
interface to various file transfer capability providers. Each
of these adaptors will present the same interface to the
GAT, and the GAT must be able to choose between
them at runtime, and invoke its selection on the fly. In
our design, this is achieved by introducing a capability
registry. On initialization, all adaptors register themselves
with the capability registry. The GAT engine (the core
of the GAT) is then able to query the registry, select the
appropriate adaptors for the requested capability, and in-
voke this capability by calling the corresponding adaptor.
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Fig.2 GAT Adaptor Call. The application invokes the GAT via some GAT-API call. The GAT engine, as the core of
the GAT, queries the capability registry for a suitable adaptor for that API call, and then invokes the selected
adaptor. The adaptor interfaces to one or more capability providers in order to provide that functionality. On failure,

the GAT engine will then select the next most suitable ada

If the invocation of an adaptor fails, the GAT will,
unless instructed otherwise, invoke the next most suit-
able adaptor providing the required capability, returning
failure to the user only in the case that all suitable adaptors
fail. This can be used to provide a measure of fail-safety.

The GAT will offer an adaptor which provides a simple
implementation of all capabilities, and this can be used
to test or run the application as long as no non-local
operations ate requested, thus allowing rapid development
and testing with the GAT in non-Grid environments.

As GAT-API calls may not always be mapped to a
specific capability provided by supporting services, an
adaptor may need to invoke a number of capability pro-
viders in order to implement the exact capability requested
py the GAT-API call. For example, an adaptor interfac-
ing to a Grid scheduling service may need to interact
with some form of Grid security service prior to the
invocation of the scheduling service.

The design we have described, which is graphically
represented in Figure 2, complies to the GridLab design
requirements (Section 3) and to the requirements imposed
b_y the goals of the GAT (as listed above). There are
likely numerous designs for the functionality we have
described, but we feel that our approach is both suffi-

ptor from the registry.

ciently simple and generic to serve various incarnations
of GAT implementations for the foreseeable future.

5.2 GAT CAPABILITY REGISTRY

In this section we describe the capability registry used
by the GAT to map between GAT-API calls made by an
application and specific functions provided by adaptors.

On initialization each adaptor registers the capabilities
it can provide access (o with the registry, by providing
an appropriate function to be invoked if the correspond-
ing GAT-API call is made, and a description of the
capability which may be used to distinguish between
different adaptors providing the same capability, if more
than one is present. This is shown in Figure 3.

When a GAT-API call is made, the capability registry
is queried for a set of appropriate adaptor functions, and
these are then invoked as described in the previous sec-
tion. By default the capability registry will return atl
functions providing the required capability; however, the
application may force a subset or a function from a spe-
cific adaptor by providing information which will then
be matched against the descriptions registered with each
function. This is shown in Figure 4.
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Fig. 3 GAT Initialization. On initialization, all adaptors register the capabilities they provide with the GAT Capability

Registry.

5.3 GAT-API DEFINITION

The GAT-API is designed to provide capabilities to
the application programmer, allowing her to utilize
the computing environment for the application. The
design of the API is hence driven by our application
developer and user groups, and not by the underly-
ing Grid environment and the capabilities it actu-
ally offers.

As core GridLab project partners are rather active
in the GGF Applications and Testbeds Research Group
(APPS-RG), we hope to be able to specify an API with
a much wider scope than the GridLab applications. We
also hope to get significant feedback on this definition,
and to refine and extend it through continuing discus-
sions with other user groups.

To give a sense for the GAT-API appearance and use,
we will list several preliminary GAT calls and describe
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their functionality. Note that these examples are inten-
tionally simplistic, and are not formulated independently
from the language bindings; we assume a C-application
here. The API is currently being defined; so, these examples
are schematic only, and specific arguments will almost
certainly be different in the final version.

For example, the following call initializes the GAT:

context = GAT_Init (Requirements);

Here, context denotes an opaque object holding per-
sistent GAT information (such as security credentials and
the internal state of the GAT engine), and Require-
ments specifies any specific information needed for ini-
tialization, such as the initial adaptors to be loaded, etc.
As described in the previous sections, this includes the
setup of the capability registry. After setup, the GAT

knows which capabilities it can actually provide. A rebuild
of the registry may be requested at later times.

As another example, the following call queries the envi-
ronment for a resource matching a number of requirements.

GAT FindResource (context, Requirements,
Resource) ;

The Requirements parameter encodes resource require-
ments of the application (e.g., 1 GFlop). This is likely to
be stored in some property table. Resource is a param-
eter returned by the GAT-API, and holds information
about a matching resource. This information could thenbe
passed into the following GAT-API call; for example, to
start a job on the machine.

GAT_SubmitJob (Resource, Job) ;




Here, Job is again an opaque object holding all informa-
tion needed to execute the job. This object may obtain
additional information on execution useful for subsequent
GAT calls (e.g., a job id or other runtime information).

As the GAT engine finds different adaptors providing
the functionality to run a job on some resource, the engine
will select an adaptor based upon any metric specified
in the Job description; e.g., reliability. For example, if
a first adaptor interfacing to the local UNIX system fails
because it cannot handle job descriptions containing remote
resources, the engine invokes the next adaptor; this in
turn may interface to a GridLab service providing
scheduling capabilities.

These simple examples hopefully give an initial impres-
sion of what we are working to provide application pro-
grammers. The use of the GAT should be as simple as
possible. It should not matter if the environment is Grid
enabled ~ but the user should be able to use the same,
unmodified, application, if it is. By providing a flexible
adaptor scheme, the GAT can be easily evolved to accom-
modate changing infrastructures, and easily extended to
provide capabilities required by new user groups.

One of our major tasks is to design the GAT-API in a
way that, from the beginning, as large and diverse a
group as possible can benefit from our efforts (and in
turn, benefit our efforts from their feedback). Here, dis-
semination via our user groups and the GGF is crucial.

6 GridLab Applications

We will now describe the applications initially being used
to shape the construction of the GAT interface. These appli-
cations are both generic frameworks, and as such provide
a wide range of fields and possible usage scenarios, cover-
ing a broad domain of the future GAT user base.

The principle objective of the GridLab project is to
allow the easy integration of applications with emerging
Grid technologies. GridLab aims to provide an environ-
ment that allows application developers to use the Grid
without having to understand, or even being aware of
the underlying technologies. The GAT effectively shields
the application developers from the current, ever-changing
Grid world by providing an application-friendly interface
that contains the functionality required by applications.
For this purpose, GridLab is driven by two well-known
and widely used application frameworks to help proto-
type the GAT interface, Cactus (Cactus Computational
Toolkit home page http://www.cactuscode.org; Goodale
et al., 2003) and Triana (http://www.triana.co.uk).

The primary reason for this choice is that both Cactus
and Triana are application environments, They both con-
tain a toolkit of pluggable components (thorns in Cactus,
units in Triana) that allow users to compose applications
for a particular problem area. That is, they are both

Problem-Solving Environments (PSEs) that are complete,
integrated computing environments for composing, com.
piling, and running applications in a specific area (Gallo-
poulos et al., 1994). The key point here is that both
applications are not focused on one particular task o
user and therefore provide a rich collection of reference
application scenarios that will be run on the Grid. Con-
sequently, from these two applications alone we have at
our disposal literally hundreds of possible user scenar-
ios. Here we now provide an overview of Triana, and a
flavor of some of the types of applications that it sup-
ports. We have not provided a similar overview of Cactus
as this is described in detail in Goodale et al., (2003),
Triana. Triana is an open source PSE written in Java. It
has a flexible and intuitive design that can be used ig
many different problem domains and at many different
levels. For example, it can be used as a workflow for
Grid applications or as a data analysis system for image,
sighal or text processing applications. It can also be
used as a high-level graphical script editor for creating a
number of task-graph formats including, but not limited
to, WSFL, DAG, BPEL4WS and Petrinet formats.

Recently, Triana has been redesigned and sectioned
into a set of modularized components, which can be
used collectively to construct Triana, or independently
for specific tasks, e.g. for providing remote control, for
writing task-graphs and for distributing third-party units,
etc. In this new version, the GUI has been disconnected
from the underlying subsystem for both the functional-
ity of the main system and for every Triana unit and its
associated GUL This has several ramifications. Firstly,
clients (i.e. those running a GUT) can log into a Triana
engine remotely. Secondly, the user interfaces for the
individual components all employ the same type of sep-
aration and can also therefore be viewed remotely. For
example, users can build and run a Triana network and
then visualize the result on their device (e.g., laptop,
PDA) even though the visualization unit (and therefore
its calculations) is run remotely. Users can log off with-
out stopping the execution of the network and then log
in at a later stage to view the progress. In this context,
Triana could be used as a visual environment for moni-
toring the workflow of Grid services or as an interactive
portal by running the Triana engine as a servlet on a
web server and running the applet version of the Triana
GUL Further, since any Triana network can be run with
or without using the Triana GUI, Triana networks can
be run as executables in a stand alone mode, i.e., Triana
is an application designer tool as well.

There is support for a variety of Triana users, It is
used as a quick-look data analysis systermn for the GEQ600
gravitational wave detector and therefore contains a num-
ber of signal-processing units such as file /O, frame
readers, FFTs, correlation, noise simulators, statistics
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units, and a wide range of mathematical functions and
visualization units. It contains a complete image pro-
cessing toolkit and has many tools for text processing,
e.g., text filtering, substitution and searching facilities
(locally, and web crawling, etc.). Furthermore, it has
tools for the visualization of galaxy formations, whose
distributed implementation using the GAT has been dem-
pnstrated recently (Taylor et al,, 2002). Lastly, we are
intending to implement a Triana-Cactus interface. This
will enable Cactus to be run as a Triana unit and, further,
allow Cactus parameter files to be generated by connect-
ing various Triana unit thorns. The integration of Cactus
and Triana will have countless uses and will demonstrate
the flexibility of a multiple-tier GAT implementation.

‘ In the next section, we will use Triana to illustrate its
integration with Grid environments via the GAT interface.

g-;T GRID-ENABLING TRIANA WITH THE

Briefly, Triana implements its distributed functionality
as a collection of Triana services. Each Triana service

includes a client and server component and a user may
connect to a Triana service using a command line or
GUI interface. The client can distribute code to many
servers depending on where execution is required. The
distributed implementation is layered above the GAT
and therefore above the Grid middleware layer (see
Figure 5).

Distribution is based on the concept of Triana Group
units (i.e., aggregate tools) which have similar properties
to normal units; namely, they have input/output nodes,
properties, etc. Therefore, they can be connected t0 other
Triana units using the standard mechanism. Group units
are distributed according to a distribution policy, imple-
mented using a control unit. A control unit is imple-
mented as a standard Triana unit, although it is invisible
to the user. Control units dynamically re-route the data
to and from the various distributed services that are cur-
rently available, according to the particular policy they
are adhering to. There are currently two distribution
policies implemented: parallel and peer-to-peer. Parallel
is a fask farming mechanism and involves no communi-
cation between hosts. Peer-to-peer is distributing the group



vertically, each unit in the group is distributed onto a
separate resource and data are passed between them.

Triana uses the GAT interface to distribute its services.
Figure 5 shows where the GAT fits into the distributed
Triana architecture. Notice that the Triana distribution
mechanism is only one possible implementation and other
engines can be inserted easily. Our current prototype
implementation uses the JXTA binding for the GAT that
provides hooks into the JXTA middleware to implement
the necessary GAT functionality. However, this specific
binding to JXTA is completely hidden from Triana’s
distribution mechanism by using the GAT interface. In
essence, Triana discovers other Triana services by using
the JXTA binding of the GAT discovery protocol; they
identify each other by using the GAT ID, implemented as
a JXTA ID; and they communicate with each other by
using the GAT communication interface, implemented
as JXTA pipes. A similar level of abstraction will exist
in the Web Service/OGSA implementation of the GAT and
will provide Triana with this new distribution mechanism,
without the need for changing a single line of the current
Triana code. The real programming effort in this stage is
to implement the GAT Web Service/OGSA binding.

7 GridLab Services

Developing Grid services is an important aspect of the
GridLab project. These services are designed to comple-
ment and complete the existing Grid infrastructure, and to
provide functionality needed by the GridLab applications
in order to be usefully deployed in such environments. As
an example, we describe here the GridLab Resource Man-
agement Services, a system of interoperating services pro-
viding resource management, scheduling, and job exe-
cution capabilities on the Grid. Besides the scheduling
services, GridLab provides a portal toolkit, services for
authorization, for user notification, data management and
visualization, for monitoring of resources and job status,
for metadata and for application behavior adaptation.

7.1 GRIDLAB RESOURCE MANAGEMENT
SERVICES

Resource management is an important issue for the suc-
cess of computational Grids, especially in Grids capable
of supporting commercial applications. Ideally, resource
management services are the only path of interaction to
all Grid resources, and hence are the primary pathway
for expressing critical parameters such as Quality of
Services (QoS; Smith et al., 2000) specifications. Here,
one of the main questions concerns how to map activi-
ties such as computation or data transfer onto sets of
resources belonging to different organizations, in ways
that will meet user requirements for performance, cost,

security, and other metrics corresponding to quality of
service. In GridLab, one of our major goals is to create 5
superscheduler that will be responsible for making deci.
sions to achieve the best possible resource utilization, ag
well as to meet the user preferences mentioned above,

Resource management in Grids is difficult becayse of
the following reasons:

* Users and resources are usually highly distributed ang
physically remote from each other.

* Resource status changes rapidly and dynamically.

* Both users and resources form dynamic groups of
entities, changing in size over time. The quality of
connectivities between these users and resources also
changes in time.

* There is no common scheduling policy among the Grid
resources; all resources (and users) may be subject to
various policies depending on their host organizations.

There are potentially many users competing for Grid
resources. Also, since the same resource may belong to
marny virtual organizations, users may use different super-
schedulers. Moreaver, local policies cannot be disregarded
when scheduling a Grid user’s job on a remote resource,

Our resource management system is designed to pro-

vide such functionality. In the course of this section, we
describe the overall design of that system, which is cur-
rently under construction, and further list and describe
the components of the system.
7.1.1 The GridLab Resource Management System.
The purpose of the GridLab Resource Management Sys-
tem (GRMS) is to provide scheduling mechanisms that
fit the needs of users and their applications with regard
to local policies. The creation of different algorithms
that can satisfy completely different needs depending on
the specific charging policy is very important here. For
example, virtual organizations dealing with commercial
applications prefer to apply the fair scheduling policy so
that high-demand users do not displace low-demand
users, In contrast, scientific applications can benefit
from the workload-based scheduling policy. Details of
these scheduling policies are out of scope of this paper.
They are described in Brzezinski et al. (2002).

The GRMS is composed of a collection of system
services. These services are outlined below; Figure 6
depicts the overall architecture of the system. GRMS
services include the following:

* System configuration management: CIM-based func-
tional and performance monitoring is necessary for
all elements of the system, This monitoring should be
conducted in a timely fashion, and events should be
delivered according to policies or criteria set by the
client,
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not only for access control, but also to ensure that
there are no unexpected performance dependencies.

* Infrastructure services: These services handle user
management, accounting management, security, etc.

7.1.2 GRMS Configuration and Policy Services. GRMS
Configuration Services are responsible for GRMS con-
figuration. These services allow users (GRMS adminis-
trators) to enforce different resource management poli-
cies, which can then be mapped onto different groups of
users. Moreover, the basic configuration of GRMS will
be supported by this service, including selection of vari-
ous scheduling algorithms and strategies.

Additionally, GRMS Policy Service has been intro-
duced to handle a wide variety of policy needs, with a
special focus on policies governing resource allocation
in a particular virtual organization. The policy service
will support single domain policy management as well
as multi-domain policy management and control. In man-
agement involving multiple domains, the policy service
will discover and take into account the policies of dif-
ferent (virtual) organizations as part of their resource
publishing and matching process. Both kinds of services
will be developed in the last stage of the GridLab project.
7.1.3 Core GRMS Services. GRMS services include
Job Receiver, Resource Discovery, Resource Evaluation,
Brokering, Prediction, QoS, Resource Reservation and
Resource Estimation services.

* Job Receiver (JR) is responsible for receiving the job
requests and quewing them f{or the time of processing
the first job request sitting in a queue. The Job Receiver
Queue (JRQ) is a distributed service (there may exist
many instances of this service) with a notion of job
arrival time. This means that there are no job requests
coming to two different Job Receiver services with
the same time stamp.

* Resource Discovery Service (RDS) is a service that is
responsible for discovering valid resources that could
potentially be allocated for a given job request. In
general, RDS returns an unranked list of the resources
for a particular job request. Those resources will be
further evaluated by the Resource Evaluation Service.

* Resource Evaluation Service (RES}) is responsible for
determining which of the given resources are the best
ones from the point of view of the user's job request.
Among others, RES takes the following parameters
into account:

— quantifiable user criteria (cost and time criteria);

— non-quantifiable user criteria (resource architecture,
operating system, etc.);

~ preferences among the user criteria;

— application performance characteristics;

— historical data about completed jobs (history based
predictions);

— statistical information;

— resource characteristics,

The RES is supported by an intelligent decision mak-
ing system, and can also be supported by the Adap-
tive Component Service of the GridLab project. The
RES will be elaborated further in future GridLab pub-
lications. There, we will strictly distinguish between
production- and research-based components of the RES,

* Brokering Service (BS) is a central service of the
GRMS. It is responsible for allocation of resources to
user jobs. Once the job is submitted, the broker, a Job
Management Service (JMS), and a Distributed Work-
flow Service (DWS) are jointly responsible for con-
trolling the job. The broker can send various signals
to a job, such as JobCheckpoint, JobKill, JobMigrate,
JobStop, etc. These signals can be sent automatically
by the broker, can be enforced by the job manager, or
can be triggered directly by a user. This range of
behaviors supports the implementation of the many
dynamic application scenarios required by GridLab
applications.

* Prediction Service (PS) is responsible for short-term
predictions of the resource behavior, as well as for
job run time and queue wait time predictions. The
prediction service attempts to reason about jobs based
on past execution of identical or similar jobs. The
usage of prediction mechanisms within GRMS will
change as a function of the future improvements to this
technology. During the early project stages, the Logging
and Tracking Service (LTS) will gather information
about jobs and store this information in a database
(local to GRMS). This information will be used in the
future for history-based predictions.

* Advance Reservation Service (ARS) is responsible
for making advance reservations of resources, making
them available for jobs in a given (but potentially
negotiated) time frame in the future. This functional-
ity will be available on selected local resource man-
agement systems only.

* QoS Service (QOS) is a service that allows a user to
negotiate the quality of service provisioned to the
job.

* Resource Estimation Service (REST) may be used to pre-
dict, for a given job, what kind of resources are needed to
process the job in the absence of proper job descrip-
tion. The REST produces a resource description file.
This may be an ASCII text file using a meta- language
that can be interpreted by the BS and the scheduler.

7.14 Job Execution Services. The Job Execution
Service addresses resource scheduling and computing



access. The Job Management Service (JMS) must deal
with many types of job requests. JMS must manage jobs
during their lifetime. It carries out initial processing needed
to prepare jobs for execution, submits jobs to the sched-
uler, and carries out any necessary post-processing. This
service is responsible for monitoring the job schedute
condition before and during the job execution. If a job
nas not yet been executed, the schedule may become
ivalid (for instance, if resources fail). If an event
occurs that requires re-scheduling, the scheduling ser-
vice is contacted. If this is not possible or not desired
for the job, only the user is informed. Additionally, the
JMS is responsible for initiating job execution or for the
setup of job parts. Again, this service can interoperate
with the data, network, and resource services to include
information about the data and network status.

The Scheduler must arrange for job execution based
on job requirements (e.g., time, priority, cost, place, user
preferences). The scheduler must maintain jobs and their
schedule in a persistent scheduling database. The Distrib-
uted Workflow Service (DWS) must manage job workflow
based on standard workflow specifications (e.g., WSFL,
XLANG, and WSCI).

Please note that the scheduling service is not a cen-

wralized component. There may be many instances of
different scheduling services available. For example, the
scheduling services may be adapted for special applica-
tion-dependent purposes. The selection strategies may
differ according to the specific requirements for a certain
resource type. They interact and cooperate with the other
information and management services. This allows a sce-
nario in which the scheduling service is set up by a user
application.
715 Infrastructure Services. The GRMS interacts
with a number of other services in the Grid — those ser-
vices we call Infrastructure Services, since they provide
an interface to the Grid infrastructure. This interaction
enables the GRMS to query information from the Grid
environment, to utilize lower level capabilities for the
GRMS services (such as security), and to interact with
the Grid resources. Some of these infrastructure services
are described in the list below.

* Data Management Service: This service maintains
information about the schecluled availability and location
of data. This information is included in the extended
information service and can be accessed from there.

It is also responsible for answering queries on the
availability of data for a given resource at 4 certain
time. This includes the calculation of whether and
how data should be transferred between resources.
This requires that the data management service can
evaluate where data sets are available, and what effort
would be necessary to move the data. Hence, the data

management service itself queries the scheduling
service and network management service for certain
resources and their reservations.

In an application scenario in which certain data sels
are commonly used by different users and are avail-
able at different locations, the service calculates and
maintains replication and transfer schedules. The data
management service includes a data migrator which
monitors and executes scheduled data transactions.

s Network Management Service: Similarly to the data
management service, the network management service
maintains information about network resources and
corresponding reservations. The network management
service includes a uniform interface to network quality
of service features, in combination with an infrastruc-
ture to collect information about network properties.
This requires, for example, the inclusion of common
standards (e.g., the GARA service or the NWS for
bandwidth information) into a uniform interface. The
network management service responds fto queries
about connection properties between given resources.
It determines autonomously if network reservations
are necessary and if they can actually be provided.

« Tnformation Service: The current Grid services must
be extended for maintaining dynamic information about
current and future resource allocations, network status,
etc. This information is available through interaction
with the corresponding scheduling, data and network
services. This service has a uniform interface to obtain
this information. Nevertheless, its implementation as
a directory service (in conformance with the current
Grid information services) still allows distributed ser-
vices to query for the actual resource information.

+ Accounting and Billing Services: Execution and schedul-
ing of jobs requires an accounting and billing mechanism
to charge users. The querying and tentative reserva-
tion of resources can also be associated with costs.
The user can include budget and billing information
in his job request. The actual billing must be accom-
plished via a secured transaction interface. This ser-
vice needs a trusted partner hierarchy and the ability
to delegate authorization for certain time spans and
limited budgets. The scheduling service requires the
ability to grant billing authorization in conjunction
with the resources. As only the user can autharize
such a transaction, this must be done interactively
during the scheduling process, or at its beginning by
incorporating a trusted accounting and billing service.

We hope this section has given a first impression on
which problem domain the GRMS will operate on. This
description does not give many technical details abopt
the various components and their interaction — this will
be the subject of future publications.



8 Conclusions

In this paper, we have presented the overall architecture
of the GridLab project, which aims to provide applica-
tion-oriented Grid services for users and developers alike,
covering the whole range of Grid capabilities as required
by applications, such as resource brokering, monitoring,
data management, etc. These services will abstract lower-
level Grid functionality and will hence ease the devel-
opment and deployment of Grid-aware applications.
This consistent service infrastructure will be the first
major deliverable of the GridLab project.

These services will be made accessible to any appli-
cations running on the Grid through a GAT, the second
main project deliverable. The GAT will abstract those
services needed by the Grid applications. In this way,
applications can utilize service discovery at runtime,
making use of whatever services are available, includ-
ing different implementations of the same service. This
will enable users and application developers to easily
develop and run powerful applications on the Grid, with-
out having to know in advance what the runtime envi-
ronment will provide. Such applications should then both
run on a single laptop or on an intercontinental Grid,
taking advantage of whatever services are actually avail-
able (or unavailable). In particular, the GAT will not
depend on the existence of any specific GridLab services.

Although we collaborate with the developers of pow-
erful application frameworks such as Cactus and Triana
for the development of GridLab, the project is designed
to enable any application not only to run on the Grid (or
without a Grid), but to endow it with new capabilities
uniquely available on a Grid, such as those described
above in our usage scenario. With such an architecture, we
expect many new and powerful applications to be devel-
oped to exploit the Grids of today and tomorrow alike.
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