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Abstract
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principles and techniques of (rational) boundary conformal field theory are presented
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1 Introduction

During the last years the study of branes has been a powerful tool to gain new insights

into various string-dualities and thereby into the non-perturbative aspects of string the-

ory. As long as the string length is much smaller than any other scale in a given problem,

one can replace genuine string theory computations by a supergravity analysis. But the

current problems in field and string theory challenge us more and more to go beyond this

supergravity approximation. For example, string effects are very relevant for all realistic

string compactifications with N=1 supersymmetry on the brane. When the compactifica-

tion scale gets small, even simple information such as the spectrum of BPS-branes is not

protected by supersymmetry and can deviate drastically (see e.g. [1, 2]) from the gravity

‘predictions’. Through the AdS/CFT correspondence string effects also have direct impli-

cations on non-perturbative aspects of gauge theories with finite (small) ‘t Hooft coupling

(see e.g. [3]) since the latter is tied up with the curvature radius of the AdS space.

String corrections to supergravity can be studied with methods of 2-dimensional con-

formal field theory which provide an exact construction of the string perturbation ex-

pansion. When D-branes are present, the world-surface of strings can end on them [4].

Hence, the strings’ parametrization fields X live on a 2D surface Σ with boundaries. The

choice of the boundary condition encodes the geometry of the brane. If we consider e.g.

branes in a D-dimensional background with metric gµν(X), B-field Bµν(X) and constant

dilaton, the associated 2D field theory is the non-linear σ-model

S[X] =
1

4πα′

∫

Σ

d2z (gµν(X) +Bµν(X)) ∂Xµ∂̄Xν + . . .

where the dots stand for contributions from world-sheet fermions. This action has to be

supplemented with appropriate boundary conditions on X = X(z, z̄).

The simplest situation occurs when both g and B are constant. Then the action S is

quadratic and hence we are dealing with a 2D free field theory which can be solved easily.

But when the background is curved, the metric cannot be constant and we are suddenly

facing the problem of constructing a 2D interacting model. This is where the powerful

techniques of (boundary) conformal field theory step in.

For closed strings, much of the relevant technology had been developed more than

10 years ago (see e.g. [5, 6, 7]) following the seminal paper by Belavin, Polyakov and
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Zamolodchikov [8]. World-sheet theories with boundaries, however, received only very

limited attention, with a few notable exceptions [9, 10, 11, 12, 13, 14, 15, 16, 17]. The

situation changed in ’96 when Polchinski demonstrated that understanding branes re-

quires to study open strings with non-trivial boundary conditions [4]. This discovery

prompted rapid and beautiful new developments in boundary conformal field theory and

its applications to string theory. While most of the initial work focused on branes in

toroidal compactifications and orbifolds thereof, it soon became clear that dealing with

less trivial Calabi-Yau compactifications would require much more sophisticated methods

(see [18, 19]).

These lectures intend to provide a self-contained introduction to some of the most

important ideas and results in boundary conformal field theory. We shall begin with an

extensive discussion of branes in flat backgrounds, including a derivation of brane non-

commutativity. This part is technically quite transparent and it will serve as a guide line

during our ascend through the general structure of boundary conformal field theory. Once

we have left flat space, we shall explain notions related to the bulk theory, analyze the

importance of one-point functions and show how they can be encoded in boundary states.

Furthermore, we derive the famous Cardy constraint and two important sewing relations

for the bulk one-point functions and the boundary operator product expansions. The

second part concludes by presenting a generic family of exact solutions which not only

applies to a very large class of backgrounds but also turns out to be fundamental for many

of the more recent generalizations. Along the way we fill in some material that helps to

bridge back to flat space. In the third lecture, the whole technology is then applied to

the construction of branes on group manifolds. In this example, geometric ideas match

nicely with the algebraic approach of boundary conformal field theory. We will close with

a short guide to further developments and to some of the existing literature.

Assuming that the reader is familiar with some basic concepts from open string the-

ory, we will switch rather freely between string and conformal field theory terminology.

Particular aspects of world-sheet or space-time supersymmetry are mostly ignored. For

much of what we are about to explain, they are either irrelevant or can easily be incorpo-

rated using only standard ingredients (see e.g. [20, 21, 22, 23]). Let us also mention that

there exist several nice and rather complementary lecture notes on boundary conformal
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field theory [24] including applications to condensed matter theory [25] and open strings

[26, 27].

Before concluding this introduction, I would like to thank the the organizers of the

winter school in Utrecht for a very enjoyable meeting and the participants for their encour-

aging feedback and interesting questions. These lectures grew out of several other courses,

e.g. at the Erwin Schrödinger Institute in Vienna and at the 2nd Lisbon School on Super-

strings. I am grateful for many useful comments during those earlier events that helped

to improve the presentation. Finally, I also thank Stefan Fredenhagen, Thomas Quella

and Andreas Recknagel for reading these notes carefully and for all their constructive

remarks.
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2 Flat Backgrounds and Free Field Theory

Our aim in the first lecture is to review the microscopic theory of branes in flat back-

grounds. The corresponding world-sheet theory can be solved with elementary methods

(see Section 2.1). We shall use it to compute the coupling of closed strings to the brane

(Section 2.2) and the scattering amplitudes of open string modes (Section 2.3). In a cer-

tain limit, the latter give rise to non-commutative Yang-Mills theory. The presentation is

tailored to prepare for the construction of branes in curved backgrounds.

2.1 Solution of the world-sheet theory

The problem. We want to study the motion of open strings in a D-dimensional Eu-

clidean background RD that is equipped with a metric gµν and an anti-symmetric field

Bµν . For the moment we shall assume that both background fields are constant. The

world-surface of an open string is parametrized by a field X : Σ → RD. Here, Σ is the

world-sheet of the string, i.e. the strip [0, π] × R or, equivalently, the upper half plane

Σ = { z ∈ C | Imz ≥ 0 } .

These two realizations of the world-sheet are related by the exponential map. The motion

of open strings in the given background geometry (g, B) is controlled by the following

quadratic action functional,

S(X) =
1

4πα′

∫

Σ

d2z (gµν +Bµν) ∂X
µ∂̄Xν . (2.1)

It is important to notice that for constant B the world-sheet action can be re-written in

the form,

S(X) =
1

4πα′

∫

Σ

d2z gµν∂X
µ∂̄Xν +

1

2πα′

∫

R

duBµνX
µ∂uX

ν

where the second term involving the B-field is a pure boundary term and we have used

the decomposition z = u + iv, i.e. the coordinate u parametrizes the boundary of Σ.

Hence, the B-field does not affect the dynamics in the interior of Σ, but it provides a

linear background Aµ(X) = BµνX
ν to which the end-points of the open strings couple as

if they were charged particles in a magnetic background. The complete description of the
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system requires to specify boundary conditions for the parametrization field X. To this

end, we single out some d-dimensional hyper-plane V in RD and demand

(∂uX
µ(z, z̄))⊥z=z̄ = 0 (2.2)

(gµν∂vX
ν(z, z̄))‖z=z̄ = (iBµν∂uX

ν(z, z̄))‖z=z̄ . (2.3)

The symbols ⊥ (‖) refer to directions perpendicular (parallel) to the hyper-surface V .

With the first relation, we impose Dirichlet boundary conditions in the directions perpen-

dicular to V , thereby restricting the endpoints of open strings to move along V . In other

words, with our boundary conditions we have placed a D-brane along V . For B = 0,

the second condition reduces to usual Neumann boundary condition along V . Hence, a

non-vanishing B-fields gives rise to a deformation of Neumann boundary conditions. This

has some interesting effects which we shall address below.

Without restriction we can assume that the d-dimensional plane V is stretched out

along the plane defined by the equations xa = xa
0, a = d + 1, . . . , D, where the parame-

ters xa
0 describe the brane’s transverse location. Dirichlet boundary conditions are then

imposed for Xa with a = d+ 1, . . . , D.

Solution transverse to the brane. For the transverse directions a = d + 1, . . . , D,

the fields Xa are constructed through the following formula for the general solution of the

2-dimensional Laplace equation ∂∂̄Xa(z, z̄) = 0 with Dirichlet boundary conditions,

Xa(z, z̄) = xa
0 + i

√
α′

2

∑

n 6=0

αa
n

n

(
z−n − z̄−n

)
. (2.4)

In the quantum theory, the objects αa
n become operators obeying the following relations

[αa
n, α

b
m ] = n gab δn,−m , (αa

n)∗ = αa
−n . (2.5)

The commutation relations for αa
n ensure that the field Xa and its time derivative possess

the usual canonical commutator. Reality of the bosonic fieldXa is encoded in the behavior

of αa
n under conjugation.

The operators αa
n, n6 = 0, act as creation and annihilation operators on the Fock space

Ha
0 = V0 which is generated by αa

n, n < 0, from a unique ground state |0〉 subject to the
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conditions

αa
n |0〉 = 0 for n > 0 .

This construction of the state space Ha
0 along with the formula (2.4) provides the complete

solution for any direction transverse to our brane V .

Before we turn to the directions along the brane, let us briefly remark that the oper-

ators αa
n can be obtained as the Fourier modes

αa
n =

1

2πi

∫

C

zn Ja(z) dz − 1

2πi

∫

C

z̄n J̄a(z̄) dz̄ . (2.6)

Here, C is a semi-circle in Σ centered around the point z = 0 and Ja, J̄a denote the usual

chiral currents

Ja(z) = i∂Xa(z, z̄) =

√
α′

2

∑

n

αa
n z

−n−1 ,

J̄a(z̄) = i∂̄Xa(z, z̄) = −
√
α′

2

∑

n

αa
n z̄

−n−1 .

From these explicit formulas we read off that the currents obey

Ja(z) = −J̄a(z̄) (2.7)

all along the real line z = z̄. This relation is equivalent to the Dirichlet boundary condition

and it tells us that the two sets of conserved currents in our theory are identified along

the real line. Hence, there is only a single set of currents living on the boundary, while

there are two sets throughout the bulk of the world-sheet.

Solution along the brane. Let us now repeat the above free field theory analysis for

the directions along the branes which are subject to the boundary condition (2.3). The

fields X i, i = 1, . . . , d, are once more constructed using the general solution of the wave

equation

X i(z, z̄) = x̂i − i

√
α′

2
αi

0 ln zz̄ − i

√
α′

2
Bi

j α
j
0 ln

z

z̄
+

+i

√
α′

2

∑

n 6=0

αi
n

n

(
z−n + z̄−n

)
+ i

√
α′

2

∑

n 6=0

Bi
jα

j
n

n

(
z−n − z̄−n

)
(2.8)
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where summation over j = 1, . . . , d, is understood. In passing to the quantum theory,

x̂i, αi
n become operators satisfying

[αi
n, α

j
m ] = nGij δn,−m , [ x̂i, αj

n ] = i
√
α′Gij δ0,n , (2.9)

[ x̂i, x̂j ] = iΘij (2.10)

Furthermore, they obey the reality properties (x̂i)∗ = x̂i and (ai
n)∗ = ai

−n. The commu-

tation relations involve new structure constants Gij and Θij which are obtained from the

background fields through

Gij =

(
1

g +B

)ij

S

, Θij =

(
α′

g +B

)ij

A

. (2.11)

Here, S or A mean that the expression in brackets gets symmetrized or anti-symmetrized,

respectively. Note that the matrix Θ vanishes if and only if the B-field vanishes. A non-

zero Θ causes the center of mass coordinates x̂i of the open string to be quantized. We

shall see below that this has very interesting consequences.

Once more, the operators αi
n act as creation and annihilation operators but now there

exists a d-parameter family of ground states |k〉 which are parametrized by a momentum

k = (ki)i=1,...,d,

αi
0 |k〉 =

√
α′Gij kj |k〉 .

If we denote the associated Fock spaces by Vk, the state space HB for the directions along

the brane can be written as a direct integral HB =
∫

k
ddkVk. On this state space we can

also represent the position operators x̂i as simple shifts of the momentum,

exp(ik′i x̂
i) |k〉 = e

i
2
k×k′ |k + k′〉

where the vector product × is defined through k × k′ = kiΘ
ijk′j. The fields we shall

consider below involve only exponentials of x̂i and not x̂i itself.

From X i we obtain the chiral currents J i and J̄ i in the same way as above

J i(z) = i∂X i(z, z̄) =

√
α′

2

∑

n

(1 +B)i
jα

j
nz

−n−1 , (2.12)

J̄ i(z̄) = i∂̄X i(z, z̄) =

√
α′

2

∑

n

(1 − B)i
jα

j
nz̄

−n−1 . (2.13)
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These currents obey a linear boundary condition all along the real line z = z̄ which is

equivalent to the condition (2.3),

J i(z) =

(
1 +B

1 −B

)i

j

J̄ j(z̄) =:
(
ΩBJ̄

)i
(z̄) . (2.14)

In this case, there appears a non-trivial map ΩB that rotates the anti-holomorphic fields

before they are identified with their holomorphic counterparts. It replaces the simple sign

that we found in eq. (2.7) for the directions transverse to the brane. The map ΩB also

shows up in the formula

αi
n =

1

2πi

∫

C

zn J i(z) dz +
1

2πi

∫

C

z̄n
(
ΩBJ̄

)i
(z̄) dz̄ (2.15)

which is used to obtain the oscillators αi
n from the local fields J i and J̄ i. These remarks

complete our solution of the world-sheet theory.

2.2 The closed string sector

We are now prepared to discuss some of the bulk fields and their properties. After a few

brief remarks on the Virasoro fields, we shall explain how to obtain the vertex operators

for closed string tachyons and compute their couplings to the brane along V . These

couplings encode all information about the density distribution of the brane.

The Virasoro field. Along with the chiral currents Jµ and J̄µ, there exists another

very important pair of chiral fields, namely the Virasoro fields T, T . The holomorphic

field T is obtained from the chiral currents Jµ (the index µ is taken from µ = 1, . . . , D)

through the prescription

T (z) :=
1

α′

∑
gµν :JµJν : (z) :=

1

α′
lim
w→z

(
gµνJ

µ(w)Jν(z) − α′

2

D

(w − z)2

)
.

Here, we use the limiting procedure on the right hand side to define the conformal normal

ordering : · :. For the anti-holomorphic partner T we employ the same construction with

currents J̄µ instead of Jµ. The boundary conditions for the chiral currents (2.7),(2.14)

imply that the two Virasoro fields coincide along the boundary z = z̄,

T (z) = T (z̄) . (2.16)
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Such a relation can be seen to prevent world-sheet momentum from leaking out across

the boundary of Σ. Technically, it allows us to construct the following modes

Ln :=
1

2πi

∫

C

zn+1 T (z) dz − 1

2πi

∫

C

z̄n+1 T (z̄) dz̄ . (2.17)

The elements Ln generate one copy of the Virasoro algebra with central charge c = D.

They can also be expressed through the oscillators αµ
n,

Ln =
1

2

∞∑

n=−∞

Gij
◦

◦α
i
m−nα

j
n
◦

◦ +
1

2

∞∑

n=−∞

gab
◦

◦α
a
m−nα

b
n
◦

◦ (2.18)

where G with lower indices denotes the inverse of (Gij) and it appears in the expression for

Ln because of the factors (1±B) in eqs. (2.12),(2.13). The symbol ◦

◦ · ◦◦ stands for operator

normal ordering, i.e. it instructs us to move all the annihilation operators αµ
n, n ≥ 0, to

the right of the creation operators αµ
n, n < 0.

One-point functions. Let us now turn to the family of bulk fields that are associated

with closed string tachyons. These are defined by the expression

φk,k(z, z̄) := :eikX(z,z̄) : =
∞∑

n=1

(ik)n

n!
:Xn : (z, z̄) . (2.19)

Here k = (kµ) and we have suppressed all indices on the fields X and the momenta k.

Furthermore, we extended the prescription : · : for the conformal normal ordering to

arbitrary powers of the bosonic field X. The nth-order normal ordered product is defined

recursively by

:Xµ1(z1, z̄1) · · ·Xµn(zn, z̄n) : = Xµ1(z1, z̄1) · · ·Xµn(zn, z̄n) +
∑

subtractions

where the sum runs over all ways of choosing pairs of fields from the product and replacing

them by (−1) times the free propagator, i.e.

Xµ(z1, z̄1)X
ν(z2, z̄2) −→ −〈Xµ(z1, z̄1)X

ν(z2, z̄2)〉 = −α′ gµν ln |z1 − z2| .

For more details see e.g. [22]. Note that the normal ordering prescription for bulk fields is

the same as on the full complex plane because it uses the propagator of the free bosonic

10



field on the full complex plane. This differs from the propagator on the upper half plane

〈Xµ(z1, z̄1)X
ν(z2, z̄2)〉B = −α′ gµν ln |z1 − z2| + α′ gµν ln |z1 − z̄2|

−α′Gµν ln |z1 − z̄2|2 −
Θµν

2π
ln
z1 − z̄2
z̄1 − z2

(2.20)

by terms which are regular in the upper half plane Imz > 0 and become singular only

along the boundary. In writing down eq. (2.20), we promoted G and Θ to D×D-matrices

such that all new elements vanish.

After these remarks it is easy to rewrite the bulk field φk,k(z, z̄) in terms of operator

normal ordering, i.e. such that annihilation operators stand to the right of the creation

operators,

φk,k(z, z̄) :=
1

|z − z̄|α′(k2−2k·k)
◦
◦e

ikX(z,z̄)◦
◦ . (2.21)

In the exponent we use k · k = Gijkikj and k2 = gµνkνkµ. The singularity is related to

the second and third term in the propagator (2.20). In the operator normal ordering we

agree to treat x̂µ as a creation operator, i.e. we move it to the left. Now that the tachyon

vertex operators are well defined and conveniently expressed through the operator normal

ordering, we can compute all their correlation functions and in particular the one-point

function on the upper half plane. With our brane localized along V = {xa = xa
0} these

one-point functions are given by

〈φk,k(z, z̄)〉x0 = δ(d)(ki)
eikaxa

0

|z − z̄|α′k2 . (2.22)

From the set of all these one-point functions we can recover the parameters xa
0, i.e. the

brane’s transverse position is completely specified by the one-point function of the bulk

tachyon vertex operators. We shall see that a similar statement remains true for branes

in curved backgrounds.

It will be useful to understand how a density distribution of the brane can be read off

from the one-point functions. In string theory, one-point functions of bulk fields describe

how closed string modes couple to the D-brane. Our formula (2.22) implies that the

coupling is completely delocalized in the directions of momentum space that are normal

to the brane. Hence, after Fourier transformation, closed strings are seen to couple to
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some object that it localized along xa = xa
0 in position space. This is just the location of

our brane in the background. In formulas we find

lim
α′→0

〈φk,k(z, z̄)〉x0 = δ(d)(ki) e
ikaxa

0 ∼
∫
dDx δ(D−d)(xa − xa

0)φk,k(x) (2.23)

where φk,k(x) = exp(ikµx
µ) is the wave function of a scalar particle moving in RD with

momentum k. The first factor δ(D−d)(xa−xa
0) in the integrand is interpreted as the density

distribution of the brane.

2.3 The open string sector

After our discussion of bulk fields we now turn to a new set of fields which can be inserted

at points on the boundary of the world-sheet. Such boundary fields are associated to the

modes of open strings on the brane. We will briefly talk about their spectrum before we

compute correlators of the tachyon vertex operators. The results of these computations

can be expressed with the help of the non-commutative Moyal-Weyl product. We review

the latter to make this presentation self-contained. Finally, we shall argue that - in a

certain decoupling limit - the scattering amplitudes of massless open string modes can be

reproduced by the so-called non-commutative Yang-Mills theory.

Spectrum of boundary fields. Boundary fields are in one-to-one correspondence with

states of the boundary theory. The space of these states was constructed explicitly when

we solved the model in the first subsection. We remind the reader that it is given by

H(B,d) =

∫
ddk Vk ⊗ V⊗D−d

0 .

Here the integral over momenta came with the directions along the brane while the D−d
factors V0 are associated with the transverse space.

H(B,d) is the space on which all our bulk and boundary fields act. In particular, through

eq. (2.17), it carries an action of the Virasoro algebra. Among the Virasoro modes, L0

is distinguished because it agrees with the Hamiltonian of the world-sheet theory up to

a simple shift, i.e. H = L0 − D/24. Using the explicit formula (2.18) for L0 it is rather

easy to calculate the partition function of the theory,

Z(B,d)(q) := trH
(
qH
)

=
1

ηD(q)

∫
ddk q

α′k·k
2 (2.24)
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where η(q) = q1/24
∏

(1 − qn) is Dedekind’s η-function. The factor 1/ηD(q) is associated

with the oscillations of the bosonic string in the D-dimensional flat backgound. In ad-

dition, open strings can move along the brane and this motion gives rise to the integral

over the d-dimensional center of mass momentum k‖. The term α′k · k/2 in the exponent

is the kinetic energy of a particle moving in d-dimensional flat space with metric G. Our

discussion here shows that the partition function Z is an important quantity containing

quite detailed information about the boundary condition.

The Weyl product. Before we start discussing open string scattering amplitudes, we

want to recall some elementary mathematical results on the quantization of a very simple

classical system. It consists of a d-dimensional linear space V along with a constant anti-

symmetric d × d matrix Θij. The latter defines a Poisson bracket for functions on V .

When evaluated on the coordinate functions xj , j = 1, . . . , d, the Poisson structure reads,

{ xi , xj } = Θij . (2.25)

Quantization means to associate a self-adjoint operator x̂j : H → H on some state space

H to each coordinate function such that

[ x̂i , x̂j ] = iΘij . (2.26)

More generally, one would like to associate a self-adjoint operator F = Q(f) to any

real valued function f on V such the commutator [F1,F2] is approximated by the Poisson

bracket {f1, f2} in a sense that we shall make more precise below. An appropriate mapping

f → F = Q(f) was suggested by Weyl [28],

F = Q(f) =

∫
ddk f̂(k) exp(ikjx̂

j)

where f̂(k) denotes the Fourier transform of f . The operator F is trace class, if f is

smooth and decreases, together with all its derivatives, faster than the reciprocal of any

polynomial at infinity. A detailed discussion of appropriate spaces of functions can be

found e.g. in [29].

We want to compute the product of any two operatorsQ(f) andQ(g) and compare this

to the operator which Weyl’s formula assigns to the Poisson bracket of the two functions
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f and g. Using the famous Baker-Campbell-Hausdorff formula one finds the following

auxiliary result for the product of two exponentials

exp(ikix̂
i) exp(ik′jx̂

j) = exp(− i

2
kiΘ

ijk′j) exp(i(k + k′)ix̂
i) . (2.27)

As one can show by a short computation, this formula implies that the product of two

operators Q(f) and Q(g) is given by

Q(f)Q(g) = Q(f ∗ g) where

f ∗ g (x) = exp(− i

2
Θµν∂µ∂̃ν) f(x)g(x̃)|x̃=x . (2.28)

The multiplication ∗ defined in the second row is known as the Moyal product [30] associ-

ated with the constant anti-symmetric matrix Θ. It is an associative and non-commutative

product for functions on the d-dimensional space V . Moreover, to leading order in the

number of derivatives, one finds

[ f ∗, g ] := f ∗ g − g ∗ f = −iΘµν ∂µf∂νg + . . . = −i{f , g } + . . . .

Hence, the Moyal-commutator of the functions f and g is approximated by the Poisson

bracket of these functions. In the same sense, the commutator of the operators Q(f) and

Q(g) is approximated by the operator Q({f, g}).

Correlation functions. Following the standard wisdom of conformal field theory, there

is a boundary field associated with each state in the space H(B,d). For the ground states

|k〉, the corresponding fields are the ‘open string tachyon vertex operators’,

ψk(u) := ◦

◦e
ikiXi(u)◦

◦ = eikiXi
<(u) eikiXi

>(u)

where

Xµ
>(u) = −i

√
2α′ αµ

0 ln u+ i
√

2α′
∑

n>0

αµ
n

n
u−n , (2.29)

Xµ
<(u) = x̂µ + i

√
2α′
∑

n<0

αµ
n

n
u−n . (2.30)

From our exact construction of the theory it is rather straightforward now to compute all

the correlation functions of these tachyonic vertex operators. Before we present the result
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of this computation, let us introduce the decoupling limit of a functional F (α′; g, B). It is

defined by [31]

FDL(g, B) = lim
ε→0

F (ε; gε2, Bε) .

We shall explain the idea behind this limit at the end of the section. For the moment,

let us return to the correlators we were about to compute. They can be evaluated easily

with the help of the Baker-Campbell-Hausdorff formula,

〈ψk1(u1) · · · ψkn
(un)〉 =

∏

r<s

e−
i
2
kr×ks

δ(
∑

r kr)

|ur − us|α′kr·ks

DL→
∏

r<s

e−
i
2
kr×ks δ(

∑
rkr) . (2.31)

Here, r, s = 1, . . . , n, and we have used the notation k×k′ = kiΘ
ijk′j, as before. Note that

the phase factors that appear when we evaluate the correlation function of the exponential

field are identical to the phase factors we encountered in multiplying two exponential

functions using the Moyal-Weyl product (see eq. (2.27)). In the decoupling limit, α′Gij

vanishes and hence we are left with the phase factors and a δ function that enforces

momentum conservation. Hence, in this limit of the theory, the correlation functions are

determined entirely by the Moyal-Weyl product, i.e.

〈ψk1(u1) · · · ψkn
(un)〉DL =

∫

V

ddx ek1 ∗ · · · ∗ ekn

where ek = exp(ikjx
j) is the exponential function. If we introduce the fields ψ[f ](u) by

ψ[f ](u) =

∫
ddk f̂(k)ψk(u)

then the result can be restated as follows

〈ψ[f1](u1) · · · ψ[fn](un)〉DL =

∫

V

ddx f1 ∗ · · · ∗ fn . (2.32)

In conclusion, the decoupling limit of all boundary correlation ‘functions’ is independent of

the world-sheet coordinates ur and its value can be computed from the non-commutative

Moyal-Weyl product associated with the anti-symmetric tensor Θ. A related observation

was made by several authors [32, 33, 34, 35, 36]. The formulation we have presented here

was found in [36].
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Our results have a rather nice physical explanation. Recall that the action functional

(2.1) for open strings has two terms: to begin with there is a boundary term which

describes the motion of the charged open string ends in a magnetic field. It is well

known that the coordinates of charged particles in a magnetic background have a non-

vanishing Poisson bracket and hence they do not commute after quantization. To reach

such a particle limit, we have to suppress the string oscillations, i.e we have to send α′ to

zero. The B-field should be scaled down at the same rate so that B/α′ remains constant.

But even in this limiting regime the resulting theory for the string endpoints does not

approach the theory for charged particles in a magnetic field because of the bulk term in

the action (2.1) for open strings. This term makes the open string ends remember that

they are attached to a string which becomes very stiff as we try to turn off the oscillations.

Consequently, the open string ends dissipate energy into these tails and the strength of

this dissipation is given by g/α′ (see also [37]). If we want to suppress this effect, the

closed string metric g (more precisely its components gij along the brane) has to vanish

at a faster rate than α′. All this in achieved by the decoupling limit we defined above. It

also ensures that the open string metric G remains finite.

Non-commutative Yang-Mills theory. In a supersymmetric string vacuum, the

scalar tachyon for which our previous discussion was most relevant does not arise but

there appears a massless vector field associated with the 2D boundary fields

◦
◦J

µ(u) exp(ikiX
i(u))◦◦ = Jµ

<(u) ◦
◦ exp(ikiX

i(u))◦◦ + ◦
◦ exp(ikiX

i(u))◦◦ J
µ
>(u) . (2.33)

Once more, normal ordering for these boundary operator means to move all the annihi-

lation operators to the right of the creation operators. Consequently, J>(u) is defined

by

Jµ
>(u) =

∑

n>−1

αµ
n u

−n−1 and Jµ
< = Jµ − Jµ

> =
∑

n≤−1

αµ
n u

−n−1 .

To compute the correlation functions of the above fields in the decoupling limit, we proceed

in two steps. The first one is to remove all the currents from the correlators with the help

of Ward identities. Once we are left with correlation functions of the exponential fields,

we can then use the results from the discussion above. Since we are only interested in
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the decoupling limit of the correlation function, we can drop sub-leading terms whenever

they arise in the computation.

Let us discuss this in some more detail. Using a bit of algebra, it is not difficult to

derive that

(Jµ(u1)J
ν(u2))sing := [ Jµ

>(u1), J
ν(u2) ] =

α′

2

Gµν

(u1 − u2)2
(2.34)

(Jµ(u1)ψk(u2))sing := [ Jµ
>(u1), ψk(u2) ] =

α′

2

Gµiki

u1 − u2

ψk(u2) . (2.35)

The commutators we have listed here compute the singular part of the corresponding

operator product expansions. This is indicated in the notation on the left hand side. The

two commutation relations along with the properties Jµ
>(u)|0〉 = 0 and 〈0|Jµ

<(u) = 0 of

the vacuum can be used to remove all currents from an arbitrary correlator. In order to do

so, we commute the lowering term Jµ
> of each current insertion to the right until it meets

the vacuum and similarly the raising terms are all pushed to the left. The commutation

relations give rise to two different contributions. If one currents hits another, both of

them disappear from the correlator and we obtain a factor of α′Gµν . Commuting a

current through an exponential, on the other hand, removes only one current insertion

and furnishes a factor α′Gµiki instead. Since both factors are of the same order in α′, the

leading contribution to an n-point function is obtained when we contract as many pairs

of currents as possible, i.e. n/2 for even n and (n− 1)/2 for odd n. In the latter case, the

last current will necessarily lead to a linear dependence on the momentum k.

It follows from these general remarks on the evaluation of n-point functions that the

three- and four-point functions both contain terms which are second order in α′. All higher

correlators are subleading. While the dominant contributions to the three-point function

contain a factor linear in the momenta k, the corresponding factor for the four-point

function is independent of k. Both these factors are finally multiplied with correlators

(2.31) of the exponential fields. The latter certainly introduce a strong k dependence

whenever there is a non-vanishing B-field.

Our final task now is to interpret the resulting expressions for correlators as vertices

of some effective low-energy field theory on the brane. The structure of the terms we have

just outlined shares all the essential features with the vertices in Yang-Mills theory. For
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instance, the three gluon vertex is linear in the external momenta just as the factor we

have talked about in our evaluation of the three-point function. The non-vanishing B-field,

however, causes all the vertices to be multiplied by momentum dependent phase factors.

Hence, after Fourier transformation, we expect the fields in the effective field theory to be

multiplied with the Moyal-product rather than the ordinary point-wise multiplication.

Though our arguments have been a bit sketchy, all our conclusions can be confirmed

by an exact computation. Taking the physical state conditions into account, the effective

action for a stack of M branes is indeed given by the Yang-Mills action for fields Aµ ∈
MatM(Fun(RD)) on a non-commutative R

D [31],

SN (A) =
1

4

∫
dDx tr (Fµν ∗ F µν )

where Fµν(A) = ∂µAν − ∂νAµ + i[Aµ
∗, Aν ]

and with ∗ being the Moyal product as before. The integration extends over the world-

volume of the brane. In the formula we suppressed fermionic contributions (which appear

for superstring theories) and we assumed that D = d. The action for lower dimen-

sional branes is obtained by dimensional reduction. One can easily see that this non-

commutative Yang-Mills theory is invariant under the following gauge transformations

Aµ −→ Aµ + ∂µλ+ i[Aµ ∗, λ]

for λ ∈ MatM(Fun(RD)). The relation between branes in flat space and non-commutative

geometry has been the main motivation during the last years to study non-commutative

field theories. In particular, there has been significant progress in constructing their

classical solutions (see e.g. [38, 39, 40, 41, 42, 43]). The latter allow for an interpretation

as condensates on branes. We shall come back to related issues in the third lecture when

we analyse branes on a 3-sphere. For an overview over many of the recent developments in

this field and other aspects that we have not touched, we recommend e.g. [31, 44, 29, 45, 46]

and references therein.
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3 2D Boundary conformal field theory

We now want to extend the microscopic formalism to branes in general backgrounds. The

extension relies heavily on methods and ideas from conformal field theory. After a brief

review of some basic concepts from bulk conformal field theory, we explain how branes

can be described through boundary conformal field theory. In particular we shall argue

that they are uniquely characterized by the way in which they couple to closed string

modes or, in terms of the world-sheet theory, by the one-point functions of bulk fields.

Using world-sheet duality it is then possible to determine the corresponding open string

spectra. Along the way we shall derive a number of algebraic relations for the couplings

of closed strings to the brane and the interaction of open strings. Universal solutions of

these relations are the subject of the last subsection.

3.1 Some background from CFT

In an attempt to make these lectures self-contained, we shall begin our discussion with

some more or less well known material on conformal field theory (CFT). Readers who

have been exposed to CFT may skip most of this subsection where we present some

notations and the basic data of the bulk theory. These include the space of bulk fields,

the bulk partition function and the operator product expansion. In the second subsection

we collect some background material on chiral algebras which arise as symmetries of 2D

bulk and boundary CFTs.

3.1.1 The bulk theory.

Bulk conformal field theories, i.e. 2D CFTs defined on the full complex plane, appear in

the world-sheet desription of closed strings. Their state spaces H(P ) contain all the closed

string modes and the coefficients C = C(P ) of their operator product expansions encode

closed string interactions. There exist many non-trivial examples of 2D conformal field

theories, and hence of exactly solvable string backgrounds. These are constructed with

the help of certain infinite dimensional symmetries known as chiral or W-algebras.

Bulk fields and bulk OPE. All constructions of boundary conformal field theories

start from the data of a usual conformal field theory on the complex plane which we shall
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refer to as bulk theory. It consists of a space H(P ) of states equipped with the action of

a Hamiltonian H(P ) and of field operators ϕ(z, z̄). According to the famous state-field

correspondence, the latter can be labeled by elements in the state space H(P ),

ϕ(z, z̄) = Φ(P )(|ϕ〉; z, z̄) for all |ϕ〉 ∈ H(P ) . (3.1)

The reverse relation is given by ϕ(0, 0)|0〉 = |ϕ〉 where |0〉 denotes the unique vacuum

state in the state space H(P ) of the bulk theory.

Among the fields of a CFT one distinguishes so-called chiral fields which depend on

only one of the coordinates z or z̄ so that they are either holomorphic, W = W (z), or

anti-holomorphic, W = W (z̄). The most important of these chiral fields, the Virasoro

fields T (z) and T (z), come with the stress tensor and hence they are present in any CFT.

But in most models there exist further (anti-)holomorphic fields whose Laurent modes

Wn and W n defined through

W (z) =
∑

Wn z
−n−h , W (z̄) =

∑
W n z̄

−n−h̄ , (3.2)

generate two commuting chiral algebras, W and W. The numbers h and h̄ are the (half-)

integer conformal weights (scaling dimension) of W and W . Throughout this text we shall

assume the two chiral algebras W and W to be isomorphic. We encountered an example

of such a chiral algebra in the first lecture. There it was generated by the Laurent modes

αµ
n and ᾱµ

n of the currents J(z) and J̄(z̄).

In general, the state space H(P ) of the bulk theory admits a decomposition into irre-

ducible representations Vi and V ı̄ of the two commuting chiral algebras,

H(P ) =
⊕

i,̄ı
n

(P )
īı Vi ⊗ V ı̄ . (3.3)

For simplicity we shall assume that the multiplicities satisfy n
(P )
īı ∈ {0, 1}. Higher multi-

plicities can easily be incorporated but they would require additional indices. We reserve

the label i = 0 for the vacuum representation V0 of the chiral algebra. It is mapped to

W via the state-field correspondence Φ(P ). As suggested by our notation, the set of rep-

resentations often turns out to be discrete. This is in contrast to the situation we met in

our discussion of strings in RD where i ran over the continuum of closed string momenta.
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The discrete sum in eq. (3.3) signals that our analysis focuses primarily on compact back-

grounds, even though some of the general ideas apply to non-compact situations as well

(see last Section).

Each irreducible representation Vi of W acquires an integer grading under the action of

the Virasoro mode L0 and hence it may be decomposed as Vi =
⊕

n≥0 V
n
i . The subspace

V 0
i of ground states in Vi carries an irreducible action of all the zero modes W0. We will

denote the corresponding linear maps by X i
W ,

X i
W := W0 |V 0

i
: V 0

i −→ V 0
i for all chiral fields W . (3.4)

The whole irreducible representation V i may be recovered from the elements of the finite-

dimensional subspace V 0
i by acting with Wn, n < 0.

Using the state-field correspondence Φ(P ), we can assign fields to all states in V 0
i ⊗V 0

ı̄ .

We shall assemble them into a single object which one can regard as a matrix of fields

after choosing some basis |ea
i 〉 ⊗ |ēb

ı̄〉 ∈ V 0
i ⊗ V 0

ı̄ ,

ϕi,̄ı(z, z̄) :=
(
Φ(P )(|ea

i 〉 ⊗ |ēb
ı̄〉; z, z̄)

)
. (3.5)

The matrix elements are labeled by a = 1, . . . , dimV 0
i and b = 1, . . . , dimV 0

ı̄ . We shall

refer to these field multiplets as closed string vertex operators or primary fields. All other

fields in the theory can be obtained by multiplying with chiral fields and their derivatives.

So far, we have merely talked about the space of bulk fields. But more data are needed

to characterize a closed string background. These are encoded in the short distance

singularities of correlation functions or, equivalently, in the structure constants of the

operator product expansions

ϕi,̄ı(z1, z̄1)ϕj,̄(z2, z̄2) =
∑

nn̄

Cīı;j̄
nn̄ z

hn−hi−hj

12 z̄
h̄n−h̄i−h̄j

12 ϕn,n̄(z2, z̄2) + . . . . (3.6)

Here, z12 = z1 − z2 and hi, h̄ı̄ denote the conformal weights of the field ϕi,̄ı, i.e. the values

of L0 and L̄0 on V 0
i ⊗V 0

i . The numbers C describe the scattering amplitude for two closed

string modes combining into a single one (“pant diagram”).

Together, the state space (3.3) and the set of couplings C in rel. (3.6) can be shown

to specify the bulk theory completely. We shall assume that these data are given to us,

i.e. that the closed string background has been solved already.
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Example: The free boson. Our use of the state field correspondence Φ may seem a bit

formal at first, but it can clarify some conceptual issues and even simplifies many equations

later on. Since it certainly takes time to get used to this rather abstract formalism, let

us pause for a moment and illustrate the general concepts in the example of a single free

boson. In this case, the state space of the bulk theory is given by

H(P ) =

∫
dk Vk ⊗ Vk . (3.7)

As long as we do not compactify the theory, there is a continuum of sectors parametrized

by i = k = ı̄. In the first lectures we have discussed how chiral currents J(z) and the

Virasoro field act T (z) act on Vk. The same discussion applies to their anti-holomorphic

partners. Hence, the formula (3.7) provides a decomposition of the space of bulk fields

into irreducible representations of the chiral algebra that is generated by the modes αn

and ᾱn. States in Vk ⊗Vk are used to describe all the modes of a closed string that moves

with center of mass momentum k through the flat space.

The ground states |k〉⊗|k〉 are non-degenerate in this case and hence they give rise to a

single bulk field ϕk,k(z, z̄) for each momentum k. These fields are the familiar exponential

fields,

ϕk,k(z, z̄) = Φ(P )(|k〉 ⊗ |k〉; z, z̄) = : exp(ikX(z, z̄)) : .

Their correlation functions are rather easy to compute (see e.g. [22]). From such expres-

sions one can read off the following short distance expansion

ϕk1,k1(z1, z̄1)ϕk2,k2(z2, z̄2) ∼
∫
dk δ(k1 + k2 − k) |z1 − z2|α

′(k2
1+k2

2−k2)ϕk,k(z2, z̄2) + . . . .

Comparison with our general form (3.6) of the operator products shows that the coef-

ficients C are simply given by the δ function which expresses momentum conservation.

Note that the exponent and the coefficient of the short distance singularity are a direct

consequence of the equation of motion ∆X(z, z̄) = 0 for the free bosonic field. In fact,

the equation implies that correlators of X itself possess the usual logarithmic singularity

when two coordinates approach each other. After exponentiation, this gives rise to the

leading term in the operator product expansion of the fields ϕk,k. In this sense, the short

distance singularity encodes the dynamics of the bulk field and hence characterizes the

background of the model.
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3.1.2 Chiral algebras

Chiral algebras can be considered as symmetries of 2D conformal field theory. Since

they play such a crucial role for all exact solutions, we shall briefly go through the most

important notions in the representation theory of chiral algebras. These include the set

J of representations, the modular S-matrix S, the fusion rules N and the fusing matrix

F . The general concepts are illustrated in the case of the U(1)-current algebra.

Representation theory. Chiral- or W-algebras are generated by the modes of a finite

set of chiral fields W ν
n . These algebras mimic the role played by Lie algebras in atomic

physics. Recall that transition amplitudes in atomic physics can be expressed as prod-

ucts of Clebsch-Gordan coefficients and so-called reduced matrix elements. While the

former are purely representation theoretic data which depend only on the symmetry of

the theory, the latter contain all the information about the physics of the specific system.

Similarly, amplitudes in conformal field theory are built from representation theoretic data

of W-algebras along with structure constants of the various operator product expansions,

the latter being the reduced matrix elements of conformal field theory. In the (rational)

conformal bootstrap, the structure constants are determined as solutions of certain alge-

braic equations which arise as factorization constraints and we will have to say a lot more

about such equations as we proceed. Constructing the representation theoretic data, on

the other hand, is a mathematical problem which is the same for all models that possess

the same W-symmetry. Throughout most of the following text we shall not be concerned

with this part of the analysis and simply use the known results. But we decided to include

at least a short general review on representation theory of W-algebras.

We consider a finite number of bosonic chiral fields W ν(z) with positive integer confor-

mal dimension hν and require that there is one distinguished chiral field T (z) of conformal

dimension h = 2 whose modes Ln satisfy the usual Virasoro relations for central charge

c. Their commutation relations with the Laurent modes W ν
n of W ν(z) are assumed to be

of the form

[Ln,W
ν
m] =

(
n(hν − 1) −m

)
W ν

n+m . (3.8)

In addition, the modes of the generating chiral fields also possess commutation relations

among each other which need not be linear in the fields. The algebra generated by the
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modes W ν
n is the chiral or W-algebra W (for a precise definition and examples see [47]

and in particular [48]). We shall also demand that W comes equipped with a ∗-operation.

Sectors Vi of the chiral algebra are irreducible (unitary) representations of W for

which the spectrum of L0 is bounded from below. Our requirement on the spectrum of L0

along with the commutation relations (3.8) implies that any Vi contains a sub-space V 0
i

of ground states which are annihilated by all modes W ν
n such that n > 0. The spaces V 0

i

carry an irreducible representation of the zero mode algebra W0, i.e. of the algebra that is

generated by the zero modes W ν
0 , and we can use the operators W ν

n , n < 0, to create the

whole sector Vi out of states in V 0
i . Unitarity of the sectors means that the space Vi may

be equipped with a non-negative bi-linear form which is compatible with the ∗-operation

on W. This requirement imposes a constraint on the allowed representations of the zero

mode algebra on ground states. Hence, one can associate a representation V 0
i of the zero

mode algebra to every sector Vi, but for most chiral algebras the converse is not true. In

other words, the sectors Vi of W are labeled by elements i taken from a subset J within

the set of all irreducible (unitary) representations of the zero mode algebra.

For a given sector Vi let us denote by hi the lowest eigenvalue of the Virasoro mode

L0. Furthermore, we introduce the character

χi(q) = trVi

(
qL0−

c
24

)
.

The full set of these characters χi, i ∈ J , has the remarkable property to close under

modular conjugation, i.e. there exists a complex valued matrix S = (Sij) such that

χi(q̃) = Sij χj(q) (3.9)

where q̃ = exp(−2πi/τ) for q = exp(2πiτ), as before. This S-matrix is symmetric and

unitary. Once S has been constructed for a given chiral algebra W, one can introduce the

numbers

Nij
k =

∑

l

SilSjlS
∗
kl

S0l
. (3.10)

Quite remarkably, they turn out to be non-negative integers. This property, however,

possesses a direct explanation in representation theory. In fact, there exists a product
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◦ of sectors – known as the fusion product – such that Nij
k describe analogues of the

Clebsch-Gordan multiplicities for the decomposition of i ◦ j into the irreducible sectors k

[49]. For this reason, we refer to N as the fusion rules of W. The relation (3.10) between

the fusion rules N and the matrix S is called the Verlinde formula.

The fusing matrix F is the last quantity in the representation theory of chiral algebras

which plays an important role below. Unfortunately, it is not as easy to describe. To

begin with, let us be a bit more explicit about the fusion product. Its definition is based

on the following family of homomorphisms (see e.g. [50])

δz(W
ν
n ) := e−zL−1W ν

n e
zL−1 ⊗ 1 + 1 ⊗W ν

n

=
∑

m=0

(
hν + n− 1

m

)
zn+hν−1−mW ν

1+m−hν
⊗ 1 + 1 ⊗W ν

n (3.11)

which is defined for n > −hν . The condition on n guarantees that the sum on the right

hand side terminates after a finite number of terms. Suppose now that we are given two

sectors Vj and Vi. With the help of δz we define an action of the modes W ν
n , n > −hν , on

their product. This action can be used to search for ground states and hence for sectors k

in the fusion product j ◦ i. To any three such labels j, i, k there is assigned an intertwiner

V ( j
k i

)(z) : Vj ⊗ Vi → Vk

which intertwines between the action δz on the product and the usual action on Vk. If we

pick an orthonormal basis {|j, ν〉} of vectors in Vj we can represent the intertwiner V as

an infinite set of operators

V ( j,ν
k i

)(z) := V ( j
k i

)[|j, ν〉; · ](z) : Vi → Vk .

Up to normalization, these operators are uniquely determined by the intertwining property

mentioned above. The latter also restricts their operator product expansions to be of the

form

V ( j1,µ
k r

)(z1) V ( j2,ν
r i

)(z2) =
∑

s,ρ

Frs [
j2 j1
i k

] V ( s,ρ
k i

)(z2) 〈s, ρ|V ( j2,ν
s j1

)(z12)|j1, µ〉 ,

where z12 = z1 − z2. The coefficients F that appear in this expansion form the fusing

matrix of the chiral algebra W. Once the operators V have been constructed for all ground
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states |j, ν〉, the fusing matrix can be read off from the leading terms in the expansion of

their products. Explicit formulas can be found in the literature. We also note that the

defining relation for the fusing matrix admits a nice pictorial presentation (see Figure 1).

It presents the fusing matrix as a close relative of the 6J-symbols which are known from

the representation theory of finite dimensional Lie algebras.

F

i k

j j

i k

r
s

j j2 1
2 1

Figure 1: Graphical description of the fusing matrix. All the lines are directed as

shown in the picture. Reversal of the orientation can be compensated by conjugation

of the label. Note that in our conventions, one of the external legs is oriented

outwards. This will simplify some of the formulas below.

Example: the U(1)-theory. The chiral algebra of a single free bosonic field is known

as U(1)-algebra. It is generated by the modes αn of the current J(z) with the reality

condition α∗
n = α−n. There is only one real zero mode α0 = α∗

0 so that the zero mode

algebra W0 is abelian. Hence, all its irreducible representations are 1-dimensional and

there is one such representation for each real number k. The vector that spans the

corresponding 1-dimensional space V 0
k is denoted by |k〉, as before. It is easy to see

that the space Vk which we generate out of |k〉 by the creation operators α−n admits a

positive definite bilinear form for any choice of k. Hence, J = R coincides with the set

of irreducible representations of the zero mode algebra in this special case.

The character χk of the sector Vk with conformal weight hk = α′k2/2 is given by

χk(q) =
1

η(q)
qα′ k2

2 .
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Along with the well known property η(q̃) =
√
−iτη(q), the computation of a simple

Gaussian integral shows that

χk(q̃) =
√
α′

∫
dk′ e2πi α′kk′

χk′(q) =:
√
α′

∫
dk′ Skk′χk′(q) . (3.12)

This means that the entries of the S-matrix are phases, i.e. Skk′ = exp(2πiα′kk′). As we

have claimed, the S-matrix is unitary and symmetric under exchange of k and k′. When

we insert the matrix elements Skk′ into the right hand side of Verlinde’s formula (3.10)

we find
1√
α′
δ(k1 + k2 − k) =

√
α′

∫
dl e2πiα′k1l e2πiα′k2l e−2πiα′kl . (3.13)

This is a continuum version of the Verlinde formula. We want to demonstrate that the

left hand side is indeed related to the fusion of representations. In the case of hand, the

action of δz on the zero mode α0 is given by

δz(α0) = α0 ⊗ 1 + 1 ⊗ α0

since the current J has conformal weight h = 1. This shows that the fusion product

amounts to adding the momenta, i.e. k1 ◦ k2 = k1 + k2. In other words, the product of

two sectors k1 and k2 contains a single sector k1 + k2. This indeed agrees with the left

hand side of the Verlinde formula (3.13).

Let us conclude this example with a few comments on the fusing matrix. In this case

it is rather easy to write down an explicit formula for the intertwining operators V . Once

more, they are given by the normal ordered exponential, restricted to the spaces Vk. When

the operator product of two such exponentials with momenta k1 and k2 is expanded in

the distance z1 − z2, we find an exponential with momentum k1 + k2. The coefficient in

front of this term is trivial, implying triviality for the fusing matrix.

3.2 Boundary theory - the closed string sector

Our goal now is to place a brane into some given background. We shall argue that such

branes are completely characterized by their couplings to closed string modes, i.e. by one-

point functions of bulk fields on the upper half plane. The number of couplings one has

to specify depends on the exact symmetry the brane preserves. From the so-called cluster

property we shall derive a set of quadratic factorization constraints on the one-point

functions which must be satisfied by any consistent boundary theory.
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Branes - the microscopic setup. With some basic notations for the (“parent”) bulk

theory set up, we can begin our analysis of associated boundary theories (“open descen-

dants”). These are conformal field theories on the upper half-plane Imz ≥ 0 which, in the

interior Imz > 0, are locally equivalent to the given bulk theory: The state space H(H) of

the boundary CFT is equipped with the action of a Hamiltonian H(H) and of bulk fields

φ(z, z̄) = Φ(H)(|ϕ〉; z, z̄)

– well-defined for Imz > 0 – which are assigned to the same elements ϕ ∈ H(P ) that were

used to label fields in the bulk theory. Note, however, that the associated fields φ now

act on a different space of states H(H) and that, for the moment, we do not know any

fields that are associated with the elements of H(H). Furthermore, we demand that all

the leading terms in the OPEs of bulk fields coincide with the OPEs (3.6) in the bulk

theory, i.e. for the fields φi,̄ı one has

φi,̄ı(z1, z̄1)φj,̄(z2, z̄2) =
∑

nn̄

Cīı;j̄
nn̄ z

hn−hi−hj

12 z̄
h̄n−h̄i−h̄j

12 φn,n̄(z2, z̄2) + . . . (3.14)

These relations express our condition that the brane is placed into our given closed string

background. At the example of the free bosonic field we have discussed that the structure

of the short distance expansion encodes the world-sheet dynamics in the interior of the

upper half plane. Having the same singularities as in the bulk theory means that the

boundary conditions do not affect the equations of motion in the bulk.

In addition, we must require the boundary theory to be conformal. This is guaranteed

if the Virasoro field obeys the following gluing condition

T (z) = T (z̄) for z = z̄ . (3.15)

In the 2D field theory, this condition guarantees that there is no momentum flow across

the boundary. Note that eq. (3.15) is indeed satisfied for the Virasoro fields in the flat

space theory (see rel. (2.16)).

Considering all possible conformal boundary theories associated to a bulk theory whose

chiral algebra is a true extension of the Virasoro algebra is, at present, too difficult a

problem to be addressed systematically (see however [51, 52, 53, 54] and remarks in the

final section for some recent progress). For the moment, we restrict our considerations to
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maximally symmetric boundary theories, i.e. to the class of boundary conditions which

leave the whole symmetry algebra W unbroken. More precisely, we assume that all chiral

fields W (z),W (z̄) can be extended analytically to the real line and that there exists a

local automorphism Ω – called the gluing map – of the chiral algebra W such that [18]

W (z) = ΩW (z̄) for z = z̄ . (3.16)

The condition (3.15) is included in equation (3.16) if we require Ω to act trivially on the

Virasoro field. Note that the boundary conditions we considered in the first lecture are

maximally symmetric since holomorphic and anti-holomorphic currents are glued along

the boundary according to eqs. (2.7) and (2.14).

For later use let us remark that the gluing map Ω on the chiral algebra induces a map ω

on the set of sectors. In fact, since Ω acts trivially on the Virasoro modes, and in particular

on L0, it may be restricted to an automorphism of the zero modes in the theory. If we pick

any representation j of the zero mode algebra we can obtain a new representation ω(j) by

composition with the automorphism Ω. This construction lifts from the representations

of W0 on ground states to the full W-sectors. As a simple example consider the U(1)

theory with the Dirichlet gluing map Ω(αn) = −αn. We restrict the latter to the zero

mode α0. As we have explained above, different sectors are labeled by the value
√
α′k of

α0 on the ground state |k〉. If we compose the action of α0 with the gluing map Ω, we

find Ω(α0)|k〉 = −
√
α′k|k〉. This imitates the action of α0 on | k〉. Hence, the map ω is

given by ω(k) = −k.

Ward identities. As an aside, we shall discuss some more technical consequences that

our assumption on the existence of the gluing map Ω brings about. To begin with, it gives

rise to an action of one chiral algebra W on the state space H ≡ H(H) of the boundary

theory. Explicitly, the modes Wn = W
(H)
n of a chiral field W dimension h are given by

Wn :=
1

2πi

∫

C

zn+h−1W (z) dz +
1

2πi

∫

C

z̄n+h−1 ΩW (z̄) dz̄

which generalizes the formulas (2.6), (2.15) from the first lecture. The operators Wn on

the state space H are easily seen to obey the defining relations of the chiral algebra W.

Note that there is just one such action of W constructed out of the two chiral bulk fields

W (z) and ΩW (z̄).
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In the usual way, the representation of W on H leads to Ward identities for correlation

functions of the boundary theory. They follow directly from the singular parts of the

operator product expansions of the fields W,ΩW with the bulk fields φ(z, z̄). These

expansions are fixed by our requirement of local equivalence between the bulk theory and

the bulk of the boundary theory. To make this more precise, we introduce the notation

W>(z) =
∑

n>−hWnz
−n−h. The singular part of the OPE is then given by

(W (w)φ(z, z̄))sing := [W>(w) , Φ(|ϕ〉; z, z̄) ] (3.17)

=
∑

n>−h

(
1

(w − z)n+h
Φ
(
W (P )

n |ϕ〉; z, z̄
)

+
1

(w − z̄)n+h
Φ
(
ΩW (P )

n |ϕ〉; z, z̄
))

.

As before, the subscript ‘sing’ reminds us that we only look at the singular part of the

operator product expansion, and we have placed a superscript (P ) on the modes Wn,W n

to display clearly that they act on the elements |ϕ〉 ∈ H(P ) labeling the bulk fields in the

theory (superscripts (H), on the other hand, are being dropped for most of our discussion).

The sum on the right hand side of eq. (3.17) is always finite because |ϕ〉 is annihilated by

all Laurant modes with sufficiently large n. For Imw > 0, only the first terms involving

W
(P )
n can become singular and the singularities agree with the singular part of the OPE

between W (w) and φ(z, z̄) in the bulk theory. Similarly, the singular part of the OPE

between ΩW (w) and φ(z, z̄) in the bulk theory is reproduced by the terms which contain

W
(P )
n , if Imw < 0.

As it stands, the previous formula is rather compressed. So, let us spell out at least

one more concrete example in which the chiral field W has dimension h = 1 (we shall

denote any such chiral currents by the letter J) and where we consider the primaries φi,̄ı

in place of φ. Since the corresponding ground states are annihilated by all the modes

Jn, J̄n with n > 0, equation (3.17) reduces to

(J(w)φi,̄ı(z, z̄))sing =
X i

J

w − z
φi,̄ı(z, z̄) − ϕi,̄ı(z, z̄)

X ı̄
ΩJ̄

w − z̄
. (3.18)

The linear maps X i
J and X ı̄

ΩJ̄
were introduced in eq. (3.4) above; they act on the primary

multiplet φi,̄ı : V 0
ı̄ ⊗H → V 0

i ⊗H by contraction in the first component V 0
i resp. V 0

ı̄ .

Ward identities for arbitrary n-point functions of fields φi,̄ı follow directly from eq.

(3.17). They have the same form as those for chiral conformal blocks in a bulk CFT with
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2n insertions of chiral vertex operators with charges i1, . . . , in, ω(̄ı1), . . . , ω(̄ın), see e.g.

[9, 10, 18, 19]. Hence, objects familiar from the construction of bulk CFT can be used as

building blocks of correlators in the boundary theory (“doubling trick”). Note, however,

that the Ward identities depend on the gluing map Ω.

One-point functions. So far we have formalized what it means in world-sheet terms

to place a brane in a given background (the principle of ‘local equivalence’) and how to

control its symmetries through gluing conditions (3.16) for chiral fields. Now it is time to

derive some consequences and, in particular, to show that a rational boundary theory is

fully characterized by just a finite set of numbers.

Using the Ward identities described in the previous paragraph together with the OPE

(3.14) in the bulk, we can reduce the computation of correlators involving n bulk fields to

the evaluation of one-point functions 〈φi,̄ı〉α for the bulk primaries (see Figure 2). Here,

the subscript α has been introduced to label different boundary theories that can appear

for given gluing map Ω.

1

Σ
2

n

3

2

1

n

3

Figure 2: With the help of operator product expansions in the bulk, the com-

putation of n-point functions in a boundary theory can be reduced to computing

one-point functions on the half-plane. Consequently, the latter must contain all

information about the boundary condition.

To control the remaining freedom, we notice that the transformation properties of φi,̄ı

with respect to Ln, n = 0,±1, and the zero modes W0,

[W0 , φi,̄ı(z, z̄) ] = X i
W φi,̄ı(z, z̄) − φi,̄ı(z, z̄) X

ı̄

ΩW
,
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[Ln , φi,̄ı(z, z̄) ] = zn ( z∂ + hi(n+ 1) )φi,̄ı(z, z̄)

+ z̄n ( z̄∂̄ + h̄ı̄(n+ 1) )φi,̄ı(z, z̄)

determine the one-point functions up to scalar factors. Indeed, an elementary computation

using the invariance of the vacuum state reveals that the vacuum expectation values 〈φi,̄ı〉α
must be of the form

〈φi,̄ı(z, z̄)〉α =
Aα

īı

|z − z̄|hi+hı̄
(3.19)

where

Aα
īı : V 0

ı̄ → V 0
i obeys X i

W Aα
īı = Aα

īı X
ı̄

ΩW
.

The intertwining relation in the second line implies ı̄ = ω(i+) ≡ iω as a necessary condition

for a non-vanishing one-point function (i+ denotes the representation conjugate to i,

i.e. the unique respresentation which obeys N0
ii+ = 1), and since hi = hiω we can put

hi + hı̄ = 2hi in the exponent in eq. (3.19). From the irreducibility of the zero mode

representations on the subspaces V 0
i and Schur’s lemma we conclude that each non-zero

matrix Aα
īı is determined up to one scalar factor Aα

i ,

Aα
īı = Aα

i δı̄,iω Uīı

where Uīı intertwines between two representations of the zero mode algebra and is normal-

ized by U∗
īı Uīı = 1. In conclusion, we have argued that boundary conditions associated

with the same bulk theory and the same gluing map Ω, can differ only by a set of scalar

parameters Aα
i in the one-point functions. Once we know their values, we have specified

the boundary theory. This generalizes a similar observation we made for branes in flat

backgrounds (see remark after eq. (2.22)) and it also agrees with our intuition that a

brane should be completely characterized by its couplings to closed string modes such as

the mass and RR charge.

The cluster property. We are certainly not free to choose the remaining parameters

Aα
i in the one-point functions arbitrarily. In fact, there exist strong sewing constraints

on them that have been worked out by several authors [55, 12, 16, 17, 56]. These can be

derived from the following cluster property of the two-point functions

lim
a→∞

〈φi,iω(z1, z̄1)φj,jω(z2 + a, z̄2 + a)〉 = 〈φi,iω(z1, z̄1)〉〈φj,jω(z2, z̄2)〉 . (3.20)
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Here, a is a real parameter, and the field φj,jω on the right hand side can be placed at

(z2, z̄2) since the whole theory is invariant under translations parallel to the boundary.

Let us now see how the cluster property restricts the choice of possible one-point

functions. We consider the two-point function of the two bulk fields as in eq. (3.20).

There are two different ways to evaluate this function. On the one hand, we can go into

a regime where the two bulk fields are very far from each other in the direction along

the boundary. By the cluster property, the result can be expressed as a product of two

one-point functions and it involves the product of the couplings Aα
i and Aα

j . Alternatively,

we can pass into a regime in which the two bulk fields are very close to each other and

then employ the operator product (3.14) to reduce their two-point function to a sum over

one-point functions. Comparison of the two procedures provides the following important

relation,

Aα
i A

α
j =

∑

k

Ξk
ij A

α
0 A

α
k . (3.21)

It follows from our derivation that the coefficient Ξk
ij can be expressed as a combination

Ξk
ij = Cīı;j̄

kk̄ F1k [ i j
ω(i+) ω(j)

] (3.22)

of the coefficients C in the bulk OPE and of the fusing matrix. The latter arises when we

pass from the regime in which the bulk fields are far apart to the regime in which they

are close together (see Figure 3).

A

j

j

ω ω

i

i j

A i

j

0

i
C

kkA

ij
k

iω jω

Figure 3: Equations (3.21), (3.22) are derived by comparing two limits of the two-

point function. The dashed line represents the boundary of the world-sheet and we

have drawn the left moving sector in the lower half-plane (doubling trick).
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In some cases, Ξk
ij has been shown to agree with the fusion multiplicities or some

generalizations thereof (see e.g. [16, 57, 56]). The importance of eq. (3.21) for a classifi-

cation of boundary conformal field theories has been stressed in a number of publications

[57, 56, 58] and is further supported by their close relationship with algebraic structures

that entered the classification of bulk conformal field theories already some time ago (see

e.g. [59, 60, 61]).

The algebraic relations (3.21) typically possess several solutions which are distiguished

by our index α. Hence, maximally symmetric boundary conditions are labeled by pairs

(Ω, α). The automorphism Ω is used to glue holomorphic and anti-holomorphic fields

along the boundary and the consistent choices for Ω are rather easy to classify. Once Ω

has been fixed, it determines the set of bulk fields that can have a non-vanishing one-

point function and it is also referred to as the ‘type’ of the boundary theory. For each

gluing automorphism Ω, the non-zero one-point functions are constrained by algebraic

equations (3.21) with coefficients Ξ which are determined by the closed string background.

A complete list of solutions is available in a large number of cases. But before presenting

them, we want to show how one can reconstruct other important information on the brane

from the couplings Aα
i . In particular, we will be able to recover the open string spectrum.

Since the derivation makes use of boundary states, we need to introduce this concept first.

Boundary states. It is possible to store all information about the couplings Aα
i of

closed strings to a brane in a single object, the so-called boundary state. To some extent,

such a boundary state can be considered as the wave function of a closed string that is

sent off from the brane (Ω, α). It is a special linear combinations of generalized coherent

states (the so-called Ishibashi states). The coefficients in this combination are essentially

the closed string couplings Aα
i .

One way to introduce boundary states is to equate correlators of bulk fields on the

half-plane and on the complement of the unit disk in the plane. With z, z̄ as before, we

introduce coordinates ζ, ζ̄ on the complement of the unit disk by

ζ =
1 − iz

1 + iz
and ζ̄ =

1 + iz̄

1 − iz̄
. (3.23)

If we use |0〉 to denote the vacuum of the bulk CFT, then the boundary state |α〉 = |α〉Ω
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can be uniquely characterized by [55, 18]

〈Φ(H)(|ϕ〉; z, z̄)〉α =

(
dζ

dz

)h(
dζ̄

dz̄

)h̄

· 〈0|Φ(P )(|ϕ〉; ζ, ζ̄)|α〉 (3.24)

for primaries |ϕ〉 with conformal weights (h, h̄). Note that all quantities on the right hand

side are defined in the bulk conformal field theory (super-script P), while objects on the

left hand side live on the half-plane (super-script H).

In particular, we can apply the coordinate transformation from (z, z̄) to (ζ, ζ̄) on the

gluing condition (3.16) to obtain

W (ζ) = (−1)h ζ̄2hΩW (ζ̄)

along the boundary at ζζ̄ = 1. Expanding this into modes, we see that the gluing

condition (3.16) for chiral fields translates into the following linear constraints for the

boundary state,
[
Wn − (−1)hW ΩW−n

]
|α〉Ω = 0 . (3.25)

These constraints posses a linear space of solutions. It is spanned by generalized coherent

(or Ishibashi) states |i〉〉. Given the gluing automorphism Ω, there exists one such solution

for each pair (i, ω(i+)) of irreducibles that occur in the bulk Hilbert space [62]. |i〉〉Ω is

unique up to a scalar factor which can be used to normalize the Ishibashi states such that

Ω〈〈j| q̃L
(P )
0 − c

24 |i〉〉Ω = δi,j χi(q̃) . (3.26)

Full boundary states |α〉Ω ≡ |(Ω, α)〉 are given as certain linear combinations of Ishibashi

states,

|α〉Ω =
∑

i

Bi
α |i〉〉Ω . (3.27)

With the help of (3.24), one can show [55, 18] that the coefficients Bi
α are related to the

one-point functions of the boundary theory by

Aα
i = Bi+

α . (3.28)

The decomposition of a boundary state into Ishibashi states contains the same information

as the set of one-point functions and therefore specifies the “descendant” boundary CFT

of a given bulk CFT completely.
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Following an idea in [62], it is easy to write down an expression for the generalized

coherent states (see e.g. [18]), but the formula is fairly abstract. In the case of flat

backgrounds, however, their construction can be made very explicit. Let us first discuss

this for Dirichlet boundary conditions, i.e. for ΩDJ̄a = −J̄a where a = d+1, . . . , D, labels

directions transverse to the brane as in the first lecturs. Since k+
a = −ka (recall that

fusion of sectors is given by adding momenta) and ω(ka) = −ka, we have kω
a = ka and

so there exists a coherent state for each sector in the bulk theory (3.7). These states are

given by

|k〉〉D = exp

(
∞∑

n=1

gab

n
αa
−nᾱ

b
−n

)
|k〉 ⊗ |k〉 .

Using the commutation relation of αa
n and ᾱa

n it is easy to check that |k〉〉D is annihilated

by αa
n − ᾱa

−n as we required in eq. (3.25). A special case of our formula (2.22) for the

one-point function along with the general rule (3.28) lead to the following boundary state

for Dirichlet boundary conditions,

|x0〉D =

∫
ΠD

a=d+1(
√
α′dka) e−ikaxa

0 |k〉〉D .

For the directions along the brane, the analysis is different. Here we have to use the gluing

map ΩB from eq. (2.14) and a simple computation reveals that the condition ωB(k) = −k
is only solved by k = 0. This means that we can only construct one coherent state,

|0〉〉B = exp(−
∞∑

n=1

Gij

n
αi
−nΩBᾱj

−n) |0〉 ⊗ |0〉 .

According to eqs. (2.22) and (3.28), this coincides with the boundary state |0〉B = |0〉〉B.

Hence, the boundary state for the branes discussed in the first lecture is given by the

product |x0〉(B,d) ≡ |0〉B ⊗ |x0〉D.

3.3 Boundary theory - the open string sector

While the one-point functions (or boundary states) uniquely characterize a boundary

conformal field theory, there exist more quantities we are interested in. In particular,

we shall now see how the coefficients of the boundary states determine the spectrum of

so-called boundary fields which can be inserted along the boundary of the world-sheet. In

addition, we derive a set of factorization conditions for the operator product expansions

of these new fields.
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The boundary spectrum. Our aim is to determine the spectrum of open string modes

which can stretch between two branes labeled by α and β, both being of the same type Ω.

In world-sheet terms, the quantity we want to compute is the partition function on a strip

with boundary conditions α and β imposed along the two sides. This is illustrated on

the left hand side of Figure 4. The figure also illustrates the main idea of the calculation.

In fact, world-sheet duality allows to exchange space and time and hence to turn the one

loop open string diagram on the left hand side into a closed string tree diagram which is

depicted on the right hand side. The latter corresponds to a process in which a closed

string is created on the brane α and propagates until it gets absorbed by the brane β.

Since creation and absorption are controlled by the amplitudes Aα
i and Aβ

j , the right

hand side - and hence the partition function on the left hand side - is determined by the

one-point functions of bulk fields.

Z αβ

τ
α β

α

β

Figure 4: The open string partition function Zαβ can be computed by world-sheet

duality. In the figure, the time runs upwards so that the left hand side is interpreted

as an open string 1-loop diagram while the right hand side is a closed string tree

diagram.

Let us now become a bit more precise and derive the exact relation between the

couplings A and the partition function. Reversing the above sketch of the calculation, we

begin on the left hand side of Figure 4 and compute

〈θβ|q̃H(P )|α〉 =
∑

j

Aβ
j+A

α
j 〈〈j+|q̃L

(P )
0 − c

24 |j+〉〉 =
∑

j

Aβ
j+A

α
j χj+(q̃) .
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Here we have dropped all subscripts Ω since all the boundary and generalized coherent

states are assumed to be of the same type. The symbol θ denotes the world-sheet CPT

operator in the bulk theory. It is a anti-linear map which sends sectors to their conjugate,

i.e.

θAβ
j+ |j〉〉 =

(
Aβ

j+

)∗
|j+〉〉 .

Having explained these notations, we can describe the steps we performed in the above

short computation. To begin with we inserted the expansion (3.27),(3.28) of the boundary

states in terms of Ishibashi states and the formula H(P ) = 1/2(L0 + L̄0) − c/24 for the

Hamiltonian on the plane. With the help of the linear relation (3.25) we then traded L̄0

for L0 before we finally employed the formula (3.26). At this point we need to recall the

property (3.9) of characters to arrive at

〈θβ|q̃H(P )|α〉 =
∑

j

Aβ
j+A

α
j Sj+iχi(q) =: Zαβ(q) . (3.29)

As argued above, the quantity we have computed should be interpreted as a boundary

partition function and hence as a trace of the operator exp(2πiτH (H)) over some space

Hαβ of states for the system on a strip with boundary conditions α and β imposed along

the boundaries. Since our boundary conditions preserve the chiral symmetry, the partition

function is guaranteed to decompose into a sum of the associated characters. Moreover,

the coefficients in this expansion must be integers and so we conclude

Zαβ(q) =
∑

i

nαβ
i χi(q) where nαβ

i =
∑

j

Aβ
j+A

α
j Sj+i ∈ N . (3.30)

This is the desired expression for the partition function in terms of the couplings Aα
i .

Although there exists no general proof, it is believed that every solution of the factorization

constraints (3.21) gives rise to a consistent spectrum with integer coefficients nαβ
i. A

priori, the integrality of the numbers nαβ
i provides a strong constraint, known as the

Cardy condition, on the set of boundary states and it has often been used instead of eqs.

(3.21) to determine the coefficients Aα
i . Note that the Cardy conditions are easier to

write down since they only involve the modular S-matrix. To spell out the factorization

constraints (3.21), on the other hand, one needs explicit formulas for the fusing matrix

and the bulk operator product expansion.
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There is one fundamental difference between the Cardy condition (3.30) and the fac-

torization constraints (3.21) that is worth pointing out. Suppose that we are given a

set of solutions of the Cardy constraint. Then every non-negative integer linear combi-

nation of the corresponding boundary states defines another Cardy-consistent boundary

theory. In other words, solutions of the Cardy condition form a cone over the integers.

The factorization constraints (3.21) do not share this property. Geometrically, this is

easy to understand: we know that it is possible to construct new brane configurations

from arbitrary superpositions of branes in the background (though they are often unsta-

ble). These brane configurations possess a consistent open string spectrum but they are

not elementary. As long as we are solving the Cardy condition, we look for such con-

figurations of branes. The factorization constraints (3.21) were derived from the cluster

property which ensures the system to be in a ‘pure phase’. Hence, by solving eqs. (3.21)

we search systematically for elementary brane configurations that cannot be decomposed

any further. Whenever the coefficients Ξ are known, solving the factorization constraints

is clearly the preferable strategy, but sometimes the required information is just hard to

come by. In such cases, one can still learn a lot about possible brane configurations by

studying Cardy’s conditions.

Boundary fields and boundary OPE. To the partition function Zαβ we have com-

puted in the previous paragraph we can associate a state space

H(H)
αβ =

⊕

i

nαβ
i Vi .

The modes of open strings stretching in between the branes α and β are to be found within

this space. Since there should be an open string vertex operator for each such mode, we

expect that the elements in the state space H(H)
αβ correspond to boundary operators which

can be inserted at points u of the boundary where the boundary condition jumps from

α to β. In other words, we have just argued for a new state-field correspondence Ψ(H)

which associates a boundary field with each state in H(H)
αβ ,

ψαβ(u) = Ψ(H)(|ψ〉; u) for |ψ〉 ∈ H(H)
αβ . (3.31)

As in the case of bulk fields, we want to introduce a special notation for the boundary

fields that come with ground states. Once more we fix a basis |ea
i 〉 in the space V 0

i ⊂ Vi
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and introduce the multiplet

ψαβ
i (x) :=

(
Ψ(H)(|ea

i 〉; x)
)

with |ea
i 〉 ∈ V 0

i ⊂ H(H)
αβ . (3.32)

Elements of this tuple are numbered by a = 1, . . . , dimV 0
i . We have been a bit sloppy

here. In fact, there are certainly cases in which the space Vi appears with some non-

trivial multiplicity nαβ
i > 1. If that is the case, the associated boundary fields carry an

additional index r = 1, . . . , nαβ
i. For notational reasons we shall omit this extra label,

but it is not too difficult to add it back into all the following formulas. The multiplet ψαβ
i

carries an irreducible representation of the zero mode algebra W0.

Having introduced boundary fields we are interested in their correlation functions. The

latter become singular when their world-sheet arguments come close and the singularity

is again encoded in operator product expansions. For the boundary fields ψαβ
i these read

ψαβ
i (u1)ψ

βγ
j (u2) =

∑

k

(u1 − u2)
hi+hj−hk Cαβγ

ij;k ψ
αγ
k (u2) + . . . for u1 > u2 . (3.33)

The coefficients Cαβγ
ij;k are linear maps which intertwine the action of the zero mode algebra

W0 on the field multiplets. We can split them into a product of a numerical factor Cαβγ
ij;k

and an intertwiner Uij;k : V 0
k → V 0

i ⊗ V 0
j that does no longer depend on the boundary

conditions. The intertwiners Uij;k are normalized by

U∗
ij;l Uij;k = δl,k 1V 0

k
.

All dynamical information about the scattering of open strings is encoded in the numerical

factors Cαβγ
ij;k which can be non-zero only if Nij

k 6 = 0.

Four-point functions of these boundary fields must satisfy certain factorization con-

straints (see Figure 5) which allow to derive the following constraint on the coefficients of

the operator product expansion,

Cδαβ
ji;r C

γδβ
kr;l ∼

∑

s

Fsr [
j i
k l

]Cγδα
kj;s C

γαβ
si;l . (3.34)

In writing these equations we have omitted terms associated with boundary two-point

functions on both sides. The precise condition can be found e.g. in [63, 64, 65]. Studies of

many examples and intuition both suggest that these relations possess a unique solution,
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up to some freedom that can be absorbed through the normalization of boundary fields.

In this sense, the interactions of open strings are determined by the multiplicities nαβ
i

and hence ultimately by the couplings Aα
i of closed string modes to the brane.

γ

βδ

α

r
s

k

j i

l

δ

α

β

γk

j i

l

Figure 5: The equation (3.34) is derived by considering scattering amplitudes

of four open string modes (i, j, k, l) stretching in between four different boundary

conditions (α, β, γ, δ).

The Ward identities. We have already discussed Ward identities for correlation func-

tions of bulk fields on the upper half-plane Σ. The extension of such identities to boundary

fields is straightforward. Using the same notations as in the corresponding equation (3.17)

for bulk fields, the singular part of the operator product expansion between chiral and

boundary fields reads

(W (w)ψ(u))sing := [W>(w) , Ψ(|ψ〉; u) ] =
∑

n>−h

1

(w − u)n+h
Ψ
(
Wn|ψ〉; u

)
. (3.35)

These relations agree with the usual Ward identities for chiral vertex operators and so

arbitrary correlators in boundary conformal field theory can be constructed out of the

known formulas for chiral blocks.

3.4 Solution of the theory

In the last subsections we derived the three conditions, namely the relations (3.21), (3.30)

and (3.34), which are fundamental in solving boundary conformal field theory. It is
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remarkable that universal solutions exist for a large class of backgrounds. We will now

present the basic Cardy solution and then illustrate it in the case a single free bosonic

field.

Solution for Cardy case. To begin with, let us formulate the main assumption we

have to make. Suppose we are given some rational bulk conformal field theory with a

bulk modular invariant partition function of the special form

Z(q, q̄) =
∑

j

χj(q) χ̄(q̄) . (3.36)

Here, j runs through the set J of sectors and ̄ is some unique sector that is paired with j

in the partition function. In the following we describe the solution for all possible possible

boundary theories of type Ω, provided that the

jω = ω(j)+ !
= ̄ . (3.37)

Under this condition, Cardy claims that there exist as many boundary theories as there

are W-sectors, i.e. the number of boundary theories is equal to the order of J . We shall

label these boundary theories by I, J,K · · · ∈ J instead of using α, β, γ, . . . to remind us

that they run through the same set as the labels i, j, k, . . . .

We have learned that such boundary theories can be characterized by the one-point

functions of the primary fields. Cardy proposes that the associated couplings AJ
j are

simply given by the modular S-matrix, i.e.

〈φj,jω(z, z̄) 〉J =
SJj√
S0j

Ujjω

|z − z̄|2hj
. (3.38)

Note that this formula makes sense since the boundary label J runs through the set of W-

sectors. As we explained before, Ujjω is the unitary intertwiner that intertwines between

the actions of the zero modes W0 on the two spaces V 0
j and V 0

jω of ground states.

The spectrum of open strings stretching between the branes that are associated with

the labels I and J is encoded in the associated partition functions

ZIJ(q) =
∑

j

NIJ+
j χj(q) . (3.39)
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Here, J+ is defined through the conjugation on sectors of the chiral algebra, i.e. through

NIJ+
0 = δI,J . Since fusion rules of the chiral algebra are non-negative integers, the

expression (3.39) has the form of a partition function for a W-symmetric system. We

will analyze below how equation (3.39) is related to the formula (3.38) for the one-point

functions.

The complete solution should include expressions for the boundary operator products.

According to the expansion (3.39), there are NIJ+
j boundary fields ψIJ

j (u) (recall that

they are W0 multiplets whenever dimV 0
j > 1). As in the previous paragraph, we suppress

the extra index that labels different fields in cases when NIJ+
j > 1. The operator product

expansion for two such primary fields is claimed to be of the form

ψLM
i (u1) ψ

MN
j (u2) =

∑

k

(u1 − u2)
hi+hj−hk FMk [ i j

L N
]Uij;k ψ

LN
k (u2) + . . . (3.40)

for u1 > u2. Here F stands for the fusing matrix of the chiral algebra W. It was introduced

at the end of the first subsection. The formula (3.40) was originally found for minimal

models by Runkel [63] and extended to more general cases in [66, 67, 68].

Let us stress that all the important structure constants of the solution, namely the

list of boundary labels, the one-point functions, the partition functions and the boundary

operator expansions, have been expressed through representation theoretic data of the

underlying symmetry. In fact, we have used the list of sectors, the modular S-matrix,

the fusion rules and the fusing matrix to write down the exact solutions. Obviously, the

rather simple relation between the set of solutions and purely representation theoretic

quantities only appears for very particular choices of bulk modular invariants and gluing

maps Ω. This manifests itself in our assumption jω = ̄. If the assumptions (3.36), (3.37)

are violated, finding solutions is more difficult. We will only provide a brief overview on

the current status of this active field of current research (see last section). As restricting

as the assumption jω = ̄ may appear, it still turns out to apply to a large number of

interesting situations.

Testing Cardy’s solution. The structure constants Aα
j , nαβ

i and Cαβγ
ij;k of any exact

solution must satisfy our fundamental algebraic constraints (3.21), (3.30), (3.34). Our

aim here is to verify at least two of these conditions, namely the Cardy condition (3.30)
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and the factorization constraint (3.34) for the solution we have provided in eqs. (3.38),

(3.39) and (3.40). From Cardy’s solution we read off that AJ
j = SJj/

√
S0j . When this is

inserted into the formula (3.30) for the integers nIJ
i one finds

nIJ
i =

∑

j

SJj+ SIj Sj+i

S0j
= N i

IJ+ .

In the computation we have used the properties Sij+ = S∗
ij = Si+j of the modular S-

matrix and the Verlinde formula (3.10). In fact, the very close relation between the

Verlinde formula and the expressions in eq. (3.30) was the main evidence Cardy relied on

to support his solution.

The boundary operator product expansions (3.40) arise from the general expression

(3.33) if we equate

CIJK
ij;k = FJk [ i j

I K
] .

When we plug this expression into eq. (3.34), we end up with the following equation for

the fusing matrix

FIr [
j i
L J

]FLl [
k r
K J

] =
∑

s

Fsr [
j i
k l

]FLs [
k j
K I

]FIl [
s i
K J

] .

This is the famous pentagon equation which holds true for the fusing matrix of any chiral

algebra (see [50]). The proof of the full factorization constraint is slightly more involved

since one has to take the contributions from boundary two-point functions into account.

The latter were neglected in our equation (3.34).

Example: D0 branes in flat space. It is nice to see how the general formulas allow

to recover the solutions of the boundary conformal field theory describing a point-like

brane in a 1-dimensional flat space. The bulk invariant has been spelled out in eq.

(3.7). It is diagonal in the sense k = k̄ and has the special form (3.36), at least if

we close an eye on the fact that the real line is non-compact and hence the theory is not

rational. We are interested in boundary theories which obey the Dirichlet gluing condition

J(z) = −J̄(z̄). As we have explained earlier, this choice of Ω implies kω = k and hence

our main assumption (3.37) is satisfied.

Now Cardy assures us that the associated boundary conditions are parametrized by

a parameter α which runs through the set J = R of sectors in the theory. Hence,
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the parameter α must be associated with the transverse position of our brane in the

1-dimensional background.

The precise relation between α and x0 can be read off from the one-point functions. If

we insert the formula (3.12) for the S-matrix of the U(1) theory into the general expression

(3.38) above we obtain

〈φk,k(z, z̄)〉α =
e2πiα′kα

|z − z̄|α′k2 .

This indeed agrees with a special case of formula (2.22) for D = 1, d = 0 and x0 = 2πα′α.

Next we want to look at our formula (3.39) for the partition functions. We determined

the fusion rules of the U(1) theory in eq. (3.13) and plugging them into eq. (3.39) gives

Zx0y0(q) =

∫
dk δ(

x0 − y0

2πα′
− k)χk(q) =

1

η(q)
q

(x0−y0)2

8π2α′ .

In the first lecture we only computed the special case x0 = y0 for which we obtain

agreement with eq. (2.24). If x0 and y0 are not the same, an open string must stretch

over the finite distance x0 − y0 in between the two branes. The energy of such stretched

open strings is proportional to (x0 − y0)
2 and this explains the exponent of the second

factor in the partition function. Needless to say that it can be found directly by solving

the Laplace equation in a strip.

The field corresponding to the only ground state in Hx0y0 is given by

ψx0y0
p (x) = ◦

◦e
ipX(x)◦

◦ with p =
x0 − y0

2πα′
.

Since the fusing matrix of the U(1) theory is trivial, the operator product expansion of

these exponential fields is the one predicted by formula (3.40).

Obviously, we did not learn anything new about D0 branes in flat space. What we have

seen is some kind of high-tech derivation of the standard results using lots of complicated

notions from representation theory of chiral algebras. The point is, however, that now we

do have a technology ready to be applied to more complicated interacting theories with

non-linear equations of motion for which conventional methods fail. We will illustrate the

full power of these developments in the next lecture.
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4 Application: Branes on group manifolds

We are now in a position to apply the general techniques of boundary conformal field the-

ory to the construction of branes in curved backgrounds. In many ways, group manifolds

provide an ideal area to illustrate the abstract constructions. Since they are homogeneous,

they come with a large symmetry that facilitates the exact solution. On the other hand,

strings on group manifolds are described by a non-linear 2D field theory and hence are

sufficiently non-trivial to demonstrate the full power of boundary conformal field theory.

Finally, the involved models are also fundamental for CFT model building.

We shall first approach branes on group manifolds in a more qualitative way, mainly

based on our experience from the first lecture. Even though the initial reasoning will

hardly go beyond a chain of educated guesses, this can lead us a long way and it will help

later to present the exact solution in a new light. Once the branes on group manifolds

have been constructed using all the formulas from the previous lectures, we compute their

low-energy effective action and discuss several interesting applications to the study of

brane dynamics. For simplicity our presentation focuses mainly on the group manifold

SU(2) ∼= S3, but many aspects generalize directly to other groups (see remarks in the last

section).

4.1 The semi-classical geometry.

In the following introductory paragraph we shall see the basic contours of a scenario that

we are going to derive later through our microscopic treatment of branes on group man-

ifolds. From the preliminary discussion we will extract certain Poisson spaces which are

argued to describe the semi-classical geometry of the relevant branes. Their quantization

is the subject of the third paragraph.

Introductory remarks. Group manifolds possess a non-vanishing constant curvature

R = R(g) which arises from a non-constant metric g. It is well known that strings are

rather picky when it comes to choosing the backgrounds they can propagate on. In fact,

to lowest order in α′, the background metric g(x) and B-field B(x) of a bosonic string
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have to obey the equations

Rµν(g) −
1

4
Hµρσ Hν

ρσ + O(α′) = 0 , (4.1)

where Hµνσ are the components of the NSNS 3-form H = dB with B = Bµν(x)dx
µ ∧ dxν .

In writing eq. (4.1), the dilaton was assumed to be constant. For superstrings the same

equations hold as long as we set all the RR background fields to zero. This is the scenario

in which the following discussion is placed.

From eq. (4.1) we conclude immediately that a background with non-zero curvature

Rµν requires a non-vanishing NSNS fieldH and hence a non-zero B-field. In our analysis of

branes in flat space, such B-fields caused the coordinates along the brane to be quantized

and hence they were at the origin of the brane’s non-commutative geometry. Although

the details will be different in curved spaces, the basic mechanisms are certainly expected

to work in the same way. Thus, if we can find branes which extend along some directions

of a group manifold, their world-volume geometry is very likely to be quantized.

To see whether we have a chance to construct extended stable branes on group man-

ifolds, let us now restrict to the case of SU(2) ∼= S3. This is also of particular interest

in string theory because it appears e.g. within the background R1,5 × S3 × R+ of NS

5-branes [69, 70] or as part of the geometry AdS3 × S3 × T 4. Placing a point-like brane

somewhere on the SU(2) is obviously not in conflict with stability. Higher dimensional

objects, however, may seem unstable at first sight, since their tension tends to make them

collapse. Only a brane wrapping the whole S3 could be stabilized through the topology,

but it is excluded by the presence of the non-vanishing NSNS 3-form [71, 72]. Hence, if the

tension would be the only factor contributing to the stability analysis, our story would

be rather short and boring. It turns out, however, that the non-vanishing B-field also

plays an important role and that it can exert enough pressure on 2-dimensional spherical

branes in S3 to balance the tension [73, 74]. Although the initial arguments for this flux

stabilization could only be trusted at weak curvature, the statement remains correct even

deep in the stringy regime [75]. Thus, we conclude that stable branes on SU(2) can either

be point-like or they can wrap a 2-dimensional sphere S2 ⊂ S3. From now on we shall

consider point-like branes as degenerate 2-spheres so that we do not have to distinguish

between the two possibilities.
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Spheres S2 in S3 are parametrized by the location of their center and by their radius

r. Branes wrapping a sphere of radius r carry a non-vanishing B-field which causes their

world-volume to be quantized. At a fixed scale of non-commutativity, the area A(r) of the

2-sphere gets tiled by elementary ‘Heisenberg cells’ each of which contributes a single state

to the quantized theory. Since the number of such states must be integer, we conclude

that 2-spheres are quantizable only for a discrete set of radii r. Whenever we tune the

radius r to one of the allowed values, the space of wave functions on the corresponding

quantized sphere is finite dimensional. Coordinates along the brane are observables in the

quantum theory and hence they are represented by operators acting on the space of wave

functions. If the latter is finite dimensional, then the coordinates become matrices.

This is about as far as our very qualitative discussion can carry. There are three main

conclusions that we take along. First of all, stable branes on S3 are expected to wrap

2-spheres or they can be point-like (see Figure 6). Furthermore, 2-spheres can only be

wrapped for a discrete set of radii and finally, the world-volume of such branes has been

argued to possess a non-commutative ‘matrix geometry’. We will see all these expectations

confirmed by the exact treatment.

S

e

3

S 2

Figure 6: Stable branes on a 3-sphere are either point-like or they wrap a 2-sphere

(conjugacy class of SU(2) ∼= S3). The 2-dimensional branes are stabilized by the

background flux [73, 74].
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Gluing condition and brane geometry. Strings moving on a 3-sphere S3 of radius

R ∼
√

k are described by the SU(2) WZW model at level k. The world-sheet swept out

by an open string in S3 is parametrized by a map g : Σ → SU(2) which is defined on the

upper half-plane Σ as before. Our aim now is to determine the boundary conditions we

need to impose on g so that we obtain the desired spherical branes. Following [76], we

shall argue that the appropriate choice is given by (see also [77], [78])

− (∂g)g−1 = g−1∂̄g for z = z̄ . (4.2)

To present the findings of [76], we split ∂, ∂̄ into derivatives ∂u, ∂v tangential and normal

to the boundary and rewrite eq. (4.2) in the form

(Ad(g) − 1) g−1∂vg = i (Ad(g) + 1) g−1∂ug for z = z̄ . (4.3)

Here, Ad(g) denotes the adjoint action (i.e. action by conjugation) of SU(2) on its Lie

algebra su(2). The following analysis requires to decompose the tangent space ThSU(2)

at each point h ∈ SU(2) into a part T
‖
hSU(2) tangential to the conjugacy class through

h and its orthogonal complement T⊥
h SU(2) (with respect to the Killing form). Using the

simple fact that Ad(g)|T⊥
g

= 1 we can now see that with condition (4.3)

1. the endpoints of open strings on SU(2) are forced to move along conjugacy classes,

i.e.

(g−1∂ug)
⊥ = 0 .

Except for two degenerate cases, namely the points e and −e on the group manifold,

the conjugacy classes are 2-spheres in SU(2).

2. the branes wrapping conjugacy classes of SU(2) carry a B-field which is given by

B ∼ Ad(g) + 1

Ad(g) − 1
. (4.4)

The associated 2-form is obtained as tr (g−1dg B g−1dg) and a short computation

shows that it provides a potential for the NSNS 3-form H ∼ Ω3 where Ω3 denotes

the volume form on S3.
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The second statement follows from eq. (4.3) by comparison with the boundary conditions

(2.3) we used in the flat background. Our discussion shows not only that eq. (4.3) is

indeed the desired boundary condition for spherical branes on S3 but also it has left us

with an exact formula for the B-field.

We have learned in the first lecture that the relevant object for the brane’s non-

commutative geometry is not B itself but another anti-symmetric tensor Θ constructed

from B through eq. (2.11). Even though this relation was derived for a flat background

we may try to apply it naively in the present context. For appropriate choice of the metric

g and the Regge slope α′, we are then led to the expression

Θ(g) =
2

B − B−1
=

1

2

(
Ad(g−1) − Ad(g)

)
.

This is a rather complicated object, but it simplifies in the limit of large level k where the

3-sphere grows and approaches flat 3-space R3. One can parametrize points on SU(2) by

elements X in the Lie algebra su(2), such that near the group unit g ≈ 1 +X. Insertion

into our formula for Θ gives

Θ = −ad(X) . (4.5)

Here, ad denotes the adjoint action of su(2) on itself. If we expand X = yµtµ we can

evaluate the matrix elements of Θ more explicitly,

Θµν = − ( tµ , ad(X)tν ) = − yρ ( tµ , fρν
σ tσ ) = fµνρ y

ρ ,

where (·, ·) denotes the Killing form on su(2), the generators tµ are normalized such that

(tµ, tν) = δµ,ν and fµνρ are the structure constants of su(2). It is not difficult to see that

the tensor Θ gives rise to a Poisson structure on R3,

{ yµ , yν} = Θµν(y) = fµν
ρ y

ρ . (4.6)

In contrast to the Poisson bracket we met in our discussion of flat branes, Θ has a linear

dependence on the coordinates. The Poisson algebra defined by eq. (4.6) possesses a large

center. In fact, any function of c(y) =
∑

µ(y
µ)2 has vanishing Poisson bracket with any

other function on R3 so that formula (4.6) induces a Poisson structure on the 2-spheres

c(y) :=
∑

µ

(yµ)
2 !

= c . (4.7)
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If we trust the steps of our reasoning, the two formulas (4.6) and (4.7) provide a semi-

classical description of the spherical branes in SU(2) which replaces the simpler formula

(2.25) in the first lecture.

Quantization and matrices. Now let us recall that the Moyal-Weyl product shows

up for brane geometry in flat space with constant B-field is obtained from the constant

Poisson bracket (2.25) on R
d through quantization. By analogy, our semi-classical analysis

for branes on SU(2) ∼= S3 suggests that the quantization of 2-spheres in R3 with Poisson

bracket (4.6) becomes relevant for branes on SU(2) in the limit where k → ∞. This is

sufficient motivation for us to try quantizing the geometry (4.6), (4.7).

Quantization requires to find some operators ŷν = Q(yν) acting on a state space V

such that

[ ŷµ , ŷν ] = i fµν
ρ ŷ

ρ (4.8)

C :=
∑

(ŷµ)2 = c 1 (4.9)

where 1 denotes the identity operator on the state space V . These two requirements are

the quantum analogues of the classical relations (4.6), (4.7) and the quantization problem

they pose is easy to solve. By the commutation relation (4.8), the operators ŷµ have to

form a representation of su(2). Condition (4.9) states that in this representation, the

quadratic Casimir element C must be proportional to the identity 1. This is true if the

representation on V is irreducible. Hence, any irreducible representation of su(2) can be

used to quantize our Poisson geometry.

Irreducible representations of the Lie algebra su(2) are labeled by one discrete parame-

ter J = 0, 1/2, 1, . . . . This implies that only a discrete set of 2-spheres in R3 is quantizable

and their radii increase with the value of the quadratic Casimir in the corresponding ir-

reducible representation. For each quantizable 2-sphere S2
J ⊂ R3, we obtain a state space

VJ of dimension dimVJ = 2J + 1 equipped with an action of the quantized coordinate

functions ŷµ on VJ . The latter generate the matrix algebra Mat(2J + 1). Note that our

quantized 2-spheres have all the features we anticipated in the introduction above. But

this should not be considered a derivation since our arguments relied on extending for-

mula (2.11) to the present context. While such a step is certainly suggestive, we gave no

evidence for it to be correct.
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Matrix (fuzzy) geometry. It is useful to go a bit deeper into exploring these quantized

2-spheres. Let us start by recalling that the space Fun(S2) of functions on a 2-sphere is

spanned by spherical harmonics Y j
a ∈ Fun(S2) where j runs through all integer isospins.

A product of any two spherical harmonics is again a function on the 2-sphere and hence

it can be written as a linear combination of spherical harmonics,

Y i
a Y

j
b =

∑

k,c

cijk [ i j k
a b c

] Y k
c (4.10)

with [:::] denoting the Clebsch-Gordan coefficients of su(2). The structure constants cijk

can be found at many places in the literature. We also note that elements of the vector

multiplet Y 1
ν may be identified with the restriction of the three coordinate functions yν

to the 2-sphere in R3.

The algebra Fun(S2) admits an action of su(2) which is generated by infinitesimal

rotations in R3,

Lµ := fµρ
ν yρ∂ν .

Even though the differential operators Lµ are initially defined for arbitrary functions on

R, they obviously descend down to Fun(S2). Under the action of Lµ, spherical harmonics

Y j
a transform in the representation j of su(2).

This classical symmetry survives quantization, i.e. there exists an analogous action of

su(2) on Mat(2J + 1). It is given by

Lµ A := [ tJµ , A ] for all A ∈ Mat(2J + 1) . (4.11)

Here tJµ denote the generators of su(2) evaluated in the (2J + 1)-dimensional irreducible

representation. One can easily decompose this reducible action of su(2) on Mat(2J + 1)

into its irreducible sub-representations to find the following equivalence

Mat(2J + 1) ∼=
2J⊕

j=0

Vj , (4.12)

where the sum on the right hand side runs over integer labels j. Each irreducible compo-

nent Vj in this expansion is spanned by (2j+ 1) matrices which we denote by Yj
a, j ≤ 2J .
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In the case J = 1/2, only the scalar and the vector multiplet appear and explicit expres-

sions for the corresponding 2×2 matrices are of course well-known: they are given by the

identity and the Pauli-matrices, respectively.

Since Yj
a span Mat(2J + 1), the product of any two such matrices may be expressed

as a linear combination of matrices Yk
c ,

Yi
a Yj

b =
∑

k≤2J,c

{ i j k
J J J

} [ i j k
a b c

] Yk
c . (4.13)

Here {:::} denote the re-coupling coefficients (or 6J-symbols) of su(2). This relation should

be considered as a quantization of the expansions (4.10) and the classical expression is

recovered from eq. (4.13) upon taking the limit J → ∞ [79]. Hence, the matrices Yj
a in

the quantized theories are a proper replacement for spherical harmonics. Note, however,

that the angular momentum j ≤ 2J is bounded from above. This may be interpreted as

‘fuzziness’ of the quantized 2-spheres on which short distances cannot be resolved [80].

We shall eventually refer to Yj
a as ‘fuzzy spherical harmonics’.

4.2 The exact CFT solution

Having gained some intuition into the main features of branes on S3, at least in the limit

of weak curvature, it is now time to let the microscopic machinery work for us. Since

the exact solutions we wrote down in the previous lecture used a lot of data from the

representation theory of the symmetry algebra, we will first list some of these data for

affine Lie algebras, which are the chiral algebras relevant for strings on group manifolds.

Then we present the exact formulas for the one-point functions of bulk fields, the open

string partition function and the boundary OPE, and we discuss them in the light of our

geometric insights.

Affine Lie algebras. In the following we collect a few basic facts on WZW models and

affine Lie algebras. Many more details and references to the original literature can be

found e.g. in [81, 7]. The fundamental SU(2) valued field g of the WZW model is known

to satisfy the following classical equation of motion in the bulk

∂
(
g−1(z z̄)∂̄g(z, z̄)

)
= 0 . (4.14)
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This should be considered as a non-linear version of the Laplace equation which governs

the string motion in flat backgrounds. It follows immediately that the fields

J(z) := −k ∂g(z, z̄) g−1(z, z̄) , J̄(z̄) := k g−1(z, z̄)∂̄g(z, z̄) (4.15)

are chiral. Since they take values in the Lie algebra su(2), we can expand each of these

two currents in terms of three component fields, i.e. J(z) =: Jµ(z)tµ and similarly for the

anti-holomorphic partner J̄ .

The chiral fields Jµ of the SU(2) WZW model form an affine Lie algebra denoted

by ŜU(2)k. It is generated by Laurent modes Jµ
n which obey the following commutation

relations

[ Jµ
n , J

ν
m ] = ifµν

ρ J
ρ
n+m + kn δµ,ν δn,−m (4.16)

along with the usual reality property (Jµ
n )∗ = Jµ

−n. The commutators (4.16) differ from

the corresponding relations (2.5), (2.9) in the flat space theory by the first term on the

right hand side. This signals the presence of a non-vanishing background curvature.

Zero-modes Jµ
0 of ŜU(2)k satisfy the usual relations for generators of the finite di-

mensional Lie algebra su(2). Hence, the sectors Vj of the theory are created out of the

(2j + 1)-dimensional representation spaces V 0
j = Vj of su(2). But only if j ≤ k/2, these

sectors are free of negative norm states and hence unitarity leaves us with just a finite

number of physical representations which we can label through j ∈ J = {0, 1/2, . . . , k/2}.
Their conformal weights are given by hj = j(j + 1)/(k + 2) and for the modular S-matrix

one finds

Sij =

√
2

k + 2
sin

π(2i+ 1)(2j + 1)

k + 2
. (4.17)

With the help of the Verlinde formula (3.10) it is not difficult to compute the following

fusion rules,

Nij
k =

{
1 for k = |i− j|, . . . ,min(i+ j, k − i− j)

0 otherwise
. (4.18)

They are similar to the Clebsch-Gordan multiplicities of su(2), apart from the truncation

which appears whenever i + j > k/2. As in the case of su(2), the trivial representation

k = 0 occurs only in the fusion of j with itself, i.e. the conjugate j+ of j is given by

j+ = j.
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Formulas for the fusing matrix also exist and they can be found in the literature. Since

they are rather complicated we will not spell them out. Let us only mention one property

concerning their limiting behavior as we send k → ∞,

lim
k→∞

FJk [ i j
I K

] = { i j k
I J K

} . (4.19)

This concludes our list of representation theoretic data for the affine Lie algebra. We will

now use these quantities to solve our boundary problem for the SU(2) WZW model.

The closed string sector. Our first task is to check whether our two basic require-

ments, namely the gluing condition (3.16) and the assumptions (3.36), (3.37) in Cardy’s

solution, are fulfilled by the boundary condition (4.2) we would like to impose. In terms

of the chiral currents (4.15), we can rewrite eq. (4.2) as follows

Jµ(z) = J̄µ(z̄) for z = z̄

and µ = 1, 2, 3. This indeed has the form of the gluing condition (3.16) with Ω = id and,

moreover, it also implies the gluing property (3.15) for the usual Sugawara-Virasoro field

T (z) :=
1

2

δµ,ν

k + 2
◦

◦J
µ(z)Jν(z)◦◦ .

The same formula with J̄ instead of J is used for T . Hence, spherical branes on S3

preserve the full chiral algebra of the WZW model, including its conformal symmetry.

This puts us into an excellent position to succeed with the exact solution.

Let us now turn to Cardy’s assumptions (3.36), (3.37). The space of bulk fields for

our WZW theory is given by the charge conjugate modular invariant (recall that j+ = j),

H(P ) =
⊕

j

Vj ⊗ Vj ,

which has the necessary form (3.36). Since our gluing map Ω is trivial, it induces the

identity map ω(j) = j on the labels j ∈ J . Using our earlier observation that sectors

of the affine su(2) are self-conjugate, j+ = j, we conclude jω = ω(j+) = j = ̄. This

guarantees that the WZW model with our choice of boundary conditions (4.2) can be

solved by the formulas we provided at the end of the previous lecture !
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To begin with, we learn from Cardy’s solution that there are k + 1 possible boundary

theories which we label by J = 0, 1/2, . . . , k/2, just as we enumerate the sectors of the

corresponding affine Lie algebra. In the different boundary theories, the bulk fields possess

different one-point functions. These are given by (see eq. (3.38))

〈φab
j,j(z, z̄)〉J =

(
2

k + 2

) 1
4 sin π(2j+1)(2J+1)

k+2(
sin π(2j+1)

k+2

)1/2

δa,b

|z − z̄|2hj
(4.20)

where hj = j(j + 1)/(k + 2). The superscripts a, b placed at the symbol φ label different

components within the tensor multiplet φj,j (see eq. (3.5)). Each of them runs through

a basis in the representation space V 0
j of su(2). Since Ω is trivial, the intertwiner Ujj

between the left and right representation of su(2) is trivial as well, i.e. Uab
jj = δa,b.

When we discussed flat space models, we have described how to read off a brane’s

location from its set of one-point functions. Let us now try to repeat the same procedure

in the case of branes on SU(2) (see [66, 53]). According to the Peter-Weyl theory for

compact groups, the space of functions on SU(2) is spanned by the matrix elements

Dj
ab(g) of finite dimensional unitary representations Dj. More precisely, the functions

φab
j (g) :=

√
2j + 1Dj

ab(g) (4.21)

form a complete orthonormal basis of Fun(S3) just in the same way as the exponentials

exp(ikx) do for Fun(RD). Writing φab
j (g) in terms of three Euler angles on S3, we find in

particular
j∑

c=−j

φcc
j (g) =

√
2j + 1

sin ϑ(2j + 1)

sin ϑ

where ϑ ∈ [0, π] parametrizes the azimuthal angle that is transverse to conjugacy classes

on SU(2). From the completeness of sin(nϑ) on the interval [0, π] one then concludes

1

sinϑ0

δ(ϑ− ϑ0) =
4

π

∑

j

j∑

c=−j

sin(ϑ0(2j + 1))√
2j + 1

φcc
j (g) . (4.22)

Except from a numerical factor, the coefficients in this expansion agree with the limit of

our one-point functions (4.20) as k tends to infinity. We can also phrase this observation

in a form similar to eq. (2.23),

〈φab
j,j〉J(k)

k→∞∼
∫

SU(2)

dµ(g) ρ0 δ(ϑ(g) − ϑ0)φ
ab
j (g) (4.23)
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where ρ0 is some constant and dµ(g) denotes the Haar measure on SU(2). In taking

the limit, we allowed the boundary label J to depend on the level k and we defined

ϑ0 := 2π lim J(k)/k. Since 0 ≤ J ≤ k/2, the angle ϑ0 lies in the interval [0, π]. If we

want to obtain a 2-sphere with non-zero angle ϑ0 (and hence with non-zero radius), the

boundary label J has to be scaled up at the same rate as the level k. The necessity for

this rescaling is simple to understand. As we have seen, boundary WZW theory at level

k allows us to fit k + 1 different branes on the 3-sphere. Therefore, the difference of the

azimuthal angles between two neighboring branes is roughly ∆ϑ0 = π/k. We numbered

these branes with J = 0, 1/2, 1, . . . according to the angle at which they appear and

starting with the smallest one at the group unit. When we keep J fixed but increase the

level k, then the J th brane moves closer and closer to the unit and in the limit it shrinks

to a point. This is precisely the behavior that forces us to set J(k) ∼ ϑ0k/2π. Later on

we will introduce another large k limit in which open string data are kept fixed rather

than the angle ϑ0.

The open string sector. As in the first lecture, we shall restrict our discussion to open

strings on a single brane. Strings which have their two ends on different branes present

no additional difficulty. The state space of the J th boundary theory is determined by

equation (3.39) and it has the form

HJ = HJJ =
⊕

j
NJJ

j Vj (4.24)

where Vj, j = 0, 1/2, . . . , k/2, denote irreducible highest weight representations of the

affine Lie algebra ŜU(2)
k
, and where NJJ

j are the associated fusion rules (see eq. (4.18)).

Note that only integer spins j appear on the right hand side of (4.24) and that the sum is

truncated at jmax = min(2J, k−2J). In the limit k → ∞, we obtain jmax = 2J so that the

decomposition of HJ is as close as it can be to the decomposition (4.12) of Mat(2J + 1)

into su(2) multiplets. More precisely, there is a unique correspondence between fuzzy

spherical harmonics Yj
a ∈ Mat(2J + 1) and ground states in Vj ⊂ HJ . This generalizes

the relation between the Weyl operators exp(ikx̂) and the boundary fields ◦

◦ exp(ikX(u))◦◦

that we found for flat branes in the first lecture.

By the state field correspondence Ψ, each state |ψ〉 ∈ HJ gives rise to a boundary

field ψ(u) = Ψ(|ψ〉; u). Since we deal with a single boundary condition J , we will omit
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the superscripts J that we used in rel. (3.32). Ground states in HJ furnish a muliplet of

boundary primary fields

ψa
j (u) := Ψ(|ea

j 〉; u) where |a| ≤ j

and j = 0, 1, . . . , jmax. The operator product expansion (3.40) of these open string vertex

operators reads [82]

ψa
i (u1)ψ

b
j(u2) =

∑
k,c
u

hk−hi−hj

12 [ i j k
a b c

]FJk [ j i
J J

]ψc
k(u2) + . . . (4.25)

where hj = j(j + 1)/(k + 2) is the conformal dimension of ψa
j and the symbol in square

brackets stands for the Clebsch-Gordan coefficients of su(2). The latter provide the in-

tertwiners Uij;k which appear in the general formula. As we send the level k to infinity

(while keeping the boundary label J fixed), the conformal dimensions hj tend to zero so

that the OPE (4.25) of boundary fields becomes regular as in a topological model,

(
ψa

i (u1)ψ
b
j(u2)

)k→∞
=
∑

k,c
{ j i k

J J J
} [ i j k

a b c
]ψc

k(u2) + . . . (4.26)

Here we have also used the property (4.19) of the fusing matrix. Comparing (4.26) with

eq. (4.13) we make a striking observation [82]: In fact, the large k limit of the operator

product expansion exactly reproduces the multiplication of matrices ! We can use this fact

to evaluate arbitrary n-point functions of the boundary fields ψa
j in the limiting regime.

Before we spell out the result, let us introduce the notation

ψ[A](u) :=
∑

ajb ψ
b
j(u) for all A =

∑
ajbY

j
b ∈ Mat(2J + 1) .

For an arbitrary set of matrices Ar ∈ Mat(2j+1), the operator product expansion formula

(4.26) then implies

〈ψ[A1](u1) ψ[A2](u2) · · · ψ[An](un)〉k→∞ = tr (A1 A2 · · · An) . (4.27)

The trace appears because the vacuum expectation value is SU(2) invariant and the trace

maps matrices to their SU(2) invariant component.

Our final expression (4.27) for the correlators of open string vertex operators shares

many features with the formula (2.32) that we encountered through our investigation of

branes in flat space. In both cases, the vertex operators are in one-to-one correspondence
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with elements of the non-commutative algebra of ‘functions’ on the world-volume of the

brane. Furthermore, in a limiting regime, the correlators are independent of the insertion

points ur and they can be evaluated using the multiplication and integration (trace)

on the non-commutative world-volume algebra. There remains, however, one important

difference between the two cases: For branes on SU(2), the world-volume algebra is cut off

at some angular momentum 2J so that there are only finitely many linearly independent

‘functions’ (resp. boundary primary fields).

Before we conclude our discussion of the solution for the boundary problem on SU(2),

we would like to make one more remark. The attentive reader may have wondered already,

why all the spherical branes in this section were centered around the group unit e ∈ SU(2).

Since no point on a group manifold is distinguished from any other, there should exist

spherical branes with arbitrary locations. It is not hard to spot the place in our analysis

at which we broke the SU(2) translation symmetry. In fact, it is the gluing condition

(4.2) that forced all the branes to have their center at e. This lack of democracy, however,

is easy to overcome if we admit gluing automorphisms Ω taken from the group of inner

automorphisms on SU(2). By definition, an inner automorphism is of the form Ω = Adg

with some element g ∈ SU(2). Branes surrounding the point g are obtained with the

boundary condition

J(z) = Adg J̄(z̄) for z = z̄ . (4.28)

Needless to say that the WZW boundary problem can be solved for any of these gluing

conditions and the solution is essentially the same as above. Only the δa,b in the formula

(4.20) for the bulk one-point functions must be replaced through the matrix Dj
ab(g).

4.3 Fuzzy gauge theory and dynamics

Now that we have an exact CFT-solution for spherical branes on S3, we also want to

mention some applications. As in the case of branes in flat space, a non-commutative

gauge theory can be associated with stacks of branes on group manifolds. But since the

underlying world-volume geometry is described by matrix algebras, the gauge theories

turn out to be matrix models. We sketch their derivation in the first subsection and then

study some classical solutions. The latter possess an interpretation in terms of bound
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state formation. We finish this lecture with some brief remarks on brane dynamics in the

stringy regime.

Fuzzy gauge theory. In the first lecture we have seen how information about some

limiting behavior of certain boundary correlators can be stored in a non-commutative

Yang-Mills theory on the world-volume of the brane. Our aim here is to repeat this

analysis for correlators of the fields

◦
◦J

µ(u)ψa
j (u)

◦
◦ = Jµ

<(u)ψa
j (u) + ψa

j (u)J
µ
<(u) .

Here we have used the same split into raising and lowering modes as before. The compu-

tation of three- and four-point functions of these fields follows exactly the same strategy

as in the first lecture. In particular, it requires expressions for the operator product ex-

pansions of the currents among each other and with the primary boundary fields (see eqs.

(2.34), (2.35) for comparison). From the commutation relations (4.16) in the affine Lie

algebra we obtain

(Jµ(u1) J
ν(u2))sing := [ Jµ

>(u1) , J
ν(u2) ] = k

δµ,ν

(u1 − u2)2
+

ifµν
ρ

(u1 − u2)
Jρ(u2) . (4.29)

The operator product expansion between currents and primary fields is a special case of

eq. (3.35),

(
Jµ(u1)ψ

a
j (u2)

)
sing

:= [ Jµ
>(u1) , ψ

a
j (u2) ] =

(tjµ)ab

(u1 − u2)
ψb

j(u2) . (4.30)

Equipped with all these relations, we are able to calculate the low-energy effective action

for massless open string modes. With respect to the flat space case, there occur three

important changes during the computation. First of all, it follows from eq. (4.27) that all

Moyal-Weyl products get replaced by matrix multiplication. Second, there appears a new

term fµν
ρJ

ρ in the operator product expansion of currents (4.29). This term leads to an

extra contribution of the form fµνρA
µAνAρ in the scattering amplitude of three massless

open string modes. Consequently, the resulting effective action is not given by Yang-Mills

theory on a fuzzy 2-sphere alone but involves also a Chern-Simons like term. Finally,

all momenta kµ that arise from contractions of currents with primaries in the flat space

computation, must be substituted by the representation matrices tjµ (see eq. (4.30)). After
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Fourier transformation, the momenta turned into derivatives, and similarly our matrices

tjµ give rise to the generators (4.11) of infinitesimal rotations.

After these sketchy remarks on the derivation, let us now display the final answer

(many more details can be found in [75]). For M branes of type J on top of each other,

the results of a complete computation can be summarized in the following formula (see

[83] for normalizations),

S(M,J) = SYM + SCS =
π2

k2 dJ M

(
1

4
tr (Fµν Fµν) − i

2
tr (fµνρ CSµνρ)

)
(4.31)

where dJ = 2J + 1. We defined the ‘curvature form’ Fµν by the expression

Fµν(A) = iLµAν − iLνAµ + i [Aµ , Aν ] + fµνρA
ρ (4.32)

and a non-commutative analogue of the Chern-Simons form through

CSµνρ(A) = LµAν Aρ +
1

3
Aµ [Aν , Aρ] −

i

2
fµνσ Aσ Aρ . (4.33)

The three fields Aµ =
∑

aµ
jaY

j
a on the fuzzy 2-sphere S2

J ∈ R3 take values in Mat(M),

i.e. all their Chan-Paton coefficients aµ
ja should be considered as M ×M matrices. Hence,

the fields Aµ are elements of Mat(M) ⊗ Mat(2J + 1). Infinitesimal rotations Lµ act

exclusively on the fuzzy spherical harmonics Yj
a and they commute with the Chan-Paton

coefficients aµ
ja.

It follows from a straightforward computation that the action (4.31) is invariant under

the gauge transformations

Aµ → Aµ + iLµλ + i [ Aµ , λ ] for λ ∈ Mat(M) ⊗ Mat(2J + 1) .

Note that the ‘mass term’ in the Chern-Simons form (4.33) guarantees the gauge invari-

ance of SCS. On the other hand, the effective action (4.31) is the unique linear combination

of SYM and SCS from which mass terms cancel. As we shall see below, it is this special

feature of our action that allows solutions describing translations of the branes on the

group manifold. The action SYM was already considered in the non-commutative geome-

try literature [84, 85, 86, 87, 88], where it was derived from a Connes spectral triple and

viewed as describing Maxwell theory on the fuzzy sphere. Arbitrary linear combinations

of non-commutative Yang-Mills and Chern-Simons terms were considered in [89].
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Classical solutions and brane dynamics. Stationary points of the action (4.31)

describe condensation processes on a brane configuration Q = (M,J) which drive the

whole system into another configuration Q′. To identify the latter, we have two different

types of information at our disposal. On the one hand, we can compare the tension of

D-branes in the final configuration Q′ with the value of the action SQ(Λ) at the classical

solution Λ. On the other hand, we can look at fluctuations around the chosen stationary

point and compare their dynamics with the low-energy effective theory SQ′ of the brane

configuration Q′. In formulas, this means that

SQ(Λ + δA)
!
= SQ(Λ) + SQ′(δA) with SQ(Λ)

!
= ln

gQ′

gQ

. (4.34)

The second requirement expresses the comparison of tensions in terms of the g-factors

[90] of the involved conformal field theories

g(M,J) := M gJ := M 〈φ0,0(z, z̄)〉J = M
SJ0√
S00

. (4.35)

All equalities must hold to the same order in (1/k) that we used when we constructed the

effective actions. We say that the brane configuration Q decays into Q′ if Q′ has lower

mass, i.e. whenever gQ′ < gQ.

In terms of the world-sheet description, each classical solution of the effective action

is linked to a conformal boundary perturbation in the CFT of the brane configuration

Q (cf. results in [90]). Adding the corresponding boundary terms to the original theory

causes the boundary condition to change so that we end up with the boundary conformal

field theory of another brane configuration Q′. Recall, however, that all these statements

only apply to a limiting regime in which the level k is sent to infinity.

Let us now become more specific. From eq. (4.31) we obtain the following equations

of motion for the elements Aµ ∈ Mat(M) ⊗ Mat(2J + 1)

Lµ Fµν + [ Aµ ,Fµν ] = 0 . (4.36)

It is easy to find two very different types of solutions. For the first one, the gauge fields

Aµ are of the special form Aµ = aµ
00Y

0
0 with three pairwise commuting Chan-Paton ma-

trices aµ
00 ∈ Mat(M). These solutions come as a 3M parameter family corresponding to
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the number of eigenvalues appearing in {aµ
00}. The same kind of solutions appears for

branes in flat backgrounds. They describe rigid translations of the M branes on the group

manifold. Since each brane’s position is specified by 3 coordinates, the number of param-

eters matches nicely with the interpretation. Moving branes around in the background

is a rather trivial symmetry and the corresponding conformal field theories are easy to

construct, either directly (see remarks after eq. (4.28)) or through conformal perturba-

tion theory (see [58, 91]). As we have mentioned before, the existence of such continuous

families of solutions is guaranteed by the absence of the mass term in the full effective

action.

There exists a second type of solutions to eqs. (4.36) which is a lot more interesting.

In fact, any M(2J +1)-dimensional representation of the Lie algebra su(2) can be used to

solve the equations of motion. Their interpretation was found in [75]. Here, we describe

the answer for a stack of M branes of type J = 0, i.e. of M point-like branes at the

origin of SU(2). In this case, Aµ ∈ Mat(M) ⊗ Mat(1) ∼= Mat(M) so that we need an

M-dimensional representation of su(2) to solve the equations of motion. Let us choose

the M-dimensional irreducible representation of isospin JM = (M − 1)/2. Our claim

then is that this drives the initial stack of M point-like branes at the origin into a final

configuration containing only a single brane wrapping the sphere of type JM , i.e.

(M, J = 0) −→ (1, JM = (M − 1)/2) .

Support for this statement comes from both the open string sector and the coupling to

closed strings. In the open string sector one can study small fluctuations δAµ of the fields

Aµ = Λµ + δAµ ∈ Mat(M) around the stationary point Λµ ∈ Mat(M). If Λµ form an

irreducible representation of su(2), we find

S(M,0)(Λµ + δAµ) = S(1,JM )(δAµ) + const .

In the closed string channel, the leading term (in the 1/k-expansion) from the exact ‘mass’

formula (4.35) gives [75]

ln
g(1,JM )

g(M,0)

= −π
2

6

M2 − 1

k2
= S(M,0)(Λµ) .

Note that the mass of the final state is lower than the mass of the initial configuration.

This means that a stack of M point-like branes on a 3-sphere is unstable against decay
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into a single spherical brane. Stationary points of the action (4.31) and the formation

of spherical branes on S3 were also discussed in [92, 93, 94]. Similar effects have been

described for branes in RR background fields [95]. The advantage of our scenario with

NSNS background fields is that it can be treated in perturbative string theory so that

string effects may be taken into account (see [96, 97, 98] and below).

MJM

Figure 7: M point-like branes stacked at the origin of a weakly curved S3 ∼ R are

unstable against decay into a single spherical brane with label JM = (M − 1)/2.

Dynamics in stringy regime and K-theory. Now we would like to understand the

dynamics of branes in the stringy regime where k is finite. Proceeding along the lines of

the previous discussion would force us to include higher order corrections to the effective

action. Unfortunately, such a complete control of the brane dynamics in the stringy

regime is out of reach.

But we could be somewhat less ambitious and ask whether at least some of the solutions

we found in the large volume limit possess a deformation into the small volume theory

and if so, which boundary conformal field theories they correspond to. It turns out that

this is possible for all the processes that are obtained from constant gauge fields on the

brane. In this way we may overlook new stationary points of the stringy effective action

that have no well behaved large k limit. On the other hand, the reduced program has a

positive and very beautiful solution that is known from the work on the Kondo effect.

The Kondo model is designed to understand the effect of magnetic impurities on the
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low-temperature conductance properties of a 3D conductor. The latter can have electrons

in a number k of conduction bands. If the impurities are far apart, their effect may

be understood within an s-wave approximation of scattering events between a conduction

electron and the impurity. This allows to formulate the whole problem on a 2-dimensional

world-sheet for which the coordinates (u, v) are associated with the time and the radial

distance from the impurity, respectively. One can build several currents out of the basic

fermionic fields. Among them is a spin current ~J(u, v). It satisfies the relations (4.29)

of a ŜU(2)k current algebra. This spin current is the one that couples to the magnetic

impurity of spin JM which is sitting at the boundary v = 0,

Spert ∼ λ

∫ ∞

−∞

duΛµJ
µ(u, 0) . (4.37)

Here, ~Λ = (Λµ, µ = 1, 2, 3) is a (2JM + 1)-dimensional irreducible representation of su(2)

and the parameter λ controls the strength of the coupling. The term (4.37) is identical to

the coupling of open string ends to a background gauge field Aµ = Λµ ∈ Mat(2JM + 1).

Hence, Λµ may be interpreted as a constant gauge field on a Chan-Paton bundle of rank

M = 2JM + 1.

Fortunately, a lot of techniques have been developed to deal with perturbations of the

form (4.37) going back even to the work of Wilson [99]. In fact, this problem is what

Wilson’s renormalization group techniques were originally designed for. From the old

analysis we know that there are two different cases to be distinguished. When 2JM > k

(‘under-screening’) the low-temperature fixed point of the Kondo model appears only at

infinite values of λ. On the other hand, the fixed point is reached at a finite value λ = λ∗

of the renormalized coupling constant λ if 2JM ≤ k (exact- or over-screening resp.). In

the latter case, the fixed points are described by non-trivial (interacting) conformal field

theories. One can summarize the results on the spectrum of the fixed points through the

so-called ‘absorption of the boundary spin’-principle [100, 101]

tr VJM
⊗Vj

(
qH0+Hpert

)ren
λ=λ∗

:=
∑

l

NJM j
lχl(q) . (4.38)

Here, H0 = L0 + c/24 is the unperturbed Hamiltonian, the superscript ren stands for

‘renormalized’ and VJM
denotes the representation space of the representation JM of

su(2).
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In the rule (4.38), Vj can be any of the sectors in the state space H of the boundary

theory. Formula (4.38) means that our perturbation with some irreducible representation

with spin JM interpolates continuously between a building block Mχj(q) of the partition

function of the UV-fixed point (i.e. λ = 0) and the sum of characters on the right hand

side of the previous formula,

M χj(q) −→
∑

l

NJM j
l χl(q) , (4.39)

where M = 2JM +1. In particular, we can use this formula to determine the decay product

of a stack of M point-like branes. Since each of the two string ends can be attached to

any of the M branes, the partition function of the whole stack is M2 times the partition

function for a single brane. For this system we find

Z(M,0)(q) = M2 Z(1,0)(q) = M2 χ0(q)

−→ M χJM
(q) −→

∑

j

NJMJM

j χj(q) = Z(1,JM )(q) .

We applied the rule (4.39) twice because both endpoints of an open string couple to the

background field. The result can be summarized in the following process

(M, 0) −→ (1, JM) . (4.40)

This is formally identical to the decay process we found in the large k regime, except that

this time 2JM is bounded from above by the level k. Our final answer may not seem very

surprising, but it is still remarkable that there exists such a solid derivation even deep in

the stringy regime.

Charges and twisted K-theory. The analysis of brane dynamics on S3 brings us to

the last subject of this lecture, namely the issue of brane charges. It is a traditional

conception to measure brane charges through their coupling to closed string (RR) modes.

When applied to branes on S3, however, this naive idea of charge seems to fail. In

particular, the couplings of branes to closed strings are not quantized [73], at least as

long as we are not at the limit point of infinite level. For this reason, an alternative

definition of brane charges was proposed in [96]. There it was suggested to define charges
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as quantities which are invariant under conformal perturbations in the world-sheet theory.

More precisely, two brane configurations Q and Q′ are called dynamically equivalent if

there exists a conformal boundary perturbation that relates the two boundary theories.

The space of all (anti-)brane configurations modulo this dynamical equivalence is the

group C of brane charges. The latter is a property of the background.

To determine the brane charges on S3 along with the group they generate, let us apply

the rule (4.40) to a supersymmetric theory on a 3-sphere with K = k + 2 units of NSNS

flux passing through. In this case one can have (anti-)branes wrapping k + 1 different

conjugacy classes labeled by J = 0, 1/2, . . . , k/2 (see e.g. [96]). If we stack more and more

point-like branes at the origin, the radius of the sphere that is wrapped by the resulting

object will first grow, then decrease, and finally a stack of k + 1 point-like branes at e

will decay to a single point-like object at −e (see Figure 8). By taking orientations into

account, one can see that the final point-like object is the translate of an anti-brane at e.

Hence, we conclude that the stack of k+1 point-like branes at e has decayed into a single

point-like anti-brane at −e.

MJ

3S 3

M

 

S

Figure 8: Brane dynamics on S3: A stack of point-like branes at e can decay into

a single spherical object. The distance of the latter increases with the number of

branes in the stack until one obtains a single point-like object at −e.

In this concrete example, we may assign charge 1 to the point-like branes at e and if

we want the charge to be conserved, the decay product of k + 1 such point-like branes

must have charge k+1. On the other hand we identified the latter with a single anti-brane
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which has charge −1. Thus we have to identify k + 1 and −1 which means that charge is

only well-defined modulo K = k + 2 [96], i.e.

C(SU(2), K) = ZK .

According to a proposal of Bouwknegt and Mathai [102], the brane charges on a back-

ground X with non-vanishing NSNS 3-form field H take values in some twisted K-groups

K∗
H(X) which feel the presence of H ∈ H3(X,Z) (see also [71, 103] for related proposals

when H is torsion). For S3 this twisted K-group is known to be K∗
H(SU(2)) = ZK and

hence

C(SU(2), K) = K∗
H(SU(2))

as predicted in [102]. Many more details about this twisted K-theory, its computation

through spectral sequences and the relation with string theory can be found in [104].

Geometric construction of brane charges on S3 and other group manifolds have also been

discussed in [105, 106, 96, 107].
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5 Some further results and directions

During the last years, all ingredients of the technology we have used so far were generalized

in a variety of different directions. Our aim in this final part is to touch upon some of

these extensions, trying to provide some ideas of the current status in the field along with

a very incomplete guide to the existing literature.

We shall begin with several remarks on the various approaches that more recent re-

search has followed to generalize the construction of boundary conformal field theories

beyond the Cardy-case. These include orbifold and simple current techniques and the

use of conformal embeddings. Once more, group manifolds serve as a stage on which we

can nicely present some of the progress that has been made in obtaining exact solutions.

These lectures finally end with a short summary of some first steps in extending the whole

program to non-compact backgrounds, focusing on some of the main new ingredients and

difficulties.

5.1 Solutions beyond the Cardy case

For the exact solutions we have outlined and applied above, we had to make several

assumptions. Not only were we restricted to a very particular class (3.36) of bulk modular

invariants, but also it was necessary to preserve the maximal chiral symmetry W of the

model through our eqs. (3.16). The classification of all conformal boundary theories,

on the other hand, would require to impose the gluing condition (3.15) for the Virasoro

field only. Since chiral symmetries of solvable theories with c ≥ 1 are much larger than

the Virasoro algebra, there remains a lot of room for new symmetry breaking conformal

boundary conditions. In fact, constructing boundary theories with the minimal Virasoro

symmetry tends to lead into non-rational models which are notoriously difficult to control.

Nevertheless, some progress has been made in this direction. Boundary conditions with

the minimal Virasoro symmetry were systematically investigated for 1-dimensional flat

targets [51, 52, 108, 109]. In spite of this remarkable progress, such a complete control

over conformal boundary conditions should be considered exceptional and it is probably

very difficult to achieve for more complicated backgrounds. Less ambitious programs

therefore focus on intermediate symmetries which are carefully selected so as to render
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the boundary theory rational. We shall sketch the two main approaches in this direction

and then end this subsection with a few remarks on other solution generating techniques.

Orbifold constructions. In this part we discuss some elements of branes in so-called

simple current orbifolds. It is advantageous at first, to think of the following constructions

as providing boundary theories for a new class of bulk modular invariants, more general

than eq. (3.36). Later we shall then argue that applications of the general formalism also

include the construction of new boundary theories for backgrounds with a bulk invariant

of the form (3.36) by analyzing the model with respect to a certain orbifold chiral algebra.

Investigations of branes in orbifolds have a long history and it is not possible to give a

complete account here of all the existing results. Much of the work was devoted to orbifold

constructions in flat space (see e.g. [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120]).

The basis for most of these developments were laid in [110] which uses earlier ideas

originating from [121, 122]. Open string theory in more general conformal field theory

orbifolds was pioneered by Sagnotti and collaborators starting from [121] (see also e.g.

[16, 17, 123]). Important contributions were made later by Behrend et al. [56, 65] and by

Fuchs et al. [124, 125, 126]. The latter extends the simple current techniques that were

developed for closed strings in [127, 128, 129, 130] to the case of open strings (see also

[131, 132, 153, 196]).

Geometrically, branes in an orbifold background are understood through branes on its

covering space. More specifically, we represent an orbifold brane by several pre-images on

the covering space which are mapped onto each other by the action of the orbifold group.

If the latter has fixed points, the corresponding branes can be resolved so that several

different branes are associated with the same pre-images on the covering space. These

basic ideas are common to all orbifolds, and they apply in particular to exactly solvable

models in which the orbifold action is generated by simple currents. Before we state some

of the main results that have been obtained in this context, we need a few new notions

from conformal field theory.

Within the set J of W sectors one often finds non-trivial elements γ ∈ J such that

the fusion product of γ with any other j ∈ J gives again a single primary γ ◦ j = γj ∈ J .

Such elements γ are called simple currents and the set of all these simple currents forms
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an abelian group whose product is inherited from the fusion product. From now on, let

Γ denote the group of simple currents or some subgroup thereof. Through the fusion of

representations, the group Γ acts on the index set J . This action can be diagonalized by

the S-matrix in the sense that

Sγi j = e2πiQγ(j) Si j . (5.1)

The quantity Qγ(j) is known as the monodromy charge and it may be computed from the

conformal weights by means of the formula Qγ(j) = hj + hγ − hγj mod 1. As one can

see from definition (5.1), the monodromy charge gives rise to a character of the group Γ.

Simple current techniques allow to solve the boundary problems for bulk partition

functions of the following form (see e.g. [130])

Zorb(q, q̄) =
∑

[j],QΓ(j)=0

| S[j] |
(∑

j′∈[j]

χj′(q)
) (∑

̄′∈[̄]

χ̄′(q̄)
)
. (5.2)

Here, we use the symbol [j] to denote the orbit of j under the action of Γ and we define

the stabilizer subgroup S[j] ⊂ Γ by

S[j] = { γ ∈ Γ | γ ◦ j = j } . (5.3)

Note that the partition function (5.2) does not have the simple form (3.36) so that Cardy’s

theory for the classification and construction of branes does not apply directly.

But if we choose the gluing map Ω such that the assumption (3.37) is satisfied, then the

solution to the corresponding boundary problem is inherited from Cardy’s solution of the

theory with bulk invariant (3.36) through a simple construction that follows very closely

the geometric procedure we sketched above (our presentation follows [133, 134, 135]). In

fact, let us recall that the boundary states in Cardy’s theory are given by

|J〉Ω =
∑

i

SJj+√
S0j+

|j〉〉Ω . (5.4)

Here, J runs through J ∈ J and we have seen that in some sense it encodes the brane’s

transverse position. The geometric ideas suggest to introduce

|[J ]〉orbΩ =
1√
|Γ|

∑

γ∈Γ

|γJ〉Ω . (5.5)
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On the right hand side, we sum over the orbit of ‘pre-images’ of the brane [J ]. To see that

the sum (5.5) is a boundary state of the orbifold theory (5.2), we insert the expression

(5.4) into (5.5). Using the relation (5.1) we find

|[J ]〉orbΩ =
1√
|Γ|

∑

j

(∑

γ∈Γ

e2πiQγ(j)
) SJj+√

S0j+

|j〉〉Ω . (5.6)

The term in brackets is non-zero, if and only if QΓ(j) = 0. Hence, all the generalized

coherent states that appear on the right hand side of the previous formula are indeed

associated with sectors in the bulk theory (5.2).

From the boundary state (5.5) it is easy to work out the corresponding boundary

partition functions of the orbifold model. They are given by

Zorb
[I][J ](q) =

∑

γ,k

N γJ
I k χk(q) . (5.7)

This agrees precisely with the prediction from the geometric picture of branes on orbifolds.

In fact, the I, J can be considered as geometric labels specifying the position of the brane

on the covering space. To compute spectrum of two branes [I] and [J ] of the orbifold

theory, we lift [I] to one of its pre-images I on the covering space and include all the open

strings that stretch between this fixed brane I on the cover and an arbitrary pre-image

γJ of the second brane [J ].

It is important to notice that in many cases the boundary conditions [I] are not el-

ementary and can be further resolved, i.e. there exists a larger set of boundary theories

such that [I] can be written as a superposition of boundary theories with integer coeffi-

cients. This happens whenever the stabilizer subgroup S[I] is non-trivial. In the absence

of discrete torsion, the elementary branes resolving the boundary condition [I] are labeled

by irreducible representations of S[I].
1 Geometrically, this corresponds to the fact that the

Chan-Paton factors of branes at orbifold fixed points can carry different representations

of the stabilizer subgroup. General formulas for the resolved boundary states and the

corresponding boundary partition functions can be found e.g. in [56, 124, 65].

Under some additional technical assumptions, operator product expansions of bound-

ary fields in simple current orbifolds have been studied in [134, 135]. The results in [135]
1More general possibilities including discrete torsion have been discussed in [113, 114, 116, 115, 118,

119]. The extension to conformal field theory backgrounds can be found in [136]
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also cover part of the results on boundary operator product expansions for the D-type

modular invariant of minimal model [64]. There exist several classes of important models

to which all these findings on branes in simple current orbifolds apply. Among them are

the Gepner models [137] which are used to study aspects of string theory on complete

intersection Calabi-Yau spaces. The projection method that is encoded in formula (5.6)

was used in [18] to obtain boundary states of Gepner models. Some of these states had

to be resolved and at least for so-called A-type branes this was done explicitly in [133]

(see also [138, 139, 140]). First geometric interpretations for boundary states in Gepner

models were found in [141]. There has been a lot of substantial, more recent work on

branes in Gepner models (see e.g. [142, 136, 143, 144] and references therein).

As we have briefly mentioned above, there is one rather interesting application of the

constructions we have presented in this subsection. Namely, they can be used to build

new branes in backgrounds with an invariant of the form (3.36). For branes in compact

group manifolds, this will be addressed below. Here we shall only take a look at the

simplest example, namely we show how to recover Neumann boundary conditions for

a single free bosonic field from Cardy’s solution. Let us recall that our application of

Cardy’s solution to the flat space theory in section 3.4 only gave theories with Dirichlet

boundary conditions. Neumann gluing conditions for a 1-dimensional flat space, i.e. the

relations J(z) = J̄(z̄), preserve the same amount of symmetry and they should not be

much harder to construct. If we compare the two gluing conditions we find that they differ

only by a reflection λ(J)(z) = −J(z). This defines an action of the group Z2 on the chiral

algebra which obviously comes from the geometric reflection symmetry of the underlying

background. Operators which contain an even number of oscillators αn are invariant

under the reflection and we denote the corresponding chiral algebra by W = Û(1)Z2 . The

idea is now to start with the Cardy theory for trivial gluing conditions on W. The above

constructions then turn out to furnish all maximally symmetric branes for the theory

whose target is real line.

The chiral algebra Û(1)Z2 is known to possess the following sectors (see e.g. [145]). To

begin with, there is a continuous family of sectors which are labeled by positive momenta

k > 0. The vacuum sector of the U(1) theory splits into two sectors of Û(1)Z2 which

we denote by 0±. Finally, there are two twisted sectors τ±. Even though not all the

73



data from the representation theory of Û(1)Z2 have been worked out explicitly, we can in

principle apply Cardy’s theory to construct boundary theories for the charge conjugate

bulk modular invariant. The latter is known to appear when we describe closed strings

moving on the quotient R/Z2. Cardy’s theory provides us with a continuum of boundary

states |x0〉 which are labeled by some positive real number x0 > 0. These can be identified

with point-like branes at regular points of the quotient space. In addition, there are four

discrete boundary states |0±〉 and |N±〉. Among them are two point-like branes sitting

at the singularity and a pair of 1-dimensional branes which extend throughout the whole

background.

Now we would like to descend from this theory on R/Z2 to some simple current

orbifold. Note that Û(1)Z2 possesses a simple current γ = 0− which acts on J according

to γ ◦ 0± = 0∓, γ ◦ τ± = τ∓ and leaves all sectors k > 0 from the continuous series

invariant. If we use this simple current in our formulas above, the bulk modular invariant

(5.2) coincides with the diagonal modular invariant (3.7) of an uncompactified free bosonic

field. According to the general rules we stated above, the simple current orbifold possesses

two boundary states which are associated with the two orbits [0+] and [τ+] of discrete

sectors. These boundary states describe a point-like brane at x0 = 0 and the 1-dimensional

brane on R that we were after. In addition, each sector k > 0 gives rise to two boundary

states labeled by the irreducible representations of S[k] = Z2. These belong to point-like

branes at points ±x0, respectively. In this way, all maximally symmetric branes on R can

be constructed in terms of representation theoretic data of the chiral algebra Û(1)Z2 .

Twisted branes in WZW models. The non-abelian generalization of the ideas that

allowed to obtain Neumann boundary conditions from Cardy’s solution provides us with

new maximally symmetric branes on group manifolds. Recall that maximally symmetric

boundary conditions in the WZW model require to choose some gluing automorphism

Ω of the Lie algebra g so that we can glue holomorphic and anti-holomorphic currents

along the boundary. Even though most of our discussion was restricted to Ω = id, we

commented briefly on more general situations in which Ω = Adg is an inner automorphism

(see remarks around eq. (4.28)). But this does not exhaust all possibilities. In fact, the
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most general form of the gluing condition is

Ω = λ ◦ Adg for some g ∈ G (5.8)

with some outer automorphism λ of g, i.e. an automorphism that does not come from

conjugation with some element g. For simple compact Lie algebras g, such outer auto-

morphisms come with symmetries σ of the Dynkin diagram of g and it suffices to let λ

run through such diagram automorphisms λσ (see e.g. [146]). The Dynkin diagrams for

An>1, Dn>4, E6, E8 possess only one non-trivial symmetry so that in these cases we shall

find one new family of so-called twisted branes. D4 possesses 2 symmetries, while there are

no non-trivial actions on all the other Dynkin diagrams. The absence of such symmetries

for A1 implies that we will not find any more maximally symmetric branes on SU(2). If

the group G consists of several simple factors, one can have further maximally symmetric

branes whenever some of the factors coincide. In such cases, holomorphic currents from

the different isomorphic factors of the same level may be permuted before gluing them to

their anti-holomorphic partners. The corresponding ‘permutation branes’ were studied in

[144] and many of our statements below hold for such boundary theories as well.

Before we describe the results from boundary conformal field theory, let us briefly look

at the geometric scenario these boundary conditions are associated with. We have seen

in the third lecture that branes constructed with λ = id are localized along conjugacy

classes or translates thereof (if Adg 6 = id). It turns out that the general case has an equally

simple and elegant interpretation [66]. Note that after exponentiation, any automorphism

Ω of the Lie algebra g furnishes an automorphism ΩG of the group G. Following the same

steps as in the third lecture, one can then show that the gluing map Ω forces the string

ends to stay on one of the following Ω-twisted conjugacy classes

CΩ
u := { g uΩG(g−1) | g ∈ G } .

The subsets CΩ
u ⊂ G are parametrized through equivalence classes of group elements

u where the equivalence relation between two elements u, v ∈ G is given by: u ∼Ω v

iff v ∈ CΩ
u . This parameter space UΩ of equivalence classes is not a manifold, i.e. it

contains singular subspaces at which the geometry of the associated twisted conjugacy

classes changes. In the example of SU(2), the parameter space for conjugacy classes is an
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interval and generic conjugacy classes are spherical, but they degenerate to a single point

at the two end-points of the interval. Similar issues for twisted and untwisted branes on

SU(3) have been analyzed in great detail in [147] (see also [148, 149]). For us all this rich

structure is of little concern. It suffices to know that generic (twisted) conjugacy classes

have a transverse space of dimension rσ(G) given by the number of orbits that the vertices

of the Dynkin diagram form under the action of the diagram symmetry σ. This means in

particular that rid(G) = rank(G). Let us also note that (twisted) conjugacy classes come

equipped with a B-field.

As in the SU(2) example, only a discrete set of these (twisted) conjugacy classes

on G can be wrapped by a brane. This certainly comes out of the exact constructions

[126], but it can also be understood as a quantization condition within a semi-classical

approach (see [150, 76] for a related analysis) or from the brane’s stability [152]. All these

arguments show that there is only a finite set of allowed branes whose number depends on

the level k. They are labeled by points on a finite rσ(G)-dimensional lattice which can be

considered as a discrete version of the transverse space for a generic (twisted) conjugacy

class. The precise mathematical nature of the labels for non-trivially twisted branes has

been investigated by several groups (see [126, 153, 154]). Formulas for their boundary

states and partition functions were originally provided in [126] though their expressions

are not fully explicit. More efficient constructions, at least for a large number of cases,

have been spelled out in [153, 154, 151]. The boundary operator product expansions are

known for branes wrapping ordinary conjugacy classes. Since these theories are of Cardy-

type, the coefficients in the operator products are obtained from the fusion matrix, as

usual (see subsection 3.4). For twisted conjugacy classes, similar results are only known

in the limit k → ∞ (see [83] and below).

Going into more details of the exact solutions would require too much of new terminol-

ogy. But to sketch the general picture, we can once more look at the limit of infinite level

k [155, 83] where many results may be stated in more classical terms. In this regime, the

number of branes becomes infinite and they are labeled by the representations of another

group Gσ ⊂ G. It consists of all elements g ∈ G which are invariant under the diagram

automorphism λG
σ of the group G.

We can see this group Gσ emerging on a semiclassical level already. In fact, it is not
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difficult to show that a generic twisted conjugacy class “close to” the twisted conjugacy

class of the group unit can be represented in the form Cλσ = G ×Gσ
C′. Here, C′ is an

ordinary conjugacy class of Gσ and Gσ acts on G by multiplication from the right. In

other words, Cλσ may be considered as a bundle over G/Gσ with fiber C′. In the k → ∞
limit, we keep C′ small by rescaling its radius. Arguments similar to the ones discussed

in subsection 4.1 (see also [76]) show that C′ then turns into a co-adjoint orbit with its

usual linear Poisson structure. At the same time, the volume of G/Gσ grows with k so

that the corresponding Poisson structure scales down and vanishes in the limit. After

quantization, we obtain a bundle with non-commutative fibers. It possesses a classical

base G/Gσ which is the same for all branes, but the fibers depend on C′ and they are

labeled by irreducible representations of the group Gσ.

This semi-classical picture for the twisted conjugacy classes can also be used to mo-

tivate the following proposal for the non-commutative world-volume algebra of twisted

branes [83] which generalizes the matrix geometries we found for spherical branes on

S3. ‘Functions’ on the quantized co-adjoint orbits C′ of Gσ are represented by matrices

Mat(dJ) where dJ is the dimension of an irreducible representation of Gσ. The space of

such matrices carries an action of Gσ or its Lie algebra gσ which is defined as in eq. (4.11).

To built the algebra F of ‘functions’ on the entire brane, we combine the matrices with

the commutative algebra of functions on G and restrict to Gσ invariants,

FJ
∼= Invgσ

(
Fun(G) ⊗ Mat(dJ)

)
. (5.9)

Here, the Lie algebra gσ ⊂ g acts on Fun(G) through right derivatives. If we specialize

to SU(2), we have Gσ = G and hence we recover FJ
∼= Mat(2J + 1). By construction,

FJ is an associative non-commutative algebra and it comes equipped with an action of g

through left derivatives on Fun(G).

Under the action of g, the algebras F decompose into irreducible multiplets. We

met such a decomposition in the case of the fuzzy 2-spheres in eq. (4.12) and also saw

by comparison with eq. (4.24) that they mimic the decomposition of boundary partition

functions into sectors of the chiral algebra, at least up to certain truncations. Similar

statements can be made in the more general case of Ω-twisted branes. The coefficients in

the decomposition of the algebra (5.9) are easily worked out and they are combinations
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of the so-called branching coefficients for the embedding Gσ → G and the familiar fusion

rules of G (see [155, 83] for concrete formulas). Related expressions for finite level were

found in [153, 154].

With the existing control over the boundary conformal field theory of maximally sym-

metric branes on group manifolds it is possible to study their dynamics along the lines of

subsection 4.3. The effective non-commutative field theories were found in [83] along with

a large number of interesting solutions. It turns out that all branes which are localized

along ordinary conjugacy classes, i.e. for which λ is trivial, are obtained from condensates

on a stack of point-like branes and hence they carry only a single charge (see [97]). One

new charge appears with each diagram automorphism. Once more, all branes associated

with the same symmetry σ of the Dynkin diagram appear as bound states of stacks built

from a single ‘generating’ twisted brane. Among the many processes that have been stud-

ied in [83] the ones that are generated by constant gauge fields admit a deformation into

the stringy regime [97]. As in the case of SU(2), one can employ the absorption of the

boundary spin principle (cf. the rule (4.39)) to determine the final brane configurations

after condensation. The set of processes one obtains in this way suffice to determine the

order of the charge carried by the generating branes (see [97]) and the results agree nicely

with the findings from twisted K-theory (see [104] and references therein).

Conformal embeddings and cosets. The construction of all maximally symmetric

branes on group manifolds is a remarkable achievement of orbifold and simple current

methods. We shall now see that symmetry breaking branes on group manifolds (and in

other backgrounds) can be obtained with another classical technique, namely through

the systematic use of so-called conformal embeddings. A chiral algebra W ′ is said to be

conformally embedded into W if the respective Virasoro elements are mapped onto each

other. Such an embedding is called rational if all W-sectors decompose into a finite sum

of sectors for the conformally embedded algebra W ′. Hence, if a rational model with

maximal chiral algebra W is analyzed with respect to W ′, it stays rational.

The first application of rational conformal embeddings to the construction of boundary

theories can be found in [156] where they were used to break the symmetry of a c = 2

torus compactification at some particular radius. A related idea then appeared later in
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the work [53] to build symmetry breaking branes on the group manifold SU(2). Actually,

Maldacena et al. employ the parafermionic coset SU(2)/U(1), a free bosonic U(1) model

and some orbifold ideas in their construction of (unstable) 1- and 3- dimensional branes

on SU(2). A generalization to SU(N) which uses the abelian cosets SU(N)/U(1)N−1 was

proposed in [104]. Our presentation here will follow the approach of [54]. The latter

allows to incorporate non-abelian cosets and leads to a very large set of new symmetry

breaking branes on group manifolds.

In [53, 104, 54], coset chiral algebras are a central ingredient of the whole procedure.

Let us therefore briefly outline a few basics from the coset or GKO construction [158].

Suppose we are given some affine Lie algebra Ĝ or its associated chiral algebra W(G)

along with some affine subalgebra W(U) ⊂ W(G). Then we can look for the maximal

chiral subalgebra W(G/U) within W(G) which commutes with W(U). As one can easily

check, the algebra W(G/U) contains a Virasoro field TG/H = TG − TH of central charge

cG/U = cG−cU . By construction, the chiral algebra W ′ = W(G/U)⊗W(U) is conformally

embedded into W(G). In fact, the Virasoro field TG/U + TH of W ′ coincides with the

Virasoro field TG. Moreover, each representation of WG can be shown to decompose into

a finite number of representations for W ′ ⊂ W(G) (see e.g. [7]). The construction of

W ′ that we have just outlined can be applied repeatedly if we set U = U1 and select a

chiral algebra W(U2) ⊂ W(U1) etc. In this way, we obtain a large number of conformally

embedded chiral algebras

W ′ = W(G/U1) ⊗W(U1/U2) ⊗ · · · ⊗W(UN−1/UN) ⊗W(UN ) ⊂ W(G) .

Except from some subtleties that may arise from the centers of the groups Us (see e.g.

[159, 160]), the formulas in [54] provide a set of boundary theories which preserve such

chiral algebras W ′.

Here we shall content ourselves with a description of their geometry [161]. As in

our construction of W ′, we must choose a chain of groups Us, s = 1, . . . , N, along with

homomorphism εs : Us → Us−1 (we set U0 = G). The latter are assumed to induce

embeddings of the corresponding Lie algebras. Furthermore, we select an automorpism

Ωs on each group Us. Given these data, it is possible to construct a set of branes which
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preserve an UN group symmetry. These are localized along the following sets

CΩ
ε;u = C0

u0
· C1

u1
· . . . · CN

uN
⊂ G where (5.10)

Cs
us

= Ω0 ◦ ε1 ◦ · · · ◦ Ωs−1 ◦ εs(CΩs

us
) ⊂ G for us ∈ Us

and C0
u0

= CΩ0
u0

for u0 ∈ G. The · indicates that we consider the set of all points in G

which can be written as products (with group multiplication) of elements from the various

subsets. One should stress that branes may be folded onto the subsets (5.10) such that

a given point is covered several times. This phenomenon has been observed for a special

case in [53]. In some examples, depending on the choice of u, several different branes can

wrap the same set (5.10). Such a situation occurs e.g. for the volume filling brane on S3

(which requires an even level k) but is it not understood in general.

The new symmetry breaking boundary theories have various applications, in particular

when dealing with groups G = G1 × · · · ×Gn which factorize into several simple factors.

Let us note that many interesting solvable string backgrounds are factorizable or orbifolds

of factorizable backgrounds. Some boundary states for such theories can be factored

accordingly so that they are simply products of boundary states for each of the individual

factors. But this does certainly not exhaust all possibilities. Generically, branes preserving

the maximal chiral symmetry are factorizing. Only the permutation branes that exist for

backgrounds G with several identical simple factors are non-factorizable and maximally

symmetric at the same time. Many more interesting examples of non-factorizable branes

are obtained from constructions of symmetry breaking branes (see [54, 161]).

There exists another - superficially very different - setup which leads exactly to the

same type of problems. It arises by considering a one-dimensional quantum system with

a defect (see e.g. [162, 112, 163, 164, 25, 165] and [166, 167] for higher dimensional ana-

logues), or, more generally, two different systems on the half-lines v < 0 and v > 0 which

are in contact at the origin. The defect or contact at v = 0 could be totally reflecting,

or more interestingly it could be partially (or fully) transmitting. To fit such a system

into our general discussion, we apply the usual folding trick (see Figure 9). After such a

folding, the defect or contact is located at the boundary of a new system on the half-line.

In the bulk, the new theory is simply a product of the two models that were initially

placed to both sides of the contact at v = 0.
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Figure 9: The folding trick relates a system on the real line with a defect to a

tensor product theory on the half line.

Factorizing boundary states for the new product theory on the half-line correspond to

totally reflecting defects or contacts. With our new boundary states we can go further

and couple the two systems in a non-trivial way. Since we always start with conformal

field theories with chiral algebras W1 = W< and W2 = W> on either side of v = 0,

it is natural to look for contacts that preserve conformal invariance. This requires to

preserve the sum of the two Virasoro algebras of the individual theories. After folding the

system, the preserved Virasoro algebra is diagonally embedded into the product theory

W = W1 ⊗W2. Of course, one can often embed a larger chiral algebra W ′ and then look

for defects that preserve the extended symmetry. This is exactly the setup to which our

general ideas apply. Note that they are capable of constructing defect lines which join two

conformal field theories with different central charge. Such defects are known to appear

on the boundary of an AdS-space when there is a brane in the bulk which extends all the

way to the boundary [168, 169, 170, 171]. Simpler examples without jumps in the central

charge have also been analyzed in [172, 173].

Finally, let us briefly mention that the branes we have discussed here and in the

pervious sections descend to (asymmetric) coset models and therefore many of our insights

directly apply to this very large class of backgrounds. Coset theories possess a maximal

chiral algebra of the form W(G/H) and they describe strings moving on the space G/H

with non-constant background fields (see e.g. [174, 175, 176, 177, 178] for some early work

on the geometry of the bulk theories). The geometry of Cardy-type branes in such cosets

was exhibited in [179] (see also [97, 53, 180, 181, 182]). Non-commutative gauge theories

for branes in coset models were found and studied in [182] (see also [183, 184] for related
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work in a more traditional conformal field theory framework). These effective actions have

interesting implications on brane bound state formation in some limiting regime. The

resulting structure of possible condensates is much richer than for group manifolds since

there are more conserved charges [182]. Many of the processes in [182] admit a deformation

into the stringy regime. In fact, an extension of the ‘absorption or the boundary spin’-

principle (4.38), (4.39) to coset models was formulated in [185] and it was tested against

known results on the boundary flows in minimal models [186, 187, 188, 189, 190] (see also

[191] for additional examples). More recent work on the construction of branes in coset

models and related issues includes [192, 193, 194, 195, 196, 197].

Other approaches to exact solutions. In these notes we presented a conventional

approach to the construction of exact solutions in which we start from the bulk and then

work our way through to the boundary by first solving the factorization constraints (3.21)

for the one-point functions, then computing the boundary partition function through eq.

(3.30) and finally solving the relations (3.34) for the structure constants of the boundary

operator product expansions. It is interesting, however, to turn the whole procedure

upside down and to start from the boundary. This may seem almost hopeless at first,

partly because solving the complicated non-linear equations (3.34) requires us to guess

some appropriate multiplicities nαβ
j for the sectors of the boundary theory. A closer look

reveals, however, that much of this problem can be linearized. Once eqs. (3.34) have

been solved for a certain choice of the multiplicities nαβ
j , one may go back and determine

the coefficients Aα
j from eqs. (3.30). Finally, even the structure constants of the bulk

operator products can be calculated through formula (3.22). Such an approach has been

suggested by Petkova and Zuber [198]. It was then rephrased and extended systematically

in [199, 173]. This whole program is quite elegant and it is somewhat similar in spirit to

recent attempts in string field theory to reconstruct the closed from open strings (see e.g.

[200]).

There is another very interesting solution generating technique that has been applied

very successfully in the past, namely the use of boundary deformation theory (see [58, 91]

for some general results). Unlike the ideas we presented above, boundary deformation

theory is capable of constructing non-rational boundary theories from rational ones. The
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idea is to start from some rational boundary model and to look for exactly marginal

operators among its boundary fields. If they exist, they generate a continuous family of

new boundary theories. The latter correspond to translates of the original branes if the

marginal field is taken from the chiral algebra itself, but they typically break much of the

symmetry otherwise. At least in some examples [201, 202, 58] even such symmetry break-

ing deformations can be constructed perturbatively, to all orders in perturbation theory.

The corresponding boundary theories play an important role for our understanding of

open string tachyon condensation and time dependent open string backgrounds (see e.g.

[203, 204]).

5.2 Towards non-compact backgrounds

Our presentation above was mainly tailored towards compact curved backgrounds, or,

in world-sheet terms, rational (boundary) conformal field theories. Technically, our as-

sumptions implied that there were only finitely many primary fields and hence the various

constraining equations (see (3.21), (3.30), (3.34)) on the structure constants Aα
i and C

had to be solved for a finite number of unknowns. All this changes drastically when we

deal with non-compact backgrounds and even though some of the general ideas do carry

over, at least after appropriate modifications, there is no generic exact construction to

replace Cardy’s solution for rational models. This is mainly due to the fact that ana-

logues of the Cardy condition (3.30) are less restrictive and therefore one cannot get away

without deriving and solving some factorization constraints (see below).

The same problems are certainly present in the bulk theories already so that there

is only a small number of exactly solved models to begin with. Most attention in the

past has been devoted to Liouville theory. The exact solution of this model (in a certain

regime) was proposed in [205, 206] (the proposal was partly based on [207]) and then

more thoroughly analyzed in [208, 209, 210, 211]. The boundary problem for Liouville

theory was treated by several authors [212, 213, 214, 215, 216].

Except from the supersymmetric versions of the Liouville model (see e.g. [217, 218]

and [219, 220] for the boundary problem), there exists only one other non-rational model

that has been solved in the bulk. It describes strings moving on a Euclidean analogue

of AdS3. Since this background is a very close relative of the 3-sphere that we studied
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extensively in the third lecture, we shall use it here to explain some of the similarities and

differences between solving rational and non-rational boundary conformal field theories.

We begin with a brief introduction to the bulk theory and then turn to the possible branes

in this background. After a short review of their classical geometry, it is explained how

to master the various subtleties that arise when we try to obtain factorization constraints

for the one-point functions. Then we analyze the open string sector. In particular, we

shall motivate and explain the concept of a relative partition function and its relation to

the reflection amplitude.

The bulk of the H+
3 WZW model. The model we are interested in describes strings

moving on the space H+
3 of hermitian unimodular 2 × 2 matrices with positive trace,

H+
3 = {h ∈ SL(2,C) | h∗ = h , tr h > 0} .

It is easy to see that H+
3 is a non-compact coset SL(2,C)/SU(2). Following the standard

rules, one can write down the classical WZW model for this geometry. The associated

quantum theory has been solved by Teschner in a series of papers [221, 222, 223, 224]

after Gawedzki computed its bulk partition function in [225].

There are several good reasons to study the H+
3 model. As we mentioned before,

H+
3 is a Euclidean version of AdS3 (with NSNS 3-form) and much of the recent progress

towards the construction of perturbative closed string theory for AdS3, see [226, 227, 228]

and references therein, has been based on the Euclidean background. Furthermore, one

can descend from H+
3 to a coset describing the 2D Euclidean black hole [229] which is part

of many interesting string backgrounds (see e.g. [230, 231, 232]). We shall not return to

this coset below, but we want to mention that its partition function was recently computed

in [233] and the results confirm expectations which go back to the work of Dijkgraaf et

al. [234]. The theory was conjectured by Fateev, Zamolodchikov and Zamolodchikov

to be T-dual to sine-Liouville theory (see [235] for a more precise description of the

conjecture). The bulk operator product expansions of sine-Liouville were studied [236].

A supersymmetric version of the T-duality [237] which involves the N = 2 SL(2,R)/U(1)

Kazama-Suzuki quotient on one side and N = 2 Liouville theory on the other was proven

in [238].
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To proceed with our outline of the H+
3 model, it is convenient to parametrize this

space through coordinates (φ, γ, γ̄) such that

h =

(
eφ eφγ̄
eφγ eφγγ̄ + e−φ

)
. (5.11)

Here, φ runs through the real numbers and γ is a complex coordinate with conjugate γ̄.

We can visualize the geometric content of these coordinates most easily by expressing

them in terms of the more familiar coordinates (ρ, τ, θ) (see Figure 10),

γ = eτ+iθ tanh ρ and eφ = e−τ cosh ρ .

At fixed γ, γ̄, the boundary of H+
3 is reached in the limit of infinite φ. The boundary is

now represented as the complex plane with coordinates γ, γ̄.

ρ

τ

θ

Figure 10: The coordinates (ρ, τ, θ)

parametrize H+
3 as shown. The

boundary of H+
3 appears at ρ = ∞.

ρ0

Figure 11: AdS2-branes in AdS3

are parametrized by a parameter %0

measuring the distance from ρ = 0.

Any wave function on H+
3 can be expanded in terms of eigen-functions of the Laplace

operator on H+
3 . Since there exists an action of SL(2,C) on H+

3 which commutes with the

Laplace operator, each eigen-space must carry some representation of SL(2,C). It is not

difficult to show that the possible eigenvalues of the Laplacian are given by j(j + 1), j =

−1
2

+ iP, where P is a non-negative real number and that the associated eigen-spaces

carry the irreducible representation Dj from the principal continuous series. Explicitly,
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the eigen-functions are given by the following formula

ϕj(w, w̄|φ, γ, γ̄) = −2j + 1

π
(vw h v

∗
w)2j (5.12)

= −2j + 1

π

(
|w − γ|2eφ + e−φ

)2j
.

Here, vw = (−w, 1) depends on a complex coordinate w. The latter is a continuous

analogue of the discrete labels a, b, . . . we used for functions Φab
j on S3 (see eq. (4.21)). In

fact, SL(2,C) acts on w by the usual rational transformations and thereby it generalizes

the role played by the group SU(2)×SU(2) of left and right translations on S3. One may

consider the functions ϕj(w, w̄|h) as wave-function of some particle that was created with

‘radial momentum’ j at the boundary point with coordinates w, w̄ [239]. They form a basis

in the space of square integrable functions on H+
3 and are in one-to-one correspondence

with the ground states of the bulk conformal field theory onH+
3 (see [225]). The state-field

correspondence then provides us with the following set of bulk fields

φj(w, w̄; z, z̄) = Φ(P )( |ϕj(w, w̄)〉 ; z, z̄ ) .

We will not spell out the coefficients of their operator product expansions, but they can

be found in [221, 223].

Introduction to branes in H+
3 . The microscopic study of brane geometries in the

Lorentzian model began with the work of Stanciu [240] who used the relation between

AdS3 and the group SL(2,R) to apply the known results about branes in group manifolds.

It was later shown by Bachas and Petropoulos [241] that the most interesting branes on

AdS3 are associated with twisted conjugacy classes in the sense of [66] (cf. our discussion

in the previous subsection). These are localized along AdS2 ⊂ AdS3 (see Figure 11)

and they are parametrized by a single real parameter %0. In addition one can have branes

localized along H2, dS2, the light cone, as well as point-like branes. Not all of these

geometric possibilities correspond to physical brane configurations, though: The branes

localized along dS2, for example, were found to have a supercritical electric field on their

world-volume [241].

Most of the branes we have just listed possess a Euclidean counterpart. Here we will

be concerned mainly with the Euclidean AdS2 branes in H+
3 which are localized along the
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surfaces

tr ($h ) = 2 sinh(%0) where $ =

(
0 1
1 0

)
(5.13)

and parametrized by %0 ∈ R. After rotation with a particular SL(2,C) symmetry transfor-

mation of H+
3 these branes are localized along one of the connected component H±

2 of the

Euclidean H2 brane, so that we do not have to treat these two types of branes seperately.

While the non-compact hyper-surfaces (5.13) preserve an SL(2,R) ⊂ SL(2,C) symmetry,

a family of compact SU(2) symmetric 2-spheres is obtained through the equations

tr ( h ) = 2 cosh(ς0) (5.14)

with ς0 ≥ 0. These spheres degenerate to a single point for ς0 = 0. The boundary

conformal field theory analysis shows that there exist related (unstable) branes with a

spherical symmetry, but they seem to have an imaginary radius ς0. Otherwise, these

boundaries behave very much in the way one would expect from spherical branes. In

particular, they possess a finite dimensional space of boundary primary fields. We will

make a few more remarks about these spherical boundary conditions as we proceed, but

will focus mainly on the non-compact branes.

The space of ground states in the boundary theory for a single AdS2 brane consists

of eigen-functions for the Laplacian on AdS2. As in the case of AdS3 (see eq. 5.12), it is

easy to find an exact expression for the eigen-functions with eigen-value j = j(j + 1), j ∈
−1

2
+ iR+

0 by restricting

ψj(w|h) := (v′w h v
′∗
w)j (5.15)

to the 2-dimensional surface (5.13). These functions are parametrized through some real

coordinate w which appears in v′w = (iw, 1). The eigen-functions transform according

to the (infinite dimensional) irreducible representations from the principal continuous

series of the symmetry group SL(2,R). Once more, we obtain a continuous spectrum

of momenta j which run through the same values as for the bulk fields, but this time j

labels representations of SL(2,R) rather than SL(2,C). The state field correspondence Ψ

associates a boundary field to each function (5.15),

ψj(w; u) = Ψ( |ψj(w)〉 ; u ) .
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The closed string sector. In constructing the exact boundary CFTs that describe

branes in H+
3 we follow the same strategy as before, i.e. we try to find the one-point

functions of the bulk fields φj(w, w̄; z, z̄) by solving appropriate factorization constraints.

Once again the simplest factorization constraint arises from the two-point functions of the

theory and even the main idea behind its derivation is similar to the compact situation

(see Figure 3). If we imagine the two bulk fields close to each other it is most natural

to use the bulk operator product expansion to get a factorization in the closed string

channel, leading to a representation of the two-point function as an integral over one-

point functions. This is very much the same as in the rational models, apart from the

fact that the bulk operator product expansion contains a continuum of primary fields.

The second regime, however, in which the fields are far apart from each other differs

more drastically from what we have seen in the second lecture. In fact, for compact

backgrounds we projected this regime onto the channel in which the identity field with

label 0 propagates along the boundary. But now such a projection would vanish for a

very simple reason: our bulk fields φj correspond to normalizable states of the model.

The boundary identity field, on the other hand, can certainly not be associated with

a normalizable state simply because the constant function on a non-compact brane is

not normalizable. Since it is impossible to create a non-normalizable excitation on the

boundary with a normalizable excitation in the bulk, the strategy of our derivation of the

constraint (3.21) breaks down for non-compact branes.

Fortunately, there exists a way out [221, 213]. In fact, the fields φj we have considered

so far are not the only ones in the theory. They are the fields that are in one-to-one

correspondence with the normalizable states of the model. By analytic continuation in j,

however, we obtain additional fields which are still perfectly well defined even though they

do not correspond to any normalizable state (see [223, 224] for a rigorous justification). For

certain discrete values of j, the new fields are associated with degenerate representations

of the current algebra. This implies that the operator product of these degenerate fields

with any other field of the theory contains only finitely many primary fields and, more

importantly, that the factorization in the open string channel includes a contribution from

the identity boundary field.

The factorization constraints that arise from the degenerate field φ1/2 have been worked
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out and solved in [242, 243]. For the one-point functions one finds

〈φj(w, w̄; z, z̄)〉%0 = π 2
3
4

√
b ν

j+ 1
2

b Γ(1 + b2(2j + 1))
|w + w̄|2j e−%0(2j+1)sgn(w+w̄)

|z − z̄|2hj
(5.16)

where νb =
Γ(1 − b2)

Γ(1 + b2)
, hj = −b2j(j + 1) (5.17)

and b is related to the level k by b2 = (k − 2)−1. A short analysis shows that the w-

dependent terms sgn(w + w̄)ε|w + w̄|2j for ε = 0, 1 are analogues of the intertwiner U
in the general formula (3.19) for one-point functions. We should stress here that the

factorization constraints obtained with the field φ1/2 do not fix the solution uniquely.

Therefore, it would be quite interesting to investigate further conditions that arise e.g.

from the degenerate field with j = 1/2b2. These relations have not been worked out yet,

but the one-point function was shown to pass further consistency conditions that come

with the open string sector (see [242] and below).

The open string sector. If we could follow the same strategy as in the compact case,

the next step would be to compute the boundary partition function from the coefficients

of the one-point function. Once more, things are not that simple for non-compact branes.

In fact, if we would naivly copy the old computation we would end up with a divergent

result. The reasons for this are very general and we will explain them in a simple quantum

mechanical setup first before returning to our AdS2 branes.

In systems with a continuous energy spectrum, the spectral set itself does not contain

much information about the dynamics. Consider, for example, a 1-dimensional quantum

system with a positive potential V (x) which vanishes at x → ∞ and diverges as we

approach x = −∞. Such a system has a continuous spectrum which is bounded from

below by E = 0 and under some mild assumptions, the spectrum does not depend at all

on details of the potential V (see e.g. [244]). There is much more dynamical information

stored in the so-called reflection amplitude of the system. Recall that for each value E > 0

of the energy, our system admits a unique (up to normalization) wave function. It has

the form

ψE(x) = e−ipx + R(p) e+ipx where p =
√
E . (5.18)

The phase in front of the second term is called the reflection amplitude. It is a functional
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of the potential which is very sensitive to small changes of V . In fact, it even encodes

enough data to reconstruct the whole potential.

From the reflection amplitude R(p) we can extract some spectral density function ρ.

To this end, let us regularize the system by placing a reflecting wall at x = L, with large

positive L. Later we will remove the cutoff L, i.e. send it to infinity. But as long as L

is finite, our system has a discrete spectrum so that we can count the number of energy

or momentum levels in each interval of some fixed size and thereby we define a density of

the spectrum. Its expansion around L = ∞ starts with the following two terms

ρL(p) =
L

π
+

1

2πi

∂

∂p
lnR(p) + . . . (5.19)

where the first one diverges for L → ∞. This divergence is associated with the infinite

region of large x in which the whole system approximates a free theory and consequently

it is universal, i.e. under only mild assumptions it is independent of the potential V (x).

The sub-leading term, however, is much more interesting and we can extract it from the

regularized theory if we compute relative spectral densities before taking the limit L→ ∞.

This can be done by fixing one reference potential V∗ whose regularized spectral density

we denote by ρL
∗ . The relative spectral density for a potential V is then given by

ρrel(p) := lim
L→∞

(
ρL(p) − ρL

∗ (p)
)

=
1

2πi

∂

∂p
ln

R(p)

R∗(p)
.

It is not difficult to transfer these observations from quantum mechanics to the investi-

gation of non-compact branes. As in the toy model, the naive partition functions of our

boundary theories for AdS2-branes diverge. But it is possible to introduce a cutoff L

and to construct partition functions relative to a fixed reference brane with parameter %∗

[242],

Zrel(q|%0; %∗) = lim
L→∞

(
Tr

H
(H)
%0

(
qH

(H)
%0

)L − Tr
H

(H)
%0

(
qH

(H)
%∗

)L)

∼
∞∫

0

dP
1

2πi

∂

∂P
log

R
(
−1

2
+ iP |%0

)

R
(
−1

2
+ iP |%∗

) χj(q) (5.20)

Here we have used the regularized characters χj(q) = qb2P 2
η−3(q). Formulas for the

reflection amplitude R(j|%0) = R(−1/2 + iP ) can be obtained in two different ways.
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One possibility is to employ world-sheet duality to derive the partition function from the

one-point functions (5.16), just as it was done in rational theories. This leads to the

expressions [242]

R(j|%0) = ν−iP
b

Γ2
k
(b−2 − iP + 1

2
)

Γ2
k
(b−2 + iP + 1

2
)

Γ
k
(b−2 + 2iP )

Γk(b−2 − 2iP )

Sk(2R+ P )

Sk(2R− P )
, (5.21)

where R ≡ %0/2πb
2 and the two special functions Sk(x) and Γk(x) are defined through

logSk(x) = i

∞∫

0

dt

t

(
sin 2tb2x

2 sinh b2t sinh t
− x

t

)
, (5.22)

Γk(x) = bb
2x(x−b−2)(2π)

x
2 Γ−1

2 (x|1, b−2) . (5.23)

Here, Γ2(x|ω1, ω2) denotes Barnes Double Gamma function. If we follow this route to

compute the partition function from the boundary states, then world-sheet duality does

not give rise to a constraint on one-point functions simply because for systems with a

continuous spectrum there are no a priori integrality conditions.

But there is another way of obtaining the relative partition function through a direct

construction of the stringy reflection amplitude R(j|%0). Just as in rational models, open

string states may be created by boundary operators ψj(w|u) where u is the usual coordi-

nate for the boundary of the world-sheet. One can then study the scattering amplitude

for an open string that is sent in with momentum j1 from the boundary of AdS3 into an

outgoing open string with momentum j2. The reflection amplitude is obtained from the

two-point function of boundary operators through

〈ψj1(w1|u1)ψj2(w2|u2)〉%0 ∼ δ(j1 − j2) R(j1|%0)
1

|u1 − u2|hj
. (5.24)

Here, ji ∈ −1/2 + iR+ and we omitted some (ji, wi) dependent factor that is determined

by the symmetry. This leaves us with the problem to find an expression for the boundary

two-point functions. The latter are subject to factorization constraints for the boundary

three point functions which have been worked out and solved in [242]. The resulting

expression for the reflection amplitude is the one we have spelled out in eq. (5.21). Let us

stress once more that world-sheet duality only provides us with a consistency condition

for the one-point functions of bulk fields after some boundary factorization problem has

been solved.
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Now we are only missing one more piece of data, namely the boundary operator prod-

uct expansions. Except from some very special subset which is encoded in the boundary

2-point function, these operator products of boundary fields are not yet known. But since

the few coefficients that have been found in [242] are still related to elements of the fusing

matrix (though with an interesting shift between boundary and representation labels), it

is very likely that the solution comes once again from the representation theory of chiral

algebras. Let us briefly note that in the case of spherical branes the situation is better.

Their couplings to closed string modes were obtained in [242] (correcting earlier formulas

in [245, 246]) and they were shown to possess a discrete set of boundary primary fields

[245]. Operator products for the latter have been spelled out in [247].

This brings us to the end of our discussion of non-compact branes. We have tried

to sketch how some of the fundamental ideas we developed during the investigation of

compact backgrounds need to be modified. But as we have seen, there appear many new

problems that so far have only been solved in a few models. Finding model independent

exact solutions as in the case of compact backgrounds remains one of the many challenging

problems for future research.
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