Deformed Matrix Theories with $\mathcal{N}=8$ and Fivebranes in the PP Wave Background

Nakwoo Kim
Albert-Einstein-Institut
Max-Planck-Institut für Gravitationsphysik
Am Mühlenberg 1, D-14476 Golm, Germany
kim@aei-potsdam.mpg.de

Kimyeong M. Lee

School of Physics, Korea Institute for Advanced Study
207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-012, Korea
klee@kias.re.kr

Piljin Yi

School of Physics, Korea Institute for Advanced Study
207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-012, Korea piljin@kias.re.kr

Abstract

M (atrix) theory is known to be mass-deformed in the pp-wave background and still retains all 16 dynamical supersymmetries. We consider generalization of such deformations on super Yang-Mills quantum mechanics (SYQM) with less supersymmetry. In particular this includes $\mathcal{N}=8 U(N)$ SYQM with a single adjoint and any number of fundamental hypermultiplets, which is a pp-wave deformation of DLCQ matrix theory of fivebranes. With $k \geq 1$ fivebranes, we show that a rich vacuum structure exists, with many continuous family of solutions that preserve all dynamical supersymmetries. The vacuum moduli space contains copies of $C P^{k-1}$ of various sizes.

Contents

1. Introduction 1
2. Mass Deformed $\mathcal{N}=8$ SYQM 4
2.110 dim Yang-Mills and Deformed Matrix Theory in Real Representation T
2.2 Complex Representation and Undeformed $\mathcal{N}=8$ SYQM 5
2.3 Deformation of Pure $\mathcal{N}=8$ SYQM 8
2.4 BMN in Complex Notation: Deformation of $\mathcal{N}=8$ SYQM with an Adjoint Hypermultiplet 9
2.5 Deformation with Fundamental Hypermultiplet 10
3. Deformed $\mathcal{N}=8$ Superalgebra 10
4. DLCQ of Fivebranes in PP-Wave Background and Giant Gravitons 13
4.1 Fuzzy Spheres as Giant Gravitons in the Bulk 14
4.2 BPS equations for $\mathcal{N}=8$ 15
4.3 Giant Gravitons on Fivebranes 17
5. Conclusion 19

1. Introduction

It was discovered recently by Berenstein, Maldacena, and Nastase (BMN) [1] that $\mathcal{N}=16$ supersymmetric Yang-Mills quantum mechanics (SYQM) admits a massive deformation without sacrificing any of the supersymmetries. Instead, the supersymmetry algebra is deformed in such a way that Hamiltonian no longer commutes with supercharges, implying that supersymmetry transformation itself is explicitly time dependent.

Usual SYQM with 16 supersymmetries [2] had played a crucial role in uncovering the 11-dimensional nature of M-theory [3]. The only known proposal for quantum formulation of M-theory, known as M (atrix) theory [4], is simply a large N limit of $U(N)$ SYQM with 16 supersymmetries, which can be thought of as large N dynamics of D0 branes [5] or alternatively as a regularized dynamics of supermembranes [6]. In this regard, the deformed SYQM of BMN may be thought of as reformulation of M theory in a particular curved background which is a Penrose limit of either $A d S_{7} \times S^{4}$ or $A d S_{4} \times S^{7}$ [7]. Again, deformed SYQM may be considered as dynamics
of D0 particles or as regularized dynamics of membranes in such a background [8]. The spacetime in question is often referred to as M-theory pp-wave background. Naturally one would like to ask what we can learn about M-theory by studying such mass-deformed version of M(atrix) theory. Some initial steps toward understanding quantum aspect of this deformed theory have been taken in Ref. [9, 10].

One of more puzzling objects in M (atrix) theory is the fivebrane. Original proposal of M(atrix) theory apparently does not contain fivebranes as a solution, rather one must put them in by hand. For longitudinal fivebranes, this is achieved by introducing additional fields, namely fundamental hypermultiplets, in SYQM, thereby reducing dynamical supersymmetry by half to $\mathcal{N}=8$ [11]. This quantum SYQM with 8 supersymmetries can also be used to study fivebranes themselves, and may be considered as an analog of M (atrix) theory for worldvolume dynamics of fivebranes, namely a Discrete-Lightcone-Quantization (DLCQ) description. In this note, we consider general $\mathcal{N}=8$ SYQM and their mass deformation analogous to BMN's, thereby initiating the inquiry as to whether such deformed M (atrix) theory with fivebranes allows better understanding of fivebranes in particular.

Reducing supersymmetry to $\mathcal{N}=8$ also involves reducing R -symmetries. Prior to mass deformation, $\mathcal{N}=16 \mathrm{SYQM}$ are equipped with $S O(9)$ R-symmetry coming from spatial rotations. Reduction to $\mathcal{N}=8$ breaks up this to $S U(2) \times S O(5)$, where $S O(5)$ is associated with directions orthogonal to fivebranes. In the deformed SYQM of BMN with $\mathcal{N}=16$, however, $S O(9)$ is already reduced to a smaller $S O(3) \times S O(6)$ R-symmetry by the four-form flux. Thus, depending on how we embed fivebranes, we will find different theories, not all of which may be supersymmetric.

In terms of fivebrane in the pp-wave background, this is because the background itself comes from $A d S_{7} \times S^{4}$ (or $A d S_{4} \times S^{7}$), a near-horizon limit of fivebranes, so not all orientations of the secondary fivebrane are equivalent. After some experiment with spinors, we discover that there is one particular subset of orientation that is amenable to reduction of supersymmetry and thus to introduction of additional supersymmetric fivebranes. Let us describe this choice in some detail. We start with $A d S_{7} \times S^{4}$ such that $1+10$ directions are distributed as follows,

$$
\begin{align*}
x^{0,1,2,3,4,8,9} & \rightarrow A d S_{7}, \tag{1.1}\\
x^{5,6,7,10} & \rightarrow S^{4} \tag{1.2}
\end{align*}
$$

Perform the pp-wave limit of this background by taking $x^{ \pm}=x^{0} \pm x^{10}$. The BMN deformed M (atrix) theory then has $S O(3) \times S O(6)$ R-symmetry where $S O(6)$ rotates $x^{1,2,3,4,8,9}$ while $S O(3)$ rotates $x^{5,6,7}$. Reduction of dynamical supersymmetry to $\mathcal{N}=$ 8 is achieved in part by breaking up $x^{1,2,3, \ldots, 9}$ into five coordinates associated with vector multiplets and four coordinates associated with hypermultiplets. In this note, we take the following decomposition,

$$
x^{1,2,3,4,5} \rightarrow \text { vector, }
$$

$$
\begin{equation*}
x^{6,7,8,9} \rightarrow \text { hyper. } \tag{1.3}
\end{equation*}
$$

The resulting SYQM will have

$$
\begin{equation*}
S O(4)_{1234} \times S O(2)_{67-89}, \tag{1.4}
\end{equation*}
$$

as the R-symmetry. $S O(4)$ rotates directions $1,2,3,4$, among themselves while $S O(2)$ is a simultaneous and opposite rotation of planes 6,7 and 8,9 .

This choice of decomposition seems special in the following sense. Recall that in the deformed SQYM, the supercharge does not commute with Hamiltonian and the supermultiplet does not imply degeneracy. In particular, bosonic and fermionic degrees of freedom come with different excitation masses. Only after summing over all vacuum energies, one find cancellation among them giving a supersymmetric ground state of zero energy. The above decomposition into vector and hyper is unique up to irrelevant rotation, in that this cancellation of vacuum energy holds in each sector. This can be seen easily once we recall how the cancellation occurred in full $\mathcal{N}=16$ BMN case,

$$
\begin{equation*}
3 \times \frac{|\mu|}{3}+6 \times \frac{|\mu|}{6}-8 \times \frac{|\mu|}{4}=0 \tag{1.5}
\end{equation*}
$$

where 3 is from $x^{5,6,7}, 6$ is from $x^{1,2,3,4,8,9}$, and 8 is from 16 real fermions. With the above decomposition into vector and hyper then, this is rewritten as

$$
\begin{equation*}
\left(1 \times \frac{|\mu|}{3}+4 \times \frac{|\mu|}{6}-4 \times \frac{|\mu|}{4}\right)+\left(2 \times \frac{|\mu|}{3}+2 \times \frac{|\mu|}{6}-4 \times \frac{|\mu|}{4}\right)=0 \tag{1.6}
\end{equation*}
$$

where each group gives zero separately. The first group represents vacuum energy from a vector multiplet, and the second represents vacuum energy from a hypermultiplet. In particular, this already suggests that we may truncate to vector part only or add additional hypermultiplets in the SYQM without destroying supersymmetry.

In section 2, we will start with mass deformed $\mathcal{N}=16$ SYQM and rewrite it in $\mathcal{N}=8$ language. By either adding or subtracting hypermultiplet into the latter setup, we show that general $\mathcal{N}=8$ SYQM also admits massive deformation with all 8 supercharges remaining. In section 3 , we outline how $\mathcal{N}=16$ superalgebra is truncated to $\mathcal{N}=8$ with emphasis on central charge. In section 4 , we concentrate on the case with fundamental hypermultiplets which is DLCQ of fivebranes in ppwave background, and isolate classical ground states that preserves all 8 dynamical supersymmetries. These solutions are analogous to the fuzzy sphere solutions of BMN which are essentially giant gravitons. Unlike the BMN case, however, we find that the solutions come in a continuous family typically parametrized by a $C P^{n}$ vacuum moduli space. In section 4 we conclude with remarks on future direction of research.

2. Mass Deformed $\mathcal{N}=8$ SYQM

2.110 dim Yang-Mills and Deformed Matrix Theory in Real Representation

Here we review the mass deformed SYQM of BMN and set up notations and conventions. With signature $(-,++, \ldots,+)$ and $\bar{\lambda}^{a}=\left(\lambda^{a}\right)^{T} \Gamma^{0}$, we start with supersymmetric Yang-Mills theory in ten dimensions,

$$
\begin{equation*}
L=\operatorname{Tr}\left\{-\frac{1}{4} F^{2}-\frac{i}{2} \bar{\Psi} \Gamma^{P} D_{P} \lambda\right\}, \tag{2.1}
\end{equation*}
$$

where A_{P} is hermitian and $D_{P} \Psi=\partial_{P} \lambda-i\left[A_{P}, \Psi\right]$.
The 10 dimensional Gamma matrices can be chosen to be real

$$
\begin{align*}
& \Gamma^{0}=1 \otimes i \sigma_{2} \\
& \Gamma_{I}=\bar{\gamma}_{I} \otimes \sigma_{1}(I=1,2 \ldots 9) \\
& \Gamma^{11}=1 \otimes \sigma_{3} \tag{2.2}
\end{align*}
$$

where $\bar{\gamma}_{I}$ is the symmetric real 16×16 gamma matrices of $S O(9)$. The gaugino field is Majorana and is also chiral,

$$
\begin{equation*}
\Gamma_{11} \Psi=\Psi \tag{2.3}
\end{equation*}
$$

Note that $\Gamma^{0} \Gamma_{I} \Psi=\bar{\gamma}_{I} \Psi$. Because of this, we may as well regard $\bar{\gamma}_{I}$ as 32×32 matrices

$$
\begin{equation*}
\bar{\gamma}_{I}=\Gamma^{0} \Gamma_{I} \tag{2.4}
\end{equation*}
$$

with the understanding that the spinor Ψ is restricted to be Majorana and chiral. This latter definition of $\bar{\gamma}_{I}$ naturally extends to complex representation of spinors we will later adopt.

Supersymmetric transformation is

$$
\begin{align*}
& \delta A_{I}=-i \bar{\epsilon} \Gamma_{I} \Psi, \\
& \delta \Psi=\frac{1}{2} F_{I J} \Gamma^{I J} \epsilon . \tag{2.5}
\end{align*}
$$

Let us dimensionally reduce this field theory to a quantum mechanics by allowing time-dependence only. With new notations, $X_{I}=A_{I}$ and A_{0}, the above Lagrangian becomes [2]

$$
\begin{equation*}
L=\operatorname{Tr}\left\{\sum_{I} \frac{1}{2}\left(D_{0} X_{I}\right)^{2}+\frac{1}{4} \sum_{I J}\left[X_{I}, X_{J}\right]^{2}+\frac{i}{2} \Psi^{T} D_{0} \Psi-\frac{1}{2} \Psi^{T} \bar{\gamma}_{I}\left[X_{I}, \Psi\right]\right\} \tag{2.6}
\end{equation*}
$$

The susy transformation of the quantum mechanics becomes

$$
\begin{align*}
& \delta A_{0}=i \Psi^{T} \epsilon, \\
& \delta X_{I}=i \Psi^{T} \bar{\gamma}_{I} \epsilon \\
& \delta \Psi=D_{0} X_{I} \bar{\gamma}_{I} \epsilon-\frac{i}{2}\left[X_{I}, X_{J}\right] \bar{\gamma}_{I J} \epsilon \tag{2.7}
\end{align*}
$$

BMN [1] deformed this quantum mechanics by adding the following set of terms, with one mass parameter μ,

$$
\begin{align*}
\Delta L & =\frac{1}{2} \operatorname{Tr}\left(-\left(\frac{\mu}{3}\right)^{2} \sum_{a=5,6,7}\left(X_{a}\right)^{2}-\left(\frac{\mu}{6}\right)^{2} \sum_{s=1,2,3,4,8.9}\left(X_{s}\right)^{2}\right) \\
& +\frac{1}{2} \operatorname{Tr}\left(\frac{2 i \mu}{3} \epsilon_{a b c} X_{a} X_{b} X_{c}-\frac{i \mu}{4} \Psi^{T} \bar{\gamma}_{567} \Psi\right), \tag{2.8}
\end{align*}
$$

upon which the susy transformation get deformed to

$$
\begin{align*}
\delta A_{0} & =i \Psi^{T} \epsilon, \\
\delta X_{I} & =i \Psi^{T} \bar{\gamma}_{I} \epsilon, \\
\delta \Psi & =\left(D_{0} X_{I} \bar{\gamma}_{I}-\frac{i}{2}\left[X_{I}, X_{J}\right] \bar{\gamma}_{I J}\right), \\
& +\left(\frac{\mu}{3} \sum_{a=5,6,7} X_{a} \bar{\gamma}_{a} \bar{\gamma}_{567}-\frac{\mu}{6} \sum_{s=1,2,3,4,8,9} X_{s} \bar{\gamma}_{s} \bar{\gamma}_{567}\right) \epsilon . \tag{2.9}
\end{align*}
$$

The deformed Lagrangian is invariant under this supersymmetry if and only if we force the following explicit time-dependence of the transformation parameter ϵ,

$$
\begin{equation*}
\epsilon(t)=e^{-\frac{\mu}{12} \bar{\gamma}_{567} t} \epsilon(0), \tag{2.10}
\end{equation*}
$$

which makes the superalgebra quite unconventional. In particular, the supercharges does not commute with Hamiltonian, but raises or lower energy by $\mu / 12$ unit. The notion of "supermultiplet" no longer implies degeneracy in this deformed superalgebra. Note that we chose $S O(3)$ part of $S O(9)$ to lie along direction $x^{5,6,7}$ for later convenience.

2.2 Complex Representation and Undeformed $\mathcal{N}=8$ SYQM

In order to reduce to SYQM with $\mathcal{N}=8$ supersymmetry and introduce other kind of supermultiplet, we break up the $S O(9)$ spinor in terms of tensor product of $S O(4)$ and $S O(5)$ spinors. First introduce $e_{\mu}=(\boldsymbol{\sigma}, i)$ and $\bar{e}_{\mu}=(\boldsymbol{\sigma},-i)$ and define the Euclidean SO(5) gamma matrices ${ }^{1}$

$$
\begin{align*}
& \gamma_{\mu}=\left(\begin{array}{cc}
0 & e_{\mu} \\
\bar{e}_{\mu} & 0
\end{array}\right), \\
& \gamma_{5}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \tag{2.11}
\end{align*}
$$

[^0]which implies
\[

$$
\begin{align*}
& \gamma_{1}=\sigma_{1} \otimes \sigma_{1} \\
& \gamma_{2}=\sigma_{2} \otimes \sigma_{1} \\
& \gamma_{3}=\sigma_{3} \otimes \sigma_{1} \\
& \gamma_{4}=-1 \otimes \sigma_{2} \\
& \gamma_{5}=1 \otimes \sigma_{3} \tag{2.12}
\end{align*}
$$
\]

Note that $\gamma_{5}=\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$. With this, ten dimensional Dirac matrices can be written in a complex form as

$$
\begin{align*}
& \Gamma^{0}=1 \otimes 1 \otimes i \sigma_{2} \otimes 1 \otimes 1 \\
& \Gamma_{\mu}=\gamma_{\mu} \otimes \sigma_{1} \otimes 1 \otimes 1, \quad(\mu=1,2 \ldots, 5) \\
& \Gamma_{5+\mu}=1 \otimes 1 \otimes \sigma_{3} \otimes \gamma_{\mu}, \quad(\mu=1,2,3,4), \\
& \Gamma_{11}=1 \otimes 1 \otimes \sigma_{3} \otimes 1 \otimes \sigma_{3} \tag{2.13}
\end{align*}
$$

with 1 denoting the 2×2 identity matrix. As before, $\Gamma_{11}=\Gamma^{0} \Gamma_{1} \ldots \Gamma_{10}$.
Since we abandoned real $S O(9)$ matrices, we must impose Majorana condition. Defining complex conjugation by

$$
\begin{equation*}
\Psi_{c}=B \Psi^{*}, \tag{2.14}
\end{equation*}
$$

with the matrix B such that

$$
\begin{equation*}
B \Gamma^{I} B^{-1}=\left(\Gamma^{I}\right)^{*} \tag{2.15}
\end{equation*}
$$

The Majorana condition is then $\Psi_{c}=\Psi .\left(C=B \Gamma^{0}\right.$ and $C \Gamma^{I} C^{-1}=-\left(\Gamma^{I}\right)^{T}$ with $\Psi_{c}=C \bar{\Psi}^{T}$.) In our matrix convention

$$
\begin{equation*}
B=-\sigma_{2} \otimes \sigma_{3} \otimes 1 \otimes \sigma_{2} \otimes \sigma_{3} \tag{2.16}
\end{equation*}
$$

The above Yang-Mills Lagrangian and supersymmetry work fine if we insist λ and ϵ are both chiral and Majorana. In this notation, one starts with a 32-component complex spinor, then the Majorana condition together with $\Gamma_{11} \Psi=\Psi$ reduces it to 16 real in effect.

We will decompose the spinor Ψ into two eight-component complex spinors,

$$
\begin{equation*}
\lambda_{\alpha}^{i}, \quad \chi_{\alpha}^{i} \tag{2.17}
\end{equation*}
$$

which are respectively chiral and anti-chiral under $\Gamma^{0} \Gamma^{1} \cdots \Gamma^{5}$. Similarly, supersymmetry parameter ϵ is split into ϵ_{i} and ζ_{i}. The 10-dimensional chirality condition then implies that λ_{i} and ϵ_{i} are of $(+,+)$ eigenvalues under the two σ_{3} factors in the above form of Γ_{11} while χ_{i} and ζ_{i} are of $(-,-)$. Eventually we will keep the supersymmetries generated by ϵ_{i} 's only. The Majorana condition becomes symplectic Majorana conditions

$$
\begin{equation*}
\lambda_{i}=-\tilde{B}\left(\sigma_{2}\right)_{i j} \lambda_{j}^{*}, \quad \chi_{i}=+\tilde{B}\left(\sigma_{2}\right)_{i j} \chi_{j}^{*} \tag{2.18}
\end{equation*}
$$

where $\tilde{B}=\sigma_{2} \otimes \sigma_{3}$ satisfies $\tilde{B} \gamma^{\mu} \tilde{B}^{-1}=\gamma^{\mu *}$ with $\mu=1,2, \ldots 5$. Note that the indices $i, j=1,2$ belong to the fourth factor of spinor decomposition (2.13); σ_{2} in the preceding equation is the fourth entry in the definition of B in eq. (2.16) above.

For fermions associated with hypermultiplet, the gauge representation could be either real or complex, so we may as well take one of χ_{i} 's and discard the other. We will take $\chi=\chi_{1}$ as the fermion of the hypermultiplet. Similarly we introduce the two complex scalar belonging to the hypermultiplet.

$$
\sum_{\mu=1}^{4} X_{\mu+5} e_{\mu}=\left(\begin{array}{cc}
\bar{y}_{1} & y_{2} \tag{2.19}\\
\bar{y}_{2} & -y_{1}
\end{array}\right)
$$

where $y_{1}=X_{8}-i X_{9}$ and $y_{2}=X_{6}-i X_{7}$.
With the above decomposition, the pure $\mathcal{N}=8$ SYQM without mass deformation has

$$
\begin{equation*}
L_{0}=\operatorname{Tr}\left(\frac{1}{2} \sum_{\mu=1}^{5}\left(D_{0} X_{\mu}\right)^{2}+\frac{1}{4} \sum_{\mu, \nu}^{5}\left[X_{\mu}, X_{\nu}\right]^{2}+\frac{i}{2} \lambda_{i}^{\dagger} D_{0} \lambda_{i}-\frac{1}{2} \lambda_{i}^{\dagger} \gamma_{\mu}\left[X_{\mu}, \lambda_{i}\right]+\frac{1}{2} \mathbf{D}^{2}\right) \tag{2.20}
\end{equation*}
$$

which is invariant under

$$
\begin{align*}
& \delta A_{0}=i \lambda_{i}^{\dagger} \epsilon_{i}, \\
& \delta X_{\mu}=i \lambda_{i}^{\dagger} \gamma_{\mu} \epsilon_{i}, \\
& \delta \lambda_{i}=D_{0} X_{\mu} \gamma_{\mu} \epsilon_{i}-\frac{i}{2}\left[X_{\mu}, X_{\nu}\right] \gamma_{\mu \nu} \epsilon_{i}+i \mathbf{D} \cdot \boldsymbol{\sigma}_{i j} \epsilon_{j}, \\
& \delta \mathbf{D}=-\epsilon_{i}^{\dagger} \boldsymbol{\sigma}_{i j} D_{0} \lambda_{j}-i \epsilon_{i}^{\dagger} \boldsymbol{\sigma}_{i j} \gamma_{\mu}\left[X_{\mu}, \lambda_{j}\right] . \tag{2.21}
\end{align*}
$$

Adding an adjoint hyper matter field is a matter of rewriting $\mathcal{N}=16$ undeformed SYQM in terms of the above decomposition

$$
\begin{align*}
L_{a d j} \operatorname{Tr} & \left(\frac{1}{2} D_{0} \bar{y}_{i} D_{0} y_{i}+\frac{1}{2}\left[X_{\mu}, \bar{y}_{i}\right]\left[X_{\mu}, y_{i}\right]+\frac{1}{2} \mathbf{D} \cdot \boldsymbol{\sigma}_{i j}\left[\bar{y}_{j}, y_{i}\right]\right. \\
& \left.+i \chi^{\dagger} D_{0} \chi+\chi^{\dagger} \gamma_{\mu}\left[X_{\mu}, \chi\right]+\lambda_{i}^{\dagger}\left[\bar{y}_{i}, \chi\right]+\chi^{\dagger}\left[y_{i}, \lambda_{i}\right]\right) \tag{2.22}
\end{align*}
$$

The combined action is invariant under the above susy transformation if we also transform,

$$
\begin{align*}
\delta \bar{y}_{i} & =-2 i \chi^{\dagger} \epsilon_{i} \\
\delta \chi & =-D_{0} y_{i} \epsilon_{i}-i \gamma_{\mu}\left[X_{\mu}, y_{i}\right] \epsilon_{i} \tag{2.23}
\end{align*}
$$

Adding the fundamental matter field q, ψ in the \bar{N} dimensional representation becomes

$$
\begin{align*}
L_{\text {fund }}=\operatorname{Tr} & \left(\frac{1}{2} D_{0} \bar{q}_{i} D_{0} q_{i}-\frac{1}{2} X_{\mu} \bar{q}_{i} q_{i} X_{\mu}+\frac{1}{2} \mathbf{D} \cdot \boldsymbol{\sigma}_{i j} \bar{q}_{j} q_{i}\right. \\
& \left.+i \psi^{\dagger} D_{0} \psi-\psi^{\dagger} \gamma_{\mu} \psi X_{\mu}+\lambda_{i}^{\dagger} \bar{q}_{i} \psi+\psi^{\dagger} q_{i} \lambda_{i}\right) \tag{2.24}
\end{align*}
$$

The susy transformation extends to

$$
\begin{align*}
& \delta \bar{q}_{i}=-2 i \psi^{\dagger} \epsilon_{i}, \\
& \delta \psi=-D_{0} q_{i} \epsilon_{i}+i q_{i} X_{\mu} \gamma_{\mu} \epsilon_{i} \tag{2.25}
\end{align*}
$$

2.3 Deformation of Pure $\mathcal{N}=8$ SYQM

The above decomposition of spinors gives the relations

$$
\begin{equation*}
\bar{\gamma}^{567}=\gamma^{5} \otimes \sigma_{3} \otimes i \sigma_{3} \otimes 1 \tag{2.26}
\end{equation*}
$$

When acting on ϵ_{i} 's and on λ_{i} 's, the σ_{3} in the middle takes +1 eigenvalue, while $i \sigma_{3}$ acts on $i=1,2$ indices. Thus we find that

$$
\begin{equation*}
\epsilon_{i}(t)=\left(e^{-\frac{i \mu}{12} \gamma_{5} \otimes \sigma_{3}}\right)_{i j}\left(\epsilon_{0}\right)_{j} . \tag{2.27}
\end{equation*}
$$

Let us introduce one more notation. Since $\lambda_{1,2}$ are related by reality condition and so are $\epsilon_{1,2}$, define

$$
\begin{align*}
& \lambda_{1}=\lambda \\
& \epsilon_{1}=-i \epsilon \tag{2.28}
\end{align*}
$$

from which it follows

$$
\begin{align*}
& \lambda_{2}=-i \tilde{B} \lambda^{*} \\
& \epsilon_{2}=\tilde{B} \epsilon^{*} \tag{2.29}
\end{align*}
$$

and is consistent with the above time-dependence of ϵ_{i} 's.
The vector multiplet Lagrangian becomes

$$
\begin{equation*}
L_{0}=\operatorname{Tr}\left(\sum_{\mu=1}^{5} \frac{1}{2}\left(D_{0} X_{\mu}\right)^{2}+\sum_{\mu, \nu}^{5} \frac{1}{4}\left[X_{\mu}, X_{\nu}\right]^{2}+i \lambda^{\dagger} D_{0} \lambda-\lambda^{\dagger} \gamma_{\mu}\left[X_{\mu}, \lambda\right]+\frac{1}{2} \mathbf{D}^{2}\right) . \tag{2.30}
\end{equation*}
$$

The additional piece of Lagrangian that deforms a pure $\mathcal{N}=8$ SYQM is then

$$
\begin{equation*}
\Delta L_{0}=\operatorname{Tr}\left(-\frac{1}{2}\left(\frac{\mu}{6}\right)^{2} \sum_{\mu=1}^{4} X_{\mu}^{2}-\frac{1}{2}\left(\frac{\mu}{3}\right)^{2} X_{5}^{2}+\frac{\mu}{4} \lambda^{\dagger} \gamma_{5} \lambda\right) \tag{2.31}
\end{equation*}
$$

The Lagrangian $L_{0}+\Delta L_{0}$ is invariant under the susy

$$
\begin{align*}
\delta A_{0}= & \left(\lambda^{\dagger} \epsilon+\epsilon^{\dagger} \lambda\right), \\
\delta X_{\mu}= & \left(\lambda^{\dagger} \gamma_{\mu} \epsilon+\epsilon^{\dagger} \gamma_{\mu} \lambda\right), \\
\delta \lambda= & -i D_{0} X_{\mu} \gamma_{\mu} \epsilon-\sum_{\mu, \nu}^{5} \frac{1}{2}\left[X_{\mu}, X_{\nu}\right] \gamma_{\mu \nu} \epsilon \\
& -\frac{\mu}{6} \sum_{\mu=1}^{4} X_{\mu} \gamma_{\mu} \gamma_{5} \epsilon+\frac{\mu}{3} X_{5} \epsilon, \tag{2.32}
\end{align*}
$$

with

$$
\begin{equation*}
\epsilon(t)=e^{-\frac{i \mu}{12} \gamma_{5} t} \epsilon_{0} . \tag{2.33}
\end{equation*}
$$

This deformed pure $\mathcal{N}=8 \mathrm{SYQM}$ theory has 16 supersymmetry out of which eight is linearly realized, or dynamical, and eight is nonlinearly realized, or kinematical.

Note that the oscillator mass of the bosonic and fermionic degrees of freedom are again different from each other. Of five scalars, one is of mass $|\mu / 3|$, namely X^{5}, while the remaining four are of mass $|\mu / 6|$. As before, all four complex fermions are of mass $|\mu / 4|$. The vacuum energy is then,

$$
\begin{equation*}
\operatorname{dim}(U(N)) \times\left(\frac{|\mu|}{3}+4 \times \frac{|\mu|}{6}-4 \times \frac{|\mu|}{4}\right)=0 \tag{2.34}
\end{equation*}
$$

as promised. It has been shown recently that such vacuum energy is protected from correction by supersymmetry in $\mathcal{N}=16$ setting [10, which should also hold in $\mathcal{N}=8$ case.

2.4 BMN in Complex Notation: Deformation of $\mathcal{N}=8$ SYQM with an Adjoint Hypermultiplet

The hypermultiplet part of the deformed Lagrangian can be written

$$
\begin{equation*}
\Delta L_{a d j}=\operatorname{Tr}\left(-\frac{1}{2}\left(\frac{\mu}{6}\right)^{2} \bar{y}_{1} y_{1}-\frac{1}{2}\left(\frac{\mu}{3}\right)^{2} \bar{y}_{2} y_{2}-\frac{1}{2} \mu X_{5}\left[\bar{y}_{2}, y_{2}\right]-\frac{\mu}{4} \chi^{\dagger} \gamma_{5} \chi\right) . \tag{2.35}
\end{equation*}
$$

As usual, susy transformation of vector multiplet is changed as follows

$$
\begin{equation*}
\Delta \delta \lambda=i D^{3} \epsilon_{1}+\left(i D^{1}+D^{2}\right) \epsilon_{2} \tag{2.36}
\end{equation*}
$$

when hypermultiplets are present. In addition the hypermultiplet fields must transform as

$$
\begin{align*}
& \delta \bar{y}_{i}=-2 i \chi^{\dagger} \epsilon_{i}(t), \\
& \delta \chi=-D_{0} y_{i} \epsilon_{i}-i \sum_{\mu=1}^{5}\left[X_{\mu}, y_{i}\right] \gamma_{\mu} \epsilon_{i}+\frac{i \mu}{6} \gamma_{5} y_{1} \epsilon_{1}+\frac{i \mu}{3} \gamma_{5} y_{2} \epsilon_{2} . \tag{2.37}
\end{align*}
$$

Recall that $\epsilon_{1}=-i \epsilon$ and $\epsilon_{2}=-i \tilde{B} \epsilon_{1}^{*}$.
This completes rewriting of BMN's deformed M (atrix) theory in terms of $\mathcal{N}=8$ supersymmetry. While obvious, it is worthwhile to point out that vacuum energy contribution from hypermultiplet degrees of freedom cancel among themselves. Bosons split into two real with mass $|\mu / 3|$ and two real with $|\mu / 6|$ while all four complex fermions are of mass $|\mu / 4|$, so that

$$
\begin{equation*}
\operatorname{dim}(U(N)) \times\left(2 \times \frac{|\mu|}{3}+2 \times \frac{|\mu|}{6}-4 \times \frac{|\mu|}{4}\right)=0 \tag{2.38}
\end{equation*}
$$

2.5 Deformation with Fundamental Hypermultiplet

Finally we are ready to add other hypermultiplets. To be specific, let us add fundamental hypermultiplets for $U(N)$ while for other multiplets, this should carry over verbatim. Let q_{i} complex scalars and ψ complex spinor in representation \bar{N} as before,

$$
\begin{equation*}
\Delta L_{\text {fund }}=\operatorname{Tr}\left(-\frac{1}{2}\left(\frac{\mu}{3}\right)^{2} \bar{q}_{2} q_{2}-\frac{1}{2}\left(\frac{\mu}{6}\right)^{2} \bar{q}_{1} q_{1}-\frac{1}{2} \mu X_{5} \bar{q}_{2} q_{2}-\frac{\mu}{4} \psi^{\dagger} \gamma_{5} \psi\right) . \tag{2.39}
\end{equation*}
$$

The susy transformation extends to

$$
\begin{align*}
& \delta \bar{q}_{i}=-2 i \psi^{\dagger} \epsilon_{i}(t) \\
& \delta \psi=-D_{0} q_{i} \epsilon_{i}+i \sum_{\mu=1}^{5} q_{i} X_{\mu} \gamma_{\mu} \epsilon_{i}+\frac{i \mu}{6} \gamma_{5} q_{1} \epsilon_{1}+\frac{i \mu}{3} \gamma_{5} q_{2} \epsilon_{2} . \tag{2.40}
\end{align*}
$$

As in the above adjoint hypermultiplet, the vacuum energy cancels among each hypermultiplet

$$
\begin{equation*}
N \times\left(2 \times \frac{|\mu|}{3}+2 \times \frac{|\mu|}{6}-4 \times \frac{|\mu|}{4}\right)=0 . \tag{2.41}
\end{equation*}
$$

3. Deformed $\mathcal{N}=8$ Superalgebra

Let us start by rewriting deformed $\mathcal{N}=16$ superalgebra of BMN in a form suitable for the Dirac matrices of section 2.2. Since the Dirac matrix is now complex, fermions and supercharges are all necessarily complex. The reality property is achieved by imposing a Majorana condition $\Psi=B \Psi^{*}$. Thus all 16 supercharge must satisfy,

$$
\begin{equation*}
\mathcal{Q}=B\left(\mathcal{Q}^{\dagger}\right)^{T} \tag{3.1}
\end{equation*}
$$

where the transposition is for the spinor indices only. To be definite, let us write their explicit form, ${ }^{2}$

$$
\begin{align*}
\mathcal{Q}_{M} & =\left(P_{I} \bar{\gamma}_{I}+\frac{i}{2}\left[X_{I}, X_{J}\right] \bar{\gamma}_{I J}-\frac{\mu}{3} X_{a} \bar{\gamma}_{a} \bar{\gamma}_{567}-\frac{\mu}{6} X_{s} \bar{\gamma}_{s} \bar{\gamma}_{567}\right)_{M K} \Psi_{K} \\
\mathcal{Q}_{K}^{\dagger} & =\Psi_{M}^{\dagger}\left(P_{I} \bar{\gamma}_{I}-\frac{i}{2}\left[X_{I}, X_{J}\right] \bar{\gamma}_{I J}+\frac{\mu}{3} X_{a} \bar{\gamma}_{a} \bar{\gamma}_{567}-\frac{\mu}{6} X_{s} \bar{\gamma}_{s} \bar{\gamma}_{567}\right)_{M K} \tag{3.2}
\end{align*}
$$

with $S O(9)$ spinor indices M and K. As usual the canonical commutators are $\left[P_{I}, X^{J}\right]=-i \delta_{I}^{J}$. The anticommutators of the supercharges are ${ }^{3}$

$$
\begin{align*}
\left\{\mathcal{Q}_{M}, \mathcal{Q}_{K}^{\dagger}\right\} & =\delta_{M K} 2 \mathcal{H}-\frac{\mu}{3}\left(\bar{\gamma}_{a b} \bar{\gamma}_{567}\right)_{M K} \mathcal{L}_{a b}+\frac{\mu}{6}\left(\bar{\gamma}_{s t} \bar{\gamma}_{567}\right)_{M K} \mathcal{L}_{s t} \\
& +i\left(\bar{\gamma}^{I}\right)_{M K} \operatorname{Tr}\left[X^{I} \mathcal{G}\right], \tag{3.4}
\end{align*}
$$

[^1]where \mathcal{G} is the Gauss constraint. As before, a, b run over $5,6,7$, while s, t run over $1,2,3,4,8,9$. Supercharges do not commute with Hamiltonian in these mass deformed theories, but raise or lower energy as follows,
\[

$$
\begin{equation*}
\left[\mathcal{H}, \mathcal{Q}_{K}^{\dagger}\right]=-i \frac{\mu}{12} \mathcal{Q}_{M}^{\dagger}\left(\bar{\gamma}_{567}\right)_{M K} \tag{3.5}
\end{equation*}
$$

\]

As a matter of convenience, we regard this theory as $\mathcal{N}=8$ with a single adjoint hypermultiplet, and consider a subset of 8 supercharges. Recall that

$$
\begin{equation*}
\Gamma_{11}=1 \otimes 1 \otimes \sigma_{3} \otimes 1 \otimes \sigma_{3} \tag{3.6}
\end{equation*}
$$

with respect to which all fermions and thus all 16 supercharges must be of +1 eigenvalue. Thus 16 supercharges are split into two classes;

$$
\begin{equation*}
\mathcal{Q}=Q \oplus Q^{\prime} \tag{3.7}
\end{equation*}
$$

where Q_{α}^{i} are $(+,+)$ eigenvalues with respect to two σ_{3} factors of Γ_{11} and $\left(Q^{\prime}\right)_{\alpha}^{i}$ are of $(-,-)$ eigenvalues. The reduction we took involves keeping the former.

Reduction to $\mathcal{N}=8$ is a matter of picking out $(+,+)$ eigensectors under Γ_{11}. This means that of various combinations of Dirac matrices appearing in the right hand side of Eq. (3.4), only those that are diagonal under the decomposition $\mathcal{Q}=Q \oplus Q^{\prime}$ may survive the truncation. We list all such combinations, and their truncated form as $(4 \times 4) \otimes(2 \times 2)$,

$$
\begin{array}{rlrl}
\bar{\gamma}_{67} \bar{\gamma}_{567} & \rightarrow \gamma_{5} \otimes(-1), & \\
\bar{\gamma}_{89} \bar{\gamma}_{567} & \rightarrow \gamma_{5} \otimes(+1) \\
\bar{\gamma}_{\mu \nu} \bar{\gamma}_{567} & \rightarrow \gamma_{\mu \nu} \gamma_{5} \otimes i \sigma_{3} \\
\bar{\gamma}_{\mu} & \rightarrow \gamma_{\mu} \otimes \sigma_{3} & (\mu, \nu=1,2,3,4), \tag{3.8}\\
& (\mu=1,2,3,4,5),
\end{array}
$$

in order of their appearance in (3.4). The reduced superalgebra is then,

$$
\begin{align*}
\left\{Q_{\alpha i}, Q_{\beta j}^{\dagger}\right\} & =\delta_{i j} \delta_{\alpha \beta} 2 H \\
& +\mu \delta_{i j}\left(\gamma^{5}\right)_{\alpha \beta}[T]+\frac{\mu}{3} \delta_{i j}\left(\gamma^{5}\right)_{\alpha \beta}[S]+\frac{\mu}{6} \sum_{\mu, \nu=1}^{4} i\left(\sigma_{3}\right)_{i j}\left(\gamma^{\mu \nu} \gamma^{5}\right)_{\alpha \beta}\left[L_{\mu \nu}\right] \\
& +\sum_{\mu=1}^{5} i\left(\sigma_{3}\right)_{i j}\left(\gamma^{\mu}\right)_{\alpha \beta} \operatorname{Tr}\left[X^{\mu} \mathcal{G}\right] \tag{3.9}
\end{align*}
$$

and

$$
\begin{equation*}
\left[H, Q_{\beta j}^{\dagger}\right]=\frac{\mu}{12} Q_{\alpha i}^{\dagger}\left(\gamma^{5}\right)_{\alpha \beta}\left(\sigma_{3}\right)_{i j}, \tag{3.10}
\end{equation*}
$$

with

$$
\begin{align*}
S & \equiv \frac{1}{2}\left[L_{67}-L_{89}\right], \\
T & \equiv \frac{1}{2}\left[L_{67}+L_{89}\right] . \tag{3.11}
\end{align*}
$$

Different notations for the Hamiltonian H and angular momenta $L^{\prime} s$ are used to emphasize that we are now considering $\mathcal{N}=8$ theories. See below for more detailed discussion of angular momenta and how they extends when we includes more hypermultiplets.
$L_{\mu \nu}(\mu, \nu=1,2,3,4)$ and S constitute the generators of the R-symmetry $S O(4)_{1,2,3,4} \times$ $S O(2)_{67-89}$. The other generator T, on the other hand, does not correspond to an Rsymmetry in $\mathcal{N}=8$ language. Instead it rotates the entire hypermultiplet as a whole by a $U(1)$ phase. In particular T will drop away if we remove all hypermultiplets. We summarize below how various fields are charged under (S, T),

$$
\begin{array}{cccc}
& & S & T \\
X_{\mu} & \rightarrow & 0 & 0 \\
\lambda_{1}=\lambda & \rightarrow & -1 / 2 & 0 \tag{3.12}\\
\lambda_{2}=-i \tilde{B} \lambda^{*} & \rightarrow+1 / 2 & 0 \\
y_{1} & \rightarrow & +1 / 2 & -1 / 2 \\
y_{2} & \rightarrow & -1 / 2 & -1 / 2 \\
\chi & \rightarrow & 0 & -1 / 2
\end{array}
$$

For more general theories with other hypermultiplets the same algebra hold as long as we properly extend the operators to include these additional matter fields. Two $S O(2)$ global charges of the general hypermultiplets follows those of adjoint hypermultiplet;

$$
\begin{array}{lcc}
& S & T \\
q_{1} & \rightarrow & +1 / 2 \tag{3.13}
\end{array}-1 / 2 .
$$

Finally $L_{\mu \nu}$ with $\mu, \nu=1,2,3,4$ which rotates $X^{1,2,3,4}$ acts on all fermions universally $\operatorname{via} \Gamma_{\mu \nu}=\gamma_{\mu \nu} \otimes 1 \otimes 1 \otimes 1$.

Actually, there is only one independent, 4-component supercharge $Q_{\alpha} \equiv Q_{\alpha}^{1}$, since $Q^{2}=-i \tilde{B}\left(\left(Q^{1}\right)^{\dagger}\right)^{T}$. For the sake of completeness, we write down an explicit form of Q^{\dagger} with one adjoint hypermultiplet. Introducing new notation π_{i} for the conjugate momenta of \bar{y}_{i} 's such that $\left[\pi_{i}, \bar{y}_{j}\right]=-2 i \delta_{i j}$, we have

$$
Q_{\alpha}^{\dagger}=\lambda_{1}^{\dagger}\left(\gamma_{\mu} P_{\mu}-\frac{i}{2}\left[X_{\mu}, X_{\nu}\right] \gamma^{\mu \nu}+i \frac{\mu}{3} X^{5}-i \frac{\mu}{6} \sum_{\mu=1}^{4} X_{\mu} \gamma^{\mu} \gamma^{5}\right)
$$

$$
\begin{align*}
& +i \lambda_{1}^{\dagger}\left(\frac{\left[\bar{y}_{2}, y_{2}\right]-\left[\bar{y}_{1}, y_{1}\right]}{2}\right)-i \lambda_{2}^{\dagger}\left[\bar{y}_{2}, y_{1}\right] \\
& +\chi_{1}^{\dagger}\left(-\pi_{1}-i\left[X_{\mu}, y_{1}\right] \gamma^{\mu}+i \frac{\mu}{6} y_{1} \gamma^{5}\right) \\
& +\chi_{2}^{\dagger}\left(-\bar{\pi}_{2}-i\left[X_{\mu}, \bar{y}_{2}\right] \gamma^{\mu}-i \frac{\mu}{3} \bar{y}_{2} \gamma^{5}\right) . \tag{3.14}
\end{align*}
$$

One must keep in mind that

$$
\begin{array}{ll}
\lambda_{1}=\lambda, & \lambda_{2}=-i \tilde{B} \lambda^{*} \\
\chi_{1}=\chi, & \chi_{2}=+i \tilde{B} \chi^{*} \tag{3.15}
\end{array}
$$

Adding more hypermultiplets is done straightforwardly by copying the hypermultiplet part (last 3 lines) and changing the gauge indices. Then, the above superalgebra may be rewritten without the symplectic indices as

$$
\begin{align*}
\left\{Q_{\alpha}, Q_{\beta}\right\} & =0 \\
\left\{Q_{\alpha}, Q_{\beta}^{\dagger}\right\} & =\delta_{\alpha \beta} 2 H+\mu\left(\gamma_{5}\right)_{\alpha \beta}[T]+\frac{\mu}{3}\left(\gamma_{5}\right)_{\alpha \beta}[S]+\frac{\mu}{6} \sum_{\mu, \nu=1}^{4} i\left(\gamma^{\mu \nu} \gamma^{5}\right)_{\alpha \beta}\left[L_{\mu \nu}\right] \\
& +\sum_{\mu=1}^{5} i\left(\gamma^{\mu}\right)_{\alpha \beta} \operatorname{Tr}\left[X^{\mu} \mathcal{G}\right] \tag{3.16}
\end{align*}
$$

and

$$
\begin{equation*}
\left[H, Q_{\beta}^{\dagger}\right]=\frac{\mu}{12} Q_{\alpha}^{\dagger}\left(\gamma^{5}\right)_{\alpha \beta} \tag{3.17}
\end{equation*}
$$

4. DLCQ of Fivebranes in PP-Wave Background and Giant Gravitons

In ordinary M (atrix) theory, k longitudinal fivebranes can be studied by considering $\mathcal{N}=8$ SYQM with k fundamental hypermultiplets. As is well known, this comes about because longitudinal fivebranes are actually D4 branes whereby D0-D4 strings are introduced. The fivebrane is one of more difficult objects to understand, largely because their mutual interaction is governed by tensorial theory instead of usual gauge theories.

In fact, even some of more elementary aspect of fivebrane dynamics are still mysterious, such as its number of degrees of freedom. The latter has been estimated to scale as k^{3} for large k, both from study of holography 15 and from study of conformal [13] and axial [14] anomalies. No compelling, microscopic explanation of this counting is available at the moment. One of more concrete proposal for study of fivebrane is via DLCQ approach, which really boils down to study of the above mentioned M (atrix) theory with fundamental hypermultiplets. Here again, even some
of more elementary questions prove very difficult to answer. For instance, one may ask quantum vacuum structure of such SYQM, but even this has not been answered thoroughly. This was answered in some special cases in Refs. [16, 17, 18, 19, 20].

One may hope that simplification from the above mass deformation will give us some extra handle on fivebranes, in much the same way that we are hoping to learn more about string theory by studying its behavior in the pp-wave backgrounds, such as the vacuum structure. With k fivebranes lying along $x^{0,6,7,8,9,10}$, in addition to the fivebranes that gave rise to the pp-wave background, dynamics of N D0 partons are described by the above deformed $\mathcal{N}=8$ SYQM with one adjoint hypermultiplet and k fundamental hypermultiplets. In this we wish to explore supersymmetric vacua of such a theory.

4.1 Fuzzy Spheres as Giant Gravitons in the Bulk

Most intriguing objects found to date in the mass deformed $\mathcal{N}=16 \mathrm{M}$ (atrix) theory of BMN are the fuzzy sphere solutions. This consists of three nontrivial matrix X^{a} with $a=5,6,7$ such that

$$
\begin{equation*}
\left[X^{a}, X^{b}\right]=-\frac{i \mu}{3} \epsilon_{a b c} X^{c} \tag{4.1}
\end{equation*}
$$

is satisfied [1]. This can be rescaled to the standard $s u(2)$ algebra. Remarkably, such nontrivial solutions are actually of zero energy and preserves all dynamical supersymmetries.

The solutions are classified into irreducible representations of $s u(2)$, so, for $S U(N)$ SYQM, there are as many such solution as the number of inequivalent partitions of N. These classical solutions are strongly reminiscent of D0 bound states of original M (atrix) theory [21]. Indeed, the bound states are suppose to exist for any number of D0's, which means that, for $S U(N)$ SYQM and $N=\sum_{p} N_{p}$, there are sectors with groups of N_{p} D0 particles bound together. In the current mass deformed version, translational degrees of freedom are lost, and everything is confined near the origin. Nevertheless it is tantalizing that hint of these D0 bound states still survives in the form of giant gravitons 12 trapped by the confining potential.

Recall that deformed matrix theory of BMN admits a set of classical vacua that preserve all dynamical supersymmetries. These zero energy solutions can be understood easily from the form of potential with $X^{i}=0$ for $i=1,2,3,4,8,9$.

$$
\begin{equation*}
V \rightarrow \operatorname{Tr}\left(-\frac{1}{4} \sum_{a, b=5,6,7}\left[X^{a}, X^{b}\right]^{2}+\frac{1}{2}\left(\frac{\mu}{3}\right)^{2} \sum_{a=5,6,7}\left(X^{a}\right)^{2}-i \frac{\mu}{3} \epsilon_{a b c} X^{a} X^{b} X^{c}\right) \tag{4.2}
\end{equation*}
$$

which can be made into a complete square,

$$
\begin{equation*}
-\frac{1}{4} \sum \operatorname{Tr}\left(\left[X^{a}, X^{b}\right]+\frac{i \mu}{3} \epsilon_{a b c} X^{c}\right)^{2} \tag{4.3}
\end{equation*}
$$

A fuzzy sphere,

$$
\begin{equation*}
X^{a}=-\frac{\mu}{3} J^{a} \tag{4.4}
\end{equation*}
$$

with any N dimensional representation J^{a} of $s u(2)$, is a classical ground state.
In fact this is sufficient to show that these are invariant under all dynamical supercharges once we note that superalgebra are of the form

$$
\begin{equation*}
\left\{Q_{\alpha}, Q_{\beta}\right\}=\delta_{\alpha \beta} 2 H+\text { angular momentum } \tag{4.5}
\end{equation*}
$$

which, for purely bosonic configurations with zero momentum, reduces to

$$
\begin{equation*}
\left\{Q_{\alpha}, Q_{\beta}\right\}=\delta_{\alpha \beta} 2 V \tag{4.6}
\end{equation*}
$$

Thus a purely bosonic solution with $V=0$ and no momentum preserves all dynamical supersymmetries. ${ }^{4}$

Given $U(N)$ matrix theory, there is precisely one such distinct state for each partition $N=\sum_{p} N_{p}$, corresponding to the direct sum of N_{p} dimensional irreducible representations of $s u(2)$. These classical states and its quantum counterpart is closest thing to a usual Kaluza-Kline modes of supergraviton, or equivalently BPS bound states of D-particles. In fact, one may think each of these $N_{p} \times N_{p}$ blocks as the bound state N_{p} D-particles that are blown-up into a spherical membrane due to Myers' dielectric effect [23].

4.2 BPS equations for $\mathcal{N}=8$

It thus becomes of some importance to search for such supersymmetric classical and quantum vacua in the deformed matrix quantum mechanics with $\mathcal{N}=8$ supercharges. In the simplest case of pure $\mathcal{N}=8$ quantum mechanics with no hypermultiplet at all, adjoint or not, since Myers' cubic term is absent in this case, and rest of bosonic potential are positive definite, we can immediately see that no analogous classical solution exists. With one adjoint hypermultiplet, we basically come back to BMN case, where the only difference now is that instead of $X^{a=5,6,7}$, we use the notation $X^{5} \rightarrow X^{5}$ and $X^{6}+i X^{7} \rightarrow \bar{y}_{2} ;$

$$
\begin{align*}
& -\frac{1}{4} \operatorname{Tr}\left(\left[X^{a}, X^{b}\right]+\frac{i \mu}{3} \epsilon_{a b c} X^{c}\right)^{2} \tag{4.7}\\
\rightarrow & +\frac{1}{2} \operatorname{Tr}\left(\frac{1}{2}\left[\bar{y}_{2}, y_{2}\right]+\frac{\mu}{3} X^{5}\right)^{2} \\
& -\frac{1}{2} \operatorname{Tr}\left(\left(\left[X^{5}, \bar{y}_{2}\right]+\frac{\mu}{3} \bar{y}_{2}\right)\left(\left[X^{5}, y_{2}\right]-\frac{\mu}{3} y_{2}\right)\right) . \tag{4.8}
\end{align*}
$$

[^2]It is instructive to keep y_{1} as well in the potential and write it in complete squares,

$$
\begin{align*}
& +\frac{1}{2} \operatorname{Tr}\left(\frac{1}{2}\left[\bar{y}_{2}, y_{2}\right]-\frac{1}{2}\left[\bar{y}_{1}, y_{1}\right]+\frac{\mu}{3} X^{5}\right)^{2} \\
& -\frac{1}{2} \operatorname{Tr}\left(\left(\left[X^{5}, \bar{y}_{2}\right]+\frac{\mu}{3} \bar{y}_{2}\right)\left(\left[X^{5}, y_{2}\right]-\frac{\mu}{3} y_{2}\right)\right) \\
& -\frac{1}{2} \operatorname{Tr}\left(\left(\left[X^{5}, \bar{y}_{1}\right]+\frac{\mu}{6} \bar{y}_{1}\right)\left(\left[X^{5}, y_{1}\right]-\frac{\mu}{6} y_{1}\right)\right) \\
& +\frac{1}{8} \operatorname{Tr}\left(\left[\bar{y}_{1}, y_{2}\right]\left[\bar{y}_{2}, y_{1}\right]\right), \tag{4.9}
\end{align*}
$$

which is more suitable for generalization. ${ }^{5}$
Generalization to cases with additional hypermultiplets is obvious. Denoting complex scalars $q_{i}^{(f)}$ of the f-th fundamental hypermultiplets, let us write the reduced potential similarly

$$
\begin{align*}
& +\frac{1}{2} \operatorname{Tr}\left(\frac{1}{2}\left[\bar{y}_{2}, y_{2}\right]+\frac{1}{2} \sum_{f} \bar{q}_{2}^{(f)} q_{2}^{(f)}-\frac{1}{2}\left[\bar{y}_{1}, y_{1}\right]-\frac{1}{2} \sum_{f} \bar{q}_{1}^{(f)} q_{1}^{(f)}+\frac{\mu}{3} X^{5}\right)^{2} \\
& -\frac{1}{2} \operatorname{Tr}\left(\left(\left[X^{5}, \bar{y}_{2}\right]+\frac{\mu}{3} \bar{y}_{2}\right)\left(\left[X^{5}, y_{2}\right]-\frac{\mu}{3} y_{2}\right)\right) \\
& -\frac{1}{2} \operatorname{Tr}\left(\left(\left[X^{5}, \bar{y}_{1}\right]+\frac{\mu}{6} \bar{y}_{1}\right)\left(\left[X^{5}, y_{1}\right]-\frac{\mu}{6} y_{1}\right)\right) \\
& +\frac{1}{2} \sum_{f} \operatorname{Tr}\left(\left(X^{5} \bar{q}_{2}^{(f)}+\frac{\mu}{3} \bar{q}_{2}^{(f)}\right)\left(q_{2}^{(f)} X^{5}+\frac{\mu}{3} q_{2}^{(f)}\right)\right) \\
& +\frac{1}{2} \sum_{f} \operatorname{Tr}\left(\left(X^{5} \bar{q}_{1}^{(f)}+\frac{\mu}{6} \bar{q}_{1}^{(f)}\right)\left(q_{1}^{(f)} X^{5}+\frac{\mu}{6} q_{1}^{(f)}\right)\right) \\
& +\frac{1}{8} \operatorname{Tr}\left(\left(\left[\bar{y}_{1}, y_{2}\right]+\sum_{f} \bar{q}_{1}^{(f)} q_{2}^{(f)}\right)\left(\left[\bar{y}_{2}, y_{1}\right]+\sum_{f} \bar{q}_{2}^{(f)} q_{1}^{(f)}\right)\right) \tag{4.10}
\end{align*}
$$

In the presence of fundamental hypermultiplets, the equation for static classical vacua is then

$$
\begin{align*}
-\frac{\mu}{3} X^{5} & =\frac{1}{2}\left[\bar{y}_{2}, y_{2}\right]+\frac{1}{2} \sum_{f} \bar{q}_{2}^{(f)} q_{2}^{(f)}-\frac{1}{2}\left[\bar{y}_{1}, y_{1}\right]-\frac{1}{2} \sum_{f} \bar{q}_{1}^{(f)} q_{1}^{(f)}, \tag{4.11}\\
{\left[X^{5}, \bar{y}_{1}\right] } & =-\frac{\mu}{6} \bar{y}_{1}, \tag{4.12}\\
{\left[X^{5}, \bar{y}_{2}\right] } & =-\frac{\mu}{3} \bar{y}_{2}, \tag{4.13}\\
X^{5} \bar{q}_{1}^{(f)} & =-\frac{\mu}{6} \bar{q}_{1}^{(f)}, \tag{4.14}
\end{align*}
$$

[^3]\[

$$
\begin{align*}
X^{5} \bar{q}_{2}^{(f)} & =-\frac{\mu}{3} \bar{q}_{2}^{(f)}, \tag{4.15}\\
0 & =\left[\bar{y}_{1}, y_{2}\right]+\sum_{f} \bar{q}_{1}^{(f)} q_{2}^{(f)} . \tag{4.16}
\end{align*}
$$
\]

These conditions can also be derived from supersymmetry conditions: these are precisely condition for a purely bosonic solution to preserve all 8 dynamical supersymmetries. Eq. (4.11) and Eq. (4.16) follow from $\delta \lambda=0$ upon using equation of motion for the auxiliary fields, \mathbf{D}, while middle ones follow from $\delta \chi=0$ and $\delta \psi=0$ respectively.

4.3 Giant Gravitons on Fivebranes

Nontrivial solutions with $q=0$ are of course the fuzzy sphere solutions again, and corresponds to states in the "bulk". In the presence of fivebranes, new supersymmetric solutions arise with $q \neq 0$. A particularly simple set of solutions can be found in Abelian case, corresponding to a single D0 probing k fivebranes at origin in the pp-wave limit. X^{5} could be either $-\mu / 3$ for $q_{1}=0$ or $-\mu / 6$ for $q_{2}=0$. However, nonnegativity of $\bar{q}_{i} q_{i}$ disallow the latter solution, so we must take $q_{1}=0$ and $X^{5}=-\mu / 3$. Commutators vanish identically, implying that $y_{i}=0$ also, and the equations simplify to

$$
\begin{equation*}
\frac{1}{2} \sum_{f}\left|q_{2}^{(f)}\right|^{2}=-\frac{\mu}{3} X^{5}=\left(\frac{\mu}{3}\right)^{2} \tag{4.17}
\end{equation*}
$$

Thus, a continuous set of solutions exist and are parametrized as

$$
\begin{equation*}
q_{2}^{(f)}=\sqrt{2} \frac{\mu}{3} z^{f} \tag{4.18}
\end{equation*}
$$

where z is any complex k-vector of unit length. Furthermore, we must identify vacua up to $U(1)$ gauge rotation, and so the vacuum moduli space is $C P^{k-1}$. Quantization of this will lead to a unique supersymmetric ground state, since the low energy dynamics is purely bosonic, and should be related to the bound states found in Ref. 18.

For nonabelian theories again with k hypermultiplet, there is a direct generalization of the above family of solutions. Take an $N \times N$ block of adjoint scalars and write

$$
\begin{equation*}
-\left(X^{5}\right)_{A B}=\frac{\mu}{3}(n+1-A) \delta_{A B} \tag{4.19}
\end{equation*}
$$

where $(N-1) / 2<n \leq N$ so that $\left(X^{5}\right)_{n n}=-\mu / 3$. With $q_{1}=0=y_{1}$, the following form of \bar{q}_{2} and \bar{y}_{2} solve the BPS equations

$$
\begin{equation*}
\left(\bar{q}_{2}^{(f)}\right)_{A}=\sqrt{2} \frac{\mu}{3} w_{2}^{f} \delta_{A, n}, \quad\left(\bar{y}_{2}\right)_{A B}=\sqrt{2} \frac{\mu}{3} \alpha_{A} \delta_{A, B-1} \tag{4.20}
\end{equation*}
$$

with

$$
\begin{align*}
\left|\alpha_{1}\right|^{2} & =n, \\
\left|\alpha_{2}\right|^{2}-\left|\alpha_{1}\right|^{2} & =n-1, \\
& \cdot \\
& \cdot \\
\left|\alpha_{n-1}\right|^{2}-\left|\alpha_{n-2}\right|^{2} & =2, \\
\sum\left|w_{2}^{f}\right|^{2}+\left|\alpha_{n}\right|^{2}-\left|\alpha_{n-1}\right|^{2} & =1, \\
\left|\alpha_{n+1}\right|^{2}-\left|\alpha_{n+2}\right|^{2} & =0, \tag{4.21}\\
& \cdot \\
& \cdot \\
\left|\alpha_{N-1}\right|^{2}-\left|\alpha_{N-2}\right|^{2} & =n+2-N, \\
-\left|\alpha_{N-1}\right|^{2} & =n+1-N .
\end{align*}
$$

Note that this family of solution is again parametrized by $C P^{k-1}$.
Another set of solutions are

$$
\begin{equation*}
-\left(X^{5}\right)_{A B}=\frac{\mu}{3}(m+1 / 2-A) \delta_{A B} \tag{4.22}
\end{equation*}
$$

where $1 \leq m<N / 2$ so that $\left(X^{5}\right)_{m m}=-\mu / 6$. With $q_{2}=0=y_{1}$, the following form of \bar{q}_{1} and \bar{y}_{2} solves the BPS equation,

$$
\begin{equation*}
\left(\bar{q}_{1}^{(f)}\right)_{A}=\sqrt{2} \frac{\mu}{3} w_{1}^{f} \delta_{A, m}, \quad\left(\bar{y}_{2}\right)_{A B}=\sqrt{2} \frac{\mu}{3} \alpha_{A} \delta_{A, B-1}, \tag{4.23}
\end{equation*}
$$

with

$$
\begin{align*}
\left|\alpha_{1}\right|^{2} & =m-1 / 2, \\
\left|\alpha_{2}\right|^{2}-\left|\alpha_{1}\right|^{2} & =m-3 / 2, \\
& \cdot \\
\cdot & \cdot \\
\left|\alpha_{m-1}\right|^{2}-\left|\alpha_{m-2}\right|^{2} & =3 / 2, \\
-\sum\left|w_{1}^{f}\right|^{2}+\left|\alpha_{m}\right|^{2}-\left|\alpha_{m-1}\right|^{2} & =1 / 2, \\
\left|\alpha_{m+1}\right|^{2}-\left|\alpha_{m+2}\right|^{2} & =-1 / 2, \tag{4.24}\\
& \cdot \\
& \cdot \\
\left|\alpha_{N-1}\right|^{2}-\left|\alpha_{N-2}\right|^{2} & =m+3 / 2-N, \\
-\left|\alpha_{N-1}\right|^{2} & =m+1 / 2-N .
\end{align*}
$$

Each integer $m(1 \leq m<N / 2)$ or $n((N-1) / 2<n \leq N)$ gives distinct sets of solutions, which are each parametrized by $C P^{k-1}$.

5. Conclusion

In this note, we derived massive deformation of $\mathcal{N}=8$ supersymmetric Yang-Mills quantum mechanics, analogous to BMN's deformation of M (atrix) theory. A particular case with one adjoint hypermultiplet and k fundamental hypermultiplet is interpreted as D0 dynamics in the presence of k longitudinal fivebranes, in the Mtheory pp-wave background. A very rich structure of vacua are shown to exist when fundamental hypermultiplets are present, typically parametrized by $C P^{k-1}$ vacuum moduli spaces.

Clearly these states are deformation of fuzzy spheres, or giant gravitons, of $\mathcal{N}=16$ deformed M (atrix) theory of BMN, where deformation entails turning on fundamental hypermultiplets. It is tempting to view these states, since they protrude into the Higgs phase, as giant gravitons "trapped" by fivebranes. However, it remains largely mysterious what role they may play in dynamics of fivebranes.

Another aspect that needs be addressed is the matter of quantum ground states, as opposed to classical ground states. Proliferation of classical ground states will be in part lifted once quantum consideration is used; for each $C P^{k-1}$ vacuum moduli space, there is a unique quantum ground state, almost certainly. Still there are probably more than one inequivalent quantum ground states, given $k \geq 1$ and $N>1$, since vacuum manifold consists of many disconnected $C P^{k-1}$. The matter of quantum spectra of these $\mathcal{N}=8$ theories will be investigated elsewhere.

Before closing, it is worthwhile to note that the kind of reduction process we have taken can be repeated for $\mathcal{N}=8$ theory. For instance, start with the deformed $\mathcal{N}=8$ pure SYQM of section 2.3 , truncate away X^{4}, X^{5} while restricting λ to be chiral under γ^{5}. At the end of the day, one obtains a pure $\mathcal{N}=4 \mathrm{SYQM}$ which is mass deformed by μ. Again for this theory, cancellation of vacuum energy is complete,

$$
\begin{equation*}
3 \times \frac{\mu}{6}-2 \times \frac{\mu}{4}=0 \tag{5.1}
\end{equation*}
$$

since, in each vector multiplet, there are 3 bosons of mass $\mu / 6$ and 2 complex fermions of mass $\mu / 4$. At the moment it is unclear to us what is a pp-wave interpretation, and indeed whether there is one. Regardless of stringy interpretation, however, such large class of mass-deformed SYQM may provide further insights on issues on vacuum structure of general SYQM.

Acknowledgement

This work is supported in part by KOSEF 1998 interdisciplinary research grant 98-07-02-07-01-5 (K.L.). N.K. is grateful to J.-H. Park for useful comments and discussions, and acknowledge the hospitality of KIAS where part of the work was done.

References

[1] D. Berenstein, J. Maldacena and H. Nastase, "Strings in Flat Space and PP-Waves from $\mathcal{N}=4$ Super Yang Mills", JHEP 0204 (2002) 013, hep-th/0202021.
[2] M. Claudson, M.B. Halpern, "Supersymmetric Ground State Wavefunctions", Nucl. Phys. B 250 (1985) 689; R. Flume, "On Quantum Mechanics with Extended Supersymmetry and Non-Abelian Gauge Constraints", Ann. Phys. 164 (1985) 189.
[3] E. Witten, "String theory dynamics in various dimensions," Nucl. Phys. B 443 (1995) 85, hep-th/9503124.
[4] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, "M Theory As A Matrix Model: A Conjecture", Phys. Rev. D55 (1997) 5112, hep-th/9610043.
[5] E. Witten, ‘Bound States Of Strings And p-Branes," Nucl. Phys. B 460 (1996) 335, hep-th/9510135.
[6] B. de Wit, J. Hoppe and H. Nicolai, "On the Quantum Mechanics of Supermembranes", Nucl. Phys. B 305 [FS23] (1988) 545.
[7] J. Figueroa-O'Farrill and G. Papadopoulos, "Homogeneous fluxes, branes and a maximally supersymmetric solution of M-theory," JHEP 0108 (2001) 036, hep-th/0105308; M. Blau, J. Figueroa-O'Farrill, C. Hull and G. Papadopoulos, "Penrose limits and maximal supersymmetry," Class. Quant. Grav. 19 (2002) L87, hep-th/0201081.
[8] K. Dasgupta, M.M. Sheikh-Jabbari and M. van Raamsdonk, "Matrix Perturbation Theory For M-Theory On a PP-Wave", JHEP 0205 (2002) 056, hep-th/0205185.
[9] N. Kim and J. Plefka, "On the Spectrum of PP-Wave Matrix Theory", hep-th/0207034.
[10] K. Dasgupta, M. M. Sheikh-Jabbari and M. Van Raamsdonk, "Protected multiplets of M-theory on a plane wave," hep-th/0207050; N. Kim and J. H. Park, "Superalgebra for M-theory on a pp-wave," hep-th/0207061.
[11] O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, "Matrix description of interacting theories in six dimensions," Adv. Theor. Math. Phys. 1 (1998) 148, hep-th/9707079; O. Aharony, M. Berkooz and N. Seiberg, "Light-cone description of $(2,0)$ superconformal theories in six dimensions," Adv. Theor. Math. Phys. 2 (1998) 119, hep-th/9712117.
[12] J. McGreevy, L. Susskind and N. Toumbas, "Invasion of the giant gravitons from anti-de Sitter space," JHEP 0006 (2000) 008 hep-th/0003075.
[13] M. Henningson and K. Skenderis, "The holographic Weyl anomaly," JHEP9807 (1998) 023, hep-th/9806087.
[14] J. A. Harvey, R. Minasian and G. Moore, "Non-abelian tensor-multiplet anomalies," JHEP9809, (1998) 004, hep-th/9808060; P. Yi, "Anomaly of $(2,0)$ theories," Phys. Rev. D 64 (2001) 106006, hep-th/0106165.
[15] I. R. Klebanov and A. A. Tseytlin, "Entropy of Near-Extremal Black p-branes," Nucl. Phys. B 475 (1996) 164, hep-th/9604089.
[16] S. Sethi and M. Stern, "A comment on the spectrum of H-monopoles," Phys. Lett. B 398 (1997) 47, hep-th/9607145.
[17] S. Sethi and M. Stern, "The structure of the D0-D4 bound state," Nucl. Phys. B 578 (2000) 163, hep-th/0002131.
[18] M. Cvetic, G.W. Gibbons, H. Lu, and C.N. Pope, "Hyper-Kahler Calabi metrices, L^{2} harmonic forms, resolved M2-branes, and $A S_{4} / C F T_{3}$ correspondence," Nucl. Phys. B617 (2001) 151, hep-th/0102185; C. J. Kim, K. M. Lee and P. Yi, "DLCQ of fivebranes, large N screening, and L^{2} harmonic forms on Calabi manifolds," Phys. Rev. D 65 (2002) 065024, hep-th/0109217.
[19] A. Keurentjes and S. Sethi, "Twisting E8 five-branes," hep-th/0205162.
[20] K. M. Lee and P. Yi, "Quantum spectrum of instanton solitons in five dimensional noncommutative U(N) theories," Phys. Rev. D 61 (2000) 125015, hep-th/9911186;
K. M. Lee, D. Tong and S. Yi, "The moduli space of two U(1) instantons on noncommutative R^{4} and $R^{3} \times S^{1}$," Phys. Rev. D 63 (2001) 065017 hep-th/0008092.
[21] P. Yi, "Witten index and threshold bound states of D-branes," Nucl. Phys. B 505 (1997) 307, hep-th/9704098; S. Sethi and M. Stern, "D-brane bound states redux," Commun. Math. Phys. 194 (1998) 675, hep-th/9705046.
[22] D. Bak, "Supersymmetric branes in PP wave background", hep-th/0204033;
G. Bonelli, "Matrix strings in pp-wave backgrounds from deformed super Yang-Mills theory", hep-th/0205213; K. Sugiyama and K. Yoshida, "Supermembrane on the pp-wave background", hep-th/0206070; "BPS conditions of supermembrane on the pp-wave", hep-th/0206132; S. J. Hyun and H. J. Shin, "Branes from matrix theory in pp-wave background", hep-th/0206090.
[23] R. Myers, "Dielectric-branes," JHEP 12 (1999) 022, hep-th/9910053.

[^0]: ${ }^{1}$ to be distinguished from $\left\{\bar{\gamma}_{I}\right\}=\left\{\bar{\gamma}_{s}, \bar{\gamma}_{a}\right\}$

[^1]: ${ }^{2} \bar{\gamma}_{I}$'s in this section differ from those introduced in section 2.1. Instead, we have $\bar{\gamma}_{I}=\Gamma^{0} \Gamma_{I}$ in terms of complex Dirac matrices of (2.13) .
 ${ }^{3}$ Our convention is such that

 $$
 \begin{equation*}
 \mathcal{L}_{I J}=X_{I} P_{J}-X_{J} P_{I}+\cdots \tag{3.3}
 \end{equation*}
 $$

[^2]: ${ }^{4}$ More general class of solutions that preserves part of the supersymmetries may be found 22.

[^3]: ${ }^{5}$ While this may suggest a new class of ground states where $y_{2}=0$ instead of $y_{1}=0$, nontrivial y_{1} 's which are zero of the potential does not satisfy hermiticity conditions. No such additional ground state exists.

