
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301 (DOI: 10.1002/cpe.688)

Community software development
with the Astrophysics Simulation
Collaboratory

Gregor von Laszewski1,∗,†, Michael Russell2, Ian Foster1,2,
John Shalf3,4, Gabrielle Allen5, Greg Daues4, Jason Novotny3

and Edward Seidel4,5

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
2University of Chicago, Chicago, IL, U.S.A.
3Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A.
4National Center for Supercomputing Applications, Champaign, IL, U.S.A.
5Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Golm, Germany
6Washington University, St Louis, MI, U.S.A.

SUMMARY

We describe a Grid-based collaboratory that supports the collaborative development and use of advanced
simulation codes. Our implementation of this collaboratory uses a mix of Web technologies (for thin-
client access) and Grid services (for secure remote access to, and management of, distributed resources).
Our collaboratory enables researchers in geographically disperse locations to share and access compute,
storage, and code resources, without regard to institutional boundaries. Specialized services support
community code development, via specialized Grid services, such as online code repositories. We use
this framework to construct the Astrophysics Simulation Collaboratory, a domain-specific collaboratory
for the astrophysics simulation community. This Grid-based collaboratory enables researchers in the
field of numerical relativity to study astrophysical phenomena by using the Cactus computational
toolkit. Copyright 2002 John Wiley & Sons, Ltd.

KEY WORDS: collaboratory; Grid computing; Globus; Cactus; Java CoG Kit; Astrophysics Simulation
Collaboratory

∗Correspondence to: Gregor von Laszewski, Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, U.S.A.
†E-mail: gregor@mcs.anl.gov

Contract/grant sponsor: National Science Foundation
Contract/grant sponsor: Office of Advanced Scientific Computing Research, U.S. Department of Energy; contract/grant number:
W-31-109-Eng-38

Received 29 July 2001
Copyright 2002 John Wiley & Sons, Ltd. Revised 6 January 2002

1290 G. VON LASZEWSKI ET AL.

1. INTRODUCTION

Solving large complex problems often requires coordinated effort by geographically distributed
participants. The term collaboratory was created in the early 1990s to denote an infrastructure
supporting such collaborative endeavors [1]. Typically, collaboratories have emphasized interpersonal
communication and collaborative access to relatively simple resources. We are interested in extending
the collaboratory concept to address problem-solving methods and environments that require the
sharing and coordinated use of large numbers of distributed resources. In this context, we see
considerable value for Grid technologies, which address authentication, resource discovery and
resource access issues that arise when sharing distributed resources. Grids have emerged over
the past decade as a distributed computing infrastructure to promote the sharing of hardware,
information, knowledge and expertise across institutional and disciplinary boundaries [2,3]. We term
this combination of collaborative and Grid technologies a Grid-based collaboratory.

Although the results of our research can be applied to a variety of domains, we focus our attention
here on computational astrophysics, a discipline that has challenging requirements for large-scale
collaborative development and application of simulation, data analysis tools. For example, a typical
simulation experiment might involve the development of a simulation code from a dozen distinct
components, developed by different groups; the acquisition of computer resources at one or more
remote sites; monitoring and steering of the computation as it runs; and access to data resources at
one or more output locations. Our goal is to develop an Astrophysics Simulation Collaboratory (ASC)
that allows astrophysics and computational science researchers to cooperate as they develop and share
software, computational and data resources.

Discipline scientists are typically not experts in distributed computing. Hence, it is necessary that
our collaboratory hide, as much as possible, the complexity of using multiple remote resources. In the
past decade Web technologies have been accepted by many scientific communities as a means of
distributing and accessing services. Web pages present the information needed in an orderly and
structured fashion; Web protocols can be used to access remote information and services. Yet at the
same time, Web protocols and technologies are inadequate for the sharing and coordination issues that
arise when running simulations on remote systems, sharing multiple resources, and so forth. Here, Grid
technologies [3] can play an important role. Commodity Grid (CoG) kits [4] provide components for
accessing Grid services with commodity technologies such as Java, JSP, CORBA and Python.

In this paper we describe both the framework, services, and components needed to construct
Grid-enabled collaboratories, and the particular application of these technologies within our ASC.
The ASC [5,6] fulfills the following general requirements posed by the astrophysics simulation
community.

• Promote the creation of a community for sharing and developing simulation codes and
scientific results. The Grid infrastructure promotes the creation of virtual organizations (VOs) [3]
within which resources are shared across institutional boundaries through Grid services.

• Enable transparent access to remote resources, including computers, data storage archives,
information servers and shared code repositories.

• Enhance domain-specific component and service development supporting specific problem-
solving capabilities, such as the development of simulation codes for the astrophysical
community or the development of advanced Grid services reusable by the community.

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

ASTROPHYSICS SIMULATION COLLABORATORY 1291

• Distribute and install programs onto remote resources while accessing code repositories,
compilation and deployment services.

• Enable collaboration during program execution to foster interaction during the development
of parameters and the verification of the simulations.

• Enable shared control and steering of the simulations to support asynchronous collaborative
techniques among collaboratory members.

• Provide access to domain-specific clients that, for example, enable access to multimedia
streams and other data generated during the execution of the simulation.

2. ARCHITECTURE OVERVIEW

The ASC architecture has a modular structure and makes heavy use of Grid protocols and services to
access and manage distributed resources (Figure 1). The principal components and protocols used are
as follows.

• Web browsers serve as the primary end-user interface, serving dynamic HTML (D-HTML) and
Java applets obtained from the ASC application server. Other end-user applications are also used:
for example, for more advanced visualization functions (Figure 2).

• The ASC application server is the middle-tier entity that implements most ASC-specific logic,
interacting with:

– Grid services for purposes of resource discovery and authentication;
– resources to initiate and manage simulation and/or access and analyze data; and
– Web browsers and other applications for user interaction.

• An online credential repository, MyProxy [7], is used as a secure cache for user proxy
credentials, hence reducing barriers to the use of PKI authentication.

• An ASC index server supports registration and subsequent discovery of resources contributed to
the ASC, using MDS-2 protocols [8].

• Standard Grid protocols [3] provided by the Globus toolkit [9] are used to negotiate secure access
to remote resources, including CVS code repositories.

The vast majority of ASC-specific logic is incorporated within the ASC application server. This
component is responsible for handling all interactions with ASC users, for maintaining state associated
with user interactions, and for coordinating the use of remote resources to meet user requests. Figure 3
shows its internal structure. Major components include the following.

• We make extensive use of commodity Web technologies such as Java Servlets and JSP.
• We use software development kits (SDKs) and APIs provided by the Java CoG Kit to execute

the protocols used to access remote resources.
• We use new SDKs developed for this application (but of general utility) to address issues of code

management, deployment and simulation execution on Grid resources.

The final major component of our collaboratory is the Cactus code [10], a modular simulation
development framework that allows us to encourage and leverage the development of reusable
components within the astrophysical simulation community.

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

1292 G. VON LASZEWSKI ET AL.

Collective

Resource

Connectivity

Fabric

Application

. . .Computers Storage
Code

Repositories
Catalogs . . .

IP GSI . . .

. . .

. . .

. . .

GRAM
Protocol

GridFTP
Protocol

GSI-CVS
Protocol

ASC
Application Server

Online Credential
Repository (“MyProxy”)

ASC Index
Server

ASC

HTTP

MDS
Protocols

Cactus LDAP
Browser

Figure 1. A protocol-oriented view of Grid architecture, showing the principal components used to build the ASC.
Various components, in particular the ASC application server, are described in more detail in the text.

3. TECHNOLOGIES USED

We use three primary technologies to construct our collaboratory: the Cactus framework, to support
development of modular simulation codes; the Globus toolkit, for Grid services; and various Java and
Web technologies, to facilitate construction of the ASC application server.

3.1. The Cactus framework: modular simulation and code creation

Cactus is a modular simulation code framework [11] that uses component technologies to facilitate
the construction and management of complex codes. The Cactus project has established its own
terminology for naming different components. They term the code that coordinates the activities of
modules the flesh, and a module that performs activities and is coordinated by the flesh a thorn.

Thorns interoperate via standard interfaces and communicate directly with the flesh, but not with
one another. Hence, the development of thorns can be performed independently of one another, which
is essential for coordinating component development in large geographically dispersed research groups

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

ASTROPHYSICS SIMULATION COLLABORATORY 1293

Figure 2. The look and feel of the ASC exposed through a Web browser and a customized visualization component.

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

1294 G. VON LASZEWSKI ET AL.

Software Maintenance

Component and
Software

Repository

Software
Configuration

Software
Deployment

Session
Management

Resource
Management

Cactus Workbench

Resource
Monitor

Resources

General ASC Grid Services

Parameter
Archive

User
Credential

management

User
Account

management

Grid
Protocols GRAM GridFTP LDAP

MDS
Code

Repository
StorageCompute

Resource Database

HTTP

Web
Server

Astrophysics Collaboratory Application Server

Interface to the Grid through Java CoG Kit

GRAM
(GSI-CVS)

JDBC

Interface through Java and JSP components

Virtual
Organization

Cactus Portal

Grid Portal

MyProxy

GSI

Interaction

|

Applications

Interaction

|

Administrator

Figure 3. The structure of the ASC application server, showing the various components used
to meet the requirements identified in the text.

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

ASTROPHYSICS SIMULATION COLLABORATORY 1295

while being able to integrate specialized thorns developed by a large variety of groups. This separation
of the thorn development promotes, for example, the independent development of physics thorns to
model the black hole or hydro evolutions, and information technology thorns that provide access to
I/O, parallelism programming frameworks, or performance monitoring. Thus, the Cactus component
model permits astrophysicists with different levels of IT expertise to participate in collaborative
code development. The Cactus framework also supports sharing and cloning of thorns as part of
multiple code repositories. Cactus is distributed with tools that support access to Cactus modules
that are generally applicable to a variety of problem domains. An example provides a thorn that
supports remote visualization and steering of running simulations through an HTTP interface to enable
seamless integration with Web-based portals. Specialized components for the astrophysics community
are readily available. Furthermore, the Cactus framework is used as part of the specialized service to
perform astrophysics simulations. This includes distributing and running Cactus simulations on remote
resources and is supported on a wide variety of platforms. We use Cactus as part of ASC to create a
simulation code assembled from various thorns, contribute new thorns through a community process,
and execute and monitor them on remote resources.

3.2. Globus Grid services: enabling resource sharing

By using Grid technologies, in our case Globus [12] middleware, we minimize the difficulties
introduced by the tremendous variety of resource types, mechanisms and access policies, and the
complex coordination issues (e.g. relating to authentication and authorization), that we would otherwise
have to handle ourselves as part of developing a collaboratory.

The Globus toolkit [3,12] is a set of services and software libraries that support Grids and
Grid applications. The Toolkit includes software for security, information infrastructure, resource
management, data management, communication, fault detection and portability. It is packaged as a set
of components that can be used either independently or together to develop useful Grid applications
and programming tools. Globus toolkit components include the Grid security infrastructure (GSI) [13],
which provides a single-sign-on, run-anywhere authentication service, with support for delegation of
credentials to subcomputations, local control over authorization, and mapping from global to local
user identities; the Grid resource access and management (GRAM) protocol and service [14], which
provides remote resource allocation and process creation, monitoring, and management services; the
metacomputing directory service (MDS) [8,15], an extensible Grid information service that provides a
uniform framework for discovering and accessing system configuration and status information such as
compute server configuration, network status and the locations of replicated datasets; and GridFTP, a
high-speed data movement protocol [16]. A variety of higher-level services are implemented in terms
of these basic components.

3.3. Java framework and server pages: developing browser-accessible thin clients

3.3.1. Java server pages/servlets

To enable rapid prototyping of Web portals as part of ASC, we base much of our Web-based services
on the JavaServer Pages (JSP) technology [17]. JSP uses XML-like tags and scriptlets implemented in
the Java framework to encapsulate the logic that generates the content for the page. We have exposed

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

1296 G. VON LASZEWSKI ET AL.

the functionality of the application server as a set of reusable JSP components that both provide direct
access to Grid services and also implement higher-level services such as monitoring of the compute
resources, execution of complex jobs with file staging and cleanup abilities and maintaining session
state between ASC accesses. These components can be reused in other projects.

3.3.2. JDBC

Within the ASC application server we use a relational database to maintain the state of sessions.
We express all database operations in terms of Java database connectivity (JDBC) [18] calls, which
provide a generic interface to standard query language (SQL)-compliant database management
systems. Thus, the ASC can support all commercially viable SQL-based servers, all of which are
distributed with a JDBC provider. In our current implementation, we use the popular open-source
database server MySQL which is free for non-commercial use, well documented, reliable and provides
high performance.

3.3.3. Java CoG Kit

Within the ASC application server, we use SDKs provided by the Java Commodity Grid Toolkit [4] to
access Globus toolkit services, as follows:

• Security: access to GSI services and to the MyProxy [7] online credential repository for retrieval
of certificates.

• Information services: access to MDS information services through the Java naming and
directory interface (JNDI) [19].

• Job submission: remote job submission and management through GRAM client APIs and
protocols. This allows access to Grid resources including batch-scheduling systems on high-
performance computers.

• File transfer: secure access to GSI-enabled FTP servers for file transfer [16] as well as access
to GASS servers [20].

3.3.4. Other collaboratory technologies: collaboration through commodity technologies

We intend to integrate other collaborative technologies such as audio/video conferencing, chat rooms,
news and e-mail groups. We have refrained from doing so in this phase of the project because the
access to the Grid and the code repository was of most benefit to the user community we targeted first.

4. PORTAL-SPECIFIC SERVICES AND COMPONENTS

In this section we discuss services and components that we have developed to support the Web-based
collaboratories. In all cases we rely upon GSI security wherever possible.

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

ASTROPHYSICS SIMULATION COLLABORATORY 1297

4.1. Secure login

In order to gain access to services provided by the ASC, users logon to the ASC portal with a secure
Web form. Once logged on users may retrieve their GSI proxy certificates from the ASC MyProxy
server at any time. From there, users can make use of our application services without the need to
supply additional passwords until either the user logs off or their GSI proxy certificates expire.

4.2. User management

We have developed classes for maintaining information about users of the collaboratory and the tasks
they perform. Users can track the remote jobs they have started for instance, or the file transfers they
have performed. Users can also maintain a list of GSI certificates they use to gain access to remote
resources and easily determine to which services their certificates successfully authenticate.

In addition, users can be granted or denied access to the functions of our Web-based collaboratory,
in particular for enabling select users to administer the ASC application server, including adding or
removing users from the collaboratory, monitoring user sessions and starting or stopping application
server tasks.

4.3. Grid resource management

We attempt to model computational resources and the services they support in an intuitive way, by
providing classes that abstract the details of the MDS queries required to gather information from
remote resources and the services available on those resources. Additional information about each
resource, such as the location of software not otherwise made available to MDS, can be maintained in
the application server’s primary database and published to users as needed.

4.4. Grid service management

As mentioned before, we can track what services are available on remote computational resources,
where for each service we attempt to provide intuitive interfaces for invoking, testing and monitoring
user requests to those services. In most cases, we extend upon the Java CoG Kit to allow user activities
to be written to the ASC application server database and provide wrappers that unify the interfaces to
those services.

4.5. Software management

We support commonly used tools for managing the development of software within the collaboratory.
In particular, we provide interfaces for invoking CVS and MAKE on remote computers with interactive
GRAM jobs, thus taking advantage of GSI security. In the case of CVS, we worked with the
Globus project to develop GridCVS. GridCVS extends the CVS protocol and service to include
GSI-authentication and we are developing a Java-based client that allows checkouts/checkins to
be performed from/to GSI-enabled CVS repositories from third-party locations, where remote file
browsing is performed with our GridFTP Java classes, extended from the Java CoG Kit.

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

1298 G. VON LASZEWSKI ET AL.

4.6. Cactus management

Since the ASC supports application development with Cactus, we have developed tools that are useful
for manipulating Cactus applications and data on remote resources from our Web-based collaboratory.
Some of these tools are now described.

• Parameter file management tools to allow users to maintain a set of parameter files important
for the execution of an application. A database is used to maintain the various parameter files
and share them within the collaboratory.

• Simulation management tools to allow executing domain and non-domain Cactus jobs.
Cactus jobs can be invoked as GRAM requests or be run from batch scripts that include pre-
and post-processing instructions.

4.7. Visualization

We are developing tools that allow users to run applications for visualizing remote datasets. Currently,
for those users running X-servers on their local desktop, we provide a Web interface that enables users
to search for files with our DHTML-based GridFTP file browser on remote machines and subsequently
launch visualization applications that exist on those machines, such as LCAVision, an application
developed by the ASC for visualizing HDF5 data, with the application’s display set to the user’s local
desktop. We have found this works well in practice. However, we are planning on developing additional
tools for manipulating remote datasets so that desired portions of remote datasets can be viewed locally
as well.

5. IMPLEMENTATION

Our portal can be accessed from any DHTML enabled browsers. We have tested our software with
such popular browsers such as Internet Explorer v4 and Netscape v4. The Cactus software runs on
almost all major operating systems. A prototype for Windows NT is available. New remote resources
are brought into the collaboratory by implementing the Grid protocols and services used for remote
discovery, job submission and data transfer. In general, these ports are provided by the Globus toolkit.
The Web server is based on a secure version of Apache with JSP extensions. Persistent portal session
management is achieved via MySQL.

6. APPLICATION

ASC was originally developed in support of numerical simulations in astrophysics, and has evolved
into a general-purpose code for partial differential equations in three dimensions. Perhaps the most
computationally demanding application that has been attacked with Cactus is the numerical solution
of Einstein’s general relativistic wave equations, in the context, for example, of the study of neutron
star mergers and black hole collisions (Figure 4). For this purpose, the ASC community maintains an
ASC server and controls its access through login accounts on the server. Remote resources integrated

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

ASTROPHYSICS SIMULATION COLLABORATORY 1299

Figure 4. The ASC project investigates astrophysical phenomena involving strong dynamic gravitational fields
such as this grazing collision of two neutron stars. The surfaces represent the density of the stellar matter, while

the warping of the gridded surface represents the gravitational flux on the plane of the collision.

into the ASC server are controlled by the administrative policies of the cite contributing the resources.
In general, this means that a user must have an account on the machine on which the service is to be
performed.

The modular design of the Cactus framework and its easy exposure through a Web-based portal, as
described in this paper, permits a diverse group of researchers to develop add-on software modules that
integrate additional physics or numerical solvers into the Cactus framework.

7. RELATED WORK

Much research has been conducted in the area of portals. Most relevant to our efforts are the Swing
based portal components distributed with the Java CoG Kit, the JSP based CoG Kit (GPDK), and
the development of Jetspeed based portlets. More information about these projects can be found at
www.cogkits.org and www.globus.org/cog.

8. FUTURE DIRECTIONS

We plan to improve our collaboratory in several ways, with enhancements to the user interface,
advanced visualization support, data management tools, collaboration support and development of new
interaction paradigms.

While testing our framework within the astrophysics users community we have observed limits of
our initial thin clients based on DHTML. Therefore, we plan to investigate a wider variety of client-
side interfaces including fat client and slender client interfaces. These will also include the use of
Java3D as an alternative display framework. In cases where speed is essential, we use fat clients that
are traditional monolithic applications, such as the OpenDX visualization tool. In these situations,
the ASC application server merely acts as a broker for creating direct connections between the client

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

1300 G. VON LASZEWSKI ET AL.

and various Grid services. The application server, in this sense, would serve as a sort of Napster for
peer-to-peer interactions between clients and distributed resources.

Another area of development is the creation of robust data management services, such as tools to
assist users in finding appropriate storage space on remote computers, archival storage management
services, metadata browsing and automated replication of data to high-performance disk caches to
improve visualization system performance. This data management capability is critical for providing
access to remote visualization services as well as sharing and understanding the large volumes
of archived results produces by this community of researchers. In the long term we intend to
explore alternative modes of interaction with our Grid portal through asynchronous collaborative
methodologies. We also plan to reuse the ASC framework in other application domains, for example,
in high-energy physics.

9. CONCLUSION

We have described an online collaboratory framework that supports the collaborative development
and use of numerical simulation codes. This framework uses a combination of familiar Web and Java
technologies; Grid services for secure access to and coordinated use of distributed resources; and
custom components for collaborative code development and distributed simulation. We have described
an application of this framework within the astrophysics community, and suggest that the framework
can also be applied within other application domains with similar requirements.

ACKNOWLEDGEMENTS

The development of an ASC joins five institutions (Washington University, Rutgers University, National Center
of Supercomputing Applications, University of Chicago, University of Illinois) in an NSF funded Knowledge
and Distributed Intelligence program. We thank the Numerical Relativity Group at the Max Planck Institute in
Potsdam, Germany for developing the Cactus code. This work was supported in part by the National Science
Foundation’s Knowledge and Distributed Intelligence project ‘Astrophysical Simulation Collaboratory’, and by
the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, U.S. Department of Energy, under contract W-31-109-Eng-38.

REFERENCES

1. NRC. National Collaboratories: Applying Information Technology for Scientific Research. National Research Council,
1993.

2. Foster I, Kesselman C (eds.). The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1999.
3. Foster I, Kesselman C, Tuecke S. The anatomy of the Grid: Enabling scalable virtual organizations. International Journal

of High Performance Computing Applications 2001; 15(3):200–222. www.globus.org/research/papers/anatomy.pdf.
4. von Laszewski G, Foster I, Gawor J, Lane P. A Java Commodity Grid Kit. Concurrency and Computation: Practice and

Experience 2001; 13(8/9):643–662. http://www.globus.org/cog/documentation/papers/cog-cpe-final.pdf.
5. Cartwright R, Dennis J, Hood R, Jump JR, Kennedy K. Parasol: A laboratory for parallel software technology research.

Technical Report TR86-41.
6. Russell M, Allen G, Daues G, Foster I, Goodale T, Seidel E, Novotny J, Shalf J, Suen W-M, von Laszewski G. The

Astrophysics Simulation Collaboratory: A science portal enabling community software development. Proceedings 10th
IEEE International Symposium on High Performance Distributed Computing (HPDC10), San Francisco, 2001. IEEE Press,
2001. http://www.cactuscode.org/Showcase/Publications.html.

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

ASTROPHYSICS SIMULATION COLLABORATORY 1301

7. Novotny J, Tuecke S, Welch V. An online credential repository for the Grid: MyProxy. Proceedings 10th IEEE
International Symposium on High-Performance Distributed Computing. IEEE Press, 2001; 181–199.

8. Czajkowski K, Fitzgerald S, Foster I, Kesselman C. Grid information services for distributed resource sharing.
Proceedings 10th IEEE International Symposium on High-Performance Distributed Computing. IEEE Press, 2001.
http://www.globus.org.

9. Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputer
Applications 1997; 11(2):115–128.

10. Allen G, Benger W, Dramlitsch T, Goodale T, Hege HC, Lanfermann G, Merzky A, Radke T, Seidel E Shalf J. Cactus
tools for Grid applications. International Journal of Cluster Computing 2001; 4(3):179–188.
http://www.cactuscode.org/Showcase/Publications.html.

11. Allen G, Benger W, Goodale T, Hege HC, Lanfermann G, Masso J, Merzky A, Radke T, Seidel E, Shalf J. Solving
Einstein’s equations on supercomputers. IEEE Computer 1999; 32(12):52–59. http://www.cactuscode.org.

12. Foster I, Kesselman C. The Globus Project: A status report. Future Generation Computer Systems 1999; 15(5–6):607–621.
13. Butler R, Engert D, Foster I, Kesselman C, Tuecke S, Volmer J, Welch V. Design and deployment of a national-scale

authentication infrastructure. IEEE Computer 2000; 33(12):60–66.
14. Czajkowski K, Foster I, Karonis N, Kesselman C, Martin S, Smith W, Tuecke S. A resource management architecture for

metacomputing systems. Proceedings of IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel Processing,
1998; 62–82.

15. von Laszewski G, Fitzgerald S, Foster I, Kesselman C, Smith W, Tuecke S. A directory service for configuring high-
performance distributed computations. Proceedings 6th IEEE Symposium on High-Performance Distributed Computing.
IEEE Press, 1997; 365–375.

16. Allcock W, Foster I, Tueke S, Chervenak A, Kesselman C. Protocols and services for distributed data-intensive science.
http://www.globus.org/research/papers/ACAT3.pdf [2001].

17. Hall M. Core Servlets and JavaServer Pages (JSP). Prentice-Hall, PTR/Sun Microsystems Press, 2000.
18. Hamilton G, Cattell RGG, Fisher M. JDBC Database Access with Java: A Tutorial and Annotated Reference. Addison-

Wesley: Reading, MA, 1997.
19. Lee SSR. JNDI API Tutorial and Reference: Building Directory-Enabled Java Applications. Addison-Wesley: Reading,

MA, 2000.
20. Bester J, Foster I, Kesselman C, Tedesco J, Tuecke S. GASS: A data movement and access service for wide area computing

systems. Proceedings of IOPADS’99, 1999.

Copyright 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:1289–1301

	1 INTRODUCTION
	2 ARCHITECTURE OVERVIEW
	3 TECHNOLOGIES USED
	3.1 The Cactus framework: modular simulation and code creation
	3.2 Globus Grid services: enabling resource sharing
	3.3 Java framework and server pages: developing browser-accessible thin clients
	3.3.1 Java server pages/servlets
	3.3.2 JDBC
	3.3.3 Java CoG Kit
	3.3.4 Other collaboratory technologies: collaboration through commodity technologies

	4 PORTAL-SPECIFIC SERVICES AND COMPONENTS
	4.1 Secure login
	4.2 User management
	4.3 Grid resource management
	4.4 Grid service management
	4.5 Software management
	4.6 Cactus management
	4.7 Visualization

	5 IMPLEMENTATION
	6 APPLICATION
	7 RELATED WORK
	8 FUTURE DIRECTIONS
	9 CONCLUSION

