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ABSTRACT

The neutron vortices thought to exist in the inner crust of a neutron star interact
with nuclei and are expected to pin to the nuclear lattice. Evidence for long-period
precession in pulsars, however, requires that pinning be negligible. We estimate the
strength of vortex pinning and show that hydrodynamic forces present in a precessing
star are likely sufficient to unpin all of the vortices of the inner crust. In the absence of
precession, however, vortices could pin to the lattice with sufficient strength to explain
the giant glitches observed in many radio pulsars.
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1 INTRODUCTION

Observations of precession of neutron stars probe the man-
ner in which the stellar crust is coupled to the liquid inte-
rior. Stairs, Lyne & Shemar (2000) recently presented strong
evidence for precession of an isolated neutron star at a pe-
riod of ≃ 1000 d, 500 d or 250 d, with correlated varia-
tions in the pulse duration. The wobble angle of the pre-
cession is inferred to be ≃ 3◦ (Link & Epstein 2001). Less
compelling evidence for precession is seen from other neu-
tron stars. Quasi-periodic timing residuals are exhibited by
PSR B1642-03 (Shabanova, Lyne & Urama 2001), in associa-
tion with roughly cyclical changes in pulse duration (Cordes
1993). Quasi-periodic timing residuals are seen in the Crab
(Lyne, Pritchard & Smith 1988; Čadež et al. 2001) and Vela
pulsars (Deshpande & McCulloch 1996), though associated
changes in pulse duration are not seen. The 35-d periodicity
seen in the accreting system Her X-1 (Tannanbaum et al.

1972) has been interpreted as precession by many authors
(e.g., Brecher 1972; Trümper et al. 1986; Čadež, Galičič &
Calvani, 1997; Shakura, Postnov & Prokhorov 1998).

The fluid of the neutron star inner crust is expected to
form a neutron superfluid threaded by vortices. Above a fluid
density of ∼ 1013 g cm−3, an attractive vortex-nucleus inter-
action could pin vortices to the lattice. Vortex pinning in the
crust has been a key ingredient in models of the spin jumps,
glitches, observed in many radio pulsars (e.g., Lyne, Shemar
& Smith 2000). In all candidate precessing neutron stars, the
putative precession is of long period, months to years, which
is in dramatic conflict with the notion of vortex pinning in
the neutron star’s inner crust. As demonstrated by Shaham
(1977), vortex pinning exerts a large torque on the crust that
causes the star to precess with a period (Ic/Ip)p, where Ip

is the moment of inertia of the pinned superfluid, p is the

spin period and Ic is the moment of inertia of the solid crust
and any component coupled to it over a timescale ≪ p. If
pinning occurs through most of the inner crust (as assumed
in many models of glitches), Ip constitutes about 1% of the
entire star. Though the coupling of the solid to the core is
not well-known, Ic cannot exceed the star’s total moment
of inertia, so the precession period is at most ∼ 100 spin
periods. Hence, if the long-period periodic behavior seen in
the precession candidates really represents precession, the

crustal vortices cannot be pinned. In this paper we present
a resolution to this puzzle. We show that vortices initially
pinned to the inner crust would probably be unpinned by
the forces exerted on them by a crust set into precession. In
the absence of precession, vortices could still pin to the in-
ner crust with sufficient strength to account for giant pulsar
glitches.

The outline of the paper is as follows. In Section 2 we
review the dynamics of precession with pinning. In Section
3 we calculate the Magnus forces on a pinned vortex in a
precessing neutron star, and show that the Magnus force
per unit length is ∼ 1017 dyne cm−1 throughout most of
the crust of PSR B1828-11, nearly two orders of magnitude
larger than the minimum force on pinned vortices in Vela
just prior to a giant glitch. Thus, if we assume that the
force/length fp required to unpin a superfluid vortex is in the
range 1015<∼ fp

<∼ 4 × 1016 dyne cm−1, a consistent picture

emerges for PSR B1828-11 (and the other long-period pre-
cession candidates mentioned above): the precessional mo-

tion itself unpins the vortices and keeps them unpinned. In
Section 4 we show that this interpretation makes sense the-
oretically; we estimate the force/length required to unpin
a vortex in the crust, and find fp ∼ 1016 dyne cm−1. We
summarize our findings in Section 5.
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2 FREE PRECESSION WITH PINNING

The problem of precession of the neutron star crust with a
pinned superfluid has been studied by Shaham (1977), Alpar
& Pines (1985), Sedrakian, Wasserman & Cordes (1999) and
Jones & Andersson (2001). We revisit the problem here to
emphasize key results for later use.

First, we briefly discuss the role that dissipative cou-
pling between the core liquid and solid would play in pre-
cession. Precession creates time-dependent velocity differ-
ences between the crust and liquid that vary over the star’s
spin period. If the coupling time τcc between the crust and
the core liquid is much longer than the crust’s spin period
p, the precession will damp over ≃ 2πτcc/p precession pe-
riods (Sedrakian, Wasserman & Cordes 1999). Coupling of
the solid to the core liquid is not well understood. Mag-
netic stresses allow angular momentum exchange between
the solid and the charged components of the core (Abney,
Epstein & Olinto 1996; Mendell 1998), though this process
is not by itself dissipative. If the core magnetic field, of av-
erage strength B, is confined to superconducting flux tubes,
the crossing time for Alfvén type waves through the core is
tA ∼ 4B

−1/2

12
s for a density of 1015 g cm−3. The effective

coupling time between the crust and core charges cannot be
less than tA. The coupling time between the neutron compo-
nent of the core and the charges could exceed ≃ 400 rotation
periods (Alpar & Sauls 1988). Hence, the timescale τcc for
the entire core to achieve corotation with the solid could ex-
ceed many rotation periods. The core might therefore be ef-
fectively decoupled from the solid as the star precesses, with
the crust precessing almost as if the core were not there.
Given the uncertainties, we will consider two regimes: com-
plete decoupling of the core liquid from the solid, and the
opposite regime of perfect coupling.

To study the precessional dynamics, we approximate
the crust’s inertia tensor as the sum of a spherical piece,
a centrifugal bulge that follows the instantaneous angular
velocity of the crust and a deformation bulge aligned with
the principal axis of the crust (Alpar & Pines 1985):

Ic = Ic,0δ + ∆IΩ

(

nΩnΩ − 1

3
δ

)

+ ∆Id

(

ndnd − 1

3
δ

)

, (1)

where Ic,0 is the moment of inertia of the crust (plus any
components tightly coupled to it) when non-rotating and
spherical, δ is the unit tensor, nΩ is a unit vector along the
crust angular velocity Ω, nd is a unit vector along the crust’s
principal axis of inertia, ∆IΩ is the increase in oblateness
about Ω due to rotation and ∆Id is the deformation contri-
bution due to rigidity of the crust. We assume ∆Id ≪ Ic,0

and ∆IΩ ≪ Ic,0. For simplicity, we take the crust superfluid
to be perfectly pinned along nd . The total angular momen-
tum of the crust plus pinned superfluid is

J = Ic · Ω + Jsfnd , (2)

where Jsf is the magnitude of angular momentum in the
pinned superfluid. For free precession J is conserved, with
J , Ω and nd all spanning a plane (see Fig. 1). The wobble

angle θ between nd and J is a constant of the motion. The
precessional motion in the inertial frame can be seen by
decomposing Ω as (see, e.g., Andersson & Jones 2001)

Ω = φ̇nJ + ψ̇nd , (3)

where nJ is a unit vector along J , φ and ψ are Euler

angles and overdots denote time differentiation. For small
wobble angle, the motion is given by φ̇ ≃ J/Ic,0 and
ψ̇ ≃ −(∆IdΩ + Jsf )/Ic,0. The precession is a superposi-
tion of two motions: 1) a fast wobble of nd about nJ , with
a constant angle θ between the axes, and, 2) a retrograde
rotation about nd . In the body frame, both J and Ω ro-
tate about nd at frequency ψ̇, the body-frame precession
frequency. For an emission beam axis fixed in the star and
inclined with respect to nd , modulation at frequency ψ̇ is
observed.

For insignificant pinning (Jsf ≪ ∆IdΩ), the body-
frame precession frequency reduces to the classic elastic-
body result: ψ̇ ≃ −(∆Id/Ic,0)Ω. However, for significant
pinning (Jsf ≫ ∆IdΩ), the precession is much faster,
ψ̇ ≃ −Jsf/Ic,0, as originally shown by Shaham (1977). Tak-
ing Jsf = IpΩs, where Ip is the moment of inertia of the
pinned superfluid and Ωs is the magnitude of its angular ve-
locity, ψ̇ = −(Ip/Ic,0)Ωs ≃ −(Ip/Ic,0)Ω. If the entire crust
superfluid is pinned and Ic,0 is the moment of inertia of the
solid only, Ip/Ic,0 is ≃ 2 for most equations of state, giving
extremely fast precession with ψ̇ ≃ −2Ω. If pinning is imper-
fect, but vortices move with respect to the lattice against a
strong drag force, the precessional dynamics resembles that
for perfect pinning (Sedrakian, Wasserman & Cordes 1999).

The angle θ′ between Ω and J , is also a constant of
the motion (see Fig. 1). For θ and θ′ both small, these two
angles are related by

θ′ ≃ (∆IdΩ + Jsf )

J − Jsf − ∆IdΩ
θ. (4)

For insignificant pinning (Jsf ≪ ∆IdΩ), θ′ is ≃
(∆Id/Ic,0)θ ≪ θ. For significant pinning (Jsf ≫ ∆IdΩ),
θ′ ≃ (J/Jsf − 1)−1θ. If the core is decoupled from the solid,
Jsf can be ≃ J , and θ′ can exceed θ. If the entire inner
crust superfluid is pinned, Jsf/J ≃ Is/(Is + Ii), where Is

is the moment of inertia of the crust superfluid and Ii is
the moment of inertia of the lattice. For most equations of
state, Jsf/J is about 0.7 in this case, giving θ′ ≃ 2θ. On
the other hand, if the crust and core are tightly coupled,
θ′ ≃ (Jsf/J)θ<∼ 10−2θ.

3 FORCES ON THE VORTEX LATTICE IN A

PRECESSING STAR

We have seen that significant vortex pinning produces a pre-
cession frequency that is orders of magnitude faster than the
periodicities observed in PSR B1828-11 and other candidate
precessing pulsars. We now study the stability of the pinned
state in a precessing star. When making estimates, we take
fp (the maximum pinning force/length that the crustal nu-
clei can exert on the pinned superfluid vortices) to be con-
stant through the crust.

We begin by estimating fp from the angular momen-
tum requirements of giant glitches in pulsars. The standard
explanation for giant glitches – that they represent transfer
of angular momentum from the more rapidly rotating in-
ner crust superfluid to the crust via catastrophic unpinning
(Anderson & Itoh 1975) – yields a lower limit for fp. As
the stellar crust slows under electromagnetic torque, vortex
pinning fixes the angular velocity of the crust superfluid.
As the velocity difference grows, a Magnus force develops

c© 2001 RAS, MNRAS 000, 1–6
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on the pinned vortices. If the crust and superfluid are ro-
tating about the same axis (and therefore not precessing)
the force per unit length of vortex is fm = ρsκr⊥ω, where
ρs ≃ 1014 g cm−3 is the superfluid density, κ ≡ h/2mn is
the quantum of circulation (mn is the neutron mass), r⊥
is the distance of the vortex line from the rotation axis
and ω is the angular velocity lag between the crust and
the pinned superfluid (see eq. 7 below). For a critical value
fm,c = fp, vortices cannot remain pinned. The correspond-
ing lag velocity is ωc = fp/ρκr⊥. Treating the crust as a
thin shell of constant density, the excess angular momen-
tum stored in the pinned superfluid (moment of inertia Ip)
is ∆J = (3π/8)(fp/κ)(Ip/R). Suppose that in a glitch some
or all of the excess angular momentum is delivered to the
crust; the crust suffers a spin-up of ∆Ω ≤ ∆J/Ic, where Ic

is the moment of inertia of the crust plus any part of the
star tightly coupled to it over timescales much shorter than
the timespan of glitch observations. The glitch magnitude is
as much as

∆Ω

Ω
≤ 3π

8

fp

ρsκRΩ

(

Ip

Ic

)

, (5)

yielding the following lower limit for the force on pinned
vortices just prior to a giant glitch:

fp ≥ 1015

(

∆Ω/Ω

10−6

)

(

Ω

80 rad s−1

)

(

Ip/Ic

10−2

)−1

. (6)

Here Ω ≃ 80 rad s−1 for the Vela pulsar and ∆Ω/Ω ≃ 10−6

is typically observed. Analyses of glitches in Vela and other
pulsars show that Ip/Ic

>∼ 10−2 (Link, Epstein & Lattimer

1999); we have taken Ip/Ic = 10−2 as a fiducial value. If
glitches relax fm to nearly zero, the above lower limit is
an estimate for fp. By comparison, the maximum amount
by which the Magnus force can increase between glitches is
∆fm = ρsκr⊥|Ω̇|tg, where |Ω̇| is the crust’s spindown rate
and tg is the average time interval between glitches. For Vela,
∆fm ≃ 1015 dyne cm−1.

We now compare fp ∼ 1015 dyne cm−1, which is suf-
ficient to explain giant glitches, to the Magnus forces on
vortices in a precessing neutron star. Define a Cartesian co-
ordinate system (x, y, z) fixed in the crust and centered on
the star, and let (nx,ny ,nz ) be the corresponding basis
vectors. The superfluid flow Ωs past a pinned vortex seg-
ment creates a Magnus force per unit length of vortex at
location r = (x, y, z) of (see, e.g., Shaham 1977)

fm = ρsκnz × ([Ωs − Ω] × r) . (7)

For simplicity, we assume vortex pinning along nz and take
the superfluid angular velocity to be Ωs = Ωnz . Consider
an instant at which Ω and nz lie in the y − z plane. The
angular velocity of the crust is then Ω ≃ Ω(αny + nz),
where α ≡ θ + θ′. The instantaneous Magnus force per unit
length of vortex as a function of position in the star is

fm = nyρsκΩαz. (8)

For Ω = 16 rad s−1 (PSR B1828-11), the inferred α of 3◦ and
a density ρs = 1014 g cm−3, |fm| exceeds 1017 dyne cm−1

at z = R, a factor of ∼ 100 larger than the minimum force
on vortices before a giant glitch in Vela. A vortex segment
must unpin if fm > fp, or,

|z|
R

>
fp

ρsκRΩα
≡ h

R
, (9)

where R is the stellar radius. For α = 3◦ and Ω = 16 rad
s−1 (PSR B1828-11), fp = 1015 dyne cm−1 and ρs = 1014

g cm−1, h is ≃ 0.007R; only vortex segments in a region
of height h ≪ R are not unpinned directly by the Magnus
force (see Fig. 2). We next consider whether the vortex array
can be in static equilibrium with respect to the crust when
only a portion of the array is pinned very near the equato-
rial plane. We find that the Magnus force on the unpinned
segments exerts a torque about z = 0 which leads to further
unpinning.

As vortex segments unpin at |z| ≥ h, the angle between
nz and nΩ will assume a new value α′ < α. The value of
α′ will depend on how much pinning there is initially, but it
will not become less than θ (corresponding to Jsf becoming
effectively zero; recall discussion following eq. 4). The pre-
cession frequency will also be less than before, as there is less
pinned vorticity to exert torque on the crust. If the vortex
segments are to remain anchored at |z| < h, the vortex array
must bend under the Magnus force exerted on unpinned seg-
ments. The extent to which vortices can bend is determined
by their self-energy or tension, which arises primarily from
the kinetic energy of the flow about them. For a single vor-
tex, the tension is T ≃ (ρsκ

2/4π) ln(rvk)
−1, where rv is the

vortex core dimension and k is the characteristic wavenum-
ber of the bend in the vortex and krv ≪ 1 (Sonin 1987).
This tension, which is ∼ 108 dyne, has a negligible effect
on the dynamics if the vortex is bending over macroscopic
dimensions. However, if a bundle of vortex lines bends, the
effective tension per vortex is enormous. A bundle of N vor-
tices has N times the circulation of a single vortex, and
hence N2 times the tension: TN ≃ N2ρsκ

2/4π) ln(rvk)
−1.

The effective tension per vortex is Teff = TN/N . We esti-
mate the angle β through which the vortex array can bend
by taking the pinning at |z| < h to be infinitely strong, and
seek a new static configuration of a vortex line with tension
Teff under the Magnus force. We will find that β ≪ α′, so
we approximate the Magnus force in the new equilibrium as
unchanged by the small displacement of the line away from
its original pinning axis. Let u(z) denote the displacement
of a section of a vortex from its original pinning position
along nz . In static equilibrium, the shape of the vortex in
the region |z| ≥ h is given by

Teffu
′′(z) = nyρsκα

′Ωz. (10)

Let a vortex follow nz in the region |z| < h, so that
u′(±h) = 0. Integrating eq. (10) once gives the angle be-
tween a section of vortex and nz of β ≃ ρsκα

′Ω(z2 −
h2)/2Teff . The number N of vortices that must bend is
≃ nv2πR∆R, where nv = 2Ωs/κ is the vortex areal den-
sity and ∆R is the thickness of the pinning region (approxi-
mately the thickness of the inner crust). The longest vortices
that pass through the region x− y plane in the inner crust
extend to a height z0 ≃

√
2R∆R. Evaluating β at z = z0/2

gives β ≃ α′/4 ln(rvk)
−1. Taking a bending wavenumber

k = 1/z0 gives β ≃ 0.006α′ . Hence, the vortex array is far
too stiff to bend over an angle ≃ α′. This means that the un-
pinned segments are prevented by tension from assuming a
new static configuration in which the Magnus force is small
unless further unpinning occurs at |z| < h. We now show
that further unpinning is likely.

We treat individual vortices as infinitely stiff when the

entire vortex array is bending. The Magnus force on a vortex

c© 2001 RAS, MNRAS 000, 1–6
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exerts a torque about z = 0. A segment can remain pinned
and in static equilibrium with respect to the crust only if
pinning forces in the region |z| < h can exert a compensating
torque. Suppose a given vortex line has a length H > h. The
Magnus force on this line exerts a torque about z = 0 of

Nm =

∫ H

−H

dz r × fm =
2

3
nxρsκΩα

′H3. (11)

If the section of the line at −h ≤ z ≤ h is pinned, the lattice
can exert a compensating pinning torque of at most

N p = 2nx

∫ h

0

dz zfp = nxfph
2, (12)

assuming the crust does not crack. Taking fp = ρsκΩαh (eq.
9), the torque on the unpinned segment exceeds that by the
lattice if the length of the segment satisfies

H >
(

3α

2α′

)1/3

h. (13)

These segments “unzip” from their pinning bonds, and are
forced through the lattice by the Magnus force. Segments
shorter than H exist only in the outermost region of the
inner crust, in a region of extent δR ≃ H2/2R in the x − y
plane (see Fig. 2). Combining eqs. (9) and (13), we estimate
the extent of the pinning region to be

δR

R
≃ 1

2

(

3

2α′α2

)2/3
(

fp

ρsκRΩ

)2

. (14)

The pinning region is largest if the core is decoupled, and if
unpinning changes θ′ from ≃ 2θ to ≪ θ; in this case α′ ≃
α/3. For α = 3◦ and Ω = 16 rad s−1, we obtain δR < 1
m. Pinning in this outermost region of the crust probably
cannot occur at all, but if it does, the moment of inertia
of the pinned superfluid in this small region would be too
small to significantly affect the spin dynamics of the star. If
the core is tightly-coupled to the crust, δR is smaller by a
factor of ≃ 2. Our estimate for fp applies in the regions of the
crust where pinning is expected to be strongest; hence vortex
unpinning is likely to be more effective almost everywhere
else in the crust. Vortex pinning is even more difficult to
sustain for precessing stars with higher spin rates.

The pinning strength fp can be considerably larger than
1015 dyne cm−1 without affecting our conclusions. For ex-
ample, a pinning strength as large as fp = 4 × 1016 dyne
cm−1 gives δR = 0.1R (assuming core decoupling), again
probably preventing significant pinning. We conclude that
fp in the range 1015<∼ fp

<∼ 4 × 1016 dyne cm−1 is sufficient
to explain giant glitches in young pulsars such as Vela, but
insufficient to sustain vortex pinning in PSR B1828-11.

4 THEORETICAL ESTIMATE OF THE

VORTEX PINNING STRENGTH

The vortex-nucleus interaction arises from the density de-
pendence of the superfluid gap. The details of this interac-
tion are uncertain. In the densest regions of the inner crust,
where most of the liquid moment of inertia resides, the inter-
action energy of a vortex segment with a nucleus is estimated
to be Ep ≃ 5 MeV (Alpar 1977; Epstein & Baym 1988; Piz-
zochero, Viverit & Broglia 1997). The length scale of the
interaction is comparable to the pairing coherence length

rv ≃ 10 fm, giving an interaction force of Fp ≃ 5× 106 dyne
per nucleus. Above a density ≃ 1014 g cm−3, the vortex-
nucleus interaction energy falls rapidly with density and the
vortex core dimension rv increases. The mass-averaged pin-
ning force is thus smaller than 5 × 106 dyne; we will take
Fp = 106 dyne as a fiducial value. Below a density of ≃ 1013

g cm−3, the vortex-nucleus interaction becomes repulsive.
Here vortices could pin to the interstices of the lattice, but
too weakly to play a significant role in the rotational dy-
namics of neutron stars.

The degree to which vortices pin to the lattice nuclei
is a complex problem, but fortunately one where terres-
trial analogs can provide guidance. The pinning of elastic
“strings” to attractive potentials is a subject of current in-
terest in condensed matter physics, arising, e.g., in the pin-
ning of magnetic vortices to lattice defects in type II super-
conductors. We follow the general reasoning of Blatter et al.
(1994) and D’Anna et al. (1997) to obtain a rough estimate
of fp for our problem.

Our estimate effectively treats the crust as an amor-
phous solid with random pinning sites. This description of
the solid is appropriate according to recent calculations by
Jones (1998b, 2001), though we believe our pinning estimate
to be roughly correct for a regular lattice as long as the vor-
tex does not closely follow one of the lattice basis vectors.
In this context, it is important to realize that pinning arises
only because the vortex can bend. If the tension T were infi-
nite, the forces on the vortex by nearby nuclei would cancel
on average (Jones 1991, 1998a). On the other hand, if the
vortex tension T were small compared to Fp, the vortex
would minimize its energy by adjusting its shape so as to
intersect as many pinning nuclei as possible. In this case the
spacing between pinned nuclei would equal the lattice spac-
ing b (≃ 30 fm), and the pinning force per unit length fp

would be approximately Fp/b ≃ 3 × 1017 dyne cm−1. For
superfluid vortices in the NS crust, typically Fp/T ≃ 10−2,
so vortices bend rather little, and fp is considerably below
Fp/b, as we now estimate.

The are essentially five physical parameters that to-
gether determine fp: The vortex tension T , the pinning force
per nucleus Fp, the vortex radius rv, the nuclear radius rn

and the typical nuclear separation b ≡ n
−1/3

nuc . The tension
of a single vortex is

T =
ρsκ

2

4π
ln(krv)−1, (15)

where k is the bending wavenumber. For rn << rv, we ex-
pect the value of rn to be unimportant. While rv and rn are
comparable in the denser regions of the crust (Pizzochero,
Viverit & Broglia 1997), in the rough estimate we make be-
low we treat the nuclei as points. We take as fiducial values:
Fp = 106 dynes, rv = 10 fm, and b = 30 fm.

If T were infinite, so that the vortex could not bend
toward nuclei, the typical distance between nuclei along
the vortex from random overlaps would be (πr2vnnuc)

−1 =
b(b2/πr2v) ∼ 3b. For finite T , the vortex can bend to inter-
sect extra nuclei, but does so only on sufficiently long length
scales, due to competition between the attractive nuclear
potentials and the elastic energy of the deforming vortex.
Call these extra nuclei (that the vortex intersects due to
bending) the “pinning nuclei”. The pinning nuclei can bend
the vortex over a pinning correlation length Lp. Let u be

c© 2001 RAS, MNRAS 000, 1–6



Vortex Unpinning in Precessing Neutron Stars 5

the transverse distance by which the vortex deviates from
straight over a length Lp. For u of order rv or greater, the
distance Lp between successive pinning nuclei is of order
∼ (nnucu

2)−1 = b(b/u)2. The gain in binding energy due to
each pinning nucleus is of order ∼ Fprv, while the energy
cost of bending is ∼ T (u2/L2

p)Lp. Bending to intersect an
extra nucleus becomes energetically favorable when these
two energies are comparable, giving a pinning correlation
length of

Lp ∼ b

(

T

Fp

)1/2
(

b

rv

)1/2

. (16)

To calculate the vortex tension, we take the bending
wavenumber to be k = 1/Lp. For a superfluid mass den-
sity of ρs = 1014 g cm−3 and the fiducial values given
above, we solve eqs. [15] and [16] simultaneously and find
Lp ≃ 20b. The binding energy/length of the bent vor-
tex is eb ∼ Fprv/Lb. The maximum Magnus force/length
that the vortex can withstand before unpinning is thus
fp ≃ eb/rv ≃ Fp/Lp, which for our fiducial parameters is
fp ∼ 2 × 1016 dyne cm−1. The deviation of the bent vortex
from straight is u = (LpFprv/T )1/2; this distance is compa-
rable to rv for our parameters, as we assumed a priori.

Glitch observations and the precession period of
PSR B1828-11 suggest a pinning strength in the range
1015<∼ fp

<∼ 4×1016 dyne cm−1. The above pinning estimate,
though crude, shows that such pinning strengths are theo-
retically sensible.

5 DISCUSSION

In the most convincing example of pulsar free precession,
PSR B1828-11, we have shown that vortex pinning is un-
stable for a reasonable pinning strength and wobble angle:
the Magnus force on pinned vortices is sufficient to unpin all
of the vortices of the inner crust. In support of this conclu-
sion, we obtained in Section 4 a theoretical estimate of the
maximum pinning force/length fp. The large vortex tension
increases the distance between effective pinning sites rela-
tive to the case of small tension. We estimated fp to be
∼ 1016 dyne cm−1, smaller by a factor of ∼ 10 than the
value obtained assuming a pinning spacing equal to the lat-
tice spacing. Our estimated fp is nevertheless large enough
to account for the giant glitches seen in radio pulsars, like
Vela. Our work here leads to at least one falsifiable predic-
tion: PSR B1828-11, or any other pulsar, should not exhibit

giant glitches while precessing. (Small glitches could be ex-
plained by some mechanism other than vortex unpinning,
e.g., crustquakes).

In Section 3 we showed that partially-pinned vortex
configurations cannot be static. We did not attempt to solve
for the dynamics of the unpinned superfluid vortices or the
effects on the precession of the crust; we leave that as an
interesting problem for future work.
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Figure 1. The constant angles in free precession. The symmetry
axis nd and spin axis Ω span a plan containing J. In the iner-
tial frame, nd and Ω rotate about J at approximately the spin

frequency.

Figure 2. The Magnus force on a pinned vortex in a precessing
star. At heights |z| > h, the Magnus force exceeds the pinning
force per length of vortex, and the vortex segments are unpinned
directly by the Magnus force. Unpinned segments then torque
free most segments that extend through z = 0, except for a small
annulus of lens-like cross section of height H and thickness δR

(shown with gray shading). For clarity, fewer vortices are shown
on the right side of the figure.
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