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Abstract. We present results concerning the linear (radial and non-radial) oscillations of non-rotating superfluid neutron stars
in Newtonian physics. We use a simple two-fluid model to describe the superfluid neutron star, where one fluid consists of
the superfluid neutrons, while the second fluid contains all the remaining constituents (protons, electrons). The two fluids are
assumed to be “free” in the sense of absence of vortex-mediated forces like mutual friction or pinning, but they can be coupled
by the equation of state, in particular by entrainment. We calculate numerically the eigen-frequencies and -modes of adiabatic
oscillations, neglecting beta-reactions that would lead to dissipation. We find a doubling of all acoustic-type modes ( f -modes,
p-modes), and confirm the absence of g-modes in these superfluid models. We show analytically and numerically that only in
the case of non-stratified background models (i.e. with no composition gradient) can these acoustic modes be separated into
two distinct families, which are characterized by either co- or counter-moving fluids respectively, and which are sometimes
referred to as “ordinary” and “superfluid” modes. In the general, stratified case, however, this separation is not possible, and
these acoustic modes can not be classified as being either purely “ordinary” or “superfluid”. We show how the properties of
the two-fluid modes change as functions of the coupling by entrainment. We find avoided mode-crossings for the stratified
models, while the crossings are not avoided in the non-stratified, separable case. The oscillations of normal-fluid neutron stars
are recovered as a special case simply by locking the two fluids together. In this effective one-fluid case we find the usual singlet
f - and p-modes, and we also find the expected g-modes of stratified neutron star models.
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1. Introduction

The study of stellar oscillations has proved very fruitful in im-
proving our understanding of the inner structure and dynam-
ics of stars (the terms helio- and astro-seismology have been
coined), for which the oscillation modes can often be observed
rather directly. The best developed example of this probing
of the internal structure of an astrophysical body via its os-
cillations is probably the Earth. In the case of neutron stars,
the observation of oscillations is unfortunately not possible in
such a direct way, and has not yet been achieved. In practically
all cases we can only observe the regular radio-pulses of neu-
tron stars, which are virtually unaffected by its oscillations and
give information mostly about their rotation rate. Nevertheless
this field bears great potential interest: on one hand the bet-
ter understanding of neutron star oscillations could eventually
help to elucidate the phenomenon of glitches, which is proba-
bly the most striking and puzzling aspect of observed neutron
star dynamics. This phenomenon still represents somewhat of a
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mystery, even though the crucial role of superfluidity seems
well established (see Link et al. 2000; Carter et al. 2000 for
recent discussions). On the other hand, several highly sensitive
gravitational wave detectors are expected to reach their full sen-
sitivity within the next few years, and neutron star oscillations
represent one of the potentially most interesting sources of
gravitational waves. Gravitational wave detection could open
a new and complementary observational window onto neutron
stars, which would allow us to learn much more about their in-
ner structure and dynamics than it is currently possible with the
purely electro-magnetic observations.

Most studies of neutron star oscillations are still based on
simple perfect fluid models, which neglects the crucial impor-
tance of superfluidity in neutron stars. The presence of substan-
tial amounts of superfluid matter in neutron stars is backed by a
number of theoretical calculations of the state of matter at these
extreme densities (e.g. see Baldo et al. 1992; Sjöberg 1976),
and by the qualitative success of superfluid models to accom-
modate observed features of glitches and their relaxation.

The first study to point out the importance of superflu-
idity for the oscillation properties of neutron stars was by
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Epstein (1988), who has argued in a local (sound wave) analy-
sis that superfluidity should lead to new modes and modify the
previously known modes. Lindblom & Mendell (1994) have ar-
gued further for the existence of these modes, but failed to find
them numerically. Lee (1995) presented the first numerical re-
sults indicating the presence of new modes that did not exist in
perfect fluid models, and the absence of g-modes which would
have been present in the non-superfluid case. A local analy-
sis by Andersson & Comer (2001a) has given further analytic
evidence for the absence of g-modes in simple superfluid mod-
els. The relativistic numerical analysis by Comer et al. (1999)
has shown an effective doubling of acoustic modes in super-
fluid models with respect to the normal fluid case. Recently this
work has been extended by Andersson et al. (2002) to include
entrainment, and they have shown that avoided mode cross-
ings occur when one varies the entrainment parameter. The rel-
evance of superfluid oscillations for gravitational wave detec-
tion has been discussed by Andersson & Comer (2001b). Some
studies have also started to look at oscillations of rotating su-
perfluid neutron stars (Lindblom & Mendell 2000; Sedrakian
& Wasserman 2000).

Despite the number of studies on oscillations of non-
rotating superfluid neutrons stars, we think that this problem
still deserves attention and that several points needed to be clar-
ified. In particular it is worth emphasizing the importance of
stratification for the nature of superfluid oscillations, a point
that has not yet been fully appreciated. We demonstrate here
that only in non-stratified models can the eigenmode spectrum
be separated into two families of modes, one of which is identi-
cal to the case of a normal-fluid star, while the other is charac-
terized by counter-motion of the two fluids and vanishing grav-
itational perturbation. These two distinct families are usually
referred to as “ordinary” and “superfluid” modes. Stratification
of the background star, however, couples these distinct mode-
families and renders them non-separable. As a consequence ev-
ery mode shares qualitative properties of both families to some
extent, and the resulting mode spectrum consists of modes that
bear no direct connection to the normal fluid case. The two-
fluid model used here to describe superfluid neutron stars is
practically equivalent to those used in previous studies, and we
refer the reader to Andersson & Comer (2001a) and Prix et al.
(2002) for a more extensive discussion about its physical moti-
vations and justification.

The plan of this paper is as follows: in Sect. 2 we intro-
duce the basic equations for the general two-fluid neutron star
model, and in Sect. 3 we develop its linear perturbation equa-
tions and show how to recover the special case of a single
perfect fluid. In Sect. 4 we specialize to the simpler case of adi-
abatic oscillations of free, cold fluids, and we derive the neces-
sary boundary conditions. In this section we also show that the
separation into two distinct mode families is possible only for
non-stratified models. Section 5 presents the numerical results
concerning the background models, the eigenmode spectrum
and its dependence on entrainment (resulting in avoided cross-
ings), as well as the one-fluid results where we recover the ex-
pected composition g-modes. We present our conclusions and
a discussion of necessary future work in Sect. 6.

2. The general two-fluid neutron star model

2.1. The general two-fluid equations

The equations and notation for the Newtonian two-fluid neu-
tron star model used here are based on a more general for-
malism described in Prix (2002), which is the Newtonian ana-
logue of a generally relativistic framework developed by Carter
(1989). In this section we will briefly summarize the general
model and equations relevant for the present work, and we refer
the reader to Prix (2002) for the derivation and more detailed
discussion of this model.

We describe a neutron star as a system consisting of two
fluids: a superfluid of neutrons, and a normal fluid of pro-
tons, electrons and entropy (and generally further particles like
muons etc.). We denote the particle number densities for neu-
trons, protons and electrons as nn, np and ne respectively, and
we use s for the entropy density. The velocities of the two flu-
ids are un for the neutron fluid, and uc for the fluid of comoving
constituents, the relative velocity ∆ between the two fluids is
therefore

∆ ≡ uc − un. (1)

On the local (“mesoscopic”) level, a superfluid is constrained
to be in a state of irrotational flow, and its angular momentum
will be accommodated by a lattice of “microscopic” vortices.
However, for the global description of a neutron star we are
more interested in a “macroscopic” description of the super-
fluid, obtained by averaging over volume elements containing
a large number of vortices, but which are small compared to the
dimensions of the neutron star. In this macroscopic description,
the superfluid has a continuous vorticity and nearly behaves
like an ordinary fluid (apart from small anisotropies due to the
vortex-tension, which we will neglect). The absence of (local)
viscosity still allows the superfluid to move relative to the nor-
mal fluid, but the presence of the vortex lattice now allows for
a direct force between the two fluids. In the case of this force
being zero, the vortex lattice moves with the superfluid and we
refer to this situation as free fluids. If the vortices are “locked”
to the normal fluid (e.g. as can happen in the crust), the mu-
tual force will be non-zero but strictly non-dissipative. This
is known as “vortex pinning”. Only in the intermediate cases,
where a friction force causes the vortices to have a different ve-
locity from both the normal fluid and the superfluid, energy is
dissipated. In this case the mutual force is usually referred to
as “mutual friction”.

An essential simplification of the present two-fluid model
is that we neglect all electrodynamic effects, as we assume
the charge densities of protons and electrons to be strictly bal-
anced, i.e.

ne = np. (2)

Therefore we can effectively eliminate the electrons from our
description, as their density and velocity is entirely specified by
the protons.

We note that in “transfusive” models (as first set up in
Langlois et al. 1998), i.e. models which allow for β-reactions
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(n
 p+e+ν̄) between the two fluids, the total mass in the reac-
tion has to be conserved in a consistent Newtonian description.
Therefore we set

mb ≡ mn ≡ mp + me. (3)

The respective mass densities of the two fluids can now be writ-
ten as

ρn = mbnn, and ρc = mbnp, (4)

and the total mass density ρ is simply ρ = ρn + ρc.
The (local) kinematics of the system is completely de-

scribed (up to arbitrary rotations and boosts) in terms of ρn, ρc,
s and ∆2. The dynamics is determined by the internal energy
density function E or equation of state, which is a function of
the form E = E(s, ρn, ρc,∆

2). This energy function defines the
first law of thermodynamics for this system by its total differ-
ential, namely

dE = T ds + µ̃c dρc + µ̃
n dρn + α d∆2. (5)

This differential defines the dynamic quantities, namely the
temperature T , the specific chemical potentials µ̃c, µ̃n, and the
entrainment α as the thermodynamic conjugates of the kine-
matic quantities s, ρc, ρn and ∆. The specific chemical po-
tentials µ̃ are related to the more common definition of the
chemical potentials µ via µ̃ ≡ µ/mb. We note that µc is not
simply the proton chemical potential, because adding a proton
in this model implies adding an electron as well (due to (2)),
and therefore one can see that µc = µp + µe, where µp and µe

are the respective proton and electron chemical potentials.
The function α defined in (5) reflects the dependence of the

internal energy on the relative velocity ∆ between the two flu-
ids, which characterizes the so-called entrainment effect. This
entrainment function α has dimensions of a mass density, and it
will be useful in the following to define the two dimensionless
entrainment functions εn and εc as

εc ≡ 2α
ρc
, and εn ≡ 2α

ρn
=
ρc

ρn
εc. (6)

The “generalized” pressure P is introduced as the Legendre-
conjugate of the energy density, namely by the usual thermo-
dynamic relation

E + P = ρnµ̃
n + ρcµ̃

c + sT, (7)

which results in the total differential of the pressure function
P(µ̃c, µ̃n, T,∆2):

dP = ρn dµ̃n + ρn dµ̃c + s dT − α d∆2. (8)

This generalized pressure P can be seen to reduce to the usual
definition of the pressure of a perfect fluid in the case of ∆ = 0.

The equations of motion of this two-fluid system are de-
rived from a “convective” variational principle in Prix (2002),
and here we only present the resulting equations. The conser-
vation of energy results in the following equation:

TΓs = f · ∆ + βΓn, (9)

where f is the mutual force between the two fluids, and Γs and
Γn are the creation rates of entropy and neutrons respectively,
i.e.

Γs ≡ ∂ts + ∇ · (suc), and Γn ≡ ∂tρn + ∇ · (ρnun), (10)

while the proton creation rate Γc has to satisfy Γc = −Γn for
baryon conservation. The quantity β in (9) characterizes the
deviation from chemical equilibrium and its explicit expression
is found as

β ≡ µ̃c − µ̃n − 1
2

(1 − 2εn) ∆2. (11)

This is the Newtonian analogue of a result first found in the
relativistic transfusive model by Langlois et al. (1998). We note
that there is an additional kinetic term with respect to the naive
µ̃c − µ̃n in the case of relative motion. The mutual force density
f (the sign convention is such that this force acts on the neutron
fluid) is a direct interaction force between the two fluids, which
in the case of a superfluid stems from vortex interactions like
pinning or mutual friction. In order to ensure explicitly that the
second law of thermodynamics, i.e. Γs ≥ 0, is satisfied by (9),
we can write the neutron creation rate Γn and the mutual force f
in the form

Γn = Ξβ, with Ξ ≥ 0, (12)

f = η∆ + κ × ∆, with η ≥ 0, (13)

where the non-negative functions Ξ and η govern the beta-
reaction rate and the friction force, while the vector κ allows
for a non-dissipative Magnus-type force (i.e. orthogonal to the
relative motion). A non-transfusive model, i.e. one that does
not allow for beta reactions n
 c, has Ξ = 0, and free vortices
correspond to η = 0 and κ = 0.

The momentum equation for the superfluid neutrons is
given by

(∂t + un · ∇)(un + εn∆) + ∇(µ̃n + Φ) + ∆iεn∇vin =
1
ρn

f , (14)

while the equation for the normal fluid reads as

(∂t + uc · ∇)(uc − εc∆) + ∇(µ̃c + Φ) − ∆iεc∇vic
+

s
ρc
∇T = − 1

ρc
f + (1 − εc − εn)

Γn

ρc
∆. (15)

The gravitational potential Φ is related to the mass densities ρn

and ρc via the Poisson equation

∇2Φ = 4πG(ρn + ρc). (16)

2.2. The static equilibrium background

We consider a static background star, so we set

un = up = ∆ = 0, and Γn = Γc = Γs = 0, (17)

which by (13) implies the vanishing of the mutual force, i.e.
f = 0. Because chemical reactions would not be negligible on
long timescales, we also assume the background star to be in
chemical equilibrium, i.e.

β = µ̃c − µ̃n = 0. (18)
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These equilibrium conditions reduce the equation of mo-
tion (14) to

∇µ̃n = ∇µ̃c = −∇Φ, (19)

and with (15) this also implies that the background star is in
thermal equilibrium, i.e. ∇T = 0.

The static background has to be spherically symmetric, and
therefore (19) and (16) lead to the following equation for the
background:

µ̃′′(r) +
2
r
µ̃′(r) = −4πGρ(r), (20)

where we have introduced the equilibrium chemical potential
µ̃ ≡ µ̃n = µ̃c, and the prime (′) denotes the radial derivative
d/dr.

The equation of state allows one to relate the equilibrium
chemical potential µ̃ directly to the total mass density ρ at con-
stant temperature, and therefore the background is fully deter-
mined. The numerical method for solving this equation will be
discussed in Sect. 5.

In the following it will be convenient to use the radius R
and central density ρ0 of the static background as basis units
for length and mass density, so the corresponding “natural unit”
for frequencies is

√
4πGρ0. All equations in the following are

expressed in these natural units except otherwise stated.

2.3. Entrainment and effective masses

For small relative velocities∆, we can separate the “bulk” equa-
tion of state from the entrainment by expanding E(s, ρn, ρc;∆2)
in terms of ∆, i.e. by writing

E = E(0)(s, ρn, ρc) + α(0)(s, ρn, ρc)∆2 + O(∆4), (21)

where the quantities E(0) and α(0) are evaluated at zero relative
velocity ∆. The background equation of state E(0) is therefore
decoupled from the entrainment function α(0), and we can spec-
ify these two functions independently. The link between the en-
trainment function α and the equivalent description in terms of
effective masses m∗ (Andreev & Bashkin 1975) has been dis-
cussed in previous work (Prix et al. 2002), and it can be shown
that one can express α in terms of the proton effective mass m∗p
(which is generally a function of the densities), in the form

2α = ρc

(
1 − m∗p

mb

)
· (22)

The dimensionless entrainment functions1 εn and εc can then
be expressed according to (6) as

εc = 1 − m∗p
mb
, and εn =

ρc

ρn
εc. (23)

1 We note that Lindblom & Mendell (2000) and more recently
Andersson et al. (2002) have used a slightly different dimensionless
function ε to characterize the entrainment effect. The relation between
ε and εc is given by ε = εcρc/(ρn − εcρ).

3. Linearized perturbation equations

3.1. Oscillations of superfluid neutron stars

We consider small perturbations with respect to the static equi-
librium background described in Sect. 2.2. Linearizing the
equations of motion (14) and (15) yields

ρn∂t(δun + εn δ∆) + ρn∇(δµ̃n + δΦ) = δ f , (24)

ρc∂t(δuc − εc δ∆) + ρc∇(δµ̃c + δΦ) = −δ f − s∇δT, (25)

where δQ denotes the Eulerian perturbation of the quantity Q.
The perturbation of the mutual force (13) is given by

δ f = ηδ∆ + κ × δ∆, (26)

and the linearized energy conservation (9) and (12) together
with the condition of baryon conservation lead to

∂t δs + ∇ · (s δuc) = 0, (27)

∂t δρn + ∇ · (ρn δun) = Ξ (δµ̃c − δµ̃n), (28)

∂t δρc + ∇ · (ρc δuc) = −Ξ (δµ̃c − δµ̃n). (29)

The perturbed Poisson Eq. (16) reads (in natural units) as

∇2δΦ = δρn + δρc. (30)

The system is closed by specification of the mutual force func-
tions η and κ, the transfusion function Ξ, and an equation of
state which allows to express the dynamical quantities δT ,
δµ̃n and δµ̃c in terms of the kinematic variables δs, δρn and
δρc, thereby reducing the number of unknown perturbation
quantities to 13, which corresponds exactly to the number of
equations.

3.2. The special case of normal-fluid neutron stars

It is interesting to compare the superfluid neutron star case with
the normal fluid case, where the two constituents n and c are
moving together and form a single perfect fluid. This case is
obviously just a subclass of the two-fluid case discussed so
far, namely subject to the additional constraint un = uc, and
therefore2

δun = δuc = δu, =⇒ δ∆ = 0. (31)

By linking the two constituents together, the degrees of free-
dom have been reduced by three, and instead of the individual
momentum Eqs. (24) and (25), now only the sum of momenta
can be required to be conserved, i.e.

ρ (∂tδu + ∇δΦ) + ρn∇δµ̃n + ρc∇δµ̃c + s∇δT = 0. (32)

We introduce the notation

ρc = xcρ, ρn = xnρ, and s = s̃ρ, (33)
2 Lindblom & Mendell (1994, 1995) have imposed δβ = 0 to

recover the perfect fluid case. However, adiabatic oscillations of a
perfect fluid only satisfy this condition in non-stratified stars (cf.
Sect. 5.4), the constraint δβ = 0 is therefore generally not met.
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for the proton and neutron fractions xc and xn, and the specific
entropy s̃, which allows us to rewrite the one-fluid equation of
motion (32) in the slightly more familiar form

∂tδu + ∇
(
δP
ρ
+ δΦ

)
− [
δβ∇xc + δT ∇s̃

]
= 0, (34)

where we used the fact that the total pressure differential dP
of (8) in this perfect fluid case reduces to

dP = ρn dµ̃n + ρn dµ̃c + s dT. (35)

We can now compare (34) to the standard expression for the
Euler equation of stellar oscillations of non-rotating stars (Cox
1980; Unno et al. 1989), which is usually written as

∂tδu + ∇
(
δP
ρ
+ δΦ

)
+ C(r) (∇ · δu) A = 0, (36)

where C(r) is a function of the background, and A is the so-
called Schwarzschild discriminant that is responsible for the
presence of g-modes. By comparing Eqs. (34) and (36), we see
that A will be non-zero (indicating the presence of g-modes)
whenever ∇s̃ , 0 or ∇xc , 0. This reflects the well-known fact
that any type of stratification, either in specific entropy s̃ or in
the chemical composition xc, will result in g-modes, as pointed
out by Reisenegger & Goldreich (1992).

4. Adiabatic oscillations of “free”, cold fluids

4.1. Reduction to a 1D eigenvalue problem

In order to close the system of perturbation Eqs. (24)–(30),
we need a specific model for the mutual force f and the
transfusion Ξ, in addition to an equation of state of the form
E(ρn, ρc, s), all of which are highly dependent on microphys-
ical models and are rather poorly known at the present stage.
For this reason we will postpone the inclusion of these effects
to future work, and focus on the case of purely adiabatic os-
cillations (i.e. Ξ = 0) of free fluids (meaning f = 0). We will
further neglect temperature effects (which is generally a very
good approximation except for very young neutron stars), so
we set s = 0 and T = 0. The resulting simplified system of
equations is

∂tδρn + ∇ · (ρn δun) = 0, (37)

∂tδρc + ∇ · (ρc δuc) = 0, (38)

∂t [(1 − εn) δun + εnδuc] = −∇ (
δµ̃n + δΦ

)
, (39)

∂t [(1 − εc) δuc + εcδun] = −∇ (
δµ̃c + δΦ

)
, (40)

∇2δΦ = δρn + δρc. (41)

We point out that this system of equations is identical to the
one used in Andersson & Comer (2001a), which was ob-
tained as the Newtonian limit of the relativistic equations. It
is also related to the equations of Lindblom & Mendell (1994),
which are expressed in the “orthodox” formulation of super-
fluids (Landau & Lifshitz 1959), while the present descrip-
tion is based on the “canonical” approach introduced by Carter
(1989).

Using the equation of state we can link the density perturba-
tions δρX to δµ̃X (with the constituent index notation X = n, c)
to linear order, namely

δρn = Snn δµ̃
n + Snc δµ̃

c,
δρc = Scn δµ̃

n + Scc δµ̃
c,

(42)

where the symmetric “structure matrix” SXY is defined as

(
S−1

)
XY
≡ ∂µ̃

X

∂ρY
=
∂2E
∂ρX ∂ρY

, X,Y ∈ {n, c}· (43)

Due to the “dual” role of the pressure P with respect to the
energy density E, as seen in (7) and (8), we can equivalently
express SXY as

SXY =
∂ρX

∂µ̃Y
=
∂2P
∂µ̃X ∂µ̃Y

· (44)

We note that although we have assumed free fluids, i.e. there is
no direct force acting between them, the fluids are nevertheless
locally coupled by the equation of state; we can distinguish
two sources of this coupling, one is due to the non-diagonal
term Snc in (42), while the second is due to the entrainment
terms εX.

The background quantities µ̃X can be seen in (19) to behave
like the gravitational potential Φ; this means in particular that
their gradient is always finite, even at the surface. Therefore
δµ̃X is finite everywhere, contrary to δρX which can diverge
at the surface when ρ′ → −∞. This is seen from the relation
∆ρ = δρ + ξr ρ′(r) between the Lagrangian perturbation ∆ρ
and the Eulerian δρ, for a radial displacement ξr . On phys-
ical grounds ∆ρ must be bounded everywhere (as it reflects
the physical property of a fluid element), while the first-order
Eulerian quantity δρ diverges at the surface whenever ρ′ → −∞
and ξr , 0 at r = R. This might seem problematic for the
validity of the equations, but it only reflects the fact that in
this case even an infinitesimal displacement of the surface will
lead to a finite (as opposed to infinitesimal) Eulerian density
change there. By considering Lagrangian instead of Eulerian
variables, it can be shown that the physical solution is still well
behaved even if δρ → ∞ at the surface. In this case the first-
order quantity δρ no longer approximates the physical Eulerian
density change, but the divergence is such that the Lagrangian
first-order quantity ∆ρ is still perfectly regular. If one wanted
to impose that δρ should be bounded everywhere (as done by
Lindblom & Mendell 1994), then this situation would be in-
verted and the Lagrangian quantity ∆ρ would diverge, which is
unphysical indeed.

From a numerical point of view it seemed better to solve
directly for the well-behaved δµ̃X instead of the potentially
diverging δρX, by using (42) to substitute for δρX. We note
that the coefficients SXY in this expression will generally di-
verge (or vanish) at the surface, depending on the equation
of state, and which reflects the behaviour of δρX. The sys-
tem of Eqs. (37)–(41) for eigenmode solutions of the form
δQ(x, t) = δQ(x) eiωt now yields

∇ · (ρnδun) = −iω
[Snnδµ̃

n + Sncδµ̃
c] , (45)

∇ · (ρcδuc) = −iω
[Scnδµ̃

n + Sccδµ̃
c] , (46)
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∇(δµ̃n + δΦ) = −iω [(1 − εn) δun + εc δuc] , (47)

∇(δµ̃c + δΦ) = −iω [(1 − εc) δuc + εn δun] , (48)

∇2δΦ = kn δµ̃
n + kc δµ̃

c, (49)

where we have introduced the convenient “structure vector” kX,
which is defined as

kX ≡
∑

Y=n,c

S XY, X ∈ {n, c}· (50)

Using the definition (43) of the matrix SXY together with the
equilibrium condition µ̃n′ = µ̃c′ = µ̃′ we can now write

ρ′X = kXµ̃
′. (51)

For a spherically symmetric background, we can separate the
radial and angular dependence and obtain solutions with defi-
nite quantum numbers l and |m| ≤ l using the ansatz

δΦ(r, θ, ϕ) = δΦ(r) Ym
l (θ, ϕ), (52)

δµ̃X(r, θ, ϕ) = δµ̃X(r) Ym
l (θ, ϕ), (53)

δuX(r, θ, ϕ) =
WX(r)

r
Rm

l + VX(r)Sm
l − iUX(r)Tm

l , (54)

where the spherical harmonics Ym
l (θ, ϕ) are the eigenfunctions

of r2∇2Ym
l = −l(l + 1) Ym

l , and R, S and T form the orthogonal
harmonic basis, defined as

Rm
l ≡ Ym

l ∇r, Sm
l ≡ ∇Ym

l , Tm
l ≡ ∇ × R, (55)

see Rieutord (1987) for details. The three-dimensional eigen-
value problem (45)–(49) has now been reduced to the following
one-dimensional problem:

(rρnWn)′ − l(l + 1)ρnVn = −iωr2 [Snnδµ̃
n + Sncδµ̃

c] , (56)

(rρcWc)′ − l(l + 1)ρcVc = −iωr2 [Sncδµ̃
n + Sccδµ̃

c] , (57)

−r
(
δµ̃n′ + δΦ′

)
= iω [(1 − εn)Wn + εnWc)] , (58)

−r
(
δµ̃c′ + δΦ′

)
= iω [(1 − εc)Wc + εcWn)] , (59)

−δµ̃n − δΦ = iω [(1 − εn)Vn + εnVc)] , (60)

−δµ̃c − δΦ = iω [(1 − εc)Vc + εcVn)] , (61)

(
r2δΦ′

)′ − l(l + 1) δΦ = r2 (kn δµ̃
n + kc δµ̃

c). (62)

The axial velocity component UX is decoupled and corresponds
to zero frequency ω = 0, therefore all non-zero frequency
eigenmodes are purely polar. We note that the horizontal ve-
locity Eqs. (60) and (61) only hold for l > 0, because S0

0 = 0.

4.2. Boundary and regularity conditions
4.2.1. At the center
It can be shown that the representation (52)–(54) of a regular
physical quantity requires the following asymptotic behaviour
of the radial functions as r → 0,

δµ̃X ∼ δΦ ∼ WX ∼ VX ∼ O(rl), X ∈ {n, c}, (63)
where O(rl) means of order rl or higher. Another requirement
is the regularity of the solution at singular points of the equa-
tions. From Eqs. (58) and (59) we see that WX must vanish as
O(r) at the origin, while from Eqs. (56) and (57) we can derive
the further regularity requirement(
1 + r

ρ′X
ρX

)
WX + rW′X − l(l + 1)VX ∼ O(r2). (64)

Regularity of solutions of Poisson’s Eq. (62) requires

δΦ ∼ O(r2) for l > 0, (65)

while for radial oscillations (l = 0) only δΦ′ ∼ O(r) is required.
These constraints are automatically satisfied by (63) for l ≥ 2,
but they are stronger requirements than (63) in the cases l = 1
and l = 0.

4.2.2. At the surface

At the outer surface (r = R) we need to ensure the continuity
of the gravitational potential Φ, which results (e.g. see Ledoux
& Walraven 1958) in the boundary condition

δΦ′(R) +
l + 1

R
δΦ(R) = −ξr ρ(R−), (66)

where ξr is the radial displacement of the surface, and ρ(R−) is
the inner limit of ρ(r), i.e. ρ(R−) = limr→R− ρ(r). In the present
work we will only consider stars with vanishing density at the
surface3 i.e. ρ(r) → 0. The conservation Eqs. (56) and (57)
contain a (regular) singularity at the surface r = R, because
ρ′/ρ diverges when ρ→ 0. We first rewrite these equations as

(rWX)′ − l(l + 1)VX = − r
ρX

[
ρ′XWX + iωr

∑
SXYδµ̃

Y
]
. (67)

Regularity of the solution therefore requires the following
asymptotic behaviour at the surface:

ρ′XWX + iωr
∑
SXYδµ̃

Y ∼ O(ρX). (68)

4.3. Decoupling “ordinary” and “superfluid” modes?

In this section we discuss a change of variables that has
been used in several previous studies of oscillations of super-
fluid neutron stars (Lindblom & Mendell 1994, 1995, 2000;
Sedrakian & Wasserman 2000; Andersson & Comer 2001a),
namely

δ∆ ≡ δuc − δun, δβ ≡ δµ̃c − δµ̃n,
δu ≡ xc δuc + xn δun, δµ̃ ≡ xc δµ̃

c + xn δµ̃
n.

(69)

3 We note that Lindblom & Mendell (1994, 1995) have set the right-
hand side of (66) to zero in their homogeneous model, which is incon-
sistent if one allows for surface displacements ξr.
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This choice of variables is motivated by the intuitive idea that
the additional degrees of freedom of a second fluid should al-
low for two different types of motion, characterized roughly by
the two fluids being either “co-moving” or “counter-moving”,
and which are sometimes referred to as “ordinary” and “super-
fluid” modes. By choosing such “adapted” coordinates (69),
one might hope to separate, or at least simplify the system of
equations, but we will see that this is generally not the case.

Using the relations (42) and the definition (50) of kn and kc,
and defining k ≡ kn + kc, we can express the density perturba-
tions δρX as

δρn = knδµ̃ + (Snc − xckn) δβ,
δρc = kcδµ̃ + (−Snc + xnkc) δβ,

(70)

and therefore

δρ = kδµ̃ − (xckn − xnkc) δβ. (71)

In the case of a spherically symmetric background considered
here, we can use (51) to express

xckn − xnkc = −k
ρ

ρ′
x′c, (72)

and using these variables and relations, we now rewrite the
eigenmode Eqs. (37)–(41) in the form

k ∂tδµ̃ + ∇ · (ρ δu) = −x′c

[
k
ρ

ρ′
∂tδβ

]
, (73)

∂tδu + ∇(δµ̃ + δΦ) = x′c
[
δβ er] , (74)

∇2δΦ − k δµ̃ = −x′c

[
k
ρ

ρ′
δβ

]
, (75)

K ∂tδβ + ∇ · (ρxnxc δ∆) = −x′c

[
k
ρ

ρ′
∂tδµ̃ + ρ δv

r

]
, (76)

(
1 − 2αρ
ρnρc

)
∂t δ∆ + ∇δβ = 0, (77)

where er is the radial basis vector, and we introduced the ab-
breviationK ≡ x2

ckn + x2
nkc − Snc.

We see that the “ordinary”-type of motion (δµ̃, δu, δΦ)
does not decouple from the “superfluid”-type variables (δ∆,
δβ) whenever there is stratification, i.e. when x′c , 0! This
can be understood as follows: while a non-zero relative veloc-
ity δ∆ can be regarded as a characteristic of a superfluid mode
(as opposed to modes in a single fluid), the chemical equilib-
rium deviation δβ is generally non-zero even for a single (but
non-barotropic) fluid. In a stratified fluid, any general adiabatic
motion will drive a fluid element out of equilibrium, i.e. δβ
nonzero is not characteristic for either “superfluid” or “ordi-
nary” modes (contrary to claims in Lindblom & Mendell 1994,
1995), it is a general feature of modes in stratified fluids, and
therefore the choice of variables (69) does not lead to a decou-
pling of the system in this case.

However, it is interesting to consider for a moment this spe-
cial case of a non-stratified background (which probably never
applies in real neutron stars). Setting the proton fraction xc to

a constant, we can separate the equations into two decoupled
sets. One system describes “ordinary” modes, namely

k∂tδµ̃ + ∇ · (ρδu) = 0, (78)

∂tδu + ∇(δµ̃ + δΦ) = 0, (79)

∇2δΦ − k δµ̃ = 0, (80)

which are seen to be independent of the entrainment ε as well
as of the coupling through the “bulk” equation of state, i.e.
Snc. The second system of equations governs the “superfluid”
modes and reads as(
k − Snc

xn xc

)
∂tδβ + ∇ · (ρ δ∆) = 0, (81)

(
1 − 2αρ
ρnρc

)
∂t δ∆ + ∇δβ = 0. (82)

We see that contrary to the ordinary modes, the superfluid
modes do depend on the coupling through entrainment α and
the equation of state, i.e. Snc, but they are completely decou-
pled from the gravitational perturbation δΦ, as they leave the
total density unchanged, i.e. δρ = 0.

We have therefore shown that in the non-stratified case
there exist two separate families, namely “ordinary” modes
(δu, δµ̃, δΦ, 0, 0) and “superfluid” modes (0, 0, 0, δ∆, δβ). One
of our numerical models (see next section) has a constant pro-
ton fraction xc, and we will see the present analysis confirmed
by the numerical results for this model. In the general stratified
case, however, these two mode families are coupled and such a
clearcut separation is not possible.

5. Numerical results

5.1. Equation of state: Two-constituent polytropes

We use a simple class of two-constituent equations of state
which is very convenient to explore the properties of a two-
fluid system, namely the following “generalized polytrope”,
defined as4

E(0)(ρn, ρc) = κn ρ
γn
n + κc ρ

γc
c (83)

which simply consists of the sum of two ordinary polytropes.
For regularity of the chemical potentials (5) in the limit ρn → 0
and ρc → 0, the polytropic indices must satisfy γn ≥ 1 and
γc ≥ 1. This equation of state allows the explicit inversion

ρn(µ̃n) =
(
µ̃n

κnγn

)Nn

, and ρc(µ̃c) =
(
µ̃c

κcγc

)Nc

, (84)

where we have introduced NX ≡ 1/(γX − 1). We see that in
chemical equilibrium, i.e. µ̃n = µ̃c, the two fluids share a com-
mon outer surface. The equilibrium proton fraction xc can be
expressed as

xc =

(
1 +

(γcκc)Nc

(γnκn)Nn
µ̃Nn−Nc

)−1

, (85)

4 This equation of state has been used previously by Comer et al.
(1999) and Andersson et al. (2002) to study two-fluid oscillations in
general relativity.
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which shows that the proton fraction is constant whenever γn =

γc, while the behaviour in the case of different indices falls into
the two categories:

0
µ̃→∞←− xc

µ̃→0−→ 1, for γn < γc, (86)

1
µ̃→∞←− xc

µ̃→0−→ 0, for γn > γc. (87)

5.2. Calculating the background models

The equilibrium background solution is determined by
Eq. (20), together with the regularity requirement µ̃′(0) = 0,
and the boundary condition of vanishing pressure at the sur-
face, i.e.5 µ̃(1) = 0, where the surface of the static background
star is situated at R = 1 in the natural units defined in Sect. 2.2.
Using the equation of state we can express ρ = ρ(µ̃) in chem-
ical equilibrium, and therefore Eq. (20) can be written as the
following nonlinear eigenvalue problem,

µ̃′′ +
2
r
µ̃′ = λ ρ(µ̃), (88)

where the (dimensionless) eigenvalue λ is given by

λ = 4πG
ρ0

µ̃(ρ0)
R2. (89)

The eigenvalue λ represents the a-priori unknown radius of the
star, and thereby the actual values of the natural units for a
given central density ρ0. The method used here to solve this
equation is to iterate a linear eigenvalue problem that converges
to the solution of (88). This can be done by solving in step k+1
the following linear eigenvalue problem,

µ̃′′k+1 +
2
r
µ̃′k+1 = −λk+1

(
ρ(µ̃k)
µ̃k

)
µ̃k+1, (90)

where µ̃k is the solution of the previous step k. The equation in
each step is solved using the spectral linear eigenvalue solver
package LSB developed by L. Valdettaro and M. Rieutord.
With a resolution of 40 Chebychev polynomials and a Gauss–
Lobatto collocation method, this iteration converges to about
machine precision (i.e. ∼10−15 relative difference between suc-
cessive steps) in about 20 steps. Another practical advantage of
this method is that we calculate the background quantities on
the same Gauss–Lobatto grid which we use in the numerical
code for the eigenmodes. Even when using a different resolu-
tion for the eigenmode-calculation, the Chebychev expansion
provides a canonical C∞ interpolation which allows us to eas-
ily “re-grid” the background solution.

In principle we can solve the background for any given
equation of state, but we restrict our attention in this work to
the class of two-constituent polytropes (83).The reason for this
choice is their analytic simplicity and because our main empha-
sis is to clarify the qualitative properties of superfluid neutron
stars rather than to construct a physically very precise model.
This would in any case be quite impossible in a Newtonian
description because of the neglect of relativistic effects, in ad-
dition to the important uncertainties in our current knowledge
of the equation of state of neutron stars.

5 Strictly speaking µ is determined only up to a constant, which is
usually fixed such that µ̃ vanishes together with the pressure.

Table 1. Parameters describing the background models I, II and III,
based on the two-constituent polytrope (83). Further shown are the
central mass density ρ0, the central proton fraction xc(0), the total mass
M and the radius R. a The units of the coefficients κX are c2ρnuc

1−γX ,
where ρnuc = 1.66 × 1014 g cm−3.

γn γc κn
a κc

a ρ0
ρnuc

xc(0) M
M�

R
km

I 2.0 2.0 0.01 0.09 10.83 0.10 1.414 10.7

II 2.5 2.1 0.01 0.20 3.20 0.10 1.440 14.3
III 1.9 1.7 0.01 0.09 18.65 0.10 1.412 9.4

Table 2. Conversion factors for our frequency units (
√

4πGρ0) into
different systems of units (SI, “Cox”, and “geometrized” units) for
models I, II and III.

I II III
kHz 38.8318047 21.1116405 50.9444446√

GM/R3 3.14159265 2.61829313 3.40801371
c3/GM 0.270521502 0.149723677 0.354013053

In the numerical analysis we consider the three different
background models defined in Table 1, and which are repre-
sented in Fig. 1. These three models correspond to three differ-
ent types of behaviour at the surface. In the case of Model I
one can easily find the background solution analytically, as
shown in Prix et al. (2002), which allows us to check the nu-
merical method of calculating the background, and we find a
maximal relative error of 10−14 between the numerical and the
analytic solution for model I. Model II represents a generic
“stiff” model similar to those used in Comer et al. (1999) and
Andersson et al. (2002), which has infinite density gradients at
the surface. Model III is of a “soft” type with vanishing den-
sity gradients at the surface. These different types of behaviour
at the surface are quite analogous to the case of the usual one-
constituent polytropes for different polytropic indices. We note
that model I is the only non-stratified model, i.e. it has a con-
stant proton fraction xc (and finite density gradients at the sur-
face), while models II and III have a non-zero composition gra-
dient, i.e. x′c , 0, as expected from (85).

For easier comparison of the frequencies given in the next
section in units of

√
4πGρ0, we provide in Table 2 the conver-

sion factors into three important systems of units, namely the
SI unit Hz, the Cox (1976) units

√
GM/R3 (variants thereof,

like those used by Lindblom & Mendell 1994 only differ by
a constant factor) and the “geometric” units c3/GM typically
used in general relativity (Comer et al. 1999; Andersson et al.
2002).

5.3. The two-fluid oscillation modes

The eigenmode Eqs. (56)–(62) together with the bound-
ary conditions of Sect. 4.2 form a linear eigenvalue system
which we solve numerically using the spectral solver of the
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Fig. 1. Density profiles and proton fraction xc of the background models I, II and III as defined in Table 1. ρ0 is the central density. In this figure
we have divided the neutron density by 5 in order to obtain similar magnitudes for the different curves.
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Fig. 2. The first three quadrupolar (l = 2) eigenmode doublets (o)/(s) for the background model I. In the case of the (o)-modes, the two fluids
are comoving to numerical precision, therefore the δvn and δvc curves can not be seen separately.

LSB-package. The convergence of the results was determined
by increasing the resolution starting from 40 Chebychev poly-
nomials up to 80, and we found the changes in frequency de-
crease very quickly to about 10−9 (or better), which is why we
give the frequencies with nine decimals in Tables 3–5, corre-
sponding roughly to the convergence achieved by the numer-
ical method. This is for future reference and comparison, not
because these frequencies represent a physically measurable
prediction in any sense.

5.3.1. Eigenmodes of “locally uncoupled” fluids

In this section we consider the case of zero entrainment, i.e.
α = 0 and εn = εc = 0. We refer to this situation as “locally un-
coupled” fluids, as it is important to note that the two fluids are
nevertheless coupled “globally” through the perturbation of the
gravitational potential δΦ and (62). We consider the cases of ra-
dial (l = 0), dipolar (l = 1) and quadrupolar (l = 2) oscillations,
which differ qualitatively in some properties and boundary
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Fig. 3. The first three quadrupolar (l = 2) eigenmode doublets (o)/(s) for the background model II. The value of δβ in the lower left figure has
been multiplied by 100, in order to make it visible.

conditions (see Sect. 4.2), while all higher l cases are quali-
tatively very similar to l = 2. The lowest eigen-frequencies for
these three values of l are shown in Tables 3, 4 and 5 respec-
tively. We label these modes in analogy to the one-fluid case as
f - and p-modes, and group them in pairs where the lower fre-
quency mode is labelled as “o” and the higher frequency one as
“s”. The pairs of p-modes are indexed in the order of increasing
frequency. We emphasize that this labelling is a pure conven-
tion, as one can generally not say that these modes would be
either co- or counter-moving, or that the subscript would ex-
actly reflect the number of radial nodes.

Let us first consider the special separable case of the non-
stratified model I. The first three pairs of eigenfunctions are
presented in Fig. 2, and we see that in the “o” modes the two
fluids are comoving, resulting in a non-zero δΦ, and they also
remain in strict chemical equilibrium, i.e. δβ = 0. These “or-
dinary” modes are actually identical to the normal-fluid modes
of the same background (see Sect. 5.4). In the case of the s-
type modes the two fluids are counter-moving in exactly such
a way that the total density remains constant, i.e. δρ = 0 and
therefore δΦ = 0, while the fluids are driven out of chemical
equilibrium, i.e. δβ , 0. The number of radial nodes in δur

is the same for the o and s modes, and corresponds exactly to
their index. All these results confirm the analytic predictions
for non-stratified models in Sect. 4.3. However, it would be
wrong to assume that these properties are generally true for
superfluid oscillations. Stratification makes this picture more

Table 3. Frequency spectrum of radial eigenmodes (l = 0) for mod-
els I, II and III in natural units ω0 =

√
4πGρ0.

l = 0 ωI ωII ωIII

f o 0.616 801 012 0.860 501 159 0.539 820 916
f s 0.825 395 141 1.004 218 360 0.713 202 951
po

1 1.272 153 763 1.650 440 676 1.114 032 342
ps

1 1.398 557 067 1.780 808 966 1.186 350 906
po

2 1.855 852 617 2.326 264 710 1.582 750 279
ps

2 1.949 822 942 2.573 698 536 1.675 075 045
po

3 2.418 457 671 2.985 429 110 2.018 290 454
ps

3 2.493 326 179 3.352 297 316 2.169 556 932
po

4 2.970 977 248 3.638 960 946 2.445 611 455
ps

4 3.033 169 591 4.122 179 788 2.658 934 809

complex, even in the case of locally uncoupled fluids consid-
ered in this section. If we look at the first three pairs of eigen-
functions for the model II in Fig. 3, we see that the “o” modes
are not comoving at all (only the f o is nearly comoving), and
they have non-zero δβ, while the “s” modes have non-zero δρ
and δΦ. One can not say either that the relative amplitude of
δβ would be different between the o- and s-cases, as Lindblom
& Mendell (1994) wrongly induced from the properties of the
f o-mode, the only eigenmode they presented.

In the case of the low-order modes presented in Fig. 3, the
number of radial nodes still seems to correspond to the index,
and the fluids are roughly in opposite phase in the s-modes,
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Fig. 4. The p6 eigenmode doublet (o)/(s) (for l = 2) for the background
model II. The radial velocity δvrn has been multiplied by 10 for better
visibility. Neither mode is co- or counter-moving, and the number of
radial nodes differs between the two fluids.

while they are approximately in phase for the o-modes. Even
this, however, is not true in general, as can be seen in Fig. 4
which shows the higher order p6-modes. In this case neither o-
nor s- are dominantly in phase or in opposite phase, and the
two radial velocities have different numbers of radial nodes.
Therefore neither the index nor the o/s label bear any reliable
information about the properties of the modes. This behaviour
is possible because this eigenvalue problem is not of Sturm–
Liouville type except in the non-stratified case.

Another interesting fact to notice in Tables 3–5 is that the
fundamental modes ( f o and f s) are the lowest frequency modes
in the spectrum, in other words there are no g-modes present
(which usually lie far below the f -mode) in these superfluid
models. This confirms the numerical findings by Lee (1995)
and the local analysis of Andersson & Comer (2001a).

The absence of g-modes can be made clearer when
acoustic modes and surface gravity modes are filtered out.
The latter modes are easily removed by suppressing surface
motions and imposing therefore WX = 0 at the star surface.
Acoustic modes, on the other hand, are filtered out by using
the so-called anelastic approximation which makes an expan-
sion in powers of the Brunt-Väisälä frequency (see Dintrans &
Rieutord 2001; Rieutord & Dintrans 2002). Using this approx-
imation mass conservation now reads

∇ · (ρnδun) = 0 and ∇ · (ρcδuc) = 0 (91)

Table 4. Frequency spectrum of dipolar eigenmodes (l = 1) for mod-
els I, II and III in natural units ω0 =

√
4πGρ0. a The zero fre-

quency modes correspond to the analytic result of a constant displace-
ment field ξ. This solution can not be produced by our code because
the equations have been expressed in terms of velocities instead of
displacements.

l = 1 ωI ωII ωIII

f o 0a 0a 0a

f s 0.389 835 134 0.440 176 989 0.387 577 390
po

1 0.898 011 966 1.191 707 859 0.798 353 611
ps

1 1.040 570 747 1.280 907 920 0.895 985 737
po

2 1.518 621 841 1.930 140 941 1.317 638 486
ps

2 1.621 023 028 2.105 369 668 1.384 086 979
po

3 2.099 218 641 2.609 579 518 1.770 672 472
ps

3 2.179 811 073 2.908 118 483 1.887 282 252
po

4 2.662 623 840 3.274 392 031 2.206 080 421
ps

4 2.729 000 908 3.692 629 614 2.385 023 708

Table 5. Frequency spectrum of quadrupolar eigenmodes (l = 2) for
models I, II and III in natural units ω0 =

√
4πGρ0.

l = 2 ωI ωII ωIII

f o 0.390 550 961 0.424 294 338 0.376 662 787
f s 0.526 990 499 0.604 904 572 0.516 636 947
po

1 1.101 827 434 1.423 800 575 0.980 798 266
ps

1 1.206 881 695 1.514 568 856 1.039 415 772
po

2 1.723 444 868 2.164 156 378 1.478 705 720
ps

2 1.806 873 473 2.380 237 199 1.557 015 636
po

3 2.310 315 782 2.858 007 106 1.932 213 886
ps

3 2.379 342 400 3.200 741 221 2.072 313 682
po

4 2.879 785 468 3.533 905 837 2.372 551 143
ps

4 2.938 448 588 3.997 594 591 2.576 350 147

instead of (45) and (46). In the case we have considered, i.e.
that of no entrainment (α = 0), the equations of motion read:

∇(δµ̃n + δΦ) = −iωδun, (92)

∇(δµ̃c + δΦ) = −iωδuc, (93)

∇2δΦ = kn δµ̃
n + kc δµ̃

c. (94)

Using (91) we eliminate the velocities and are left with the
system:

∇ · (ρn∇(δµ̃n + δΦ)
)
= 0, (95)

∇ · (ρc∇(δµ̃c + δΦ)
)
= 0, (96)

∇2δΦ = kn δµ̃
n + kc δµ̃

c, (97)

where we see that the mode frequency has disappeared. Using
the boundary conditions, it turns out that the only solution is
δµ̃c = δµ̃n = δΦ = 0, thus showing that no eigenmode exists
when acoustic and surface gravity modes are filtered out.

However, the presence of g-modes due to chemical compo-
sition gradients in normal-fluid neutron star models has been
pointed out by Reisenegger & Goldreich (1992), and their pos-
sibly observable excitation in a coalescing binary neutron star
has been discussed by Reisenegger & Goldreich (1994) and
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mode when increasing ε. The δvrn curves in the two lower left figures
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Lai (1994). We will see in Sect. 5.4 that these predicted com-
position g-modes do indeed appear in the normal-fluid case. In
principle the presence or absence of these modes could there-
fore be used as a possibly observable indicator for superfluidity
in neutron stars.

5.3.2. The effect of coupling by entrainment

In this section we study the dependence of the mode-
frequencies and properties on the coupling by entrainment.
Obviously, we only need to specify one entrainment function,
εc say, as εn is then determined by (6). Because the uncertain-
ties and differences of the “realistic” models for εc provided
by nuclear physics calculations so far are still considerable, we
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Fig. 7. Avoided crossing between the ps
1 and the po

2 modes of Model II
(l = 2), indicated by the hatched box in Fig. 5. The three columns
show the corresponding eigenfunctions for three different values of
entrainment. The small arrows indicate the “evolution” of the eigen-
mode when increasing ε.

chose the simplest entrainment model, namely εc = ε being a
constant. The value of this constant ε can be related to the pro-
ton effective mass m∗p by (22), and is roughly constrained from
the nuclear physics calculations (Chao et al. 1972; Sjöberg
1976; Baldo et al. 1992; Borumand et al. 1996) to lie in the
range 0.3 ≤ ε ≤ 0.7. We nevertheless consider the broader
range between −0.8 ≤ ε ≤ 0.8 to demonstrate the qualitative
behaviour more clearly. This will also show that the “locally
uncoupled” case ε = 0 (considered in the previous section) is
not special, contrary to what one might have expected.

The results for the mode-frequencies as functions of ε for
the three background models are represented in Fig. 5. In the
case of the non-stratified model I, we observe the predicted
(Sect. 4.3) decoupling, and in particular the independence of
the “ordinary”-type modes of entrainment. Because of this
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Table 6. The eigenvalue spectrum (for l = 2) for the models I, II,
and III. The non-stratified model I has no g-modes.

l = 2 ωI ωII ωIII

. . . – . . . . . .
g4 – 0.012 105 268 0.011 489 709
g3 – 0.015 003 335 0.014 157 505
g2 – 0.019 814 997 0.018 492 575
g1 – 0.029 631 110 0.026 880 058
f 0.390 550 961 0.424 310 492 0.376 717 911

p1 1.101 827 434 1.477 988 230 0.988 324 062
p2 1.723 444 868 2.348 478 094 1.533 337 250
p3 2.310 315 782 3.163 853 143 2.050 348 013
p4 2.879 785 468 3.954 289 860 2.552 745 872
. . . . . . . . . . . .

decoupling the respective frequencies of the two mode families
can simply cross each other when ε is varied. In the generic
stratified models (model II and III), the modes of the dou-
blets are coupled and avoided crossings result when mode-
frequencies come too close to each other, as also found recently
by Andersson et al. (2002). In this process of avoided crossing
the two modes seem to exchange some of their respective prop-
erties of being dominantly “co-” or “counter-moving”, as can
be seen in Fig. 6, and they also can exchange their number of
radial nodes, as we see in the avoided crossing of the ps

1 and po
2

in Fig. 7.
Another important conclusion can be drawn from Fig. 5,

namely that the “locally uncoupled” case ε = 0 discussed in
the previous section does not represent a special case in any
respect, because the two fluids are always coupled through δΦ.
The effect of ε is simply to change the coupling, but no con-
figuration is completely uncoupled. On can see in Fig. 5 that
several avoided crossings happen practically at ε = 0, which is
the case in particular for the p6-modes of model II presented in
Fig. 4.

5.4. The one-fluid case: Recovering the g -modes

Following the discussion in Sect. 3.2, the one-fluid case is de-
fined by δun = δuc ≡ δu. We only have one Euler equation in
this case, which in the harmonic decomposition (55) has the
two components

xn δµ̃
n′ + xc δµ̃

c′ + δΦ′ = − iω
r

W, (98)

xn δµ̃
n + xc δµ̃

c + δΦ = −iωV. (99)

These two equations replace (58)–(61), while the remaining
equations of this system are unchanged (subject to the substitu-
tions Wn = Wc = W and Vn = Vc = V). The eigen-frequencies
of this system are shown in Table 6, where we see the presence
of composition g-modes as expected for all models with strat-
ification. This is consistent with the prediction by Reisenegger
& Goldreich (1992) and the numerical findings of Lee (1995).

We also see that in the non-stratified model I, the one-fluid
frequencies and modes correspond exactly to the correspond-
ing “ordinary”-type solutions of the two-fluid case (see Table 5

and Fig. 2), as would be expected from the separability of the
system as discussed in Sect. 4.3.

We note that the perfect fluid modes of stratified models
generally have δβ , 0, because adiabatic oscillations gener-
ally drive fluid elements out of equilibrium, only in the non-
stratified case (model I) is δβ = 0 strictly satisfied.

The absence/presence of g-modes in superfluid/normal
fluid models might seem somewhat surprising but one can get a
better intuitive understanding by considering the physical ori-
gin of these g-modes: a radially displaced fluid element will
remain close to mechanical (pressure) equilibrium with its sur-
roundings, but its respective values of ρn and ρc will generally
differ from the surroundings (when x′c , 0) and therefore (via
the equation of state) its total density will also be different, re-
sulting in a buoyant restoring force and a corresponding oscil-
lation mode (in unstable models this restoring force will ac-
tually drive the fluid element still further away from its initial
position, leading to convection). In the simple (cold) superfluid
models considered here, each fluid element of either fluid (n or
c) is only characterized by a single quantity, namely ρn or ρc.
Displacing an element of fluid n, say, will therefore result not
only in mechanical equilibrium (µ̃n), but also in buoyant equi-
librium. This can by seen by expressing its density at the new
position as ρn = ρn(µ̃n, ρc). The fluid c was not displaced, there-
fore not only µ̃n but also ρc of the fluid element are identical to
the background values, and so is ρn. If we had allowed for an
additional comoving quantity like entropy s, we would expect
to find g-modes driven by a stratification in s/ρn.

It is intriguing to see that the absence of the g-modes in
superfluid models is accompanied by an apparent doubling of
acoustic modes, but it is not obvious to establish a link between
these different classes of modes as we are currently not aware
of a continuous transition from a two-fluid to a one-fluid model
(either the two fluids are locked together or they are not).

6. Conclusions

In this paper we have tried to clarify the qualitative proper-
ties of the eigenmode spectrum of superfluid neutron stars, us-
ing a simple two-fluid model. We have shown the important –
and previously somewhat overlooked – role of stratification for
these modes. The picture has been found to be more complex
than previous studies have suggested, and some of the earlier
conclusions have been shown to apply only for non-stratified
models. In particular, one can not generally talk about two dis-
tinct families of “superfluid” and “ordinary” modes. The sys-
tem of equations describing two-fluid modes can not be sep-
arated in the case of stratified stars, and its solutions have no
direct correspondence to the eigenmodes of the one-fluid sys-
tem. The two-fluid modes are generally neither co- nor counter-
moving, rather all of them are characterized by non-zero
amplitudes of relative velocity δ∆, deviation of chemical equi-
librium δβ and total density perturbation δρ. Also the order of
the mode does not necessarily correspond to the number of ra-
dial nodes (as seen in Fig. 4), which is possible because the sys-
tem is not of Sturm–Liouville type. We have further confirmed
earlier findings about the absence of g-modes in these super-
fluid models (Lee 1995; Andersson & Comer 2001a), as well as
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Fig. 8. The first few (l = 2) g-, f - and p-modes for model II. We note that the g-modes are characterized by a very small radial velocity δvr at
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the appearance of avoided crossings between mode frequencies
when changing the entrainment parameter (Andersson et al.
2002).

Given the radical difference and richer structure of the os-
cillations of superfluid neutron star models as compared to the
simple perfect fluid models, we think that much future effort
is needed to further clarify these properties and evaluate pos-
sibly observable consequences. The absence of g-modes in the
superfluid models is in strong contrast with the normal fluid
models and is a striking example of such a potentially observ-
able indicator of superfluidity in neutron stars. However, many
more physical effects have to be taken into account in order
to achieve a more realistic description of superfluid neutron
stars, namely the inclusion of vortex-forces and beta reactions,
both of which will lead to dissipation. Furthermore, an “enve-
lope” or an elastic crust should be included, and maybe most
importantly, the effects of rotation and magnetic field, which
add new restoring forces and result in a much richer spectrum
of modes. Eventually, for a realistic study of oscillations of su-
perfluid neutrons stars, one needs to work in a generally rel-
ativistic framework, as pioneered by Comer et al. (1999) and
Andersson et al. (2002). This step is crucially important also for

the assessment of the gravitational radiation emitted by these
modes, and their stability/instability via the CFS mechanism
(Chandrasekhar 1970; Friedman & Schutz 1978).
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