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1. Introduction

It is well known that the compactification of M-theory (11-dimensional supergravity) on

seven-manifolds M7 of G2 holonomy leads to an effective theory in four dimensions with

N = 1 supersymmetry. If M7 is smooth, the harmonic Kaluza-Klein decomposition of the

11-dimensional massless degrees of freedom leads in four dimensions to N = 1 supergravity

coupled to abelian vector multiplets plus chiral multiplets, which correspond to the moduli

of M7 [1, 2]. On the other hand, if M7 exhibits some singularities at certain points in the

moduli space, massless non-abelian gauge bosons possibly together with massless chiral

matter fields may emerge. The local neighborhood of these types of singularities can be

best described by replacing the compact space M7 by a non-compact G2 manifold X7 and

we are essentially dealing with the geometric description of the effective low-energy gauge

theory in four-dimensions (geometric engineering of gauge theories). In the following we are

interested in M-theory on a non-compact background X7 for which a number of examples

have been discussed recently e.g. in [3]–[19].

If X7 has a suitable U(1) isometry, one obtains a type IIA superstring interpreta-

tion upon dimensional reduction to ten dimensions. This circle is usually non-trivially

fibred over a six-dimensional base B6 which serves as the geometric background of the

corresponding IIA superstring theory. In order to obtain non-abelian gauge groups with

possibly chiral matter additional D6-branes have to wrap supersymmetric 3-cycles of B6.

– 1 –
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As a consequence, the gauge bosons correspond to open strings on the D6-brane world vol-

umes, and chiral fermions arise from open strings stretching between different intersecting

D6-branes. In this way, intersecting brane world models with intersecting D6-branes, being

wrapped on homology 3-cycles of 6-dimensional tori, orbifolds or Calabi-Yau three-folds,

can be constructed, which are more or less closely related to the standard model [20]–[28]

(see e.g. [28] for a more complete list of references on intersecting brane world models). In

M-theory language non-abelian gauge bosons arise, if X7 has an A-D-E singularity of codi-

mension four. The non-abelian gauge bosons correspond to massless M2-branes wrapped

around collapsing 2-cycles and product gauge groups are provided by intersecting singular-

ities. Massless fermions are supported by isolated (conical) singularities of codimension 7

of X7 and this situation can be realized by two or more A-D-E singularities colliding into

each other. In the IIA brane picture this is described by the intersection of D6-branes.

One can also consider orientifold O6-planes (O6-planes correspond to the Atiyah-Hitchin

manifold) intersected by D6-planes. E.g. an O6-plane intersected by n D6-branes plus their

mirror branes can lead to a SU(n) gauge theory with chiral matter in the antisymmetric

represenation of SU(n). In M-theory this corresponds to unfold a Dn singularity into a

An−1 singularity.

Of course the IIA description depends very much on the choice of the U(1) action. In

order to obtain a configuration that contains only D6-branes, one has to ensure that the 7-

manifold has only co-dimension 4 fixed points and no co-dimension 2 and 6 fixed point sets.

In this case, the 6-branes could be embedded in a topologically flat space and following the

arguments given in [4, 9, 14] the topology of the 7-manifold should be completely encoded

in the fixed point set of the U(1) action. In this case we can expect to describe a known

4-dimensional field theory living on the common intersection.

So far not many explicit metrics are known. Basically they group together into two

classes [29, 30]: one is topologically a R
4 bundle over S

3 and the other a R
3 bundle over

a quaternionic base space. Many generalizations, with more parameters or functions, have

been discussed in the past years. The first class e.g., can be generalized to R
4/ZN bundle

over S
3. In the second class one can consider further quaternionic spaces, different from

e.g. the 4-sphere S
4 and the complex projective space CP

2 = SU(3)/U(2), which are

the only compact homogeneous quaternionic 4-dimensional spaces [31]. Apart from their

non-compact analogs, there are also non-homogeneous quaternionic spaces as discussed

in [15, 19, 16, 17]. For a closely related discussion of quaternionic spaces appearing in

hyper Kaehler cones see [32, 33, 34].

In this paper we want to discuss a G2 metric based on a quaternionic space with only

two isometries. This 4-dimensional Einstein manifold can be obtained by a Wick rotation of

a solution found by Demianski and Plebanski [35, 36] and is given by four roots of a fourth

order polynomial. After some general comments about manifolds with G2 and Spin(7)

holonomy in the next section, we will discuss the quaternionic space and its symmetries

in section 3. In section 4 we will discuss in detail the fixed point set of the two Killing

vectors. Following the standard lore [7, 9, 14], we identify 6-branes as co-dimension four

fixed points and avoid co-dimension two and six fixed point sets. Finally, in section 5 we

perform the dimensional reduction and obtain explicit forms of the type IIA fields.

– 2 –
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2. Manifolds with G2 and Spin(7) holonomy from quaternionic spaces

Consider M-theory on the manifold M4 × X7 where M4 is the flat 4-d Minkowski space.

The resulting 4-d field theory exhibits N=1 supersymmetry if X7 allows for exactly one

(covariantly constant) Killing spinor and in the absence of G-fluxes this is the case if the

manifold X7 has G2 holonomy. The exceptional group G2 appears as automorphism group

of octonions: o = x0
I + xaia, where ia satisfy the algebra

iaib = −δab + ψabc ic ,

and the G2-invariant 3-index tensor ψabc is given in the standard basis by

Ψ =
1

3!
ψabc e

a ∧ eb ∧ ec

= e1 ∧ e2 ∧ e3 + e4 ∧ e3 ∧ e5 + e5 ∧ e1 ∧ e6 + e6 ∧ e2 ∧ e4 +

+ e4 ∧ e7 ∧ e1 + e5 ∧ e7 ∧ e2 + e6 ∧ e7 ∧ e3 ,
= e1 ∧ e2 ∧ e3 +

1

2
ei ∧ em ∧ J i

mne
n (2.1)

where J i
mn (i = 1, 2, 3, m = 4, 5, 6, 7) are the anti-selfdual (J i

mn = −1
2εmnpq J

i
pq) complex

structures defined by the algebra

J i · Jj = − δij + εijkJk . (2.2)

G2-holonomy requires that this 3-index tensor is closed and co-closed

dΨ = d?Ψ = 0 (2.3)

which implies that Ψ is a covariantly constant 3-form and is equivalent to the existence

of a Killing spinor. This in turn is ensured if the spin connection satisfies the projector

condition [37, 38]

ψabc ω̂
bc = 0 . (2.4)

Both conditions (2.3) and (2.4) yield a set of first order differential equations for the metric

functions. If the manifold allows for more covariantly constant form-fields, the holonomy

is further restricted and the Killing spinor equation has more than one solution so that the

4-dimensional model has extended supersymmetry.

As it has been shown in [29, 30] (see also [15] where our notations are used) a metric

that fulfills these equations is given by

ds2 =
1

√

2κ|u|2 + u0

(dui + εijkAjuk)2 +
√

2κ|u|2 + u0 ds
2
4 . (2.5)

which is topologically a R
3 bundle (related to the coordinates ui) over a quaternionic base

space, given by the metric ds24 with the curvature κ and the SU(2) connection Ai (u0 is

an integration constant); see next section for our conventions. This G2 metric is, up to

SU(2) rotations of the complex structures, fixed by the quaternionic base space and in the

next section we discuss in detail the quaternionic space that we want to consider. In the

– 3 –
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limit κ = 0 this space becomes hyper-Kähler with vanishing SU(2) curvature and hence the

connection Ai gives a pure gauge transformation, see eqs. (3.2) and (3.4). Therefore, the

connection part in (2.5) can be absorbed by a proper SU(2) rotation of the ui coordinates

and the space becomes a direct product of R
3 and the hyper Kähler space. But also if the

curvature is non-trivial, there is still the freedom to choose a proper SU(2) basis.

For κ 6= 0 we can also introduce polar coordinates for the R
3 part and the metric

becomes

ds2 =
dr2

κ(1 − 4u0/r4)
+
r2

4κ

(

1 − 4u0

r4

)

gab

(

dxa + ξa
i A

i
)

(

dxb + ξb
jA

j
)

+
r2

2
ds24 , (2.6)

where gab is the metric of S
2 with the three Killing vectors ξa

i . In the limit u0 → 0 this

metric is a cone over a 6-manifold Y which is a S
2 bundle over the quaternionic space Q

and this manifold has a weak SU(3) holonomy. To see this we write the 7-metric (with

u0 = 0 and for κ = 1) as

ds2 = dr2 + r2ds2Y . (2.7)

Decomposing the fibered R
3 as

u1 = |u| cos θ ,
u2 = |u| sin θ cosϕ ,

u3 = |u| sin θ sinϕ , (2.8)

the metric of the six-dimensional base becomes

ds2Y = V a ⊗ V a , (2.9)

where

V 1 =
ê1

r
≡ 1

2

(

dθ − sinϕA2 + cosϕA3
)

,

V 2 =
ê2

r
≡ 1

2

(

sin θ dϕ+ sin θA1 − cos θ cosϕA2 − cos θ sinϕA3
)

,

V m =

√

κ

2
em4 (2.10)

(where em4 is the vielbein of the quaternionic space). We can now show that this manifold

is half-flat, which, according to [39], implies a reduction to SU(3) defined by ω and ψ±

for which d̂ψ+ = 0 and ω ∧ d̂ω = 0, but d̂ω 6= 0 (where the differential d̂ is taken on

the six-dimensional subspace). This implies that Y has weak SU(3) holonomy, as it is

expected. From the SU(3) forms one can build the harmonic 3-form Ψ which defines the

G2 structure as

Ψ = ω ∧ dr + ψ+ . (2.11)

In our case the two-form ω is given by

ω ≡ ê1ê2 + ê3ê4 + ê5ê6 , (2.12)

– 4 –
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and the three-form ψ+ satisfies

ψ+ ≡ 1

3
dω = ê1ê3ê5 − ê1ê4ê6 − ê2ê3ê6 − ê2ê4ê5 . (2.13)

The SU(3) reduction is completed by another three-form ψ−, defined such that they satisfy

the compatibility relations ω∧ψ± = 0 and ψ+∧ψ− = 2
3ω

3. We have already explicitly con-

structed ê1 and ê2 in (2.10) and we can obtain the rest of the six-dimensional orthonormal

base êi performing a θ and ϕ dependent SO(4) rotation of the seven-dimensional base ei:

rê3 = sin θ e4 + cos θ
(

cosϕe5 + sinϕe6
)

, (2.14)

rê4 = cosϕe6 − sinϕe5 , (2.15)

rê5 = −e7 , (2.16)

rê6 = − cos θ e4 + sin θ
(

cosϕe5 + sinϕe6
)

. (2.17)

Let us end this section with a comment on 8-manifolds with Spin(7) holonomy. Again,

they allow for one (covariantly constant) Killing spinor and yield therefore N=1 supersym-

metry in three dimension upon dimensional reduction. The construction is again fixed by a

4-d quaternionic space Q and the metric reads [29, 30] (see also [40, 9] for generalizations)

ds2 =
dr2

κ(1 − u0/r10/3)
+

9

100κ
r2
(

1 − u0

r10/3

)

(

σi −Ai
)2

+
9

20
r2 ds24 (2.18)

where u0 is again an integration constant and σi are the left-invariant one-forms on SU(2).

Topologically, this space is an R
4 bundle over the quaternionic space and the cone Y (orbits

of constant r) is now an S
3 bundle over Q.

3. Quaternionic space with two commuting isometries

In the last section we have introduced the class of manifolds with G2 and Spin(7) holonomy,

which are basically fixed by a quaternionic base space. In this section we will consider a

specific quaternionic space with two isometries that we later-on want to employ for G2

spaces.

3.1 General conventions

Quaternionic-Kähler spaces are complex spaces that allow for three complex structures J i

(i = 1, 2, 3) defined by the algebra (2.2). Denoting the quaternionic vielbein by em, one

obtains three 2-forms Ωi by

Ωi = −κ
2
em ∧ J i

mne
n . (3.1)

The holonomy of a 4n-dimensional quaternionic spaces is contained in Sp(n)×SU(2). This

statement is trivial for n = 1 and can be replaced by the requirement that the Weyl-tensor

of 4-dimensional quaternionic space has to be anti-selfdual

W + ?W = 0 .

– 5 –
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For a quaternionic space in any dimension the triplet of 2-forms Ωi is expressed in terms

of the SU(2)-part of the quaternionic connection Ai as

dAi +
1

2
εijkAj ∧Ak = Ωi (3.2)

which ensures that the triplet of 2-forms is covariantly constant. Moreover, any quater-

nionic space is an Einstein space with curvature κ implying that its metric gmn solves the

equation

Rmn = 3κ gmn . (3.3)

The complex structures can be selfdual or anti-selfdual and in our notation we will take

the latter (J i
mn = −1

2εmnpq J
i
pq) so that the triplet of 2-forms can be written as

Ω1 = −κ
(

e4 ∧ e7 − e5 ∧ e6
)

,

Ω2 = −κ
(

e4 ∧ e6 + e5 ∧ e7
)

,

Ω3 = −κ
(

−e4 ∧ e5 + e6 ∧ e7
)

. (3.4)

Moreover, the SU(2) connection is given as the anti-selfdual part of the spin connection

ωmn of the quaternionic space

Ai =
1

2
ωmnJ i

mn . (3.5)

In the same way, the selfdual part gives the Sp(n) connection.

3.2 Deriving the explicit metric

The maximally symmetric 4d quaternionic space has 10 isometries spanning a group of rank

two (SO(5) or SO(4, 1)) and hence there are at most two commuting isometries. We are

interested in the situation, where the space admits only these two isometries and all others

are broken. This can be done by a double orbifold, which imposes non-trivial periodicities

along these two directions. Hence, consider the metric ansatz

ds24 =
1

F 2(p, q)

[

dp2

P (p)
+ P (p) dτ2 +

dq2

Q(q)
+Q(q) dσ2

]

(3.6)

where ∂τ and ∂σ are the two commuting Killing vectors and (single) zeros of P and Q

require non-trivial periodicity in τ and σ. Since the metric has to be Einstein, we can

derive the function F (p, q) from the combination of the Ricci tensor

0 = R p
p −R τ

τ = 2F ∂2
pF , 0 = R q

q −R σ
σ = 2F∂2

qF .

Taking as solution F = p+q and calculating another combination of the Ricci tensor yields

0 = ∂p∂q

(

R σ
σ −R τ

τ

p+ q

)

=
1

2

[

Q′′′(q) − P ′′′(p)
]

and therefore P and Q are polynomials of third degree. It is straightforward to investigate

the other equations and one finds as general solution of the equation (3.3): P = a0 −
κ + a1p + a2p

2 + a3p
3, Q = −a0 + a1q − a2q

2 + a3q
3. The Weyl tensor for this space

– 6 –
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is anti-selfdual only if: a3 = 0. So, this quaternionic space depends in total on four

parameters that fix the identifications for σ and τ . The torus spanned by these two

isometries is diagonal, but one can also deform the torus while keeping the quaternionic

property. Fortunately, the corresponding metric has been known for quite some time. It was

introduced as Minkowskean solution by Demianski and Plebanski [35, 36] and a discussion

in the mathematical literature is given e.g. in [41, 42, 43], see also [44, 45, 16, 17] for more

general quaternionic spaces with two isometries. The corresponding euclidean metric reads

ds24 =
1

(1 + pq)2

[

p2 − q2

P
dp2 +

p2 − q2

Q
dq2 +

P

p2 − q2
(

dτ + q2dσ
)2

+
Q

p2 − q2
(

dτ + p2dσ
)2
]

(3.7)

where the polynomials are now given by P = α − 2np − εp2 + 2mp3 + (α − κ)p4, Q =

−α+ 2mq + εq2 − 2nq3 − (α− κ)q4 and the Weyl tensor becomes anti-selfdual iff: m = n.

Again (single) zeros of P and Q are conical singularities, which gives periodicities of σ

and τ defining the deformed torus. In order to recover the form (3.6), one makes the

transformation p → 1/p combined with (p, q, τ, σ) → 1
λ (p, q, τ, σ) and (α, n, ε,m, κ) →

(α, λn, λ2ε, κ) followed by the limit λ→ ∞, see also [35, 36].

However, we do not want to use this form of the metric and apply another scaling:

(p, q) → λ(p, q), (α, n, ε,m, κ) → (αλ4, nλ3, ελ2,mλ3, κ) followed by the limit λ→ 0. As a

consequence the metric becomes

ds24 =
p2 − q2

P
dp2 +

p2 − q2

Q
dq2 +

P

p2 − q2
(

dτ + q2dσ
)2

+
Q

p2 − q2
(

dτ + p2dσ
)2

(3.8)

with

P = α− 2np− εp2 − κp4 , Q = −α+ 2mq + εq2 + κq4 . (3.9)

In the following we will use this form of the metric, which has again an anti-selfdual Weyl

tensor iff: m = n. In this case the two polynomials become, up to the overall sign, identical

and we can use the notation

P = −κ(p − r1)(p − r2)(p − r3)(p − r4) ,

Q = κ(q − r1)(q − r2)(q − r3)(q − r4) ,

0 = r1 + r2 + r3 + r4 . (3.10)

In addition to the two abelian isometries, there are the following symmetries

(i) p↔ q ,

(ii) p→ −p , q → −q , ri → −ri ,
(iii) (p, q, τ, σ) →

(

λ p, λ q,
τ

λ
,
σ

λ3

)

and ri → λ ri . (3.11)

The last symmetry can be used to scale one non-vanishing parameter to ±1. We have

therefore the following interpretation of the parameters: one is obviously the cosmological

constant, two parameterize the orbifolds and turning off one of them yields an enhancement

– 7 –
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of one U(1) isometry to one of three different groups SU(2), SL(2, R) or the Heisenberg

group, that are related to the three discrete values of the fourth parameter (see also next

subsection).

It is important to note, that the physical parameter range is given by the values of

(p, q) which fulfill the two inequalities

(p2 − q2)P (p) ≥ 0 and (p2 − q2)Q(q) ≥ 0 . (3.12)

This allows for a number of different coordinate regions, which are separated by regions

that contain two timelike coordinates. Note, these timelike regions appear beyond fixed

points of the isometries, which become branes upon dimensional reduction. Thus, they

indicate the appearance of additional massless modes and should be interpreted as phase

transition points.

An important property of this space is the presence of a curvature singularity, which

becomes visible in the square of the Riemann curvature

RabcdR
abcd = 24κ2 +

96n2

(p + q)6
(3.13)

where n was the coefficient of the linear part in the polynomials. This co-dimension one

singularity at p + q = 0 is present for any value of the fiber coordinates ui and hence

is a singularity also of the 7-manifold (actually, it is singular domain wall of the whole

11-dimensional space time). There are two limits in which this curvature singularity disap-

pears. One is obviously given by n = 0 and the other by n → ∞ combined with a proper

rescaling of p and q. As we will discuss in the next section, both limits yield a homogeneous

quaternionic space; S
4 or CP

2 (or their non-compact versions).

Having the metric it is straightforward to determine the SU(2) connections as intro-

duced in (3.5). They are given by

A1 =

√
PQ

(q − p)
dσ ,

A2 = −κ(p− q) dτ +
1

(p− q)

[

α− n(p+ q) − ε qp− κp2q2
]

dσ

A3 =
1

(p− q)

[

√

Q

P
dp +

√

P

Q
dq

]

. (3.14)

and fulfill the relations (3.2) and (3.4) with

e4 =
√

p2 − q2
dp√
P
, e5 = −

√

p2 − q2
dq√
Q
,

e6 =

√
P

√

p2 − q2

(

dτ + q2dσ
)

, e7 = −
√
Q

√

p2 − q2

(

dτ + p2dσ
)

. (3.15)

3.3 Special limits

The 4-dimensional base space as introduced in the last subsection, can be obtained by

a Wick rotation of a solution that has been discussed by Plebanski and Demianski as a

“Rotating, Charged, and Uniformly Accerating Mass in General Relativity” [37]. It is also

– 8 –
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known as the (A)dS-Kerr-Newman-Taub-NUT solution, where the electric and magnetic

charges are obviously zero in our application. To make the relation to these known Einstein

spaces more clear, let us perform the corresponding limits.

To obtain the euclidean (A)dS-Kerr-Newman-Taub-NUT solution as a limit of our

euclidean PD solution, we set (see also [46])

q = r , p = a cos θ +N , τ = t+

(

N2

a
+ a

)

φ

Ξ
, σ = − φ

aΞ
,

α = −a2 +N2
(

1 − κ 3a2 + κ 3N2
)

,

n = N
[

1 − κa2 + 4κN2
]

,

ε = −1 − κa2 − 6κN2 ,

Ξ = 1 − κa2 . (3.16)

With these transformations and relaxing the constraint m = n (so that the Weyl tensor is

not anti-selfdual), the polynomials P and Q become

P = −a2 sin2 θ
[

1 − κ
(

4aN cos θ + a2 cos2 θ
)]

, (3.17)

Q = −(r2 +N2) + κ
(

r4 − a2r2 − 6N2r2 + 3a2N2 − 3N4
)

+ 2mr + a2 . (3.18)

If we moreover define,

R2 = r2 − (a cos θ +N)2 , (3.19)

λ = (r2 +N2) − κ
(

r4 − a2r2 − 6N2r2 + 3a2N2 − 3N4
)

− 2mr − a2 (3.20)

one gets,

p2 − q2

Q(q)
dq2 =

R2

λ
dr2 ,

p2 − q2

P (p)
dp2 =

R2

1 − κ(a2 cos2 θ + 4aN cos θ)
dθ2 ,

Q(q)

p2 − q2
(

dτ + p2dσ
)2

=
λ

R2

[

dt+
a sin2 θ − 2N cos θ

Ξ
dφ

]2

P (p)

p2 − q2
(

dτ + q2dσ
)2

=
sin2 θ [1 − κa cos θ(a cos θ + 4N)]

R2

[

adt− (r2 − a2 −N2)

Ξ
dφ

]2

and we obtain the euclidean (A)dS Kerr-Taub-NUT solution given by

ds24 =
R2

1 − κ(a2 cos2 θ + 4aN cos θ)
dθ2 +

R2

λ
dr2 +

+
λ

R2

[

dt +

(

a sin2 θ

Ξ
− 2N cos θ

Ξ

)

dφ

]2

+

+
sin2 θ

[

1 − κ(a2 cos2 θ + 4aN cos θ)
]

R2

[

adt− (r2 − a2 −N2)

Ξ
dφ

]2

. (3.21)

The limits are now straightforward: if N = 0 one obtains the euclidean (A)dS-Kerr solu-

tion, where a corresponds to the rotational parameter. But note, there is no rotation in

an euclidean space, the axial symmetric minkowskean Kerr-solution becomes instead an
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euclidean dipole solution. In fact, the euclidean Kerr solution (i.e. for κ = 0) has been

identified in [47] as Taub-NUT/anti-Taub-NUT dipole solution where the parameter a just

measures the distance between the two centers. On the other hand, if a = 0 while N 6= 0,

κ 6= 0, the solution becomes euclidean (A)dS-Taub-NUT given by [48]

ds24 = V (r) (dt − 2N cos θdφ)2 +
dr2

V (r)
+ (r2 −N2)

(

dθ2 + sin2 θdφ2
)

(3.22)

where

V (r) ≡ λ

R2
=

1

r2 −N2

[

(r2 +N2) − κ
(

r4 − 6N2r2 − 3N4
)

− 2mr
]

. (3.23)

The isometry group for this space has been enhanced to U(1) × SU(2) (from U(1) × U(1)

for a 6= 0) and the relevance of this quaternionic space in gauge supergravity and for

G2 manifolds has been discussed recently in [49, 15]. In the limit of vanishing N , the

space becomes euclidean (A)dS4 (i.e. S
4 or the non-compact hyperboloid), which is maxi-

mal symmetric with 10 isometries parameterizing SO(5) or SO(4, 1). On the other hand,

in the limit N → ∞ while keeping r̂ = N(r − N) fix, the solution becomes the coset

space SU(3)/U(2) (= CP
2) or SU(2, 1)/U(2) resp. This is the second known regular 4-

dimensional quaternionic space, which has 8 isometries parameterizing SU(3) or SU(2, 1).

It is also instructive to understand these limits in terms of the four roots rm as introduced

in (3.10). The maximal symmetric spaces (S4 resp. EAdS4) can be obtained if

r1 = −r4 , r2 = −r3 (3.24)

and the corresponding transformation is given in [37] (for Minkowskean signature). On the

other hand, for N → ∞ we find from (3.16): α = 3κN4, n = 4κN3, ε = −6κN2 yielding:

P (p) = −κ(−3N4 + 8N3p− 6N2p2 + p4) = κ(N − p)3(p+ 3N). Thus, one gets CP
2 or its

non-compact analog in the limit where three zeros of the polynomial coincide, as e.g.

r2 = r3 = r4 = N and N → ∞ . (3.25)

This limit is of course only regular if one shifts also q and p (see eqs. (3.16) and recall the

replacement r = r̂/N +N , see also [49, 15]).

4. Fixed point set

4.1 General discussion

The quaternionic space has two Killing vectors and let us consider the isometry obtained

by the linear combination

k = β1∂τ − β2∂σ . (4.1)

Since the SU(2) connection Ai does not depend on σ and τ , this Killing vector corresponds

to an isometry also of the G2 manifold (2.6). To find the fixed points of such isometry, we
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have to satisfy the equations |k|2 = 0 and with the metric (2.6) we find

|k|2 =
r2

4κ

(

1 − 4u0

r4

)

gabξ
a
i ξ

b
i (β1A

i
τ − β2A

i
σ)2 +

+
r2

2

[

P

p2 − q2
(

β1 − β2q
2
)2

+
Q

p2 − q2
(

β1 − β2p
2
)2
]

= 0 . (4.2)

This is one necessary condition on fixed points, but in order to ensure that it is at finite

geodesic distance one has to require that the fixed point set is non-degenerate, i.e. (∇k)2 6= 0

at |k|2 = 0. If this condition is not fulfilled the space exhibits a infinite throat and the

fixed point will be at infinity (gauging such an isometry in gauged supergravity results in a

run-away solution, see [49]). Actually in this case the Killing vector does not parameterize

a rotational symmetry, but a translational one. This happens e.g., if the fourth order

polynomials have a double zero, see also the discussion below.

Since the physical parameter range of the (p, q) coordinates is given by the values

which fulfill the inequalities

(

p2 − q2
)

P (p) ≥ 0 and
(

p2 − q2
)

Q(q) ≥ 0 , (4.3)

each term in (4.2) has to vanish separately. Apart from the trivial zero at r = 0, the second

term of |k|2 vanishes for the two cases

(a) P = 0 and Q = 0 ,

(b) p =

√

β1

β2
= rm or q =

√

β1

β2
= rm (4.4)

where rm is one of the roots of P (p) [respectively Q(q)]. The condition (a) fixes p and q at

points where the two isometric U(1) fibers in the metric vanish and hence this condition

defines a point on the quaternionic space and is called a NUT. On the other hand, condition

(b) fixes only one coordinate (p or q) and only one U(1) fiber vanishes and therefore this

condition defines a 2-dimensional subspace — a bolt. Obviously this latter case can only

happen for a specific Killing vector, a generic choice of β1 and β2 will not yield bolts. For

both cases (a) and (b) only A2
σ and A2

τ are non-trivial and hence the first term in (4.2) is

zero iff

(c) |ξ2|2 = 0 ,

(d) A2
µ k

µ = β1A
2
τ − β2A

2
σ = 0 or

(e) r4 = 4u0 . (4.5)

The last case is only of interest as long as u0 6= 0 and corresponds to the point where the

S
2 has collapsed to a point while the quaternionic space is still finite. Case (c) is satisfied

at fixed points of the second S
2-Killing vector (i.e. |ξ2|2 = 0) and this gives exactly two

(antipodal) points on S
2, which in the coordinates (2.8) are given by cos θ = sinϕ = 0 (or

u1 = u3 = 0). For case (d) one finds

β1A
2
τ − β2A

2
σ =

(β1 − β2q
2)[(p− q)∂p − 2]P − (β1 − β2p

2)[(p− q)∂q + 2]Q

2(p − q)2(p+ q)
(4.6)
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and this has to vanish in combination with case (a) or (b). By inserting the polynomi-

als (3.10) one finds, for generic values of β1 and β2, that this can only happen at double

zeros of P or Q. But as we discussed before these double zeros correspond to degenerate

fixed points which are not at finite geodesic distance. On the other hand, in combination

with case (a), we find always a ratio of β1

β2
= β for which this combination vanishes at

zeros of Q and P , see also the explicit example below. Notice, for these simple Killing

vectors the combination (4.6) gives the Killing prepotential (momentum maps) and for a

4-dimensional quaternionic space with at least two abelian compact Killing vectors there is

exactly one combination for which the Killing prepotentials (or momentum maps) vanish

at the fixed point [50, 51].

In summary, depending on the choice of parameters there are fixed point sets of various

co-dimensions:

Fixed point set of co-dimension 7 These are zeros of |k|2 which are points on the 7-

manifold. This is the case at the conical singularity at r = 0 if u0 = 0 or otherwise a

combination of the constraint (a) with (e).

Fixed point set of co-dimension 6 They are related to a combination of case (a) and

(c), which means that the fixed point set is given by a NUT on the quaternionic

space combined with a fixed point of the second S
2 Killing vector. Since we have two

abelian isometries we can first reduce over the k to get a IIA configuration followed by

a T-duality over the second isometry. In this procedure, these co-dimension 6 fixed

points should be mapped onto type IIB NS5-branes, because they are fixed points

of both isometries of the 7-manifold and hence are also fixed points of translations

along the T-duality direction.

Fixed point set of co-dimension 5 They are only present if u0 6= 0 and correspond to

a combination of case (b) and (e), but they are not additional isolated fixed point

sets. In fact, r4 = 4u0 represents exactly the point of minimal distance of given

codimension 4 fixed points set. The same is true for the codimension 7 fixed point

appearing as combination of case (a) and (e), which is the orbit of minimal distance

between given co-dimension 6 fixed point sets.

Fixed point set of co-dimension 4 These are perhaps the most interesting ones, since

they are identified as 6-branes upon the reduction to type IIA string theory. We

obtain co-dimension 4 fixed points as a combination of case (b) and (c) as well as of

case (a) and (d). In both situations the 6-branes will wrap a 2-cycle of the 6-manifold

Y : for the combination (b) and (c) this 2-cycle is the bolt inside the quaternionic

space and if p and q are bounded by two roots rm, this 2-cycle is topologically a line

segment times a circle and if there are no conical singularities this 2-cycle becomes

topologically an S
2. Recall, case (b) as well as case (d) require specific Killing vectors

which do not agree, but in any case 6-branes appear only for a proper choice of the

11th coordinate. For the combination (a) and (d), the 6-branes are transversal to the

quaternionic space and wrap all three ui coordinates.
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Fixed point set of co-dimension 2 These fixed points can appear only as a combina-

tion of case (b) and case (d). As we mentioned after equation (4.6) this requires that

p or q run toward a double zero of P or Q and from the metric (3.8) we see that these

double zeros are not at finite geodesic distance. Instead, near these points the space

develops a throat and the fixed point set is at infinity and we can discard them. Al-

ternatively, case (d) can appear for a specific Killing vector, which is however different

from the one fixed by case (b) and hence there are no co-dimension 2 fixed points.

Recall, in addition to these fixed points there is the co-dimension one curvature singu-

larity of the quaternionic space at p+ q = 0.

4.2 Nuts and bolts of the quaternionic space

In order to determine the number of fixed points, we have to ask for the number of solutions

of the equations (4.4), which are related to NUTs and bolts on the quaternionic space.

Given that our polynomial P or Q has four roots rm one can distinguish among four main

cases:
i) κ > 0 while r2, r3, r4 ≥ 0 and r1 < 0 ,

ii) κ > 0 while r3, r4 ≥ 0 , r1, r2 ≤ 0 and r4 + r1 > 0 ,

iii) κ < 0 while r2, r3, r4 ≥ 0 and r1 < 0 ,

iv) κ < 0 while r3, r4 ≥ 0 , r1, r2 ≤ 0 and r4 + r1 ≥ 0 . (4.7)

Every other case can be reconducted to one of the above upon using some of the symme-

tries (3.11) of the metric (3.8).

Let us start with the discussion of the possible bolts. Any of the four roots for which
√

β1/β2 = rm gives bolts and since p and q can go independently to this root there are

always two bolts. But note, not each coordinate region contains a bolt. E.g. if p is in

region IV (see figure) and q in region III we have two bolts if rm =
√

β1/β2 = r3. On the

other hand, if
√

β1/β2 = r1 one finds bolts only if one takes into account the other allowed

coordinate regions, namely that p is in region II and q in region III or vice versa.

The discussion of all possible NUTs is more involved. It can be shown that one finds

six solutions (less if some equality bounds are satisfied or if there are double roots) for any

of the above possibilities in (4.7). They are never grouped in more than three in the same

connected physical region of parameters. Actually one can find the following patterns: zero,

one or three fixed points if the region does not contain the p = −q singularity, two fixed

points when the region contains the p = −q singularity. We give here a table summarizing

such possibilities, where we grouped the fixed points according to the (p, q) sector they

belong. For the cases with κ > 0 we find the fixed points summarized in table 1 whereas

κ < 0 gives the fixed points summarized in table 2

Note, in the degenerate case where two or three roots are equal, one looses physical

regions, which were defined by the relations (4.3) and recall, at double zeros the space

develops a throat and effectively cuts the space in two disconnected regions. On the other

hand, if p and q approach a single zeros from opposite sites this point is regular and one

can pass this point.
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(i) (r4, r1) (r2, r3) , (r2, r4) , (r3, r4) (r2, r1) , (r3, r1)

(ii) (r3, r4) , (r2, r4) (r2, r1) , (r3, r1) , (r3, r2) (r1, r4)

Table 1: These are all values of (p, q) that are NUT fixed points of the quaternionic space with

the parameters defined in (4.7). The fixed points in the same group are in the same physical region

of parameters.

(iii) (r4, r3) (r4, r2) (r3, r2) (r1, r3) , (r1, r4) (r1, r2)

(iv) (r4, r3) (r4, r2) , (r4, r1) (r2, r3) (r1, r3) (r1, r2)

Table 2: These are the analogous fixed points for a negatively curved quaternionic space.

III III IV

Q

P

r1 r2 r3 r4

V
p/q

Figure 1: The quaternionic space is basically defined by two fourth order polynomial P (p) and

Q(q) which differ only by a total sign. In this figure we have shown the case κ > 0 and denoted

with I, II, . . . , V the different coordinate regions. The case with negative κ corresponds effectively

to an exchange of P and Q.

4.3 Explicit example

Now we want to describe an explicit example which has only co-dimension 4 fixed points

that become D6-branes upon compactification. Since there will be no other fixed points, the

number of D6-branes is related to the number of co-dimension 4 fixed points [7, 14, 9]. As

for the CP
2 case, we will find that the fixed point set has two components and hence there

are in total three stacks of D6-branes. An interesting question is to determine the number

of 6-branes located at each fixed point. For the standard 6-brane, this number is related to

the periodicity in the Taub-NUT space that resolves the conical singularity and also here,

the number of 6-branes should be related to the conical singularity appearing at the fixed

point. The corresponding deficit angle is given by the surface gravity of the corresponding

fixed point set. This is a well-known quantity discussed in black hole physics, which is

defined by (∇k)2i calculated on the fixed point set Γi. It can be shown that this quantity

is constant over the fixed point set and it gives, multiplied with the area of the fixed point

set, the contribution to the Noether charge related to the Killing symmetry, see [52, 53].

Upon compactification this Noether charge gives the D6-brane charge. Applied to black

holes, the surface gravity is the Hawking temperature, which is nothing but the inverse

periodicity that resolves the conical singularity. It is straightforward to show, that the
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Taub-NUT space with NUT charge N has a surface gravity of |∇k| ∼ 1/N and therefore

we will identify the number of 6-branes of the fixed point set Γi by: Ni ∼ 1/|∇k|i.
Let us now come to the concrete example. Recall, in order to obtain co-dimension 4

fixed points one has to consider a particular Killing vector so that

i. condition (b) in eq. (4.4) is satisfied or alternatively

ii. the expression (d) in (4.5) vanishes at a zero of P and Q.

A closer look on equation (4.6) shows that both cases can only happen at the same time at

double zeros of the polynomial yielding degenerate fixed points. We will therefore consider

both cases independently.

For case (i) we consider the Killing vector

k = r23 ∂τ − ∂σ (4.8)

which means that r23 = β1 (β2 = 1) and without further restrictions we will assume that

r3 > 0. In this example we will consider p in region IV and q in III or vice versa (see

figure). There are now two sets of 6-branes located at

D61 : p = r3 , u1 = u3 = 0 ,

D62 : q = r3 , u1 = u3 = 0 . (4.9)

But by keeping generic values of the roots, there will be further codimension 6 fixed points

at q = r2, p = r4, u1 = u2 = 0 and at p = r2, q = r4, u1 = u2 = 0. In order to avoid these

fixed points we will set r1 = r2, which essentially moves these fixed points to infinity since

the metric (3.8) develops an infinite throat at p→ r2 = r1. Calculating the surface gravity

for the fixed point set given in eq. (4.9) gives

|∇k|1 = |∇k|2 =
κ

4
(3r3 + r4)

2(r4 − r3) (4.10)

where we used the constraint 0 = r1 + r2 + r3 + r4 = 2r2 + r3 + r4. That both numbers

coincide, is a consequence of the symmetry p↔ q of the metric.

Next, let us consider the 6-branes coming from case (ii), where the Killing vector

k = β ∂τ − ∂σ (4.11)

was fixed so that eq. (4.6) vanishes at a zero of P and Q. Recall, this corresponds to the

U(1) isometry for which the Killing prepotentials vanish, see [50, 51]. To be concrete, we

will consider the fixed point: p = r4 and q = r3 and find that (4.6) vanishes at this point if

β =
β1

β2
=

1

2
[r3(r2 − r4) + r2(r2 + r4)] . (4.12)

This yields 6-branes located at

D61 : p = r4 , q = r3 ,

D62 : p = r3 , q = r4 .
(4.13)
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Both are NUTs on the quaternionic space and all three ui coordinates are part of their

worldvolume. In order to avoid additional co-dimension 6 fixed points if p (or q) run toward

r2 (see figure), we set again: r1 = r2 and p (or q) becomes a non-compact coordinate and

can be identified as the overall radial coordinate for the 6-brane intersection. This time we

find for the surface gravity

|∇k|1 = |∇k|2 = κ
r3r4
r3 + r4

(2r3 + r4)(2r4 + r3) . (4.14)

As we argued at the beginning, this surface gravity should be related to the number D6-

branes of two of the three stacks of 6-branes, which should be a quantized number. As

explained in [54, 9], a consistent U(1) action requires that the ratio of two eigenvalues of

the 2-form dk calculated at the fixed point set should be a rational number. For the case

at hand, this gives the quantization condition

n

m
=

1 +
√

1 − ∆

|∆| , ∆ =
2(r23 − r24)

r44 + r43 + 2
(4.15)

where n and m are relative prime integers. This condition ensures, that a tangent vector at

the fixed point comes back to its own if we go once around the circle (the U(1) action of a

Killing vector acts as a rotation in the tangential plane given by two rotational parameters

for a co-dimension 4 fixed point set).

5. Type IIA reduction

We will discuss now the reduction of the previous example along the compact direction

determined by the isometry:

∂z = ∂σ − β∂τ . (5.1)

This generic reduction becomes relevant to the intersecting D6-branes setup explained in

the previous section when β = r23 or it satisfies (4.12). From this choice we can introduce

two new coordinates w and z

σ = z , τ = −β z + w , (5.2)

such that z becomes the coordinate along which we perform the reduction, while w com-

pletes the set of the remaining ten-dimensional ones

xµ = {ya, ui, p, q, w} (a = 0, . . . 3) , (i = 1, 2, 3) . (5.3)

Here ya parametrize R
1,3, ui were introduced before and parametrize R

3 and p, q and w

are the surviving coordinates of the quaternionic part. Performing the reduction using

the standard Kaluza-Klein ansatz followed by a conformal rescaling, one produces a 10-

dimensional IIA bosonic background with non-vanishing dilaton φ and metric in the NS-NS

sector, whereas only the one-form Cµ is turned on in the RR sector. The relation between

the two metrics, which also fixes the dilaton dependence, is given by

ds2(11) = e−
2

3
φ(x) gµνdx

µdxν + e
4

3
φ(x) [dz + dxµCµ(x)]2 . (5.4)
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It is interesting to point out that the dilaton and the one-form can be completely

determined in terms of the Killing vector (5.1) upon which we reduce the metric. This

is much simpler in this new coordinate system. The relations for the dilaton and the

one-form are

e
4

3
φ = gzz = |k|2 , (5.5)

C = e−
4

3
φgzMdx

M = |k|−2 kMdxM . (5.6)

A first consequence is that the component of the one-form along the Killing vector direction

is fixed

ıkC ≡ CMk
M = 1 , (5.7)

which implies that C has the right number of independent components. As a further

consequence, one can determine its field strength in terms of k and its derivatives

FMN = 2∂[MCN ] = 6
kSk[S∇MkN ]

|k|4 . (5.8)

Since near a brane configuration we expect to have some flux in ten dimensions, this should

show up in the integral of the two-form F on the transversal two-cycle C:

∫

C

F 6= 0 . (5.9)

From the relations above and the fact that this flux should be quantized, we expect that

its number could be read from the eigenvalues of the ∇k matrix. This is also com-

patible with the picture given in the previous section, where the surface gravity was

related to the number of D6-branes and this latter was also derived from the dk two-

form.

We can now proceed to give the explicit expression for the various ten-dimensional

fields. To do so, it is useful to define the following quantity

A = ıkA
2 =

α− n(p+ q) − ε pq − κp2q2 + βκ(p − q)2

p− q
, (5.10)

whose vanishing is related to the appearance of the co-dimension four singularities for

the NUT fixed points of the quaternionic manifold. As we will see, this quantity appears

repeatedly in the following formulae and this let us simplify the structure of the dilaton

and C-field equations. The dilaton is determined to be

e
4

3
φ =

1
√

2κ|u|2 + u0

[

2u1 u2

√
PQ

(p− q)
A +

PQ

(p − q)2
(

u2
2 + u2

3

)

+ A2
(

u2
1 + u2

3

)

]

+
√

2κ|u|2 + u0
P
(

q4 + β2 − 2β q2
)

+Q (p4 + β2 − 2β p2)

p2 − q2
, (5.11)
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and the one-form C is

C =
e−

4

3
φ

√

2κ|u|2 + u0

{[

A(u3 du1 − u1 du3) +

√
PQ(u3 du2 − u2 du3)

(p− q)

]

+

+ u3

[

(p− q)Au2 −
√
PQu1

(p − q)2

]

(

√

Q

P
dp+

√

P

Q
dq

)

+

+ dw
[

−κ(p−q)A(u2
1+u

2
3) + βκ(p−q)2(u2

1+u
2
3) − κ

√

PQu1u2

]

}

+

+ e−
4

3
φ
√

2κ|u|2 + u0
P (q2 − β) +Q (p2 − β)

p2 − q2
dw . (5.12)

The reduced metric is then:

ds2(10) = e
2

3
φ

[

dxa dxb ηab +
1

√

2κ|u|2 + u0

(

dui + εijkÃjuk
)2

+
√

2κ|u|2 + u0 ds̃3

]

(5.13)

with

Ã1 = 0 , Ã2 = −κ(p− q)dw , Ã3 =
1

(p− q)

[

√

Q

P
dp+

√

P

Q
dq

]

, (5.14)

and

ds̃3 =
p2 − q2

P
dp2 +

p2 − q2

Q
dq2 +

P +Q

p2 − q2
dw2 . (5.15)

From these explicit formulae we can now see that w → w+c is the surviving U(1) isom-

etry of the background, commuting with the ∂z upon which we reduced the 11-dimensional

solution. One can therefore think about the possibility of further reducing the above solu-

tion to 9 dimensions along this direction and consider the T -dual picture. The interesting

fact is that the corresponding Killing vector does not show any fixed point (unless one

considers a double root of our P and Q polynomials, which then becomes an essential sin-

gularity). Let us conclude that in this reduction we do not produceNS5-branes in addition

to the D6-brane setup discussed in the previous section.

To be explicit, we consider now the above reduction in the case that β is chosen such

that one can have codimension four singularities at NUT fixed points of the quaternionic

manifold, i.e. β satisfying (4.12). Doing this we expect to obtain a setup of three intersecting

D6-branes and we want to analyze the behaviour of our solution when the coordinates

approach the fixed point corresponding to one of these branes. The fixed point we will

discuss sits at

p = r4 , q = r3 , (5.16)

and we choose to have r1 = r2, such that the additional codimension six singularities are

removed.1 The first thing to be pointed out is that at such fixed points the string coupling

constant vanishes, as the dilaton can be expressed as the square of the Killing isometry,

see (5.5), and this latter must go to zero at the fixed points. We can then proceed to the

1The analysis for the other fixed point is totally symmetric upon exchange of p and q.
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analysis of the limit of the reduced 10-dimensional metric and one-form. Before proceeding

with the limit, we have to remember that the fixed point is found by fixing the value of

two coordinates and that therefore the limiting procedure has to be defined accordingly.

Since the surfaces p = r4 or q = r3 already show an irregular behaviour for the C field and

the metric, we decided to approach the fixed point in a “diagonal” direction. This means

that we took a similar scaling for p and q, namely p = r4 −x, q = r3 −x and then took the

limit x→ 0+ for κ > 0. In this way it can be checked that the dilaton behaviour is linear

in x

e
4

3
φ '

(

3 r23 + 10 r3 r4 + 3 r24
)2 (

5 r23 + 6 r3 r4 + 5 r24
)

128 (r3 + r4)

√

u0 + 2κ |u|2 κx+O(x2) , (5.17)

and all the above quantities are positive. The same limit in the metric shows the expected

behaviour for a D6-brane geometry, taking care of the fact that in our parametrization

the internal and transverse space are not expressed through cartesian coordinates. As a

matter of fact, it can be shown that the leading behaviour is given by

gpp ∼ gqq ∼ 1√
x
, (5.18)

whereas

gww ∼ gw.v. ∼
√
x . (5.19)

Here we called gw.v. the world-volume metric and p, q and w are the transverse coordinates.

The behaviour of the metric in the w direction is different from the standard one shown by p

and q because w is an angular coordinate parametrizing the U(1) isometry of the resulting

metric and therefore one has to add further scaling coming from the radial direction.

Again, as expected, the two-form field strength F shows a diverging behaviour in the p

and q directions

Fpµ ∼ Fqµ ∼ 1

x
, (5.20)

whereas all the other components go to some constant value. In line of principle one could

now also derive the exact number of D6-branes sitting at such fixed point by integrating

the F -form along the collapsing two-cycle of the metric. Unfortunately, as already shown

by the dilaton expression (5.17), the definitions of F are highly complex in our coordinate

system and therefore we decided not to perform such computation.

6. Conclusion

In the paper, we discussed in detail the metric of a new 7-manifold with G2 holonomy. This

space is topologically a R
3 bundle over a quaternionic space with a U(1) × U(1) isometry

group and is determined by a single fourth order polynomial. A generic Killing vector has

fixed points of various co-dimension, but most interesting are co-dimension 4 fixed points

that give D6-branes upon dimensional reduction. As we discussed in detail, this requires to

pick specific Killing vectors and we found exactly two possibilities to obtain D6-branes. In

order to avoid additional co-dimension 6 fixed points one has to equalize two roots of the
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fourth order polynomial. The co-dimension four fixed point set consist of two components

and we concluded therefore that there are three stacks of D6-branes, where two of the

stacks have equal number of branes.

Following the arguments given in the mathematical literature [43], it is very tempt-

ing to relate this space to the weighted projective space. In fact, the four roots of the

fourth order polynomial sum up to zero and hence are parameterized by three (quantized)

parameters, which should be related to the three weights of WCP
2
abc. In order to avoid

co-dimension 6 fixed points we had to identify two roots and the remaining two parameters

where quantized. As a consequence, the number of 6-branes in two stacks agree and we ex-

pect a gauge group SU(m)×SU(m)×SU(n), where in the deformed case the higgsing should

be done in such a way that the product of two equal gauge groups survives; because the

two components of the fixed point set are related to the same number of 6-branes. At the

moment, these conclusions are more speculative and further investigations are necessary.
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