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Gravitational wave detectors will need optimal signal-processing algorithms to extract weak signals from the
detector noise. Most algorithms designed to date are based on the unrealistic assumption that the detector noise
may be modeled as a stationary Gaussian process. However most experiments exhibit a non-Gaussian ‘‘tail’’ in
the probability distribution. This ‘‘excess’’ of large signals can be a troublesome source of false alarms. This
article derives an optimal~in the Neyman-Pearson sense, for weak signals! signal processing strategy when the
detector noise is non-Gaussian and exhibits tail terms. This strategy is robust, meaning that it is close to
optimal for Gaussian noise but far less sensitive than conventional methods to the excess large events that form
the tail of the distribution. The method is analyzed for two different signal analysis problems:~i! a known
waveform~e.g., a binary inspiral chirp! and~ii ! a stochastic background, which requires a multi-detector signal
processing algorithm. The methods should be easy to implement: they amount to truncation or clipping of
sample values which lie in the outlier part of the probability distribution.
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I. INTRODUCTION

The construction of several new detectors of gravitatio
radiation is currently approaching completion. These ins
ments are of a different design and have significantly be
sensitivity and broader bandwidth than previous detect
They include the LIGO detector being built in the Unite
States by a joint Caltech-MIT Collaboration@1,2#, the
VIRGO detector being built near Pisa by an Italian-Fren
Collaboration@3#, the GEO-600 detector being built in Han
nover by an Anglo-German Collaboration@4#, and the
TAMA-300 detector near Tokyo@5#. There are also severa
resonant bar detectors currently in operation@6#, and several
more refined bar and interferometric detectors presently
the planning and proposal stages@7#. These instruments
search for very weak signals. For the most likely sources,
signals will be buried in the noise of the detectors, and n
to be extracted with sophisticated optimal signal-process
strategies@8#.

The standard assumption made in the literature is that
detector noise has multivariate Gaussian statistics. This
sumption is certainly incorrect: every sensitive gravitatio
wave detector operated to date has been characterize
noise that is both non-stationary and non-Gaussian. S
experimentation has shown that this is a serious matter@9#:
existing detection strategies for both deterministic and s
chastic signals do not perform nearly as well when n
Gaussian noise is present. Roughly speaking, if the n
Gaussian fluctuations are large, they bias the statistics
make it more difficult to achieve a given level of statistic
confidence.

In this paper, we develop a new set of statistical sign
0556-2821/2002/65~12!/122002~18!/$20.00 65 1220
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processing techniques to search for deterministic and
chastic gravitational waves. These techniques arerobust,
meaning that they will work well even if the detector noise
not Gaussian but falls into a broader statistical class that
expect includes realistic detectors. In large part, these
methods are similar to the older ones: one constru
matched filters to search for known waveforms or cro
correlates the instrument outputs at the different dete
sites to search for a stochastic background. The esse
difference is that by using locally optimal methods@10# these
statistical measures are modified. The effect is totruncatethe
statistics: detector samples that fall outside the cen
Gaussian-like part of the sample distribution~i.e., the outli-
ers! are excluded from~or saturated when constructing! the
measurement statistic. For both cases, a robust statist
found which performs better than the optimal linear filter
the case where the detector noise is non-Gaussian, an
most as well in the Gaussian-noise case.

The paper is organized as follows. In Sec. II we derive
locally most powerful signal-processing tests for determin
tic signals. We begin in Sec. II A with a derivation of th
Neyman-Pearson criteria for optimality, in the case wher
known waveform is hidden in white noise. We define t
power function of a test and derive a criteria for the loca
optimal test in the weak-signal regime. The locally optim
test is analyzed for a number of different types of no
Gaussian noise, and we show that the locally optimal de
sion statistic is a matched filter where the non-Gauss
sample values are truncated or excluded. In Sec. II B
results are generalized to the case where a known wave
is hidden in colored noise, and we introduce models for n
Gaussian colored noise. In Sec. III, we turn to the detect
©2002 The American Physical Society02-1
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of a stochastic background. Section III A considers the c
of a stochastic signal~i.e., where the waveform is no
known! and derives the locally optimal statistic which can
used to correlate two identical detectors, where we ass
that each detector has independent white noise and is
aligned and coincident. In Sec. III B, these results are ge
alized to the case where the noise is colored, and the de
tors are in different locations, and not aligned in parallel.
Sec. IV, we discuss an implementation of these statistics,
we illustrate how one can compare the performance of
ferent statistics using Monte Carlo simulations. Section
contains a short conclusion and summary.

II. DETERMINISTIC SIGNALS

A. Single detector, white noise

In order to describe the idea in a simple way we fi
discuss the case where we are searching for a known s
in the data stream of a single detector, where the tim
domain detector noise samples are independent in the
domain.

Denote the data stream of the first detector byx15x1,j for
j 50, . . . ,N21. In this section, since we are going to on
consider this single detector, we will drop the subscript ‘‘1
Imagine that we are looking for a signal of known wavefo
but unknown amplitudee, which we will denote byesj . Our
primary interest is in the case where the amplitudee is either
small, or zero. For convenience, imagine for the moment
this parameter can have only two possible values, eithee

50 or e5 ēÞ0.
The detection problem that we need to solve is to partit

the space of possible observationsRN into two disjoint sub-
sets. When the observationx falls into one of these, we con
clude thate50 and that the null hypothesis is true. When t
observation falls into the other set we conclude that the
nal has been observed witheÞ0. To describe the partition o
RN into two regions, define a functiond(xPRN) which is
zero in the null hypothesis region and unity elsewhere. T
function is called atest. Our goal is to find the ‘‘best’’ choice
of a testd.

To help characterize testsd, it is helpful to define the
power function of a test:

F~due!5E
RN

d~x!p~xue!dNx. ~2.1!

Here p(xue) is the probability distribution of the measure
ment x given signal amplitudee. For example, for additive
white, stationary Gaussian noise of unit variance and van
ing mean

p~xue!5 )
i 50

N21

~2p!21/2e2(xi2esi )
2/2. ~2.2!

The quality of the test can be expressed in terms of the po
function.

We characterize the quality of the test by the false ala
and the false dismissal probabilities. The false alarm pr
ability is the probability with which we conclude thateÞ0
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when in facte vanishes. This is given byF(du0). The false
dismissal probability is the probability with which we con
clude thate50 when in fact it ise5 ēÞ0. This is given by
12F(du ē).

One standard definition of the ‘‘best’’ testd is that it mini-
mizes the false dismissal probability for a given false ala
probability. This is called the Neyman-Pearson test. One
find this test using calculus of variations, with a Lagran
multiplier L to enforce the constraint that the false ala
probability is fixed. The best test is obtained by partitioni
RN as follows. Choose a constantL0.0. Then, setd51 in
regions where the likelihood ratio

L5
p~xu ē !

p~xu0!
~2.3!

is greater thanL0. Setd50 elsewhere.~We assume that the
boundary between these two regions is a set of probab
measure zero.! The value of the constantL0 determines the
false alarm probability. Thus, the likelihood ratio is a ‘‘dec
sion statistic:’’ a number that can be calculated from the
served data. If the statistic is less than some value, we c
clude that the null hypothesis holds. If the statistic is grea
than this value, we conclude the opposite. The decision
tistic provides a partition of the space of observations i
two disjoint regions.

In the case where the noise is Gaussian~2.2! this criteria
is easily understood. The optimal Neyman-Pearson test
vides the space of observation along an (N21)-dimensional
plane. On one side of this planed51 and on the other sided
vanishes. The plane is defined by setting the likelihood ra
~2.3! to a constant. For the Gaussian probability distributi
~2.2! the plane is defined by

const5 )
i 50

N21

e2(xi2esi )
2/21xi

2/2

⇒ const5e (
i 50

N21

xisi . ~2.4!

This plane is perpendicular to the vectors. Different choices
of this plane correspond to different false alarm rates.

In the case where the noise is not Gaussian, the prob
becomes more challenging. In the Gaussian test, the dec
statistic is independent of the signal amplitudee. However
when the noise is not Gaussian, the choice of decision
tistic depends upone. Consider the graph in Fig. 1 showin
the power functionF(due) as a function ofe for several
different tests. All the tests have the same false alarm r
but the optimal test depends upon the value ofe.

For the case of weak signals in non-Gaussian noise, th
is a useful test called the ‘‘locally optimal’’ test. For a give
noise probability distribution, the locally optimal test is ea
to describe, and leads to a simple decision statistic which
be calculated from the observed data@10#. To define this test,
it is useful to again consider the set of all tests with a giv
false alarm rate, as shown for example in Fig. 1. The loca
optimal test is the one that maximizesdF(due)/de at e50
2-2
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ROBUST STATISTICS FOR DETERMINISTIC AND . . . PHYSICAL REVIEW D65 122002
for a fixed false alarm probability. As above, one can sh
that the locally optimal test setsd51 inside the region where

L (1)5@d ln p~xue!/de#e50.const ~2.5!

for some constant, andd50 elsewhere~see Fig. 1!. The
value of the constant determines~or is determined by! the
false alarm probability. More generally, if the first derivativ
vanishes, the locally optimal test is determined by the fi
non-zero

L (n)5
1

p~xu0!

dnp~xue!

den U
e50

. ~2.6!

To understand the implications of this, it is helpful to co
sider several examples.

The examples here are for the case where the~additive!
detector noise is independent for each sample value~so the
noise spectrum is white! but has an arbitrary probability dis
tribution. For convenience, we write

p~xue!5 )
i 50

N21

e2 f (xi2esi ) ~2.7!

where the functionf is a quadratic function of its argumen
for the case where the probability distribution of the noise
Gaussian.@Note: any probability distribution for stationar
additive noise where the sample values are independen
be written in this way. If the noise is not stationary but is s
additive and independent, then each functionf appearing in
Eq. ~2.7! may be differentf (xi2esi)→ f i(xi2esi).# The first
derivative of the PDF~2.7! with respect toe is

FIG. 1. The power functionF(due) is shown for three different
tests. All have the same false alarm probabilityF(du0). Testd3 has
the best performance for largee. Testd2 is not the best test for any
value ofe. Testd1 is the best test for smalle. The locally optimal
test d1 is the one for whichdF(due)/de is largest ate50. If the
first derivative of the power function with respect toe vanishes for
all tests, then the locally optimal test is the one with the larg
second derivative~and so on, if additional derivatives vanish!.
12200
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d ln p~xue!

de
5 (

i 50

N21

si f 8~xi2esi ! ~2.8!

where f 8 denotes the derivative off with respect to its argu-
ment. Settinge50 in this expression one can easily find th
locally optimal test~2.5!. This is defined by settingd51 in
the region

L (1)5 (
i 50

N21

si f 8~xi !.const ~2.9!

and settingd50 elsewhere.@Note: if e can take either sign
6 ē then an absolute value sign should enclose the LHS
the inequality in Eq.~2.9!.# As before, the value of the con
stant determines the false alarm probability. Here are sev
examples:

Gaussian noise: f (x)5x2/21 ln(2p)/2, so f 8(x)5x. For
this case the locally optimal test~2.9! and the optimal test
~2.4! both give the same statistic:( i 50

N21sixi . This is the stan-
dard optimal linear filter.

Exponential noise: f (x)5auxu2 ln(a/2), so f 8(x)
5asgn(x). Here the locally optimal statistic is given by Eq
~2.9! as

(
i 50

N21

sisgn~xi ! ~2.10!

where the sgn(x) function is 11 for x>0 and 21 for x
,0.

Sum of distinct Gaussian processes: This is a white-noise
version of the model given in@11#:

e2 f (x)5~12P!~2p!21/2s21e2x2/2s2

1P~2p!21/2s̄21e2x2/2s̄2
, ~2.11!

where 0,s,s̄ and PP(0,1). Usually one also hasP!1.
This noise model is discussed in more detail later in t
paper. It often arises when the most common source of n
is Gaussian, but there is also a ‘‘tail’’ of ‘‘outlier’’ events
which dominates the wings of the distribution. Here the
cally optimal statistic is defined by Eq.~2.9! where

f 8~x!5xs22F ~12P!1P~s/s̄ !3ex2(s222s̄22)/2

~12P!1P~s/s̄ !ex2(s222s̄22)/2 G .

This function is shown~for the cases51, s̄54, P51%) in
Fig. 2. Roughly speaking, foruxu small compared tos one
has f 8(x)'x/s2. For largeuxu one hasf 8(x)'x/s̄2.

Gaussian noise plus uniform background: Here, we have
a ~small! uniform background superposed on Gaussian no
of zero mean and unit variance. This is defined for~small!
P.0 by

e2 f (x)5H ~12P!~2p!21/2e2x2/21P/2L, uxu<L,

0, uxu.L.
~2.12!

t

2-3
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Here we assume thatL@1 is the scale size of the uniform
background~the probability distribution is correctly norma
ized only in the limit L→`). In this case one finds tha
f 8(x)'x for uxu&1 and f 8(x)50 for 1&uxu<L.

While the results for the different probability distribution
are technically different, they all carry the same messa
which is the central result of this paper:If the distribution of
sample values has a central Gaussian region, then sam
values falling in this region should be correlated exactly
they would be in the Gaussian case. If a sample value f
outside this region, its value should be truncated (or clippe
to the largest allowed value in the central region, or ev
dropped from any correlation statistic, depending upon
shape of the probability distribution.

Let us repeat this central point one more time. The res
show that when the noise is not Gaussian, the normal opt
filter used to construct a decision statistic is replaced b
somewhat different sum. The values of the expected signsi
are multiplied, not by the observed dataxi but by some non-
linear function of that data, then summed. In the event t
the probability distribution of the noise has a non-Gauss
tail, the effect of this non-linear function is to ‘‘clip’’ or
truncate sample values which fall outside the central bulg
the probability distribution function.

B. Single detector, colored noise

If the detector’s noise spectrum is colored rather th
white, then the previous analysis does not apply: the assu
tion that the different sample values are uncorrelated
longer holds. However the analysis can be generalized to
colored case if we make assumptions that are motivated
the properties of stationary detector noise.

In explaining this, it helps to begin by describing the s
tionary Gaussian case. For a colored Gaussian process

FIG. 2. The functionsf 8(x) and f 8(x)/x are shown for the sum
of distinct Gaussian processes, defined by Eq.~2.11! with param-

eterss51, s̄54, and P51%. For smalluxu one hasf 8(x)'x.
Outside the central Gaussian region~which dominates the probabil
ity density!, i.e., for large uxu, f 8(x) falls off. This effectively
‘‘clips’’ the correlation statistic for outlier data samples.
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probability density function~PDF! of the detector sample
may be expressed as

p~x!5~2p!2N/2~detR!21/2expS 2
1

2
x†
•Q•xD ~2.13!

where theN3N correlation matrixR5^x^ x†& is a positive-
definite real symmetric matrix withN(N11)/2 real degrees
of freedom andQ5R21. We have assumed that the proce
has zero mean. The volume element associated with this
is dx5) j 50

N21dxj . In the time domain,x is a vector of real
numbers sox†5xT.

In the case where the random process is stationary,
matrix R is a Toeplitz matrix, which depends only uponu i
2 j u. Such a process is defined by the first row or first c
umn of the matrix and has onlyN real degrees of freedom
Thus stationary Gaussian processes are a tiny subset oall
Gaussian processes.

Now consider the PDF of new random variables that
linear combinations of the old ones:x̃5U•x. TakeU to be an
arbitrary unitary matrix. Clearly the PDF of these new va
ables x̃ is still Gaussian. The matrixU can be chosen to
diagonalize the correlation matrix: this is called a Karhune
Loeve transformation. In the limit where the time interv
occupied by theN samples is much larger than the corre
tion time of the noise, the linear combinations of rando
variables that diagonalize the correlation matrix asympt
cally approach the discrete Fourier transform~DFT!. This is
given by

U jk5N21/2e2p i jk /N. ~2.14!

Thus, if N is sufficiently large, to a good approximation th
PDF of the new variables in the Gaussian case may be w
ten as

p~ x̃!5 )
k51

[(N21)/2]

2p21Pk
21exp~22ux̃ku2/Pk! ~2.15!

wherePk is the ~real, positive! mean spectral amplitude in
the kth frequency bin:

^x̃kx̃k8
* &5

1

2
dkk8Pk ~2.16!

for 1<k,k8<@(N21)/2#; thus R̃5U•R•U21. 1
2 diag@Pk#.

In other words, it is a good approximation to express
PDF of a stationary colored Gaussian process as a diag
process in frequency space.

The limits of the product in Eq.~2.15! appear strange
becausex̃ cannot take on arbitrary values sincex is real. The
consequences include:

x̃k5 x̃N2k* . Hence the amplitudes ofx̃k for k5@N/2#

11, . . . ,N21 are completely determined byx̃k for k
51, . . . ,@(N21)/2#.

x̃0 and, for evenN, x̃N/2 are real. However, we assume th
the data set has had the mean value~DC term! removed:
( j 50

N21xj50. Since gravitational wave detectors are A
2-4
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ROBUST STATISTICS FOR DETERMINISTIC AND . . . PHYSICAL REVIEW D65 122002
coupled and have no useful low-frequency response, this
valid assumption. It implies thatx̃0 is identically zero. Sec-
ond, whenN is even, we assume that there is no energy
the Nyquist frequency bin:x̃N/2 also vanishes identically
This is a very reasonable assumption, since an experim
will include an anti-aliasing filter whose response~as a func-
tion of frequency! falls off rapidly as the Nyquist frequenc
is approached.

The volume element associated with this PDF is theref
)k51

[(N21)/2]d(Rx̃k)d(Ix̃k).
The likelihood ratio in the case of colored, stationa

Gaussian noise is

ln L5 ln p~x2es!2 ln p~x!

5es†
•Q•x2

1

2
e2s†

•Q•s ~2.17!

or, in the frequency domain,

ln L5~const!1e4R (
k51

[(N21)/2]

s̃k* x̃k /Pk . ~2.18!

Thus, the matched filter statistic, with a weighting equal
the inverse of the noise spectrum, is the optimal detec
statistic.

This motivates a more general model for the statisti
distribution of colored non-Gaussian detector noise, ass
ing that it is still stationary. In this case, to good approxim
tion, the two-point correlation matrix̂x̃kx̃k8

* & is diagonal.
There may be higher-order correlations present between
Fourier amplitudes at different frequencies, but we will a
sume that this additional correlation is negligible, and tha
a reasonable approximation the probability distribution of
noise in the non-Gaussian case is described by a PD
which the different frequency components are independe

p~ x̃!5 )
k51

[(N21)/2]

2p21Pk
21exp@2gk~2ux̃ku2/Pk!#,

~2.19!

with volume element)k51
[(N21)/2]d(Rx̃k)d(Ix̃k). The func-

tions gk(u) depend upon the frequency bin indexk, so that
the statistical distribution can depend upon the frequen
For the colored Gaussian case the functions aregk(u)5u. In
order that the PDF be properly normalized, and t

^x̃kx̃k8
* &5 1

2 dkk8Pk , the functionsgk(u) must obey

E
0

`

e2gk(u)du5E
0

`

ue2gk(u)du51. ~2.20!

Respectively, these constrain the additive constant in
definition ofgk , and the multiplicative scale of the argume
of gk . This is not the most general possible form of th
probability distribution of a stationary random process, bu
many situations it should be a reasonable approximat
particularly if the quantities of interest are dominated by
second moments.
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The locally optimal statistic may now be easily derive
Letting s̃k denote the DFT of the expected waveform, and
before zeroing its DC and Nyquist components, the con
tional probability distribution of the detector output is give
by

p~ x̃ue!5 )
k51

[(N21)/2]

2p21Pk
21exp@2gk~2ux̃k2e s̃ku2/Pk!#.

The locally optimal test can then be obtained from the fi
derivative:

L (1)54 (
k51

[(N21)/2]

R~ s̃k* x̃k /Pk!gk8~2ux̃ku2/Pk!. ~2.21!

In the colored Gaussian casegk8(u)51 this is the ordinary
optimal linear matched filter. The contributions of the diffe
ent frequency bins are weighted by the inverse noise po
spectrum in that bin. In the non-Gaussian case, just as for
case of uncolored white noise, the correlation in frequen
space is clipped or truncated for~frequency-bin! samples that
lie outside the central Gaussian part of the probability dis
bution, whereug8(u)u!1. An example of this may be seen i
Fig. 2: for the illustrated caseg8(x2/2)5 f 8(x)/x.

Let us consider another form of non-Gaussian noise
describes a process in which there is an ambient Gaus
noise background interrupted occasionally by a large no
burst, which we will model a second component of Gauss
noise with a much larger variance. The probability distrib
tion we adopt is@11#

p~x!5~12P!~2p!2N/2~detR!21/2expS 2
1

2
x†
•Q•xD

1P~2p!2N/2~detR̄!21/2expS 2
1

2
x†
•Q̄•xD ~2.22!

whereR is the autocorrelation matrix for the normal ambie
detector noise andR̄ is the composite autocorrelation matr
for the detector noise when a noise burst is present.
noise bursts occur with probabilityP in this model. Also,
Q5R21 and Q̄5R̄21. We assume thatQ̄ is much smaller
thanQ, meaning thatx†

•Q•x@x†
•Q̄•x for all vectorsx. The

locally optimal statistic is

L (1)5
d ln p~x2es!

de U
e50

5
R~s†

•Q•x!

11a
~2.23!

where

a5
P

12P
AdetR

detR̄
expF1

2
x†
•~Q2Q̄!•xG ~2.24!

is a detector of possible bursts. When a burst is absent,a is
typically small and the locally optimal statistic reduces to t
matched filter. However, when a burst is present,a is typi-
cally large and the matched filter is suppressed. Thus
locally optimal statistic is nearly equivalent to the match
2-5
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ALLEN, CREIGHTON, FLANAGAN, AND ROMANO PHYSICAL REVIEW D65 122002
filter statistic with a veto if a segment of data has a la
amount of excess power as measured by

E5x†
•Q•x ~2.25!

or, in the frequency domain,

E54 (
k51

[(N21)/2]

ux̃ku2/Pk . ~2.26!

The lengths~in time! of the data chunks used to estimate t
autocorrelation matrices should be chosen to be significa
longer than the characteristic time of the signals be
searched for, but still short enough that the detector beha
is quasi-stationary. For inspiral signals, typical signals are
the detector band for tens of seconds, so the matrix est
tion time should be at least of the order of tens of minut
For stochastic background detection, the correlation time
tween the two instruments is tens of milliseconds, so that
matrix estimation time should be at least a few seconds.

Based on the two forms of non-Gaussian noise conside
in this section, it seems reasonable to adopt the follow
detection rules:~i! veto immediately any segment of data th
has an excess of power as measured by the excess p
statistic;~ii ! for segments of data without an excess of pow
construct the matched filter in the frequency domain,
exclude those frequency bins in which the detector powe
too large. The resulting~truncated! matched filter is a good
approximation of the locally optimal statistic for a wide v
riety of possible non-Gaussian noise distribution. In t
sense, it is a robust, nearly optimal detection statistic.

III. STOCHASTIC SIGNALS

Observational limits from nucleosynthesis demonstr
that the stochastic background of gravitational radiation
such small amplitude that it would not be detectable with
single instrument@12#. In a single instrument, there would b
no practical way to discriminate between intrinsic detec
noise and the small additional noise-like output arising fr
a stochastic background. However, one can correlate the
puts of two different instruments and search for a comm
signal in this way. If the instrumental noise is not Gaussi
then the previous single-detector analysis can be easily
eralized.

A. Two coincident co-aligned detectors, white noise

We begin by considering the simple case in which the t
detectors are coincident and co-aligned, so that they h
identical output contributions from the stochastic bac
ground but independent intrinsic noise. We also assume
the intrinsic noise samples in each detector are independ
and hence white.

If the signal were deterministic~known! then the joint
probability distribution for the samples in the two detecto
could be written as

p~x1 ,x2ue!5 )
i 50

N21

e2 f 1(x1,i2esi )e2 f 2(x2,i2esi ). ~3.1!
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This system can be analyzed in exactly the same way a
Sec. II A. However the stochastic background does not p
duce a known~deterministic! signal, so that the probability
distribution needs to be averaged over its expected distr
tion psb(s0 , . . . ,sN21) ~which, by reason of the central limi
theorem, is almost certainly a multivariate Gaussian!. This
leads to a joint probability distribution which is given by

p~x1 ,x2ue!5E ds0•••E dsN21psb~s0 , . . . ,sN21!

3 )
i 50

N21

e2 f 1(x1,i2esi )2 f 2(x2,i2esi )

5E dspsb~s! )
i 50

N21

e2 f 1(x1,i2esi )2 f 2(x2,i2esi ).

~3.2!

Heree may be thought of as the coupling of the detector. T
case of smalle corresponds to a detector that is only weak
coupled to the signal. For this non-deterministic signal, it
still straightforward to construct a locally optimal test, and
corresponding decision statistic or threshold criterion.

The locally optimal statistic is obtained from the deriv
tive of the probability distribution with respect toe. This is
given by

dp~x1 ,x2ue!

de

5E dspsb~s!S (
j 50

N21

sj@ f 18~x1,j2esj !

1 f 28~x2,j2esj !# D )
i 50

N21

e2 f 1(x1,i2esi )2 f 2(x2,i2esi ).

~3.3!

Settinge50 and dividing byp(x1 ,x2u0) yields the locally
optimal statistic:

L (1)5 (
j 50

N21

@ f 18~x1,j !1 f 28~x2,j !#E sj psb~s!ds. ~3.4!

Unfortunately this vanishes if the random process descri
by psb(s) has vanishing mean, since in this ca
*sj psb(s)ds50. This is indeed the case for the gravitationa
wave stochastic background.

When thefirst derivative vanishes, the locally optimal sta
tistic is defined by having the largestsecondderivative ate
50. See Fig. 1 for example. Taking another derivative of E
~3.3! and settinge50 yields

L (2)5E dspsb~s!H S (
j 50

N21

sj@ f 18~x1,j !1 f 28~x2,j !# D 2

2 (
j 50

N21

sj
2@ f 19~x1,j !1 f 29~x2,j !#J . ~3.5!
2-6
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The terms that appear in this statistic have different cha
ter, and before moving on, some discussion is required.

The locally optimal statistic depends upon the statisti
character of the stochastic background radiation through
second-order moments. We will assume that the stocha
background is a stationary process, so that the second o
correlation^sisj& is a function of the lagu i 2 j u only:

C~ u i 2 j u!5^sisj&5E dspsb~s!sisj . ~3.6!

In a stochastic background search, the ‘‘signal model’’ o
requires an assumption about the form of the spectrum. T
is ~roughly! the Fourier transform ofC(D). Without loss of
generality we normalizeC(D) so thatC(0)51 ~this simply
scales the value ofe). Expressing the locally optimal statisti
in terms of the correlation functionC then gives

L (2)52 (
i 50

N21

@ f 19~x1,i !1 f 29~x2,i !#1 (
j ,k50

N21

C~ u j 2ku!

3@ f 18~x1,j ! f 18~x1,k!1 f 28~x2,j ! f 28~x2,k!

12 f 18~x1,j ! f 28~x2,k!#. ~3.7!

Each of the five terms that appear in Eq.~3.7! has a specific
interpretation. The first four terms that appear in the loca
optimal estimatorL (2) are generalized ‘‘single-detector’’ sta
tistics which do not cross-correlate the two detectors. T
are generalized measures of the ‘‘energy’’ received by e
individual detector, and provide useful information only
the stochastic background contributes substantially mor
the measured signal than the detector output does, or if
detector’s intrinsic noise contributions can somehow
separated from the noise contribution arising from the s
chastic background.~This will not be the case for the firs
few generations of gravitational wave detectors.! The last
term in Eq. ~3.7! is a generalized cross-correlation~GCC!
statistic that provides useful information even if the detec
noise dominates the signal: the expected case
gravitational-wave stochastic background. To quote fr
Kassam@following Eqs.~7!–~24! in Ref. @10##:

‘‘It is important to note that the increase in power lev
occurs whenever random signals are present at the indivi
receivers of the array regardless of whether the sign
acrossthe array are one common signal or are complet
uncorrelated. The GCC part of the locally optimal~LO! sta-
tistic responds only to acommonsignal or at least to signal
which are spatially correlated across the array elements.
is a major reason why it is useful to employ only the GC
part of the LO statistic in applications involving detection
well as location of signal sources.’’

For this reason~and others@19#! we drop the single-
detector terms from the statistic, and define the GCC stat
as

LGCC52 (
j ,k50

N21

C~ u j 2ku! f 18~x1,j ! f 28~x2,k!. ~3.8!
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This generalized cross-correlation statistic reduces to the
dinary cross-correlation statistic in the case where the de
tor noise is Gaussian:f 1(x)5 f 2(x)5x2/21 log(2p)/2. It can
be easily generalized to the case of three or more detec
@10#.

In practical workC will vanish for lags greater than th
light travel time between the two detectors~i.e., 10 ms for
the LIGO detectors!. This means that even ifN is chosen to
be very large,LGCC only correlates samples from the tw
detectors taken within this time window.~Note: if the detec-
tor noise is colored, then the time window may be larger,
will be seen shortly.!

B. Two non-coincident non-co-aligned detectors, colored noise

In this section, we generalize the work of Sec. III A to th
case where the two detectors are not coincident or
aligned, and their noise power spectrum is not white.
assume that the intrinsic detector noise of the two detec
is independent. If the two detectors are widely separated
subject to different environmental influences, this assum
tion should hold.

Let us start by assuming that the two detectors each h
internal ~instrumental! colored Gaussian noise with know
autocorrelation matricesRin,1 andRin,2 , and that the instru-
mental noise of the two detectors is independent. The
chastic background produces an additional source of colo
Gaussian noise that is correlated between the two detec
The stochastic background noise is measured by the auto
relation matricesS115^s1^ s1

†&, S225^s2^ s2
†&, and the cross-

correlation matricesS125^s1^ s2
†&, S215^s2^ s1

†&. Since the
stochastic background is isotropic,S115S225Rsb ~the sto-
chastic background contribution to the detector’s autoco
lation matrices! and S125S215S ~the cross-correlated nois
between the detectors due to the stochastic background!. The
total autocorrelation noise of the two detectors isR15Rin,1
1e2Rsb and R25Rin,21e2Rsb. In the presence of the sto
chastic background, the likelihood ratio is

p~x1 ,x2ue!5~2p!2N~detS!21expS 2
1

2
j†
•S21

•jD
~3.9!

where

j5Fx1

x2
G and S5F R1 e2S

e2S R2
G .

In the weak signal approximation,

S215FQin,1 0

0 Qin,2
G

2e2FQin,1•Rsb•Qin,1 Qin,1•S•Qin,2

Qin,2•S•Qin,1 Qin,2•Rsb•Qin,2
G

1e4H FQin,1•Rsb•Qin,1•Rsb•Qin,1 ,0

0,Qin,2•Rsb•Qin,2•Rsb•Qin,2
G

1FQin,1•S•Qin,2•S•Qin,1 ,0

0,Qin,2•S•Qin,1•S•Qin,2
G J 1O~e6!,

~3.10!
2-7
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ln detS5 ln detRin,11 ln detRin,21e2@ tr~Qin,1•Rsb!

1tr~Qin,2•Rsb!#2e4F1

2
tr~Qin,1•Rsb•Qin,1•Rsb!

1
1

2
tr~Qin,2•Rsb•Qin,2•Rsb!

1tr~Qin,2•S•Qin,1•S!G1O~e6!, ~3.11!

and

ln L5 ln p~x1 ,x2ue!2 ln p~x1 ,x2u0!

5e2H 2
1

2
tr~Qin,1•Rsb!2

1

2
tr~Qin,2•Rsb!

1R~x2
†
•Qin,2•S•Qin,1•x1!1

1

2
x1

†
•Qin,1•Rsb•Qin,1•x1

1
1

2
x2

†
•Qin,2•Rsb•Qin,2•x2J 1O~e4! ~3.12!

whereQin,15Rin,1
21 and Qin,25Rin,2

21 . The last two terms rep
resent the autocorrelation ‘‘energy’’ detectors.

The following question now becomes important: ho
does one obtain the quantitiesRin,1 andRin,2? There are two
possible methods:~i! by a theoretical understanding of th
detector, or~ii ! by shielding the instrument from the stocha
tic background and measuring the noise autocorrelation.
gravitational wave searches, method~ii ! is not available as
there is no way to shield the detector from a stochastic ba
ground of gravitational waves. Method~i! holds more prom-
ise, but if the stochastic background is expected to be w
it is unlikely that our understanding of the detector will b
sufficient to distinguish between the noise autocorrelati
Rin and Rin1eRsb. We expect that the noise matrices th
should be used are themeasurednoise matricesR15^x1

^ x1
†& and R25^x2^ x2

†&, which contain both the interna
instrumental noise as well as the stochastic backgro
‘‘noise.’’ Since it is these quantities rather thanRin,1 andRin,2
that are known, the previous analysis must be modified.
now have

S215FQ1 0

0 Q2
G

2e2F 0 Q1•S•Q2

Q2•S•Q1 0 G
1e4FQ1•S•Q2•S•Q1 , 0

0, Q2•S•Q1•S•Q2
G

1O~e6!, ~3.13!
12200
or
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ln detS5 ln detR11 ln detR22e4tr~Q2•S•Q1•S!

1O~e6!, ~3.14!

and

ln L5e2R~x2
†
•Q2•S•Q1•x1!1O~e4! ~3.15!

whereQ15R1
21 andQ25R2

21. The locally optimal detection
statistic~which is appropriate for weak signals! is the cross-
correlation statistic.

To generalize to non-Gaussian noise, it is helpful to u
moment generating functions. Suppose the vectorn1 repre-
sents the internal~instrumental! noise in the first detector
The moment generating function forn1 is

F in,1~w1!5^eiwT
•n1& ~3.16!

and the probability distribution forn1 is the Fourier trans-
form of the moment generating function:

pin,1~n1!5E dw1e2 in1
T
•wF in,1 . ~3.17!

The moment generating functionF in,2(w2) for the internal
noise in detector 2 is defined similarly. We assume that
stochastic background is a multivariate Gaussian with a m
ment generating function

Fsb~w1 ,w2!5expS 2
1

2
e2vT

•Ssb•vD ~3.18!

with

v5Fw1

w2
G and Ssb5FRsb S

S Rsb
G .

Then the moment generating function for the detectors’ o
put is

F~w1 ,w2!5^eiw1
T
•x1eiw2

T
•x2& ~3.19!

5F in,1~w1!F in,2~w2!Fsb~w1 ,w2!

and the joint probability distribution is
2-8
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p~x1 ,x2ue!5E dw1dw2e2 i (x1
T
•w11x2

T
•w2)F~w1 ,w2!

5E dv exp~2 i jT
•v!F in,1~w1!F in,2~w2!H 12

1

2
e2vT

•Ssb•v1O~e4!J
5p~x1 ,x2u0!1e2H ~“Tpin,2!~x2!•S•~“pin,1!~x1!1

1

2
~“Tpin,1!~x1!•Rsb•~“pin,1!~x1!

1
1

2
~“Tpin,2!~x2!•Rsb•~“pin,2!~x2!J 1O~e4!. ~3.20!
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Thus, if we ignore the autocorrelation terms, the locally o
timal statistic is

L (2)5~“Tln pin,2!~x2!•S•~“ ln pin,1!~x1!. ~3.21!

This equation for the locally optimal statistic is good for t
time domain, in which the detectors’ output vectors are r
and so the derivative is meaningful.

To extend the result to complex vectors, and thus t
frequency-domain representation, we use the following
mal replacement: replace every complex numberx5a1 ib
and derivative¹ with the matrices

x→xI 5F a b

2b aG and ¹→¹I 5
1

2 F ]/]a 2]/]b

]/]b ]/]aG .
Note that this meansx* is represented byxI T and uxu2 by
xI T
•xI . Also, the meaning of¹uxu2 is ¹I (xI T

•xI )5xI T. The lo-
cally optimal statistic is

L (2)5
1
2 ~“I Tln pin,2!~xO2!•SO•~“I ln pin,1!~xO1!1 1

2 ~“I ln pin,2!

3~xO2!•SO•~“I Tln pin,1!~xO1!. ~3.22!

For example, for the noise model in which lnpin( x̃)
}(k51

@(N21)/2#gk(ux̃ku2/Pk) and S̃5diag@gksk
2#, the locally op-

timal statistic is

L (2)5R (
k51

[(N21)/2] gksk
2x̃1,k* x̃2,k

P1,kP2,k

3g1,k8 ~ ux̃1,ku2/P1,k!g2,k8 ~ ux̃2,ku2/P2,k!. ~3.23!

Before we examine specific non-Gaussian noise mod
we will describe the form of the matricesRsb andS. A sto-
chastic background, if present, contributes to the signal
plitude at each detector. To simplify the analysis, in S
III A, we assumed that the detectors were coincident a
co-aligned, so that the amplitude contribution in each in
vidual detector is identical. Here, we drop that assumptio

Because the detectors are not co-aligned, the axes o
two interferometer arms point in different directions, and a
sensitive to different linear combinations of the two possi
gravitational wave polarizations. This reduces the correla
12200
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between the amplitudes in the two detectors, since we
assume that the stochastic background is unpolarized.
additional loss of correlation occurs because the two de
tors are separated. This loss of correlation becomes incr
ingly greater for shorter wavelengths. Roughly speaki
there is no significant loss of correlation for wavelengt
much longer than the inter-detector distance, and there
complete loss of correlations for wavelengths much sho
than this@12#.

The loss of amplitude correlation due to the separat
and non-alignment of the two detectors may be descri
~for an unpolarized and isotropic stochastic background! in
terms of the overlap reduction functiong( f ) defined by
Flanagan@13#. This quantity is the average value of the pro
uct of the detector outputs, for a stochastic background o
given frequencyf, averaged over the possible directions
arrival and phases. It is given by

g~ f !5
5

8pES2
dV̂e2p i f V̂•DxW /c~F1

1F2
11F1

3F2
3!.

~3.24!

HereV̂ is a unit-length vector on the two-sphere,DxW is the
separation between the two detector sites, andFi

1,3 is the
response of detectori to the1 or 3 polarization. For thei th
detector (i 51,2) one has

Fi
1,35

1

2
~X̂i

aX̂i
b2Ŷi

aŶi
b!eab

1,3~V̂ !, ~3.25!

whereeab
1,3(V̂) are the gravitational wave polarization te

sors for a wave propagating in directionV̂. The normaliza-
tion of g( f ) is chosen so that for coincident and co-align
detectors,g( f )51. For co-aligned but not coincident dete
tors, g( f 50)51. For coincident but unaligned detector
g( f ) is a frequency-independent constant that depends
upon the relative orientation of the two detectors, and v
ishes if the two detectors are sensitive to orthogonal po
izations.

General expressions forg( f ) for arbitrary detectors may
be found in Refs.@13,14#. For the pair of Laser Interferomet
2-9
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FIG. 3. The overlap reduction functiong( f )
is shown for the two LIGO detectors as a fun
tion of frequencyf. The left or right graphs have
linear or log10 frequency axes. Because the dete
tors are almost anti-aligned, the function is clo
to 21 at low frequencies. The first root is at 6
Hz.
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ric Gravitational Wave Observatory~LIGO! detectorsg( f ) is
shown in Fig. 3, and is given by

g~ f !'20.1248j 0~x!22.900
j 1~x!

x
13.008

j 2~x!

x2

~3.26!

wherex52p f d/c is a frequency variable,d53010 km is
the detector separation,c52.9983105 km/s is the speed o
light, and j n is a spherical Bessel function. It is helpful t
introduce notation for the overlap reduction function’s valu
in the frequency bins of interest. Letf k5k/(NDt)5k/T de-
note the frequency of thekth bin, with k50, . . . ,@N/2#.
HereDt is the sample interval andT5NDt is the total ob-
servation time. Then

gk5g~ f k!5g~k/T! ~3.27!

are the values of the overlap reduction function in thekth
bin.

The stochastic background is characterized by its dim
sionless energy density

Vgw~ f !5
1

rcritical

drgw

d ln f
, ~3.28!

wheredrgw is the energy density of the gravitational radi
tion contained in the frequency rangef to f 1d f , andrcritical
is the critical energy density required~today! to close the
universe:

rcritical5
3c2H0

2

8pG
'1.631028h100

2 erg cm23. ~3.29!

H0 is the Hubble expansion rate~today!:

H05h1003100 km s21 Mpc2153.2310218h100s21,
~3.30!

and h100 is a dimensionless factor that we have included
account for the different values ofH0 that are quoted in the
literature@20#.

The probability distribution function~PDF! of the sto-
chastic background strain can usually be expressed in cl
form. The central limit theorem shows that if the stochas
background has been produced~as it is in many scenarios!
by an incoherent sum of many small processes, then its
12200
s

n-

o

ed
c

ta-

tistics will be stationary@15# and Gaussian. This means th
it is characterized by the single-site second moments

^s̃1,ks̃1,k8
* &5^s̃2,ks̃2,k8

* &5sk
2dkk8 , ~3.31!

with

sk
25

3H0
2Vgw~ f k!

20p2Dtu f ku3
. ~3.32!

As before, we have assumed thatN is chosen so thatNDt is
much larger than the correlation time of the stochastic ba
ground~filtered by the instrument response function!, so that
the RHS of Eq.~3.33! is proportional todkk8 . The expecta-
tion value of the product of the strain at the two differe
sites is reduced by the overlap reduction function:

^s̃1,ks̃2,k8
* &5^s̃2,ks̃1,k8

* &5gk^s̃1,ks̃1,k8
* &5gksk

2dkk8 .
~3.33!

This follows from Eq.~3.56! of Ref. @14#. In practice, since
the shape of the stochastic background spectrum is
known, the dependence of thesk on k should be assumed t
fit some simple parametrized model, such as a power
sk

2}ka for a reasonable range ofa.
We can now express the locally optimal detection statis

for a stochastic background in colored Gaussian noise. I

ln L5e2R (
k51

[(N21)/2]

gksk
2x1,k* x2,k /~P1,kP2,k! ~3.34!

whereP1,k andP2,k are the measured noise spectra in the t
detectors.

Let us now turn to our first non-Gaussian noise mod
Our starting point is a PDF for the noise in the two detect
in the absence of any stochastic background signal. We m
the same assumptions about the detector noise as in
II B. The PDF is given in frequency space by a product
two terms identical to Eq.~2.19!,
2-10
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p~ x̃1 ,x̃2!5 )
k51

[(N21)/2]

2p21P1,k
22e22g1,k(ux̃1,ku2/P1,k)

3 )
k851

[(N21)/2]

2p21P2,k8
22 e22g2,k8(ux̃2,k8u

2/P2,k8)

5 )
k51

[(N21)/2]

4p22P1,k
22P2,k

22

3e22g1,k(ux̃1,ku2/P1,k)22g2,k(ux̃2,ku2/P2,k).

The statistical distribution of the stochastic background

psb~ s̃1 ,s̃2!5 )
k51

[(N21)/2]

~psk
2!22~12gk

2!21

3expS 2
us̃1,ku21us̃2,ku222gkR~ s̃1,k* s̃2,k!

sk
2~12gk

2!
D .

~3.35!

We can now find the locally optimal statistic. Since t
detector is linear, as before, one has a joint probability d
tribution for the observed Fourier amplitudes:

p~ x̃1 ,x̃2ue!5E ds̃1ds̃2psb~ s̃1 ,s̃2!

3p~ x̃12e s̃1 ,x̃22e s̃2!.

This corresponds to a stochastic background with a cha
teristic energy-density functioneVgw( f ) @21#. The locally
optimal statistic is

L (1)54R (
k51

[(N21)/2] H ^s̃1,k* & x̃1,kg1,k8 ~ ux̃1,ku2/P1,k!

P1,k

1
^s̃2,k* &x̃2,kg2,k8 ~ ux̃2,ku2/P2,k!

P2,k
J ~3.36!

where the quantitieŝs̃1,k* & and^s̃2,k* & are mean values of th
stochastic background’s Fourier amplitudes at each of
two detector sites. These both vanish,

^s̃$1,2%,k
* &5E ds̃1ds̃2psb~ s̃1 ,s̃2!s$1,2%,k* 50, ~3.37!

since the mean values of the Fourier amplitudes are z
Hence, as in Sec. III A one must look for the locally optim
statistic at the next order ine. Taking an additional deriva
tive, one can easily computeL (2) . As in Sec. III A this con-
sists of two types of terms. For the same reasons as be
we discard from this decision statistic all thesingle detector
terms. This leaves us with the following generalized cro
correlation statistic:
12200
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LGCC516E ds̃1ds̃2psb~ s̃1 ,s̃2!

3 (
k,k851

[(N21)/2]
R~ s̃1,k* x̃1,k!g1,k8 ~ ux̃1,ku2/P1,k!

P1,k

3
R~ s̃2,k8

* x̃2,k8!g2,k8
8 ~ ux̃2,k8u

2/P2,k8!

P2,k8

. ~3.38!

Since the expectation value of the product of the stocha
background at the two sites is given by

^s̃1,ks̃2,k8&5E ds̃1ds̃2psb~ s̃1 ,s̃2!s̃1,ks̃2,k* 5dkk8gksk
2

~3.39!

one obtains the generalized cross-correlation statistic

LGCC516R (
k51

[(N21)/2] gksk
2x̃1,k* x̃2,k

P1,kP2,k

3g1,k8 ~ ux̃1,ku2/P1,k!g2,k8 ~ ux̃2,ku2/P2,k!. ~3.40!

If the functionsg8 are replaced by unity, this reduces to th
standard result for the optimal filter for the case where
detector noise is assumed to be stationary and Gaussian
typical non-Gaussian noise models, the effect of theg8 func-
tions is to exclude those frequency bins in whichux̃ku2/Pk is
large in either detector.

Our second non-Gaussian noise model is similar to
noise burst model used in Sec. II B, generalized to the
detector case. The composite PDF for this model is

p~x1 ,x2ue!5~2p!2NH ~12P1!~12P2!~detS!21

3expS 2
1

2
j†
•S21

•jD1P1~12P2!~detS1!21

3expS 2
1

2
j†
•S1

21
•jD1P2~12P1!~detS2!21

3expS 2
1

2
j†
•S2

21
•jD1P1P2~detS12!

21

3expS 2
1

2
j†
•S12

21
•jD J ~3.41!

whereP1 andP2 are the probabilities of bursts in detectors
and 2. The matricesS1 , S2, andS12 represent the correla
tion matrices when a noise burst is present. As in Sec. II B
burst effectively changes the noise level for the detector
periencing the burst. Thus, if there is a burst in detector
simply replaceR1 with R̄1 in S to obtainS1. Then we find

S1
21.F Q̄1 2e2Q̄1•S•Q2

2e2Q2•S•Q̄1 Q2
G1O~e4!

~3.42!
2-11
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and

ln detS1. ln detR̄11 ln detR21tr~Q̄1•R1!1O~e4!
~3.43!

to first order inQ̄1 and similarly forS2. We also have

S12
21.F Q̄1 0

0 Q̄2
G ~3.44!

and

ln detS1. ln detR̄11 ln detR̄21tr~Q̄1•R1!1tr~Q̄2•R2!
~3.45!

to first order inQ̄1 andQ̄2.
We can now compute the locally optimal statistic:

L (2).
2R~x2

†
•Q2•S•Q1•x!

11a11a21a1a2
~3.46!

where

a1.
P1

12P1

detR1

detR̄1

expS 1

2
x1

†
•Q1•xD ~3.47!

and a2 is given by a similar expression. Here we have n
glected allQ̄ terms. The termsa1 anda2 detect bursts, and
their role is to suppressL (2) when a burst is present in eithe
detector.

C. Estimators

In analyzing experimental data, there are different p
sible goals. One goal might be to set an upper limit~with a
certain statistical confidence! on the stochastic backgroun
energy density in a particular frequency band. Another g
might be to estimate this energy density in a particular f
quency band.

For this latter purpose, there are different possible esti
tors that might be used. One standard estimator is the m
mum likelihood estimators~MLE!. In this section, we show
how this estimator is related to the cross-correlation statis

Recall that the probability distribution for the joint dete
tor output is

ln p~x1 ,x2ue!5~terms that do not depend one!

1e2x2
†
•Q2•S•Q2•x11

1

2
e4$tr~Q2•S•Q1•S!

2x1
†
•Q1•S•Q2•S•Q1•x1

2x2
†
•Q2•S•Q1•S•Q2•x2%1O~e6!. ~3.48!

Suppose we wish to estimate the strengthe2 of the stochastic
background. The maximum likelihood estimator is the va
eMLE

2 for which this probability is maximized
@d ln p(x1 ,x2ue)/de2#e

MLE
2 50. The result is
12200
-

-

al
-

a-
xi-

c.

e

eMLE
2 5hx2

†
•Q2•S•Q2•x1 ~3.49!

where

h2152tr~Q2•S•Q1•S!1x1
†
•Q1•S•Q2•S•Q1•x1

1x2
†
•Q2•S•Q1•S•Q2•x2 ~3.50!

is a measure of how sensitive the detectors were to the
chastic background. Normallyh will be on the order of unity
so eMLE

2 is approximately just the cross-correlation statist
However, if the detectors were abnormally noisy, thenh
would be less than unity and the estimate of the stocha
background strength would be smaller than the cro
correlation statistic would indicate: this is a correction th
compensates for artificially large values of the cro
correlation statistic due to noise fluctuations.

IV. IMPLEMENTATION AND SIMULATIONS

A. Implementation

A nice feature of these techniques is that in practice, th
should be easy to implement. Work by Scott and Whiti
@16# has shown that the PDFs of the Fourier amplitudes
different frequency bins can be easily obtained. Since
characteristic time scale for stochastic background corr
tion is '10 ms, these can be computed using data segm
with lengths of seconds or tens of seconds. These PDFs
then be used to determine where to truncate or clip the
relation, frequency bin by frequency bin. Provided that t
instrument’s characteristics are stable over periods of m
utes or hours, it should be simple to accumulate suffici
statistics to determine the PDFs and therefore the trunca
or weighting functions with reasonable accuracy.

In practice, it may also be desirable to ‘‘discard’’ a sma
part of the ‘‘attainable-in-principle’’ correlation in exchang
for obtaining more robust statistics. For example, one
arbitrarily zero the 1% of frequency bins that are the larg
number of standard deviations away from the mean va
~for that bin!. Since the dominant contribution in any bi
always comes from the detector noise, this is only ve
weakly correlated with the actual stochastic background
nal, and the net effect is to discard just a bit more than 1%
the ‘‘in principle’’ attainable signal-to-noise ratio. But in ex
change, the detection statistic becomes far less sensitiv
non-Gaussian detector fluctuations. The precise effects
such treatment, and the appropriate truncation thresho
can be easily determined with Monte Carlo simulations us
simulated signals added into real detector noise.

In searching for a known waveform~e.g., binary inspiral!
the methods are again easily implementable. Here, since
signal time scale is less than a minute, the frequency-bin
frequency-bin statistics take a bit more time to accumula
and the detector’s statistical properties have to be stable
a slightly longer time scale~an hour, perhaps!. This appears
likely.

Since certain non-Gaussian noise features are more li
to appear as outlier points in the time domain, and other
the frequency domain, a combination of the time- a
2-12
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ROBUST STATISTICS FOR DETERMINISTIC AND . . . PHYSICAL REVIEW D65 122002
frequency-domain methods may be desirable. Unfortuna
if the detector noise is not white, this may require the
moval ~vetoing! of entire small sections of time-series da
This is easy in the stochastic background case, where
tens of milliseconds around a glitch need excision. It may
more problematic for signals like binary inspiral chirps th
have longer duration.

B. Comparing different statistics

In Secs. II and III, we derived locally optimal statistics
search for deterministic and stochastic gravitational w
signals in the presence of non-Gaussian noise. These s
tics reduce to the standard matched-filtering and cro
correlation statistics when the detector noise is Gaussian.
they are morerobust~i.e., less sensitive to outliers! when the
detector noise has non-Gaussian components. For both c
the standard and robust statistics take~as input! the output of
one or more detectors, and return~as output! a single real
number. But the statistics also depend on the gravitatio
wave signal and detector noise models, which are not
rectly observable. Different choices for the signal and no
models correspond to different statistics, and these diffe
statistics will in general perform differently given the sam
detector output. In order to compare and evaluate the st
tics, we need a way to quantify their performance.

As mentioned in Sec. II, the quality of a test~i.e., a deci-
sion rule based on a particular statistic! is characterized by its
false alarm and false dismissalprobabilities for a given
source. These are, respectively, the probability that the
leads us to conclude that a signal is present, when in fact
absent (e50), and the probability that the test leads us
conclude that a signal is absent, when in fact it is pres
(e.0). These two probabilities~denoteda and be) com-
pletely specify the long-term performance of a statistic. B
to rank different tests, we need to reduce these mu
dimensional error measures to a single figure of merit. H
we do this depends on the problem we are trying to so
~see, e.g.@17#!, but in the context of gravitational wave de
tection, it is common to look for a test that minimizes t
false dismissal probability, keeping the false alarm proba
ity less than or equal to some maximum tolerable value. T
criterion is known as theNeyman-Pearsoncriterion, and it
was used in Sec. II to define the locally optimal statistics

Thus, to compare the performance of different statist
we should plot false dismissal versus false alarm curves
different values of the signal amplitudee. The best test~or
best statistic! is the one that has the smallest false dismis
probability be(a), for fixed false alarm probabilitya and
fixed signal amplitudee. Note that since the false dismiss
probability depends on botha and e, it is possible that the
best test for one choice of (a,e) is not the best test for a
different choice of (a,e). Note also that this method of com
paring statistics is different than simply comparing expec
signal-to-noise ratios. What is important when determin
error rates~and hence the performance of a particular test! is
not the expected value of the statistic, but rather its proba
ity distribution.
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For sufficiently simple statistics with sufficiently simpl
signal and noise models, it may be possible to analytica
calculate the corresponding false dismissal versus false a
curves. But for most cases of interest, we must resor
Monte Carlo simulationsto generate the curves. This con
sists of adding simulated signals to simulated~or real! detec-
tor noise, and then processing the resulting data with a
tistic. For each stretch of data, the statistic outputs a sin
number which is then compared to a threshold to determ
if we should claim detection. Since we know if a signal
present in the data, we can easily determine the fraction
times that the decision rule was in error. In the absence
signal, this procedure yields the false alarm probabilitya as
a function of the thresholdL0. In the presence of a signa
having fixed amplitudee, we obtain the false dismissal prob
ability be , again as a function of the threshold. If we inve
a(L0) for L05L0(a), and substitute this expression ba
into be(L0), we obtain the false dismissal versus false ala
curvebe(a). We can then repeat these steps for a differ
signal amplitudee8 to produce a new curvebe8(a). The
final result will be a set of curves similar to those shown
Fig. 4.

Alternatively, we can plot 12a2be or e22(12a2be)
versusa, as shown in Figs. 5 and 6. Note that the quant
12a2be is the difference of two probabilities: 12be is the
probability that the statistic exceeds some threshold in
presence of a signal (e.0), while a is the probability that
the statistic exceeds the same threshold in the absence
signal ~i.e., e50). Although Figs. 5 and 6 contain the sam
information as the false dismissal versus false alarm cur
~Fig. 4!, plottinge22(12a2be) versusa has the nice prop-
erty that, for stochastic signals, the curves have a w
definede→0 limit.

C. Example

To illustrate how we can compare different statistics us
Monte Carlo simulations, consider the simple case o
search for a white, Gaussian stochastic background si
using two independent, identical, coincident and coalign
detectors. Statistic 1 will be the standard cross-correla
statistic defined by a white, Gaussian stochastic backgro
signal and white, Gaussian detector noise. Statistic 2 will
a locally optimal statistic, also defined by a white, Gauss
stochastic background signal, but with white, 2-compone
mixture Gaussian noise with an arbitrary knee. We will a
sume that we know~a priori! that the two detectors are iden
tical and have uncorrelated white noise. We will not assum
however, that we know~a priori! the parameters describin
the statistical properties of the detector noise or the ove
amplitude of the stochastic background signal. Each stat
will have to internally estimate the parameters from the
tector output, without any other prior knowledge.

We perform Monte Carlo simulations of the two statisti
for the following three cases:

~i! Uncorrelated, white, Gaussian detector noise with z
mean and unit variance.

~ii ! Uncorrelated, white, 2-component, mixture Gauss
detector noise with zero mean, unit variance,s̄/s54, and
P51% @see Eq.~2.11!#.
2-13
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FIG. 4. False dismissal versus false alar
curves for a typical statistic. Lower curves corr
spond to larger values of the signal amplitudee.
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~iii ! Uncorrelated, white, exponential detector noise w
zero mean and unit variance@see Eq.~2.10!#.

The first two simulations test the optimal behavior of t
statistics. Statistic 1 is designed for the data of case~i!, and
statistic 2 is designed for the data of case~ii !. The third
simulation tests the two statistics in a sub-optimal situati
representative of a real search where we do not know
advance the exact statistical character of the detector no

Details of the Monte Carlo simulations are summariz
below:

~i! A single stretch of data consists ofN51024 discrete-
time samples. ThisN is sufficiently large that the large ob
servation time approximation is valid. Since we are cons
ering white noise~which has zero correlation length!, any
N*100 would do.
12200
,
in
e.
d

-

~ii ! The simulated stochastic gravitational-wave sign
strengths aree25.0025, .005, .010, .020, and .040, wheree
is the ratio of the rms amplitude of the stochastic backgrou
signal to the rms amplitude of the detector noise. These
nal strengths correspond to signal-to-noise ratios (;e2AN)
ranging from approximately 0.1 to 1 for a single stretch
data.

Note: Since a real stochastic background is expected
have a smaller value ofe2 (;1024), we would need a much
longer observation time to build up similar signal-to-noi
ratios in a real search. The purpose of this example, howe
is to illustrate how one can compare two different statisti
it is not meant to simulate a real (*4 month! stochastic
background search.
li-
FIG. 5. 12a2be versus the false alarm
probabilitya for a typical statistic. Lower curves
correspond to smaller values of the signal amp
tudee.
2-14
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FIG. 6. e22(12a2be) versus the false
alarm probabilitya for a typical statistic. Higher
curves correspond to smaller values of the sig
amplitudee.
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~iii ! For all three types of simulated detector noise,
standard cross-correlation statistic estimates the varianc
the noise by calculating the sample variance of a stretch
detector output equal to 100N. Since the detector output con
sists in general of signal plus noise, the estimate of the n
variance gets worse as the signal amplitude increases.
sample variance is needed to specify the white, Gaus
noise model that enters the definition of the standard cr

FIG. 7. False dismissal versus false alarm curves for the s
dard cross-correlation and locally optimal statistics for simula
white, Gaussian detector noise. The solid lines correspond to
standard cross-correlation statistic; the dashed lines correspo
the locally optimal statistic. The top curve for each statistic hase2

5.0025;e2 increases by a factor of 2 as one moves to successi
lower curves in the graph. As explained in the text, the two statis
perform almost identically for this case.
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correlation statistic@cf. Eq. ~3.8!#:

(1)LGCC5
1

N (
j 50

N21

x1,j x2,j /s1
2s2

2 , ~4.1!

wheres1
2 ands2

2 are the estimated variances of the noise
detectors 1 and 2, respectively.
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FIG. 8. False dismissal versus false alarm curves for the s
dard cross-correlation and locally optimal statistics for simula
white, 2-component, mixture Gaussian detector noise. The s
lines correspond to the standard cross-correlation statistic;
dashed lines correspond to the locally optimal statistic. The
curve for each statistic hase25.0025;e2 increases by a factor of 2
as one moves to successively lower curves in the graph. Since
locally optimal statistic has a lower false dismissal probabil
be(a) for each false alarm probabilitya and each signal amplitude
e, it is clearly the better test for this case, as expected.
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~iv! In addition to estimating the variance of the detec
noise, the locally optimal statistic also estimates the v
ancess, s̄, and breakpointxb of the 2-component, mixture
Gaussian model that define this statistic. It does this by
ting two straight lines to a ln„p(x)… vs x2 plot obtained from
a histogram of a stretch of detector output, again equa
100N. Best-fit lines at smallx and largex, respectively, yield
estimates ofs and s̄, while the intersection of the line
yields an estimate ofxb . Actually, only the breakpoints fo
the detector noise are needed to define the following loc
optimal statistic:

(2)LGCC5
1

N (
j 50

N21

x1,jQ~x1b2ux1,j u!

3x2,jQ~x2b2ux2,j u!/s1
2s2

2 , ~4.2!

which is a truncated version of(1)LGCC. ~See the discussion
of truncation in the previous subsection.! Here Q(x) is the
usual step function, which equals 0 ifx,0, and equals 1 if
x>0.

Note: In order to handle pure Gaussian noise~which is a
pathological case when one tries to model it as
2-component, mixture Gaussian distribution!, the locally op-
timal statistic sets the breakpointxb to ` whenever the esti-
mated slopes at small and large values ofx have a percen
difference less than 10%. By doing this, the locally optim

FIG. 9. False dismissal versus false alarm curves for the s
dard cross-correlation and locally optimal statistics for simula
white, exponential detector noise. The solid lines correspond to
standard cross-correlation statistic; the dashed lines correspo
the locally optimal statistic. The top curve for each statistic hase2

5.0025;e2 increases by a factor of 2 as one moves to successi
lower curves in the graph. Since the locally optimal statistic ha
lower false dismissal probabilitybe(a) for each false alarm prob
ability a and each signal amplitudee, it is the better test for this
case.
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statistic (2)LGCC effectively reduces to the standard cros
correlation statistic(1)LGCC when the noise is pure Gaussia

~v! We use 105 trials to generate each false dismissal v
sus false alarm curve.
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FIG. 10. A blowup of the false dismissal versus false ala
curves from Fig. 9 for small values of the false alarm probabilitya.

FIG. 11. A plot ofe22(12a2be) versus the false alarm prob
ability a for the standard cross-correlation and locally optimal s
tistics for simulated white, exponential detector noise in the we
signal limit ~small e). The top curve~filled circles! corresponds to
the locally optimal statistic; the lower curve~open circles! corre-
sponds to the standard cross-correlation statistic. The difference
tween the performance of the two statistics in the small signal li
is more apparent in this plot~cf. Fig. 9!. Since the locally optimal
statistic has a larger value ofe22(12a2be) for each false alarm
probability a, it is the better test for this case.
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~vi! The simulations were written in Matlab@18#.
The results of the simulation are shown in Figs. 7–11
As noted in~iv! above, our implementation of the locall

optimal statistic reduces to the standard cross-correlation
tistic when the detector noise is pure Gaussian. That is w
the false dismissal versus false alarm curves for the two
tistics are effectively identical in Fig. 7.

From Fig. 8 we see that the locally optimal statistic p
forms better than the standard cross-correlation stat
when the simulated detector noise is mixture Gaussian.
each value of the stochastic signal strengthe2 and for each
false alarm probabilitya, the false dismissal probability
be(a) for the locally optimal statistic is less than that for th
standard cross-correlation statistic. This is as expected, s
the locally optimal statistic was constructed precisely
handle mixture Gaussian noise.

Finally, from Figs. 9–11 we see that the locally optim
statistic also performs better than the standard cro
correlation statistic when the simulated detector noise ha
exponential distribution. The difference in performance b
tween the two statistics for this case is less than that
mixture Gaussian noise, but it is still noticeable.@Figure 10
focuses attention on the false dismissal versus false a
curves for small values of the false alarm probability, wh
Fig. 11 is a plot ofe22(12a2be) versusa, which high-
lights the difference between the two statistics in the sm
signal limit.# This behavior is again as expected, since a
cally optimal statistic is constructed to be less sensitive to
tails of a non-Gaussian distribution.
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V. CONCLUSION

In this paper, we have constructed a replacement for
standard linear matched filter estimators used for grav
tional wave detection. The replacements are more robust
cause they are less susceptible to corruption by non-Gaus
detector noise.

We have explicitly illustrated the locally optimal detectio
strategies for a variety of different noise PDFs, and for t
different detection problems~single detector known wave
form, and two-detector stochastic background!. In all cases,
the optimal strategy is similar to the one for Gaussian no
except that data samples that lie outside the central pa
the distribution~the outliers! are excluded from the sum
which form the estimators.

We believe that for the future generation of sensiti
gravitational wave detectors, these strategies may be e
implemented and offer an improvement on the exist
matched filter algorithms.
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