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Abstract
This paper gives an overview of the automatic mirror alignment system of
the modecleaner and main interferometer of the GEO 600 gravitational wave
detector. In order to achieve the required sensitivity of the detector, the
eigenmodes of all optical cavities have to be aligned with respect to the
incoming beams (or vice versa) and kept aligned for long measuring periods.
Moreover the beam spots have to be centred on the mirrors to minimize coupling
of residual angular mirror motion into changes of the optical path length. An
overview of the principles and setup for the automatic alignment is given,
and first results of the modecleaner and 1200 m cavity alignment system are
presented, including the error-point spectra of mirror angular motions, which
are smaller than 10−8 rad Hz−1/2 below 10 Hz.

PACS numbers: 0480N, 0760L, 9555Y

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In laser interferometric gravitational wave detectors, all cavity and beam steering mirrors
within the vacuum system are suspended as pendulums for the purpose of seismic isolation.
While this gives good isolation in the gravitational wave measurement band (e.g. above
40 Hz), the mirror motions are increased around the pendulum’s main resonances (around
1 Hz) and the mirrors are subjected to enhanced drifts.

4 To whom correspondence should be addressed.

0264-9381/02/071849+07$30.00 © 2002 IOP Publishing Ltd Printed in the UK 1849

http://stacks.iop.org/cq/19/1849


1850 H Grote et al

E i E c

cavity eigenmode

axes of incoming beam

C

B

α

A

Figure 1. Schematic triangular ring cavity consisting of two flat mirrors A, C and a curved mirror
B. Mirror A is misaligned by an angle α.

To enable an optimized sensitivity as well as long-term stable operation of the detector, an
automatic5 angular alignment in two degrees of freedom for each suspended mirror is required.

Within the GEO 600 [1] gravitational wave detector, there are two suspended ring-type
modecleaners, the power recycling cavity and the Michelson interferometer to be aligned with
such a system.

The goal of the automatic alignment system is to keep the optical eigenmode of a cavity
superimposed with the axes of the respective incoming beam and centre all beam spots on the
corresponding mirrors.

2. Differential wavefront sensing

To align a cavity’s eigenmode with the incoming beam, their relative orientation has to be
detected. Error signals providing this information are obtained with the differential wavefront
sensing technique (see, e.g., [2]), which is similar to the Pound–Drever–Hall sensing [3].

Figure 1 shows a triangular ring cavity consisting of two flat mirrors A, C and a curved
mirror B. An incident laser light impinging on mirror A is partly reflected as an electric field
Ei and partly enters the cavity. The light circulating inside the cavity leaks out at mirror A as
field Ec.

The figure shows a misalignment of mirror A, resulting in an angle between Ei and Ec.
While here the misalignment is largely exaggerated, in a real situation the two beams cannot
be separated, but their interference pattern can be detected with photodiodes.

Using Pound–Drever–Hall sensing, the phase difference between the wavefronts of Ei and
Ec is read out over the whole cross section of the interference pattern. For this method, the
incident light is being phase-modulated at an appropriate radio frequency with an electro-optic
modulator (EOM). The photocurrent of a diode illuminated with Ei and Ec is then coherently
demodulated. The resulting signal is a measure of the match between the incident laser
frequency and one of the cavity’s resonant frequencies. Usually an appropriate feedback loop
is used to keep the difference between these frequencies close to zero, which is referred to as
the ‘locking’ of a cavity.

If a cavity is locked (which is assumed for all the following discussions), the differential
wavefront sensing method can measure the angle between the wavefronts of Ei and Ec by using
5 The term ‘automatic’ has two meanings here: a feedback system which optimizes the alignment is called ‘automatic
alignment’. Furthermore ‘automatic alignment’ describes a computer-controlled system which switches the alignment
feedback loops on and off, depending on the detector status.
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a split photodiode and calculating the difference between the two demodulated photocurrents
of the different photodiode sections6. With a quadrant diode this can be done for the horizontal
and vertical directions simultaneously.

The angle between the wavefronts is generally not identical to the angle between the
beams Ei and Ec. But if the wavefront angles are measured at two different distances from
the beam waist (which is located between mirrors A and C in the configuration of figure 1),
four different quantities can be obtained, giving full information about angular and parallel
displacement of the cavity’s axes against the axis of the incoming beam.

Any other linear combination of the four detected wavefront angles may be chosen to
match the coordinate system of experimentally available independent actuators, enabling
feedback-controlled alignment. As a feature of the ring cavity in figure 1, any misalignment
of mirror A cannot be distinguished from misalignments of mirror C with the described
method, but both mirrors can be chosen as actuators in a common mode. Further, the linear
combinations chosen for the horizontal plane are generally different from those in the vertical
plane. (For details see [4].)

3. Automatic alignment of a GEO 600 modecleaner

Figure 2 shows the setup for the automatic alignment system of the first GEO 600 modecleaner.
The laser beam directed to mirror A is phase-modulated with a frequency of 25.2 MHz by

EOM1, enabling the use of Pound–Drever–Hall locking, and differential wavefront sensing.
Steering mirror BD1 points the beam towards the cavity, constituted by the flat mirrors A and
C, and curved mirror B. (For details on the GEO 600 modecleaners see [5].)

The beam consisting of the interfering fields Ei + Ec (see figure 1 for correspondence) is
split into two paths by the power beamsplitter BS1 with a reflectivity of about 50%. In each
path the light is directed to the quadrant diodes D1 and D2. A lens system (L1 and L2) in the
light path to D2 provides a projection into the far field of Ei + Ec. With the proper adjustment
of L1 and L2 the detected wavefront angles on D1 and D2 can be made as independent as
possible.

The components G1 and G2 are beam pointing devices and have the purpose to centre
the beams on the respective quadrant diodes D1 and D2. G1 and G2 each consist of two
commercial galvanometer scanners, carrying small (10 × 15 mm) mirrors on their axis that
can be rotated in one degree of freedom. With a perpendicular mounting of two scanners,
one unit can point a reflected beam in two degrees of freedom. The ‘centring servo’ loops
control the spot position on the diodes with a bandwith of around 1 kHz. We use this concept
to ensure that the angle between the interfering wavefronts Ei and Ec is detected correctly by
the quadrant photodiodes.

If beam Ei + Ec is not centred on the diodes, the differential wavefront signal size decreases
and also includes unwanted information from higher order modes. Obviously, if beam Ei +
Ec deviates from the centre of a diode by one beam radius, alignment information is almost
completely lost. If G1 and G2 are not used, an angular pointing of beam Ei + Ec of roughly
200 µrad leads to such a decentring on D2. Using the scanners, beam Ei + Ec can point up
to 2000 µrad while the beam is still centred on D2, yielding a correct differential wavefront
sensing signal. With a larger pointing than this, the beam gets cut off at the scanner mirror
edges. Given these numbers, the dynamic range of the alignment detection system is increased

6 In principle it is also possible to obtain differential wavefront signals without a locked cavity. To do this, the
photodiode signals have to be read out each time the cavity is in resonance with the incident light. A computer-
controlled system could provide an error signal then, which might be useful for an automated or manual coarse
alignment of complex interferometers.
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Figure 2. Automatic alignment system layout for one modecleaner. The numbers at the servo
boxes count the degrees of freedom controlled by each path.

by more than a factor of 10 by the scanners. This large dynamic range allows a successful
switching on of the alignment system even in largely misaligned initial states. (See figure 3
for such a condition.)

Each quadrant photodiode, D1 and D2, of the type CENTRONICS QD50-3T has a
resonant electronic circuit (tuned at the modulation frequency of EOM1) for each of its
quadrants to increase the signal-to-noise ratio. After demodulation, the differences between
the quadrants of one photodiode give the information about the angles between the wavefronts
in two degrees of freedom. Those electronics are symbolized by M1 and M2 for each
photodiode.

To generate signals that correspond to the motion of individual mirrors of the ring cavity,
the according linear combinations of the outputs of M1 and M2 are processed by analogue
electronic circuits A1 and A2. The experimental result of this orthogonalization is better than
1/10 (meaning that if, e.g., mirror B rotates out of its nominal position, this signal shows up
with less than 1/10 in the misalignment signal for mirrors A and C).

The error signals for the mirror orientations are then amplified with the appropriate gain
and frequency response and fed back to mirror B as well as mirrors A+C in common mode.

As feedback actuator for the modecleaner alignment we use coils with magnets attached
to the intermediate mass of each mirror’s double pendulum. The transfer function from the
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Figure 3. Switching on and off the modecleaner automatic alignment.

input of the coil drivers to the mirror’s angular motion has a phase delay of 360◦ at frequencies
above the pendulum’s main resonances (around 1 Hz), which makes it difficult to achieve unity
gain frequencies of the alignment system above 1 Hz. Nevertheless two different feedback
filters were successfully tried, one with a bandwidth of 6 Hz (using several differentiator stages
to provide an electronic phase lead of 210◦ around 6 Hz), another one using only integrator
stages yielding a bandwidth of 0.2 Hz.

Figure 3 shows a time series of the light power reflected from the first modecleaner of
GEO 600 for different operating conditions of the automatic alignment system.

Up to second 6 the cavity is unlocked and almost all light is reflected. Then the cavity
is locked to an intentionally misaligned state with only around 65% of the possible power
entering the cavity. At second 14 the differential wavefront control is switched on for the two
tilt degrees of freedom; at second 19 feedback for the two rotational degrees of freedom is
switched on. A maximum of light is now entering the cavity, limited by imperfect annular
modematching at the time of measurement. It can be seen that the power fluctuations are
significantly smaller than in the misaligned case, due to reduced coupling of beam geometry
fluctuations. Finally the graph shows the switching off in reverse order, with the pendulums
swinging back to their equilibrium positions.

We obtain information about four degrees of freedom for the cavity alignment with the
differential wavefront sensing, but there are two remaining degrees of freedom of the cavity
(which consists of three mirrors and thus has six angular degrees of freedom) to be controlled.
These are the differential modes of mirrors A and C, which can be detected by the direction of
the beam Ei + Ec propagation. As we have the quadrant photodiode D1 in place already, we
can read out the spot position on the diode by reading out the quadrant photocurrents at low
frequencies (in contrast to the RF readout described above). The galvanometer scanners use
these signals to centre the beam on the photodiode; thus the propagation direction information
of the beam Ei + Ec is contained in the feedback signals applied to the scanners (at least within
the scanners loop bandwidth of 1 kHz). Figure 2 shows the feedback loop using these signals
which are fed back to the differential modes of mirrors A and C with a digital control loop.
To avoid oscillations, this loop has to be slower than the differential wavefront sensing loop.

A similar type of feedback is the spot position control with D3, detecting the transmitted
light of cavity mirror B. A digital feedback loop then aligns mirror BD1, which determines
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Figure 4. Automatic alignment system layout for the power-recycled Michelson interferometer.

the spot position on D3, as long as the cavity axes follow the axes of the incoming beam. Thus
care has to be taken that this spot position control is only active (again with a low enough
bandwidth) when the differential wavefront feedback is working.

4. Main interferometer automatic alignment

Figure 4 gives a brief overview of the alignment system for the power-recycled Michelson
interferometer (signal recycling not included).

The light leaving the modecleaners is directed by BD2 and BD3 to the power recycling
cavity. The light reflected from MPR is detected by D4, which symbolizes a differential
wavefront sensing unit for four degrees of freedom like the one described for the modecleaner
section. In the current configuration feedback is applied to BD3 and MPR to align the power
recycling cavity’s axes with the axes of the incoming beam. Both mirrors have magnets
attached on which forces are applied with coils.

Alignment information for the Michelson interferometer is obtained by D5, which
symbolizes a unit for differential wavefront sensing for two degrees of freedom. Feedback in
this case is applied to the cavity folding mirrors MCE and MCN differentially. The common
mode of these two mirrors is used for spot position control. One simplified possible topology
of the spot position control for all remaining mirrors is shown, but others are possible.

Figure 5 shows the error point spectrum of the power recycling mirror’s horizontal
alignment degree of freedom.

At the time of this measurement in January 2001 the beamsplitter BS was not installed, and
the mirrors MPR, MFE and MCE formed a 1200 m long folded Fabry–Perot cavity, described
in [6]. The measurement shows the angular motion of mirror MPR against the incoming
beam without automatic alignment and with automatic alignment for four degrees of freedom
switched on. With a bandwidth of the alignment feedback loops around 10 Hz, the rms value of
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Figure 5. Horizontal alignment spectrum of mirror MPR with and without automatic alignment.

the angular motion is damped to 0.02 µrad compared to 1.0 µrad without automatic alignment.
The electronic noise of the differential wavefront sensor is as low as 10−11 rad Hz−1/2.

5. Conclusion

The complete automatic alignment system for the two 8 m GEO 600 suspended ring type
modecleaners is installed and has been in continuous operation since spring 2001. No manual
mirror alignment has been required since then.

Furthermore, the automatic alignment of a kilometre scale interferometer with differential
wavefront sensing in four degrees of freedom was successfully demonstrated as a major part
of the complete automatic alignment of GEO 600.
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