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Abstract:

This article is a guide to theorems on existence and global 
dynamics of solutions of the Einstein equations. It draws 
attention to open questions in the field. The local-in-time 
Cauchy problem, which is relatively well understood, is 
surveyed. Global results for solutions with various types of 
symmetry are discussed. A selection of results from 
Newtonian theory and special relativity that offer useful 
comparisons is presented. Treatments of global results in the 
case of small data and results on constructing spacetimes 
with prescribed singularity structure are given. A conjectural 
picture of the asymptotic behaviour of general cosmological 
solutions of the Einstein equations is built up. Some 
miscellaneous topics connected with the main theme are 
collected in a separate section. 
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1 Introduction

   

1 Introduction 

Systems of partial differential equations are of central importance in physics. Only the simplest of 
these equations can be solved by explicit formulae. Those that cannot are commonly studied by 
means of approximations. There is, however, another approach that is complementary. This consists 
in determining the qualitative behaviour of solutions, without knowing them explicitly. The first step 
in doing this is to establish the existence of solutions under appropriate circumstances. Unfortunately, 
this is often hard, and obstructs the way to obtaining more interesting information. When partial 
differential equations are investigated with a view to applications, existence theorems should not 
become a goal in themselves. It is important to remember that, from a more general point of view, 
they are only a starting point. 

The basic partial differential equations of general relativity are Einstein's equations. In general, they 
are coupled to other partial differential equations describing the matter content of spacetime. The 
Einstein equations are essentially hyperbolic in nature. In other words, the general properties of 
solutions are similar to those found for the wave equation. It follows that it is reasonable to try to 
determine a solution by initial data on a spacelike hypersurface. Thus the Cauchy problem is the 
natural context for existence theorems for the Einstein equations. The Einstein equations are also 
nonlinear. This means that there is a big difference between the local and global Cauchy problems. A 
solution evolving from regular data may develop singularities. 

A special feature of the Einstein equations is that they are diffeomorphism invariant. If the equations 
are written down in an arbitrary coordinate system then the solutions of these coordinate equations 
are not uniquely determined by initial data. Applying a diffeomorphism to one solution gives another 
solution. If this diffeomorphism is the identity on the chosen Cauchy surface up to first order then the 
data are left unchanged by this transformation. In order to obtain a system for which uniqueness in 
the Cauchy problem holds in the straightforward sense as it does for the wave equation, some 
coordinate or gauge fixing must be carried out. 

Another special feature of the Einstein equations is that initial data cannot be prescribed freely. They 
must satisfy constraint equations. To prove the existence of a solution of the Einstein equations, it is 
first necessary to prove the existence of a solution of the constraints. The usual method of solving the 
constraints relies on the theory of elliptic equations. 

The local existence theory of solutions of the Einstein equations is rather well understood. Section 2 
points out some of the things that are not known. On the other hand, the problem of proving general 
global existence theorems for the Einstein equations is beyond the reach of the mathematics presently 
available. To make some progress, it is necessary to concentrate on simplified models. The most 
common simplifications are to look at solutions with various types of symmetry and solutions for 
small data. These two approaches are reviewed in Sections 3 and 5, respectively. A different 
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1 Introduction

approach is to prove the existence of solutions with a prescribed singularity structure. This is 
discussed in Section 6. Section 9 collects some miscellaneous results that cannot easily be classified. 
Since insights about the properties of solutions of the Einstein equations can be obtained from the 
comparison with Newtonian theory and special relativity, relevant results from those areas are 
presented in Section 4. 

The sections just listed are to some extent catalogues of known results, augmented with some 
suggestions as to how these could be extended in the future. Sections 7 and 8 complement this by 
looking ahead to see what the final answer to some interesting general questions might be. They are 
necessarily more speculative than the other sections but are rooted in the known results surveyed 
elsewhere in the article. 

The area of research reviewed in the following relies heavily on the theory of differential equations, 
particularly that of hyperbolic partial differential equations. For the benefit of readers with little 
background in differential equations, some general references that the author has found to be useful 
will be listed. A thorough introduction to ordinary differential equations is given in [127]. A lot of 
intuition for ordinary differential equations can be obtained from [136]. The article [17] is full of 
information, in rather compressed form. A classic introductory text on partial differential equations, 
where hyperbolic equations are well represented, is [143]. Useful texts on hyperbolic equations, some 

of which explicitly deal with the Einstein equations, are [235, 147 , 187, 171, 232, 144, 99]. 

An important aspect of existence theorems in general relativity that one should be aware of is their 
relation to the cosmic censorship hypothesis. This point of view was introduced in an influential 
paper by Moncrief and Eardley [178]. An extended discussion of the idea can be found in [85 ]. 
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2 Local Existence

   

2 Local Existence 

In this section basic facts about local existence theorems for the Einstein equations are recalled. Since 
the theory is well developed and good accounts exist elsewhere (see for instance [108 ]), attention is 
focussed on remaining open questions known to the author. In particular, the questions of the 
minimal regularity required to get a well-posed problem and of free boundaries for fluid bodies are 
discussed. 

●     2.1 The constraints 
●     2.2 The vacuum evolution equations 
●     2.3 Questions of differentiability 
●     2.4 New techniques for rough solutions 
●     2.5 Matter fields 
●     2.6 Free boundary problems 
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2.1 The constraints

   

2.1 The constraints 

The unknowns in the constraint equations are the initial data for the Einstein equations. These consist 

of a three-dimensional manifold S, a Riemannian metric , and a symmetric tensor  on S, and 

initial data for any matter fields present. The equations are: 

   

Here R is the scalar curvature of the metric , and  and  are projections of the energy-

momentum tensor. Assuming that the matter fields satisfy the dominant energy condition implies that 

. This means that the trivial procedure of making an arbitrary choice of  and  

and defining  and  by Equations (1 ) is of no use for producing physically interesting solutions. 

The usual method for solving the Equations (1 ) is the conformal method [66 ]. In this method 
parts of the data (the so-called free data) are chosen, and the constraints imply four elliptic equations 
for the remaining parts. The case that has been studied the most is the constant mean curvature 

(CMC) case, where  is constant. In that case there is an important simplification. 

Three of the elliptic equations, which form a linear system, decouple from the remaining one. This 
last equation, which is nonlinear, but scalar, is called the Lichnerowicz equation. The heart of the 
existence theory for the constraints in the CMC case is the theory of the Lichnerowicz equation. 

Solving an elliptic equation is a non-local problem and so boundary conditions or asymptotic 
conditions are important. For the constraints, the cases most frequently considered in the literature are 
that where S is compact (so that no boundary conditions are needed) and that where the free data 
satisfy some asymptotic flatness conditions. In the CMC case the problem is well understood for both 
kinds of boundary conditions [52, 81 , 137]. The other case that has been studied in detail is that of 
hyperboloidal data [4]. The kind of theorem that is obtained is that sufficiently differentiable free 
data, in some cases required to satisfy some global restrictions, can be completed in a unique way to a 
solution of the constraints. It should be noted in passing that in certain cases physically interesting 
free data may not be ``sufficiently differentiable'' in the sense it is meant here. One such case is 
mentioned at the end of Section 2.6. The usual kinds of differentiability conditions that are required 
in the study of the constraints involve the free data belonging to suitable Sobolev or Hölder spaces. 
Sobolev spaces have the advantage that they fit well with the theory of the evolution equations 
(compare the discussion in Section 2.2). In the literature nobody seems to have focussed on the 
question of the minimal differentiability necessary to apply the conformal method. 
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2.1 The constraints

In the non-CMC case our understanding is much more limited although some results have been 
obtained in recent years (see [140, 64] and references therein). It is an important open problem to 
extend these so that an overview is obtained comparable to that available in the CMC case. Progress 
on this could also lead to a better understanding of the question of whether a spacetime that admits a 
compact, or asymptotically flat, Cauchy surface also admits one of constant mean curvature. Up to 
now there have been only isolated examples that exhibit obstructions to the existence of CMC 
hypersurfaces [21]. 

It would be interesting to know whether there is a useful concept of the most general physically 
reasonable solutions of the constraints representing regular initial configurations. Data of this kind 
should not themselves contain singularities. Thus it seems reasonable to suppose at least that the 

metric  is complete and that the length of , as measured using , is bounded. Does the 

existence of solutions of the constraints imply a restriction on the topology of S or on the asymptotic 
geometry of the data? This question is largely open, and it seems that information is available only in 
the compact and asymptotically flat cases. In the case of compact S, where there is no asymptotic 
regime, there is known to be no topological restriction. In the asymptotically flat case there is also no 
topological restriction implied by the constraints beyond that implied by the condition of asymptotic 
flatness itself [241]. This shows in particular that any manifold that is obtained by deleting a point 
from a compact manifold admits a solution of the constraints satisfying the minimal conditions 
demanded above. A starting point for going beyond this could be the study of data that are 
asymptotically homogeneous. For instance, the Schwarzschild solution contains interesting CMC 
hypersurfaces that are asymptotic to the metric product of a round 2-sphere with the real line. More 
general data of this kind could be useful for the study of the dynamics of black hole interiors [209 ]. 

To sum up, the conformal approach to solving the constraints, which has been the standard one up to 
now, is well understood in the compact, asymptotically flat and hyperboloidal cases under the 
constant mean curvature assumption, and only in these cases. For some other approaches see [22, 23, 
245]. New techniques have been applied by Corvino [90] to prove the existence of regular solutions 

of the vacuum constraints on  that are Schwarzschild outside a compact set. 
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2.2 The vacuum evolution equations

   

2.2 The vacuum evolution equations 

The main aspects of the local-in-time existence theory for the Einstein equations can be illustrated by 
restricting to smooth (i.e. infinitely differentiable) data for the vacuum Einstein equations. The 
generalizations to less smooth data and matter fields are discussed in Sections 2.3 and 2.5, 

respectively. In the vacuum case, the data are  and  on a three-dimensional manifold S, as 

discussed in Section 2.1. A solution corresponding to these data is given by a four-dimensional 
manifold M, a Lorentz metric  on M, and an embedding of S in M. Here,  is supposed to be a 

solution of the vacuum Einstein equations, while  and  are the induced metric and second 

fundamental form of the embedding, respectively. 

The basic local existence theorem says that, given smooth data for the vacuum Einstein equations, 
there exists a smooth solution of the equations which gives rise to these data [66 ]. Moreover, it can 
be assumed that the image of S under the given embedding is a Cauchy surface for the metric . 
The latter fact may be expressed loosely, identifying S with its image, by the statement that S is a 
Cauchy surface. A solution of the Einstein equations with given initial data having S as a Cauchy 
surface is called a Cauchy development of those data. The existence theorem is local because it says 
nothing about the size of the solution obtained. A Cauchy development of given data has many open 
subsets that are also Cauchy developments of that data. 

It is intuitively clear what it means for one Cauchy development to be an extension of another. The 
extension is called proper if it is strictly larger than the other development. A Cauchy development 
that has no proper extension is called maximal. The standard global uniqueness theorem for the 
Einstein equations uses the notion of the maximal development. It is due to Choquet-Bruhat and 
Geroch [63]. It says that the maximal development of any Cauchy data is unique up to a 
diffeomorphism that fixes the initial hypersurface. It is also possible to make a statement of Cauchy 
stability that says that, in an appropriate sense, the solution depends continuously on the initial data. 
Details on this can be found in [66]. 

A somewhat stronger form of the local existence theorem is to say that the solution exists on a 
uniform time interval in all of space. The meaning of this is not a priori clear, due to the lack of a 
preferred time coordinate in general relativity. The following is a formulation that is independent of 
coordinates. Let p be a point of S. The temporal extent T(p) of a development of data on S is the 
supremum of the length of all causal curves in the development passing through p. In this way, a 
development defines a function T on S. The development can be regarded as a solution that exists on 
a uniform time interval if T is bounded below by a strictly positive constant. For compact S this is a 
straightforward consequence of Cauchy stability. In the case of asymptotically flat data it is less 
trivial. In the case of the vacuum Einstein equations it is true, and in fact the function T grows at least 
linearly as a function of spatial distance at infinity  [81]. It should follow from the results of [156 ] 
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2.2 The vacuum evolution equations

that the constant of proportionality in the linear lower bound for T can be chosen to be unity, but this 
does not seem to have been worked out explicitly. 

When proving the above local existence and global uniqueness theorems it is necessary to use some 
coordinate or gauge conditions. At least no explicitly diffeomorphism-invariant proofs have been 
found up to now. Introducing these extra elements leads to a system of reduced equations, whose 
solutions are determined uniquely by initial data in the strict sense, and not just uniquely up to 
diffeomorphisms. When a solution of the reduced equations has been obtained, it must be checked 
that it is a solution of the original equations. This means checking that the constraints and gauge 
conditions propagate. There are many methods for reducing the equations. An overview of the 
possibilities may be found in [104]. See also [108 ]. 
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2.3 Questions of differentiability

   

2.3 Questions of differentiability 

Solving the Cauchy problem for a system of partial differential equations involves specifying a set of 
initial data to be considered, and determining the differentiability properties of solutions. Thus, two 
regularity properties are involved - the differentiability of the allowed data, and that of the 
corresponding solutions. Normally, it is stated that for all data with a given regularity, solutions with 
a certain type of regularity are obtained. For instance, in Section 2.2 we chose both types of regularity 
to be ``infinitely differentiable''. The correspondence between the regularity of data and that of 
solutions is not a matter of free choice. It is determined by the equations themselves, and in general 
the possibilities are severely limited. A similar issue arises in the context of the Einstein constraints, 
where there is a correspondence between the regularity of free data and full data. 

The kinds of regularity properties that can be dealt with in the Cauchy problem depend, of course, on 
the mathematical techniques available. When solving the Cauchy problem for the Einstein equations, 
it is necessary to deal at least with nonlinear systems of hyperbolic equations. (There may be other 
types of equations involved, but they will be ignored here.) For general nonlinear systems of 
hyperbolic equations the standard technique is the method of energy estimates. This method is closely 
connected with Sobolev spaces, which will now be discussed briefly. 

Let u be a real-valued function on . Let 

 

The space of functions for which this quantity is finite is the Sobolev space . Here,  

denotes the sum of the squares of all partial derivatives of u of order i. Thus, the Sobolev space  is 
the space of functions, all of whose partial derivatives up to order s are square integrable. Similar 
spaces can be defined for vector valued functions by taking a sum of contributions from the separate 
components in the integral. It is also possible to define Sobolev spaces on any Riemannian manifold, 
using covariant derivatives. General information on this can be found in [18]. Consider now a 
solution u of the wave equation in Minkowski space. Let u(t) be the restriction of this function to a 
time slice. Then it is easy to compute that, provided u is smooth and u(t) has compact support for 

each t, the quantity  is time independent for each s. For s=0 this is just 

the energy of a solution of the wave equation. For a general nonlinear hyperbolic system, the Sobolev 
norms are no longer time-independent. The constancy in time is replaced by certain inequalities. Due 
to the similarity to the energy for the wave equation, these are called energy estimates. They 
constitute the foundation of the theory of hyperbolic equations. It is because of these estimates that 
Sobolev spaces are natural spaces of initial data in the Cauchy problem for hyperbolic equations. The 
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2.3 Questions of differentiability

energy estimates ensure that a solution evolving from data belonging to a given Sobolev space on one 
spacelike hypersurface will induce data belonging to the same Sobolev space on later spacelike 
hypersurfaces. In other words, the property of belonging to a Sobolev space is propagated by the 
equations. Due to the locality properties of hyperbolic equations (existence of a finite domain of 

dependence), it is useful to introduce the spaces , which are defined by the condition that 

whenever the domain of integration is restricted to a compact set, the integral defining the space  
is finite. 

In the end, the solution of the Cauchy problem should be a function that is differentiable enough so 
that all derivatives that occur in the equation exist in the usual (pointwise) sense. A square integrable 
function is in general defined only almost everywhere and the derivatives in the above formula must 
be interpreted as distributional derivatives. For this reason, a connection between Sobolev spaces and 
functions whose derivatives exist pointwise is required. This is provided by the Sobolev embedding 

theorem. This says that if a function u on  belongs to the Sobolev space  and if k<s-n/2, then 

there is a k times continuously differentiable function that agrees with u except on a set of measure 
zero. 

In the existence and uniqueness theorems stated in Section 2.2, the assumptions on the initial data for 

the vacuum Einstein equations can be weakened to say that  should belong to  and  to 

. Then, provided s is large enough, a solution is obtained that belongs to . In fact, its 

restriction to any spacelike hypersurface also belongs to , a property that is a priori stronger. 

The details of how large s must be would be out of place here, since they involve examining the 
detailed structure of the energy estimates. However, there is a simple rule for computing the required 
value of s. The value of s needed to obtain an existence theorem for the Einstein equations using 
energy estimates is that for which the Sobolev embedding theorem, applied to spatial slices, just 
ensures that the metric is continuously differentiable. Thus the requirement is that s>n/2+1=5/2, since 
n=3. It follows that the smallest possible integer s is three. Strangely enough, uniqueness up to 

diffeomorphisms is only known to hold for . The reason is that in proving the uniqueness 

theorem a diffeomorphism must be carried out, which need not be smooth. This apparently leads to a 
loss of one derivative. It would be desirable to show that uniqueness holds for s=3 and to close this 
gap, which has existed for many years. There exists a definition of Sobolev spaces for an arbitrary 
real number s, and hyperbolic equations can also be solved in the spaces with s not an integer [234]. 
Presumably these techniques could be applied to prove local existence for the Einstein equations with 
s any real number greater than 5/2. However, this has apparently not been done explicitly in the 
literature. 

Consider now  initial data. Corresponding to these data there is a development of class  for 
each s. It could conceivably be the case that the size of these developments shrinks with increasing s. 
In that case, their intersection might contain no open neighbourhood of the initial hypersurface, and 
no smooth development would be obtained. Fortunately, it is known that the  developments 
cannot shrink with increasing s, and so the existence of a  solution is obtained for  data. It 
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2.3 Questions of differentiability

appears that the  spaces with s sufficiently large are the only spaces containing the space of 
smooth functions for which it has been proved that the Einstein equations are locally solvable. 

What is the motivation for considering regularity conditions other than the apparently very natural 
 condition? One motivation concerns matter fields and will be discussed in Section 2.5. Another 

is the idea that assuming the existence of many derivatives that have no direct physical significance 
seems like an admission that the problem has not been fully understood. A further reason for 
considering low regularity solutions is connected to the possibility of extending a local existence 
result to a global one. If the proof of a local existence theorem is examined closely it is generally 
possible to give a continuation criterion. This is a statement that if a solution on a finite time interval 
is such that a certain quantity constructed from the solution is bounded on that interval, then the 
solution can be extended to a longer time interval. (In applying this to the Einstein equations we need 
to worry about introducing an appropriate time coordinate.) If it can be shown that the relevant 
quantity is bounded on any finite time interval where a solution exists, then global existence follows. 
It suffices to consider the maximal interval on which a solution is defined, and obtain a contradiction 
if that interval is finite. This description is a little vague, but contains the essence of a type of 
argument that is often used in global existence proofs. The problem in putting it into practice is that 
often the quantity whose boundedness has to be checked contains many derivatives, and is therefore 
difficult to control. If the continuation criterion can be improved by reducing the number of 
derivatives required, then this can be a significant step toward a global result. Reducing the number 
of derivatives in the continuation criterion is closely related to reducing the number of derivatives of 
the data required for a local existence proof. 

A striking example is provided by the work of Klainerman and Machedon [155 ] on the Yang-Mills 
equations in Minkowski space. Global existence in this case was first proved by Eardley and 
Moncrief [97 ], assuming initial data of sufficiently high differentiability. Klainerman and 
Machedon gave a new proof of this, which, though technically complicated, is based on a 
conceptually simple idea. They prove a local existence theorem for data of finite energy. Since 
energy is conserved this immediately proves global existence. In this case finite energy corresponds 
to the Sobolev space  for the gauge potential. Of course, a result of this kind cannot be expected 
for the Einstein equations, since spacetime singularities do sometimes develop from regular initial 
data. However, some weaker analogue of the result could exist. 
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2.4 New techniques for rough solutions

   

2.4 New techniques for rough solutions 

Recently, new mathematical techniques have been developed to lower the threshold of 
differentiability required to obtain local existence for quasilinear wave equations in general and the 
Einstein equations in particular. Some aspects of this development will now be discussed 
following [154, 157 ]. A central aspect is that of Strichartz inequalities. These allow one to go 

beyond the theory based on  spaces and use Sobolev spaces based on the Lebesgue  spaces for 

. The classical approach to deriving Strichartz estimates is based on the Fourier transform and 

applies to flat space. The new ideas allow the use of the Fourier transform to be limited to that of 
Littlewood-Paley theory and facilitate generalizations to curved space. 

The idea of Littlewood-Paley theory is as follows (see [1] for a good exposition of this). Suppose that 
we want to describe the regularity of a function (or, more generally, a tempered distribution) u on 

. Differentiability properties of u correspond, roughly speaking, to fall-off properties of its 
Fourier transform . This is because the Fourier transform converts differentiation into 

multiplication. The Fourier transform is decomposed as , where  is a dyadic partition 

of unity. The statement that it is dyadic means that all the  except one are obtained from each other 

by scaling the argument by a factor which is a power of two. Transforming back we get the 

decomposition , where  is the inverse Fourier transform of . The component  of 

u contains only frequencies of the order . In studying rough solutions of the Einstein equations, the 
Littlewood-Paley decomposition is applied to the metric itself. The high frequencies are discarded to 
obtain a smoothed metric which plays an important role in the arguments. 

Another important element of the proofs is to rescale the solution by a factor depending on the cut-off 
 applied in the Littlewood-Paley decomposition. Proving the desired estimates then comes down to 

proving the existence of the rescaled solutions on a time interval depending on  in a particular way. 
The rescaled data are small in some sense and so a connection is established to the question of long-
time existence of solutions of the Einstein equation for small initial data. In this way, techniques from 
the work of Christodoulou and Klainerman on the stability of Minkowski space (see Section 5.2) are 
brought in. 

What is finally proved? In general, there is a close connection between proving local existence for 
data in a certain space and showing that the time of existence of smooth solutions depends only on 
the norm of the data in the given space. Klainerman and Rodnianski [157] demonstrate that the time 
of existence of solutions of the reduced Einstein equations in harmonic coordinates depends only on 

the  norm of the initial data for any . The reason that this does not allow them to assert 

an existence result in the same space is that the constraints are needed in their proof and that an 
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2.4 New techniques for rough solutions

understanding of solving the constraints at this low level of differentiability is lacking. 

The techniques discussed in this section, which have been stimulated by the desire to understand the 
Einstein equations, are also helpful in understanding other nonlinear wave equations. Thus, this is an 
example where information can flow from general relativity to the theory of partial differential 
equations. 
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2.6 Free boundary problems

   

2.6 Free boundary problems 

In applying general relativity one would like to have solutions of the Einstein-matter equations 
modelling material bodies. As will be discussed in Section 3.1 there are solutions available for 
describing equilibrium situations. However, dynamical situations require solving a free boundary 
problem if the body is to be made of fluid or an elastic solid. We will now discuss the few results 
which are known on this subject. For a spherically symmetric self-gravitating fluid body in general 
relativity, a local-in-time existence theorem was proved in [151]. This concerned the case in which 
the density of the fluid at the boundary is non-zero. In [202] a local existence theorem was proved for 
certain equations of state with vanishing boundary density. These solutions need not have any 
symmetry but they are very special in other ways. In particular, they do not include small 
perturbations of the stationary solutions discussed in Section 3.1. There is no general result on this 
problem up to now. 

Remarkably, the free boundary problem for a fluid body is also poorly understood in classical 
physics. There is a result for a viscous fluid [226], but in the case of a perfect fluid the problem was 
wide open until very recently. Now, a major step forward has been taken by Wu [244], who obtained 
a result for a fluid that is incompressible and irrotational. There is a good physical reason why local 
existence for a fluid with a free boundary might fail. This is the Rayleigh-Taylor instability which 
involves perturbations of fluid interfaces that grow with unbounded exponential rates (cf. the 
discussion in [26]). It turns out that in the case considered by Wu this instability does not cause 
problems, and there is no reason to expect that a self-gravitating compressible fluid with rotation in 
general relativity with a free boundary cannot also be described by a well-posed free boundary value 
problem. For the generalization of the problem considered by Wu to the case of a fluid with rotation, 
Christodoulou and Lindblad [80 ] have obtained estimates that look as if they should be enough to 
obtain an existence theorem. It has, however, not yet been possible to complete the argument. This 
point deserves some further comment. In many problems the heart of an existence proof is obtaining 
suitable estimates. Then more or less standard approximation techniques can be used to obtain the 
desired conclusion (for a discussion of this see [108], Section 3.1). In the problem studied in [80] it is 
an appropriate approximation method that is missing. 

One of the problems in tackling the initial value problem for a dynamical fluid body is that the 
boundary is moving. It would be very convenient to use Lagrangian coordinates, since in those 
coordinates the boundary is fixed. Unfortunately, it is not at all obvious that the Euler equations in 
Lagrangian coordinates have a well-posed initial value problem, even in the absence of a boundary. It 
was, however, recently shown by Friedrich [105] that it is possible to treat the Cauchy problem for 
fluids in general relativity in Lagrangian coordinates. 

In the case of a fluid with non-vanishing boundary density it is not only the evolution equations that 
cause problems. It is already difficult to construct suitable solutions of the constraints. A theorem on 
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2.6 Free boundary problems

this has recently been obtained by Dain and Nagy [91]. There remains an undesirable technical 
restriction, but the theorem nevertheless provides a very general class of physically interesting initial 
data for a self-gravitating fluid body in general relativity. 
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2.5 Matter fields

   

2.5 Matter fields 

Analogues of the results for the vacuum Einstein equations given in Section 2.2 are known for the 
Einstein equations coupled to many types of matter model. These include perfect fluids, elasticity 
theory, kinetic theory, scalar fields, Maxwell fields, Yang-Mills fields, and combinations of these. An 
important restriction is that the general results for perfect fluids and elasticity apply only to situations 
where the energy density is uniformly bounded away from zero on the region of interest. In 
particular, they do not apply to cases representing material bodies surrounded by vacuum. In cases 
where the energy density, while everywhere positive, tends to zero at infinity, a local solution is 
known to exist, but it is not clear whether a local existence theorem can be obtained that is uniform in 
time. In cases where the fluid has a sharp boundary, ignoring the boundary leads to solutions of the 
Einstein-Euler equations with low differentiability (cf. Section 2.3), while taking it into account 
explicitly leads to a free boundary problem. This will be discussed in more detail in Section 2.6. In 
the case of kinetic or field theoretic matter models it makes no difference whether the energy density 
vanishes somewhere or not. 
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3 Global Symmetric Solutions

   

3 Global Symmetric Solutions 

An obvious procedure to obtain special cases of the general global existence problem for the Einstein 
equations that are amenable to attack is to make symmetry assumptions. In this section, we discuss 
the results obtained for various symmetry classes defined by different choices of number and 
character of Killing vectors. 

●     3.1 Stationary solutions 
●     3.2 Spatially homogeneous solutions 
●     3.3 Spherically symmetric solutions 
●     3.4 Cylindrically symmetric solutions 
●     3.5 Spatially compact solutions 

   

 

Theorems on Existence and Global Dynamics for the Einstein Equations
Alan D. Rendall 
http://www.livingreviews.org/lrr-2002-6
© Max-Planck-Gesellschaft. ISSN 1433-8351
Problems/Comments to livrev@aei-potsdam.mpg.de

http://relativity.livingreviews.org/Articles/lrr-2002-6/node9.html26.04.2004 11:53:51

http://relativity.livingreviews.org/Articles/lrr-2002-6/article_prep.html
http://relativity.livingreviews.org/Articles/lrr-2002-6/article_prep.html
mailto:livrev@aei-potsdam.mpg.de


3.1 Stationary solutions

   

3.1 Stationary solutions 

Many of the results on global solutions of the Einstein equations involve considering classes of 
spacetimes with Killing vectors. A particularly simple case is that of a timelike Killing vector, i.e. the 
case of stationary spacetimes. In the vacuum case there are very few solutions satisfying physically 
reasonable boundary conditions. This is related to no hair theorems for black holes and lies outside 
the scope of this review. More information on the topic can be found in the book of Heusler [134] 
and in his Living Review [133] (see also [37] where the stability of the Kerr metric is discussed). The 

case of phenomenological matter models has been reviewed in [215 ]. The account given there will 
be updated in the following. 

The area of stationary solutions of the Einstein equations coupled to field theoretic matter models has 
been active in recent years as a consequence of the discovery by Bartnik and McKinnon [24 ] of a 
discrete family of regular, static, spherically symmetric solutions of the Einstein-Yang-Mills 
equations with gauge group SU(2). The equations to be solved are ordinary differential equations, and 
in [24] they were solved numerically by a shooting method. The first existence proof for a solution of 
this kind is due to Smoller, Wasserman, Yau and McLeod [230] and involves an arduous qualitative 
analysis of the differential equations. The work on the Bartnik-McKinnon solutions, including the 
existence theorems, has been extended in many directions. Recently, static solutions of the Einstein-
Yang-Mills equations that are not spherically symmetric were discovered numerically [158]. It is a 
challenge to prove the existence of solutions of this kind. Now the ordinary differential equations of 
the previously known case are replaced by elliptic equations. Moreover, the solutions appear to still 
be discrete, so that a simple perturbation argument starting from the spherical case does not seem 
feasible. In another development, it was shown that a linearized analysis indicates the existence of 
stationary non-static solutions [50]. It would be desirable to study the question of linearization 
stability in this case, which, if the answer were favourable, would give an existence proof for 
solutions of this kind. 

Now we return to phenomenological matter models, starting with the case of spherically symmetric 
static solutions. Basic existence theorems for this case have been proved for perfect fluids [218], 

collisionless matter [195, 189 ], and elastic bodies [185]. The last of these is the solution to an open 
problem posed in [215]. All these theorems demonstrate the existence of solutions that are 
everywhere smooth and exist globally as functions of area radius for a general class of constitutive 
relations. The physically significant question of the finiteness of the mass of these configurations was 
only answered in these papers under restricted circumstances. For instance, in the case of perfect 
fluids and collisionless matter, solutions were constructed by perturbing about the Newtonian case. 
Solutions for an elastic body were obtained by perturbing about the case of isotropic pressure, which 
is equivalent to a fluid. Further progress on the question of the finiteness of the mass of the solutions 
was made in the case of a fluid by Makino [172 ], who gave a rather general criterion on the 
equation of state ensuring the finiteness of the radius. Makino's criterion was generalized to kinetic 
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3.1 Stationary solutions

theory in [197]. This resulted in existence proofs for various models that have been considered in 
galactic dynamics and which had previously been constructed numerically (cf. [38, 227] for an 
account of these models in the non-relativistic and relativistic cases, respectively). Most of the work 
uoted up to now refers to solutions where the support of the density is a ball. For matter with 
anisotropic pressure the support may also be a shell, i.e. the region bounded by two concentric 
spheres. The existence of static shells in the case of the Einstein-Vlasov equations was proved in [193

]. 

In the case of self-gravitating Newtonian spherically symmetric configurations of collisionless 
matter, it can be proved that the phase space density of particles depends only on the energy of the 
particle and the modulus of its angular momentum [25]. This is known as Jeans' theorem. It was 
already shown in [189] that the naive generalization of this to the general relativistic case does not 
hold if a black hole is present. Recently, counterexamples to the generalization of Jeans' theorem to 
the relativistic case, which are not dependent on a black hole, were constructed by Schaeffer [225]. It 
remains to be seen whether there might be a natural modification of the formulation that would lead 
to a true statement. 

For a perfect fluid there are results stating that a static solution is necessarily spherically 
symmetric [167]. They still require a restriction on the equation of state, which it would be desirable 
to remove. A similar result is not to be expected in the case of other matter models, although as yet 
no examples of non-spherical static solutions are available. In the Newtonian case examples have 
been constructed by Rein [193 ]. (In that case static solutions are defined to be those in which the 
particle current vanishes.) For a fluid there is an existence theorem for solutions that are stationary 
but not static (models for rotating stars) [129]. At present there are no corresponding theorems for 
collisionless matter or elastic bodies. In [193], stationary, non-static configurations of collisionless 
matter were constructed in the Newtonian case. 

Two obvious characteristics of a spherically symmetric static solution of the Einstein-Euler equations 
that has a non-zero density only in a bounded spatial region are its radius R and its total mass M. For 
a given equation of state there is a one-parameter family of solutions. These trace out a curve in the 
(M, R) plane. In the physics literature, pictures of this curve indicate that it spirals in on a certain 
point in the limit of large density. The occurrence of such a spiral and its precise asymptotic form 
have been proved rigorously by Makino [173]. 

For some remarks on the question of stability see Section 4.1. 
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3.2 Spatially homogeneous solutions

   

3.2 Spatially homogeneous solutions 

A solution of the Einstein equations is called spatially homogeneous if there exists a group of 
symmetries with three-dimensional spacelike orbits. In this case there are at least three linearly 
independent spacelike Killing vector fields. For most matter models the field equations reduce to 
ordinary differential equations. (Kinetic matter leads to an integro-differential equation.) The most 
important results in this area have been reviewed in a recent book edited by Wainwright and 
Ellis [237 ]. See, in particular, Part Two of the book. There remain a host of interesting and 
accessible open questions. The spatially homogeneous solutions have the advantage that it is not 
necessary to stop at just existence theorems; information on the global qualitative behaviour of 
solutions can also be obtained. 

An important question that has been open for a long time concerns the mixmaster model, as discussed 
in [213]. This is a class of spatially homogeneous solutions of the vacuum Einstein equations, which 
are invariant under the group SU(2). A special subclass of these SU(2)-invariant solutions, the 
(parameter-dependent) Taub-NUT solution, is known explicitly in terms of elementary functions. The 
Taub-NUT solution has a simple initial singularity which is in fact a Cauchy horizon. All other 
vacuum solutions admitting a transitive action of SU(2) on spacelike hypersurfaces (Bianchi type IX 
solutions) will be called generic in the present discussion. These generic Bianchi IX solutions (which 
might be said to constitute the mixmaster solution proper) have been believed for a long time to have 
singularities that are oscillatory in nature where some curvature invariant blows up. This belief was 
based on a combination of heuristic considerations and numerical calculations. Although these 
together do make a persuasive case for the accepted picture, until very recently there were no 
mathematical proofs of the these features of the mixmaster model available. This has now changed. 
First, a proof of curvature blow-up and oscillatory behaviour for a simpler model (a solution of the 
Einstein-Maxwell equations) which shares many qualitative features with the mixmaster model, was 
obtained by Weaver [240]. In the much more difficult case of the mixmaster model itself, 

corresponding results were obtained by Ringström [223 ]. Later he extended this in several 

directions in [222 ]. In that paper more detailed information was obtained concerning the 
asymptotics and an attractor for the evolution was identified. It was shown that generic solutions of 

Bianchi type IX with a perfect fluid whose equation of state is  with  

are approximated near the singularity by vacuum solutions. The case of a stiff fluid ( ) which 

has a different asymptotic behaviour was analysed completely for all models of Bianchi class A, a 
class which includes Bianchi type IX. 

Ringström's analysis of the mixmaster model is potentially of great significance for the mathematical 
understanding of singularities of the Einstein equations in general. Thus, its significance goes far 
beyond the spatially homogeneous case. According to extensive investigations of Belinskii, 
Khalatnikov and Lifshitz (see [164, 30, 31] and references therein), the mixmaster model should 
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3.2 Spatially homogeneous solutions

provide an approximate description for the general behaviour of solutions of the Einstein equations 
near singularities. This should apply to many matter models as well as to the vacuum equations. The 
work of Belinskii, Khalatnikov, and Lifshitz (BKL) is hard to understand and it is particularly 
difficult to find a precise mathematical formulation of their conclusions. This has caused many 
people to remain sceptical about the validity of the BKL picture. Nevertheless, it seems that nothing 
has ever been found to indicate any significant flaws in the final version. As long as the mixmaster 
model itself was not understood this represented a fundamental obstacle to progress on understanding 
the BKL picture mathematically. The removal of this barrier opens up an avenue to progress on this 
issue. The BKL picture is discussed in more detail in Section 8. 

Some recent and qualitatively new results concerning the asymptotic behaviour of spatially 
homogeneous solutions of the Einstein-matter equations, both close to the initial singularity and in a 
phase of unlimited expansion, (and with various matter models) can be found in [219, 220, 200 , 
238, 183, 135]. These show in particular that the dynamics can depend sensitively on the form of 
matter chosen. (Note that these results are consistent with the BKL picture.) The dynamics of 
indefinitely expanding cosmological models is discussed further in Section 7. 
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3.3 Spherically symmetric solutions

   

3.3 Spherically symmetric solutions 

The most extensive results on global inhomogeneous solutions of the Einstein equations obtained up 
to now concern spherically symmetric solutions of the Einstein equations coupled to a massless scalar 
field with asymptotically flat initial data. In a series of papers, Christodoulou [68 , 67, 70, 69 , 71, 

72, 73 , 77 ] has proved a variety of deep results on the global structure of these solutions. 

Particularly notable are his proofs that naked singularities can develop from regular initial data [73 ] 
and that this phenomenon is unstable with respect to perturbations of the data [77]. In related work, 
Christodoulou [74, 75, 76] has studied global spherically symmetric solutions of the Einstein 
equations coupled to a fluid with a special equation of state (the so-called two-phase model). A 
generalization of the results of [68] to the case of a nonlinear scalar field has been given by 
Chae [57]. 

The rigorous investigation of the spherically symmetric collapse of collisionless matter in general 
relativity was initiated by Rein and the author [194], who showed that the evolution of small initial 
data leads to geodesically complete spacetimes where the density and curvature fall off at large times. 
Later, it was shown [198] that independent of the size of the initial data the first singularity, if there is 
one at all, must occur at the centre of symmetry. This result uses a time coordinate of Schwarzschild 
type; an analogous result for a maximal time coordinate was proved in [214]. The question of what 

happens for general large initial data could not yet be answered by analytical techniques. In [199 ], 
numerical methods were applied to try to make some progress in this direction. The results are 
discussed in the next paragraph. 

Despite the range and diversity of the results obtained by Christodoulou on the spherical collapse of a 
scalar field, they do not encompass some of the most interesting phenomena that have been observed 
numerically. These are related to the issue of critical collapse. For sufficiently small data the field 
disperses. For sufficiently large data a black hole is formed. The question is what happens in 
between. This can be investigated by examining a one-parameter family of initial data interpolating 
between the two cases. It was found by Choptuik [61] that there is a critical value of the parameter 
below which dispersion takes place and above which a black hole is formed, and that the mass of the 
black hole approaches zero as the critical parameter value is approached. This gave rise to a large 
literature in which the spherical collapse of different kinds of matter was computed numerically and 
various qualitative features were determined. For reviews of this see [120, 119]. In the calculations of 
 [199] for collisionless matter, it was found that in the situations considered the black hole mass 
tended to a strictly positive limit as the critical parameter was approached from above. These results 
were confirmed and extended by Olabarrieta and Choptuik [184 ]. There are no rigorous 
mathematical results available on the issue of a mass gap for either a scalar field or collisionless 
matter and it is an outstanding challenge for mathematical relativists to change this situation. 
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3.3 Spherically symmetric solutions

Another aspect of Choptuik's results is the occurrence of a discretely self-similar solution. It would 
seem hard to prove the existence of a solution of this kind analytically. For other types of matter, 
such as a perfect fluid with linear equation of state, the critical solution is continuously self-similar 
and this looks more tractable. The problem reduces to solving a system of singular ordinary 
differential equations subject to certain boundary conditions. This problem was solved in [73] for the 
case where the matter model is given by a massless scalar field, but the solutions produced there, 
which are continuously self-similar, cannot include the Choptuik critical solution. Bizon and 
Wasserman [42] studied the corresponding problem for the Einstein equations coupled to a wave map 
with target SU(2). They proved the existence of continuously self-similar solutions including one 
which, according the results of numerical calculations, appears to play the role of critical solution in 
collapse. Another case where the question of the existence of the critical solution seems to be a 
problem that could possibly be solved in the near future is that of a perfect fluid. A good starting 
point for this is the work of Goliath, Nilsson, and Uggla [115, 116]. These authors gave a formulation 
of the problem in terms of dynamical systems and were able to determine certain qualitative features 
of the solutions. See also [53, 54]. 

A possible strategy for learning more about critical collapse, pursued by Bizon and collaborators, is 
to study model problems in flat space that exhibit features similar to those observed numerically in 
the case of the Einstein equations. Until now, only models showing continuous self-similarity have 
been found. These include wave maps in various dimensions and the Yang-Mills equations in 
spacetimes of dimension greater than four. As mentioned in Section 2.3, it is known that in four 
dimensions there exist global smooth solutions of the Yang-Mills equations corresponding to rather 
general initial data [97, 155]. In dimensions greater than five it is known that there exist solutions that 
develop singularities in finite time. This follows from the existence of continuously self-similar 
solutions [41]. Numerical evidence indicates that this type of blow-up is stable, i.e. occurs for an 
open set of initial data. The numerical work also indicates that there is a critical self-similar solution 
separating this kind of blow-up from dispersion. The spacetime dimension five is critical for Yang-
Mills theory. Apparently singularities form, but in a different way from what happens in dimension 
six. There is as yet no rigorous proof of blow-up in five dimensions. 

The various features of Yang-Mills theory just mentioned are mirrored in two dimensions less by 
wave maps with values in spheres [40]. In four dimensions, blow-up is known while in three 
dimensions there appears (numerically) to be a kind of blow-up similar to that found for Yang-Mills 
in dimension five. There is no rigorous proof of blow-up. What is seen numerically is that the 
collapse takes place by scaling within a one-parameter family of static solutions. The case of wave 
maps is the most favourable known model problem for proving theorems about critical phenomena 
associated to singularity formation. The existence of a solution having the properties expected of the 
critical solution for wave maps in four dimensions has been proved in [39]. Some rigorous support 
for the numerical findings in three dimensions has been given by work of Struwe (see the preprints 
available from [233]). He showed, among other things, that if there is blow-up in finite time it must 
take place in a way resembling that observed in the numerical calculations. 

Self-similar solutions are characteristic of what is called Type II critical collapse. In Type I collapse 
an analogous role is played by static solutions and quite a bit is known about the existence of these. 
For instance, in the case of the Einstein-Yang-Mills equations, it is one of the Bartnik-McKinnon 
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3.3 Spherically symmetric solutions

solutions mentioned in Section 3.1 which does this. In the case of collisionless matter the results 
of [184] show that at least in some cases critical collapse is mediated by a static solution in the form 
of a shell. There are existence results for shells of this kind [192] although no connection has yet been 
made between those shells whose existence has been proved and those which have been observed 
numerically in critical collapse calculations. Note that Martín-García and Gundlach [174] have 
presented a (partially numerical) construction of self-similar solutions of the Einstein-Vlasov system. 
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3.4 Cylindrically symmetric solutions

   

3.4 Cylindrically symmetric solutions 

Solutions of the Einstein equations with cylindrical symmetry that are asymptotically flat in all 
directions allowed by the symmetry represent an interesting variation on asymptotic flatness. Since 
black holes are apparently incompatible with this symmetry, one may hope to prove geodesic 
completeness of solutions under appropriate assumptions. (It would be interesting to have a theorem 
making the statement about black holes precise.) A proof of geodesic completeness has been 
achieved for the Einstein vacuum equations and for the source-free Einstein-Maxwell equations 
in [34], building on global existence theorems for wave maps [83, 82]. For a quite different point of 
view on this question involving integrable systems see [243]. A recent paper of Hauser and 
Ernst [128] also appears to be related to this question. However, due to the great length of this text 
and its reliance on many concepts unfamiliar to this author, no further useful comments on the subject 
can be made here. 
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3.5 Spatially compact solutions

   

3.5 Spatially compact solutions 

In the context of spatially compact spacetimes it is first necessary to ask what kind of global 
statements are to be expected. In a situation where the model expands indefinitely it is natural to pose 
the question whether the spacetime is causally geodesically complete towards the future. In a 
situation where the model develops a singularity either in the past or in the future one can ask what 
the qualitative nature of the singularity is. It is very difficult to prove results of this kind. As a first 
step one may prove a global existence theorem in a well-chosen time coordinate. In other words, a 
time coordinate is chosen that is geometrically defined and that, under ideal circumstances, will take 

all values in a certain interval . The aim is then to show that, in the maximal Cauchy 

development of data belonging to a certain class, a time coordinate of the given type exists and 
exhausts the expected interval. The first result of this kind for inhomogeneous spacetimes was proved 
by Moncrief in [176]. This result concerned Gowdy spacetimes. These are vacuum spacetimes with a 
two-dimensional Abelian group of isometries acting on compact orbits. The area of the orbits defines 
a natural time coordinate (areal time coordinate). Moncrief showed that in the maximal Cauchy 
development of data given on a hypersurface of constant time, this time coordinate takes on the 

maximal possible range, namely  This result was extended to more general vacuum 

spacetimes with two Killing vectors in [33]. Andréasson [8] extended it in another direction to the 
case of collisionless matter in a spacetime with Gowdy symmetry. 

Another attractive time coordinate is constant mean curvature (CMC) time. For a general discussion 
of this see [209]. A global existence theorem in this time for spacetimes with two Killing vectors and 
certain matter models (collisionless matter, wave maps) was proved in [212]. That the choice of 
matter model is important for this result was demonstrated by a global non-existence result for dust 
in [211]. As shown in [141], this leads to examples of spacetimes that are not covered by a CMC 
slicing. Results on global existence of CMC foliations have also been obtained for spherical and 
hyperbolic symmetry [206, 51]. 

A drawback of the results on the existence of CMC foliations just cited is that they require as a 
hypothesis the existence of one CMC Cauchy surface in the given spacetime. More recently, this 
restriction has been removed in certain cases by Henkel using a generalization of CMC foliations 
called prescribed mean curvature (PMC) foliations. A PMC foliation can be built that includes any 
given Cauchy surface [130] and global existence of PMC foliations can be proved in a way analogous 
to that previously done for CMC foliations [131, 132]. These global foliations provide barriers that 
imply the existence of a CMC hypersurface. Thus, in the end it turns out that the unwanted condition 
in the previous theorems on CMC foliations is in fact automatically satisfied. Connections between 
areal, CMC, and PMC time coordinates were further explored in [9]. One important observation there 
is that hypersurfaces of constant areal time in spacetimes with symmetry often have mean curvature 
of a definite sign. 
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3.5 Spatially compact solutions

Once global existence has been proved for a preferred time coordinate, the next step is to investigate 
the asymptotic behaviour of the solution as . There are few cases in which this has been 

done successfully. Notable examples are Gowdy spacetimes [84, 139 , 87 ] and solutions of the 

Einstein-Vlasov system with spherical and plane symmetry [190 ]. Progress in constructing 
spacetimes with prescribed singularities will be described in Section 6. In the future this could lead in 
some cases to the determination of the asymptotic behaviour of large classes of spacetimes as the 
singularity is approached. 
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4 Newtonian Theory and Special Relativity

   

4 Newtonian Theory and Special Relativity 

To put the global results discussed in this article into context it is helpful to compare with Newtonian 
theory and special relativity. Some of the theorems that have been proved in those contexts and that 
can offer insight into questions in general relativity will now be reviewed. It should be noted that 
even in these simpler contexts open questions abound. 

●     4.1 Hydrodynamics 
●     4.2 Kinetic theory 
●     4.3 Elasticity theory 
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4.1 Hydrodynamics

   

4.1 Hydrodynamics 

Solutions of the classical (compressible) Euler equations typically develop singularities, i.e. 
discontinuities of the basic fluid variables, in finite time [228 ]. Some of the results of [228] were 
recently generalized to the case of a relativistic fluid [124]. The proofs of the development of 
singularities are by contradiction and so do not give information about what happens when the 
smooth solution breaks down. One of the things that can happen is the formation of shock waves and 
it is known that, at least in certain cases, solutions can be extended in a physically meaningful way 
beyond the time of shock formation. The extended solutions only satisfy the equations in the weak 
sense. For the classical Euler equations there is a well-known theorem on global existence of weak 
solutions in one space dimension which goes back to [114]. This has been generalized to the 
relativistic case. Smoller and Temple treated the case of an isentropic fluid with linear equation of 
state [229] while Chen analysed the cases of polytropic equations of state [59] and flows with 
variable entropy [60]. This means that there is now an understanding of this question in the 
relativistic case similar to that available in the classical case. 

In space dimensions higher than one there are no general global existence theorems. For a long time 
there were also no uniqueness theorems for weak solutions even in one dimension. It should be 
emphasized that weak solutions can easily be shown to be non-unique unless they are required to 
satisfy additional restrictions such as entropy conditions. A reasonable aim is to find a class of weak 
solutions in which both existence and uniqueness hold. In the one-dimensional case this has recently 
been achieved by Bressan and collaborators (see [47, 49, 48] and references therein). 

It would be desirable to know more about which quantities must blow up when a singularity forms in 
higher dimensions. A partial answer was obtained for classical hydrodynamics by Chemin [58]. The 
possibility of generalizing this to relativistic and self-gravitating fluids was studied by Brauer [45]. 
There is one situation in which a smooth solution of the classical Euler equations is known to exist 
for all time. This is when the initial data are small and the fluid initially is flowing uniformly 
outwards. A theorem of this type has been proved by Grassin [118]. There is also a global existence 
result due to Guo [121] for an irrotational charged fluid in Newtonian physics, where the repulsive 
effect of the charge can suppress the formation of singularities. 

A question of great practical interest for physics is that of the stability of equilibrium stellar models. 
Since, as has already been pointed out, we know so little about the global time evolution for a self-
gravitating fluid ball, even in the Newtonian case, it is not possible to say anything rigorous about 
nonlinear stability at the present time. We can, however, make some statements about linear stability. 
The linear stability of a large class of static spherically symmetric solutions of the Einstein-Euler 
equations within the class of spherically symmetric perturbations has been proved by Makino [172] 
(cf. also [165] for the Newtonian problem). The spectral properties of the linearized operator for 
general (i.e. non-spherically symmetric) perturbations in the Newtonian problem have been studied 
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4.1 Hydrodynamics

by Beyer [36]. This could perhaps provide a basis for a stability analysis, but this has not been done. 
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4.2 Kinetic theory

   

4.2 Kinetic theory

Collisionless matter is known to admit a global singularity-free evolution in many cases. For self-
gravitating collisionless matter, which is described by the Vlasov-Poisson system, there is a general 
global existence theorem [186, 169]. There is also a version of this which applies to Newtonian 

cosmology [196 ]. A more difficult case is that of the Vlasov-Maxwell system, which describes 
charged collisionless matter. Global existence is not known for general data in three space 
dimensions but has been shown in two space dimensions [111, 112] and in three dimensions with one 
symmetry [110] or with almost spherically symmetric data [188]. 

The nonlinear stability of static solutions of the Vlasov-Poisson system describing Newtonian self-
gravitating collisionless matter has been investigated using the energy-Casimir method. For 
information on this see [122] and its references. The energy-Casimir method has been applied to the 
Einstein equations in [242]. 

For the classical Boltzmann equation, global existence and uniqueness of smooth solutions has been 
proved for homogeneous initial data and for data that are small or close to equilibrium. For general 
data with finite energy and entropy, global existence of weak solutions (without uniqueness) was 
proved by DiPerna and Lions [94]. For information on these results and on the classical Boltzmann 
equation in general see [56, 55]. Despite the non-uniqueness it is possible to show that all solutions 
tend to equilibrium at late times. This was first proved by Arkeryd [16] by non-standard analysis and 
then by Lions [168] without those techniques. It should be noted that since the usual conservation 
laws for classical solutions are not known to hold for the DiPerna-Lions solutions, it is not possible to 
predict which equilibrium solution a given solution will converge to. In the meantime, analogues of 
several of these results for the classical Boltzmann equation have been proved in the relativistic case. 
Global existence of weak solutions was proved in [96]. Global existence and convergence to 
equilibrium for classical solutions starting close to equilibrium was proved in [113]. On the other 
hand, global existence of classical solutions for small initial data is not known. Convergence to 
equilibrium for weak solutions with general data was proved by Andréasson [7]. There is still no 
existence and uniqueness theorem in the literature for general spatially homogeneous solutions of the 
relativistic Boltzmann equation. (A paper claiming to prove existence and uniqueness for solutions of 
the Einstein-Boltzmann system which are homogeneous and isotropic [180] contains fundamental 
errors.) 
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4.2 Kinetic theory
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4.3 Elasticity theory

   

4.3 Elasticity theory

There is an extensive literature on mathematical elasticity theory but the mathematics of self-
gravitating elastic bodies seems to have been largely neglected. An existence theorem for spherically 
symmetric elastic bodies in general relativity was mentioned in Section 3.1. More recently, Beig and 
Schmidt [27] proved an existence theorem for static elastic bodies subject to Newtonian gravity, 
which need not be spherically symmetric. 
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5 Global Existence for Small Data

   

5 Global Existence for Small Data 

An alternative to symmetry assumptions is provided by ``small data'' results, where solutions are 
studied that develop from data close to those for known solutions. This leads to some simplification 
in comparison to the general problem, but with present techniques it is still very hard to obtain results 
of this kind. 

●     5.1 Stability of de Sitter space 
●     5.2 Stability of Minkowski space 
●     5.3 Stability of the (compactified) Milne model 
●     5.4 Stability of the Bianchi type III form of flat spacetime 
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5.1 Stability of de Sitter space

   

5.1 Stability of de Sitter space 

In [101 ], Friedrich proved a result on the stability of de Sitter space. He gives data at infinity but 
the same type of argument can be applied starting from a Cauchy surface in spacetime to give an 
analogous result. This concerns the Einstein vacuum equations with positive cosmological constant 
and is as follows. Consider initial data induced by de Sitter space on a regular Cauchy hypersurface. 
Then all initial data (vacuum with positive cosmological constant) near enough to these data in a 
suitable (Sobolev) topology have maximal Cauchy developments that are geodesically complete. The 
result gives much more detail on the asymptotic behaviour than just this and may be thought of as 
proving a form of the cosmic no hair conjecture in the vacuum case. (This conjecture says roughly 
that the de Sitter solution is an attractor for expanding cosmological models with positive 
cosmological constant.) This result is proved using conformal techniques and, in particular, the 
regular conformal field equations developed by Friedrich. 

There are results obtained using the regular conformal field equations for negative or vanishing 
cosmological constant [103, 106 ], but a detailed discussion of their nature would be out of place 
here (cf. however Section 9.1). 
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5.2 Stability of Minkowski space

   

5.2 Stability of Minkowski space 

Another result on global existence for small data is that of Christodoulou and Klainerman on the 
stability of Minkowski space [79]. The formulation of the result is close to that given in Section 5.1, 
but now de Sitter space is replaced by Minkowski space. Suppose then that initial data for the 
vacuum Einstein equations are prescribed that are asymptotically flat and sufficiently close to those 
induced by Minkowski space on a hyperplane. Then Christodoulou and Klainerman prove that the 
maximal Cauchy development of these data is geodesically complete. They also provide a wealth of 
detail on the asymptotic behaviour of the solutions. The proof is very long and technical. The central 
tool is the Bel-Robinson tensor, which plays an analogous role for the gravitational field to that 
played by the energy-momentum tensor for matter fields. Apart from the book of Christodoulou and 
Klainerman itself, some introductory material on geometric and analytic aspects of the proof can be 
found in [44, 78], respectively. More recently, the result for the vacuum Einstein equations has been 
generalized to the case of the Einstein-Maxwell system by Zipser [246]. 

In the original version of the theorem, initial data had to be prescribed on all of . A generalization 
described in [156] concerns the case where data need only be prescribed on the complement of a 

compact set in . This means that statements can be obtained for any asymptotically flat spacetime 
where the initial matter distribution has compact support, provided attention is confined to a suitable 
neighbourhood of infinity. The proof of the new version uses a double null foliation instead of the 
foliation by spacelike hypersurfaces previously used and leads to certain conceptual simplifications. 
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5.3 Stability of the (compactified) Milne model

   

5.3 Stability of the (compactified) Milne model 

The interior of the light cone in Minkowski space foliated by the spacelike hypersurfaces of constant 
Lorentzian distance from the origin can be thought of as a vacuum cosmological model, sometimes 
known as the Milne model. By means of a suitable discrete subgroup of the Lorentz group it can be 
compactified to give a spatially compact cosmological model. With a slight abuse of terminology the 
latter spacetime will also be referred to here as the Milne model. A proof of the stability of the latter 
model by Andersson and Moncrief has been announced in [3]. The result is that, given data for the 
Milne model on a manifold obtained by compactifying a hyperboloid in Minkowski space, the 
maximal Cauchy developments of nearby data are geodesically complete in the future. Moreover, the 
Milne model is asymptotically stable in the sense that any other solution in this class converges 
towards the Milne model in terms of suitable dimensionless variables. 

The techniques used by Andersson and Moncrief are similar to those used by Christodoulou and 
Klainerman. In particular, the Bel-Robinson tensor is crucial. However, their situation is much 
simpler than that of Christodoulou and Klainerman, so that the complexity of the proof is not so 
great. This has to do with the fact that the fall-off of the fields towards infinity in the Minkowksi case 
is different in different directions, while it is uniform in the Milne case. Thus it is enough in the latter 
case to always contract the Bel-Robinson tensor with the same timelike vector when deriving energy 
estimates. The fact that the proof is simpler opens up a real possibility of generalizations, for instance 
by adding different matter models. 
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5.4 Stability of the Bianchi type III form of flat spacetime

  

Another vacuum cosmological model whose nonlinear stability has been investigated is the Bianchi 
III form of flat spacetime. To obtain this model, first do the construction described in the last section 
with the difference that the starting solution is three-dimensional Minkowski space. Then, take the 
metric product of the resulting three-dimensional Lorentz manifold with a circle. This defines a flat 
spacetime that has one Killing vector, which is the generator of rotations of the circle. It has been 
shown by Choquet-Bruhat and Moncrief [65 ] that this solution is stable under small vacuum 
perturbations preserving the one-dimensional symmetry. More precisely, the result is proved only for 
the polarized case, but the authors suggest that this restriction can be lifted at the expense of doing 
some more work. As in the case of the Milne model, a natural task is to generalize this result to 
spacetimes with suitable matter content. The reasons it is necessary to restrict to symmetric 
perturbations in this analysis, in contrast to what happens with the Milne model, are discussed in 
detail in [65]. 

One of the main techniques used is a method of modified energy estimates that is likely to be of more 
general applicability. The Bel-Robinson tensor plays no role. The other main technique is based on 
the fact that the problem under study is equivalent to the study of the 2+1-dimensional Einstein 
equations coupled to a wave map (a scalar field in the polarized case). This helps to explain why the 
use of the Dirichlet energy could be imported into this problem from the work of [5] on 2+1 vacuum 
gravity. 
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6 Prescribed Singularities

   

6 Prescribed Singularities 

If it is too hard to get information on the qualitative nature of solutions by evolving from a regular 
initial hypersurface toward a possible singularity, an alternative approach is to construct spacetimes 
with given singularities. Recently, the latter method has made significant progress and the new results 
are presented in this section. 

●     6.1 Isotropic singularities 
●     6.2 Fuchsian equations 
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6.1 Isotropic singularities 

The existence and uniqueness results discussed in this section are motivated by Penrose's Weyl 
curvature hypothesis. Penrose suggests that the initial singularity in a cosmological model should be 
such that the Weyl tensor tends to zero or at least remains bounded. There is some difficulty in 
capturing this by a geometric condition, and it was suggested in [117] that a clearly formulated 
geometric condition (which, on an intuitive level, is closely related to the original condition) is that 
the conformal structure should remain regular at the singularity. Singularities of this type are known 
as conformal or isotropic singularities. 

Consider now the Einstein equations coupled to a perfect fluid with the radiation equation of state 

. Then, it has been shown [181, 182, 88] that solutions with an isotropic singularity are 

determined uniquely by certain free data given at the singularity. The data that can be given are, 
roughly speaking, half as much as in the case of a regular Cauchy hypersurface. The method of proof 
is to derive an existence and uniqueness theorem for a suitable class of singular hyperbolic equations. 

In [13] this was extended to the equation of state  for any  satisfying . 

What happens to this theory when the fluid is replaced by a different matter model? The study of the 
case of a collisionless gas of massless particles was initiated in [14]. The equations were put into a 
form similar to that which was so useful in the fluid case and therefore likely to be conducive to 
proving existence theorems. Then theorems of this kind were proved in the homogeneous special 
case. These were extended to the general (i.e. inhomogeneous) case in [12]. The picture obtained for 
collisionless matter is very different from that for a perfect fluid. Much more data can be given freely 
at the singularity in the collisionless case. 

These results mean that the problem of isotropic singularities has largely been solved. There do, 
however, remain a couple of open questions. What happens if the massless particles are replaced by 
massive ones? What happens if the matter is described by the Boltzmann equation with non-trivial 
collision term? Does the result in that case look more like the Vlasov case or more like the Euler 
case? 
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6.2 Fuchsian equations 

The singular equations that arise in the study of isotropic singularities are closely related to what 
Kichenassamy [147 ] calls Fuchsian equations. He has developed a rather general theory of these 

equations (see [147, 146, 145], and also the earlier papers [19, 148, 149]). In [150 ] this was applied 

to analytic Gowdy spacetimes on  to construct a family of vacuum spacetimes depending on the 
maximum number of free functions (for the given symmetry class) whose singularities can be 
described in detail. The symmetry assumed in that paper requires the two-surfaces orthogonal to the 
group orbits to be surface-forming (vanishing twist constants). In [138] a corresponding result was 

obtained for the class of vacuum spacetimes with polarized  symmetry and non-

vanishing twist. The analyticity requirement on the free functions in the case of Gowdy spacetimes 

on  was reduced to smoothness in [217]. There are also Gowdy spacetimes on  and , 

which have been less studied than those on . The Killing vectors have zeros, defining axes, and 
these lead to technical difficulties. In [231] Fuchsian techniques were applied to Gowdy spacetimes 

on  and . The maximum number of free functions was not obtained due to difficulties on 

the axes. 

Anguige [11] has obtained results on solutions with perfect fluid that are general under the condition 
of plane symmetry, which is stronger than Gowdy symmetry. He also extended this to polarized 
Gowdy symmetry in [10]. 

Work related to these Fuchsian methods was done earlier in a somewhat simpler context by 
Moncrief [177], who showed the existence of a large class of analytic vacuum spacetimes with 
Cauchy horizons. 

As a result of the BKL picture, it cannot be expected that the singularities in general solutions of the 
Einstein equations in vacuum or with a non-stiff fluid can be handled using Fuchsian techniques (cf. 
Section 8.1). However, things look better in the presence of a massless scalar field or a stiff fluid. For 

these types of matter it has been possible [6 ] to prove a theorem analogous to that of [150] without 
requiring symmetry assumptions. The same conclusion can be obtained for a scalar field with mass or 
with a potential of moderate growth [216]. 

The results included in this review concern the Einstein equations in four spacetime dimensions. Of 
course, many of the questions discussed have analogues in other dimensions and these may be of 
interest for string theory and related topics. In [92] Fuchsian techniques were applied to the Einstein 
equations coupled to a variety of field theoretic matter models in arbitrary dimensions. One of the 
highlights is the result that it is possible to apply Fuchsian techniques without requiring symmetry 
assumptions to the vacuum Einstein equations in spacetime dimension at least eleven. Many new 
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6.2 Fuchsian equations

results are also obtained in four dimensions. For instance, the Einstein-Maxwell-dilaton and Einstein-
Yang-Mills equations are treated. The general nature of the results is that, provided certain 
inequalities are satisfied by coupling constants, solutions with prescribed singularities can be 
constructed that depend on the same number of free functions as the general solution of the given 
Einstein-matter system. 
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7 Asymptotics of Expanding Cosmological 
Models 

The aim of this section is to present a picture of the dynamics of forever-expanding cosmological 
models, by which we mean spacetimes that are maximal globally hyperbolic developments and which 
can be covered by a foliation by Cauchy surfaces whose mean curvature  is strictly negative. In 
contrast to the approach to the big bang considered in Section 8, the spatial topology can be expected 
to play an important role in the present considerations. Intuitively, it may well happen that 
gravitational waves have time to propagate all the way around the universe. It will be assumed, as the 
simplest case, that the spacetimes considered admit a compact Cauchy surface. Then the 
hypersurfaces of negative mean curvature introduced above have finite volume and this volume is a 
strictly increasing function of time. 

●     7.1 Lessons from homogeneous solutions 

●     7.2 Inhomogeneous solutions with  
●     7.3 Inflationary models 
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7.1 Lessons from homogeneous solutions

   

7.1 Lessons from homogeneous solutions

Which features should we focus on when thinking about the dynamics of forever expanding 
cosmological models? Consider for a moment the Kasner solution 

   

where  and . These are the first and second Kasner 

relations. They imply that not all  can be strictly positive. Taking the coordinates x, y and z to be 
periodic, gives a vacuum cosmological model whose spatial topology is that of a three-torus. The 
volume of the hypersurfaces  grows monotonically. However, the geometry does not 
expand in all directions, since not all  are positive. This can be reformulated in a way which is 
more helpful when generalizing to inhomogeneous models. In fact the quantities  are the 
eigenvalues of the second fundamental form. The statement then is that the second fundamental form 
is not negative definite. Looking at other homogeneous models indicates that this behaviour of the 
Kasner solution is not typical of what happens more generally. On the contrary, it seems reasonable 
to conjecture that in general the second fundamental form eventually becomes negative definite, at 
least in the presence of matter. 

Some examples will now be presented. The following discussion makes use of the Bianchi 
classification of homogenous cosmological models (see e.g. [237 ]). If we take the Kasner solution 

and add a perfect fluid with equation of state , , maintaining the 

symmetry (Bianchi type I), then the eigenvalues  of the second fundamental satisfy 

 in the limit of infinite expansion. The solution isotropizes. More generally this 

does not happen. If we look at models of Bianchi type II with non-tilted perfect fluid, i.e. where the 

fluid velocity is orthogonal to the homogeneous hypersurfaces, then the quantities  

converge to limits that are positive but differ from 1/3 (see [237 ], p. 138.) There is partial but not 
complete isotropization. The quantities  just introduced are called generalized Kasner exponents, 
since in the case of the Kasner solution they reduce to the  in the metric form (3 ). This kind of 
partial isotropization, ensuring the definiteness of the second fundamental form at late times, seems 
to be typical. 

Intuitively, a sufficiently general vacuum spacetime should resemble gravitational waves propagating 
on some metric describing the large-scale geometry. This could even apply to spatially homogeneous 
solutions, provided they are sufficiently general. Hence, in that case also there should be partial 
isotropization. This expectation is confirmed in the case of vacuum spacetimes of Bianchi 
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7.1 Lessons from homogeneous solutions

type VIII [224]. In that case the generalized Kasner exponents converge to non-negative limits 

different from 1/3. For a vacuum model this can only happen if the quantity , 

where R is the spatial scalar curvature, does not tend to zero in the limit of large time. 

The Bianchi models of type VIII are the most general indefinitely expanding models of class A. Note, 
however, that models of class VI  for all h together are just as general. The latter models with perfect 

fluid and equation of state  sometimes tend to the Collins model for an open set of 

values of h for each fixed  (cf. [237], p. 160). These models do not in general exhibit partial 
isotropization. It is interesting to ask whether this is connected to the issue of spatial boundary 
conditions. General models of class B cannot be spatially compactified in such a way as to be locally 
spatially homogeneous while models of Bianchi type VIII can. See also the discussion in [20]. 

Another issue is what assumptions on matter are required in order that it have the effect of (partial) 
isotropization. Consider the case of Bianchi I. The case of a perfect fluid has already been mentioned. 
Collisionless matter described by kinetic theory also leads to isotropization (at least under the 
assumption of reflection symmetry), as do fluids with almost any physically reasonable equation of 
state [210]. There is, however, one exception. This is the stiff fluid, which has a linear equation of 

state with . In that case the generalized Kasner exponents are time-independent, and may take 

on negative values. In a model with two non-interacting fluids with linear equation of state the one 
with the smaller value of  dominates the dynamics at late times [89], and so the isotropization is 
restored. Consider now the case of a magnetic field and a perfect fluid with linear equation of state. A 
variety of cases of Bianchi types I, II and VI  have been studied in [161 , 162, 163], with a mixture 
of rigorous results and conjectures being obtained. The general picture seems to be that, apart from 
very special cases, there is at least partial isotropization. The asymptotic behaviour varies with the 

parameter  in the equation of state and with the Bianchi type (only the case  will be 

considered here). At one extreme, Bianchi type I models with  isotropize. At the other 

extreme, the long time behaviour resembles that of a magnetovacuum model. This occurs for 

 in type I, for  in type II and for all  in type VI . In all these cases there 

is partial isotropization. 

Under what circumstances can a spatially homogeneous spacetime have the property that the 
generalized Kasner exponents are independent of time? The strong energy condition says that 

 for any causal vector . It follows from the Hamiltonian constraint and the 

evolution equation for  that if the generalized Kasner exponents are constant in time in a 
spacetime of Bianchi type I, then the normal vector  to the homogeneous hypersurfaces gives 
equality in the inequality of the strong energy condition. Hence the matter model is in a sense on the 
verge of violating the strong energy condition and this is a major restriction on the matter model. 

A further question that can be posed concerning the dynamics of expanding cosmological models is 

http://relativity.livingreviews.org/Articles/lrr-2002-6/node28.html (2 von 3)26.04.2004 11:56:10

javascript:parent.bibpopup('refs.html#ringstrom01a')
javascript:parent.bibpopup('refs.html#wainwright97')
javascript:parent.bibpopup('refs.html#barrow01a')
javascript:parent.bibpopup('refs.html#rendall96b')
javascript:parent.bibpopup('refs.html#coley92a')
javascript:parent.bibpopup('refs.html#leblanc97a')
javascript:parent.bibpopup('refs.html#leblanc98a')
javascript:parent.bibpopup('refs.html#leblanc95a')


7.1 Lessons from homogeneous solutions

whether  tends to zero. This is of cosmological interest since  is (up to a constant 

factor) the density parameter  used in the cosmology literature. Note that it is not hard to show that 
 and  each tend to zero in the limit for any model with  which exists globally in the 

future and where the matter satisfies the dominant and strong energy conditions. First, it can be seen 
from the evolution equation for  that this quantity is monotone increasing and tends to zero as 

. Then it follows from the Hamiltonian constraint that  tends to zero. 

A reasonable condition to be demanded of an expanding cosmological model is that it be future 
geodesically complete. This has been proved for many homogeneous models in [207 ]. 
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7.2 Inhomogeneous solutions with  

For inhomogeneous models with vanishing cosmological constant there is little information available 
about what happens in general. Fischer and Moncrief [100] have made an interesting proposal that 
attempts to establish connections between the evolution of a suitably conformally rescaled version of 
the spatial metric in an expanding cosmological model and themes in Riemannian geometry such as 
the Thurston geometrization conjecture [236], degeneration of families of metrics with bounded 
curvature [2], and the Ricci flow [126]. A key element of this picture is the theorem on the stability of 
the Milne model discussed in Section 5.3. More generally, the rescaled metric is supposed to 
converge to a hyperbolic metric (metric of constant negative curvature) on a region that is large in the 
sense that the volume of its complement tends to zero. If the topology of the Cauchy surface is such 
that it is consistent with a metric of some Bianchi type, then the hyperbolic region will be missing 
and the volume of the entire rescaled metric will tend to zero. In this situation it might be expected 
that the metric converges to a (locally) homogeneous metric in some sense. Evidently the study of the 
nonlinear stability of Bianchi models is very relevant to developing this picture further. 

Independently of the Fischer-Moncrief picture the study of small (but finite) perturbations of Bianchi 
models is an avenue for making progress in understanding expanding cosmological models. There is 
a large literature on linear perturbations of cosmological models and it would be desirable to 
determine what insights the results of this work might suggest for the full nonlinear dynamics. Just as 
it is interesting to know under what circumstances homogeneous cosmological models become 
isotropic in the course of expansion, it is interesting to know when more general models become 
homogeneous. This does happen in the case of small perturbations of the Milne model. On the other 
hand, there is an apparent obstruction in other cases. This is the Jeans instability [170, 43]. A linear 
analysis indicates that under certain circumstances (e.g. perturbations of a flat Friedmann model) 
inhomogeneities grow with time. As yet there are no results on this available for the fully nonlinear 
case. A comparison that should be useful is that with Landau damping in plasma physics, where 
rigorous results are available [123]. 

The most popular matter model for spatially homogeneous cosmological models is the perfect fluid. 
Generalizing this to inhomogeneous models is problematic since formation of shocks or (in the case 
of dust) shell-crossing must be expected to occur. These signal an end to the interval of evolution of 
the cosmological model, which can be treated mathematically with known techniques. Criteria for the 
development of shocks (or their absence) should be developed, based on the techniques of classical 
hydrodynamics. 

In the case of polarized Gowdy spacetimes there is a description of the late-time asymptotics in the 
literature [87], although the proofs have unfortunately never been published. The central object in the 

analysis of these spacetimes is a function P that satisfies the equation . The 
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7.2 Inhomogeneous solutions with #tex2html_wrap_inline2093#

picture that emerges is that the leading asymptotics are given by  for constants 

A and B, this being the form taken by this function in a general Kasner model, while the next order 

correction consists of waves whose amplitude decays like , where t is the usual Gowdy time 
coordinate. The entire spacetime can be reconstructed from P by integration. It turns out that the 
generalized Kasner exponents converge to (1, 0, 0) for inhomogeneous models. This shows that if it 
is stated that these models are approximated by Kasner models at late times it is necessary to be 
careful in what sense the approximation is supposed to hold. Information on the asymptotics is also 
available in the case of small but finite perturbations of the Milne model and the Bianchi type III 
form of flat spacetime, as discussed in Sections 5.3 and 5.4, respectively. 

There are not too many results on future geodesic completeness for inhomogeneous cosmological 
models. A general criterion for geodesic completeness is given in [62]. It does not apply to cases like 
the Kasner solution but is well-suited to the case where the second fundamental form is eventually 
negative definite. 

   

 

Theorems on Existence and Global Dynamics for the Einstein Equations
Alan D. Rendall 
http://www.livingreviews.org/lrr-2002-6
© Max-Planck-Gesellschaft. ISSN 1433-8351
Problems/Comments to livrev@aei-potsdam.mpg.de

http://relativity.livingreviews.org/Articles/lrr-2002-6/node29.html (2 von 2)26.04.2004 11:56:14

javascript:parent.bibpopup('refs.html#choquet02a')
mailto:livrev@aei-potsdam.mpg.de


7.3 Inflationary models

   

7.3 Inflationary models

One important aspect of the fragmentary picture of the dynamics of expanding cosmological models 
presented in the last two sections is that it seems to be complicated. A situation where we can hope 
for a simpler, more unified picture is that where a positive cosmological constant is present. Recall 
first that when the cosmological constant vanishes and the matter satisfies the usual energy 
conditions, spacetimes of Bianchi type IX recollapse [166] and so never belong to the indefinitely 

expanding models. When  this is no longer true. Then Bianchi IX spacetimes show 

complicated features, which will not be considered here (cf. [93]). In discussing homogeneous 

models we restrict to the other Bianchi types. Then a general theorem of Wald [239 ] states that any 
model whose matter content satisfies the strong and dominant energy conditions and which expands 
for an infinite proper time t is such that all generalized Kasner exponents tend to 1/3 as . A 
positive cosmological constant leads to isotropization. The mean curvature tends to the constant value 

 as , while the scale factors increase exponentially. 

Wald's result is only dependent on energy conditions and uses no details of the matter field equations. 
The question remains whether solutions corresponding to initial data for the Einstein equations with 
positive cosmological constant, coupled to reasonable matter, exist globally in time under the sole 
condition that the model is originally expanding. It can be shown that this is true for various matter 

models using the techniques of [207 ]. Suppose we have a solution on an interval . It 

follows from [239] that the mean curvature is increasing and no greater than . Hence, in 

particular,  is bounded as t approaches . Now we wish to verify condition (7) of [207 ]. This 

says that if the mean curvature is bounded as an endpoint of the interval of definition of a solution is 
approached then the solution can be extended to a longer interval. As in [207 ] it can be shown that 

if  is bounded, then , , and  are bounded. Thus, in the terminology of [207 ], 

it is enough to check (7)' for a given matter model in order to get the desired global existence 
theorem. This condition involves the behaviour of a fluid in a given spacetime. Since the Euler 
equation does not contain , the result of [207] applies directly. It follows that global existence holds 
for perfect fluids and mixtures of non-interacting perfect fluids. A similar result holds when the 
matter is described by collisionless matter satisfying the Vlasov equation. Here it suffices to note that 
the proof of Lemma 2.2 of [204] generalizes without difficulty to the case where a cosmological 
constant is present. 

The effect of a cosmological constant can be mimicked by a suitable exotic matter field that violates 
the strong energy condition: for example, a nonlinear scalar field with exponential potential. In the 
latter case, an analogue of Wald's theorem has been proved by Kitada and Maeda [152]. For a 
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7.3 Inflationary models

potential of the form  with  smaller than a certain limiting value, the qualitative picture is 
similar to that in the case of a positive cosmological constant. The difference is that the asymptotic 
rate of decay of certain quantities is not the same as in the case with positive . In [153] it is 

discussed how the limiting value of  can be increased. The behaviour of homogeneous and isotropic 
models with general  has been investigated in [125]. 

Both models with a positive cosmological constant and models with a scalar field with exponential 
potential are called inflationary because the rate of (volume) expansion is increasing with time. There 
is also another kind of inflationary behaviour that arises in the presence of a scalar field with power 

law potential like  or . In that case the inflationary property concerns the behaviour of the model 

at intermediate times rather than at late times. The picture is that at late times the universe resembles 
a dust model without cosmological constant. This is known as reheating. The dynamics have been 
analysed heuristically by Belinskii et al. [29]. Part of their conclusions have been proved rigorously 
in [200]. Calculations analogous to those leading to a proof of isotropization in the case of a positive 
cosmological constant or an exponential potential have been done for a power law potential in [179]. 
In that case, the conclusion cannot apply to late time behaviour. Instead, some estimates are obtained 
for the expansion rate at intermediate times. 

Consider what happens to Wald's proof in an inhomogeneous spacetime with positive cosmological 
constant. His arguments only use the Hamiltonian constraint and the evolution equation for the mean 
curvature. In Gauss coordinates spatial derivatives of the metric only enter these equations via the 
spatial scalar curvature in the Hamiltonian constraint. Hence, as noticed in [142], Wald's argument 
applies to the inhomogeneous case, provided we have a spacetime that exists globally in the future in 
Gauss coordinates and which has everywhere non-positive spatial scalar curvature. Unfortunately, it 
is hard to see how the latter condition can be verified starting from initial data. It is not clear whether 
there is a non-empty set of inhomogeneous initial data to which this argument can be applied. 

In the vacuum case with positive cosmological constant, the result of Friedrich discussed in 
Section 5.1 proves local homogenization of inhomogeneous spacetimes, i.e. that all generalized 
Kasner exponents corresponding to a suitable spacelike foliation tend to 1/3 in the limit. To see this, 

consider (part of) the de Sitter metric in the form . This choice, 

which is different from that discussed in [101], simplifies the algebra as much as possible. Letting 

 shows that the above metric can be written in the form 

. This exhibits the de Sitter metric as being conformal to a 

flat metric. In the construction of Friedrich the conformal class and conformal factor are perturbed. 
The corrections to the metric in terms of coordinate components are of relative order . 
Thus, the trace-free part of the second fundamental forms decays exponentially, as desired. 

There have been several numerical studies of inflation in inhomogeneous spacetimes. These are 
surveyed in Section 3 of [15]. 
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8 Structure of General Singularities

   

8 Structure of General Singularities 

The aim of this section is to present a picture of the nature of singularities in general solutions of the 
Einstein equations. It is inspired by the ideas of Belinskii, Khalatnikov, and Lifshitz (BKL). To fix 
ideas, consider the case of a solution of the Einstein equations representing a cosmological model 
with a big bang singularity. A central idea of the BKL picture is that near the singularity the evolution 
at different spatial points decouples. This means that the global spatial topology of the model plays 
no role. The decoupled equations are ordinary differential equations. They coincide with the 
equations for spatially homogeneous cosmological models, so that the study of the latter is of 
particular significance. 

●     8.1 Lessons from homogeneous solutions 
●     8.2 Inhomogeneous solutions 
●     8.3 Formation of localized structure 
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8.1 Lessons from homogeneous solutions

   

8.1 Lessons from homogeneous solutions 

In the BKL picture a Gaussian coordinate system  is introduced such that the big bang 

singularity lies at t=0. It is not a priori clear whether this should be possible for very general 
spacetimes. A positive indication is given by the results of [6], where coordinates of this type are 
introduced in one very general class of spacetimes. Once these coordinates have been introduced, the 
BKL picture says that the solution of the Einstein equations should be approximated near the 
singularity by a family of spatially homogeneous solutions depending on the coordinates  as 
parameters. The spatially homogeneous solutions satisfy ordinary differential equations in t. 

Spatially homogeneous solutions can be classified into Bianchi and Kantowski-Sachs solutions. The 
Bianchi solutions in turn can be subdivided into types I to IX according to the Lie algebra of the 
isometry group of the spacetime. Two of the types, VI  and VII  are in fact one-parameter families 
of non-isomorphic Lie algebras labelled by h. The generality of the different symmetry types can be 
judged by counting the number of parameters in the initial data for each type. The result of this is that 
the most general types are Bianchi VIII, Bianchi IX, and Bianchi VI . The usual picture is that 
Bianchi VIII and Bianchi IX have more complicated dynamics than all other types and that the 
dynamics is similar in both these cases. This leads one to concentrate on Bianchi type IX and the 
mixmaster solution (see Section 3.2). Bianchi type VI  was apparently never mentioned in the 
work of BKL and has been largely ignored in the literature. This is a gap in understanding that should 
be filled. Here we follow the majority and focus on Bianchi type IX. 

Another aspect of the BKL picture is that most types of matter should become negligible near the 
singularity for suitably general solutions. In the case of perfect fluid solutions of Bianchi type IX with 
a linear equation of state, this has been proved by Ringström [222 ]. In the case of collisionless 
matter it remains an open issue, since rigorous results are confined to Bianchi types I, II and III and 
Kantowski-Sachs, and have nothing to say about Bianchi type IX. If it is accepted that matter is 
usually asymptotically negligible then vacuum solutions become crucial. The vacuum solutions of 
Bianchi type IX (mixmaster solutions) play a central role. They exhibit complicated oscillatory 
behaviour, and essential aspects of this have been captured rigorously in the work of Ringström [223, 
222] (compare Section 3.2). 

Some matter fields can have an important effect on the dynamics near the singularity. A scalar field 
or stiff fluid leads to the oscillatory behaviour being replaced by monotone behaviour of the basic 
quantities near the singularity, and thus to a great simplification of the dynamics. An electromagnetic 
field can cause oscillatory behaviour that is not present in vacuum models or models with perfect 
fluid of the same symmetry type. For instance, models of Bianchi type I with an electromagnetic field 
show oscillatory, mixmaster-like behaviour [161]. However, it seems that this does not lead to 
anything essentially new. It is simply that the effects of spatial curvature in the more complicated 
Bianchi types can be replaced by electromagnetic fields in simpler Bianchi types. 
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8.1 Lessons from homogeneous solutions

A useful heuristic picture that systematizes much of what is known about the qualitative dynamical 
behaviour of spatially homogeneous solutions of the Einstein equations is the idea developed by 
Misner [175] of representing the dynamics as the motion of a particle in a time-dependent potential. 
In the approach to the singularity the potential develops steep walls where the particle is reflected. 
The mixmaster evolution consists of an infinite sequence of bounces of this kind. 
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8.2 Inhomogeneous solutions

   

8.2 Inhomogeneous solutions 

Consider now inhomogeneous solutions of the Einstein equations where, according to the BKL 
picture, oscillations of mixmaster type are to be expected. This is for instance the case for general 
solutions of the vacuum Einstein equations. There is only one rigorous result to confirm the presence 
of these oscillations in an inhomogeneous spacetime of any type, and that concerns a family of 
spacetimes depending on only finitely many parameters [35]. They are obtained by applying a 
solution-generating technique to the mixmaster solution. Perhaps a reason for the dearth of results is 
that oscillations usually only occur in combination with the formation of local spatial structure 
discussed in Section 8.3. On the other hand, there is a rich variety of numerical and heuristic work 
supporting the BKL picture in the inhomogeneous case [32]. 

A situation where there is more hope of obtaining rigorous results is where the BKL picture suggests 
that there should be monotone behaviour near the singularity. This is the situation for which Fuchsian 
techniques can often be applied to prove the existence of large classes of spacetimes having the 
expected behaviour near the initial singularity (see Section 6.2). It would be desirable to have a 
stronger statement than these techniques have provided up to now. Ideally, it should be shown that a 
non-empty open set of solutions of the given class (by which is meant all solutions corresponding to 
an open set of initial data on a regular Cauchy surface) lead to a singularity of the given type. The 
only results of this type in the literature concern polarized Gowdy spacetimes [139], plane symmetric 
spacetimes with a massless scalar field [208], spacetimes with collisionless matter and spherical, 
plane or hyperbolic symmetry [190], and a subset of general Gowdy spacetimes [85]. The work of 
Christodoulou [69] on spherically symmetric solutions of the Einstein equations with a massless 
scalar field should also be mentioned in this context, although it concerns the singularity inside a 
black hole rather than singularities in cosmological models. Note that all these spacetimes have at 
least two Killing vectors so that the PDE problem to be solved reduces to an effective problem in one 
space dimension. 
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8.3 Formation of localized structure

   

8.3 Formation of localized structure 

Numerical calculations and heuristic methods such as those used by BKL lead to the conclusion that, 
as the singularity is approached, localized spatial structure will be formed. At any given spatial point 
the dynamics is approximated by that of a spatially homogeneous model near the singularity, and 
there will in general be bounces (cf. Section 8.1). However, there will be exceptional spatial points 
where the bounce fails to happen. This leads to a situation in which the spatial derivatives of the 
quantities describing the geometry blow up faster than these quantities themselves as the singularity 
is approached. In general spacetimes there will be infinitely many bounces before the singularity is 
reached, and so the points where the spatial derivatives are large will get more and more closely 
separated as the singularity is approached. 

In Gowdy spacetimes only a finite number of bounces are to be expected and the behaviour is 
eventually monotone (no more bounces). There is only one essential spatial dimension due to the 
symmetry and so large derivatives in general occur at isolated values of the one interesting spatial 
coordinate. Of course, these correspond to surfaces in space when the symmetry directions are 
restored. The existence of Gowdy solutions showing features of this kind has been proved in [221]. 
This was done by means of an explicit transformation that makes use of the symmetry. Techniques 
should be developed which can handle this type of phenomenon more directly and more generally. 

The formation of spatial structure calls the BKL picture into question (cf. the remarks in [28]). The 
basic assumption underlying the BKL analysis is that spatial derivatives do not become too large near 
the singularity. Following the argument to its logical conclusion then indicates that spatial derivatives 
do become large near a dense set of points on the initial singularity. Given that the BKL picture has 
given so many correct insights, the hope that it may be generally applicable should not be abandoned 
too quickly. However, the problem represented by the formation of spatial structure shows that at the 
very least it is necessary to think carefully about the sense in which the BKL picture could provide a 
good approximation to the structure of general spacetime singularities. 
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9 Further Results

   

9 Further Results 

This section collects miscellaneous results that do not fit into the main line of the exposition. 

●     9.1 Evolution of hyperboloidal data 
●     9.2 The Newtonian limit 
●     9.3 Newtonian cosmology 
●     9.4 The characteristic initial value problem 
●     9.5 The initial boundary value problem 
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9.1 Evolution of hyperboloidal data

   

9.1 Evolution of hyperboloidal data 

In Section 2.1, hyperboloidal initial data were mentioned. They can be thought of as generalizations 
of the data induced by Minkowski space on a hyperboloid. In the case of Minkowski space the 
solution admits a conformal compactification where a conformal boundary, null infinity, can be 
added to the spacetime. It can be shown that in the case of the maximal development of hyperboloidal 
data a piece of null infinity can be attached to the spacetime. For small data, i.e. data close to that of a 
hyperboloid in Minkowski space, this conformal boundary also has completeness properties in the 

future allowing an additional point  to be attached there (see [102] and references therein for more 

details). Making contact between hyperboloidal data and asymptotically flat initial data is much more 
difficult and there is as yet no complete picture. (An account of the results obtained up to now is 
given in [106].) If the relation between hyperboloidal and asymptotically flat initial data could be 
understood it would give a very different approach to the problem treated by Christodoulou and 
Klainerman (Section 5.2). It might well also give more detailed information on the asymptotic 
behaviour of the solutions. 
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9.2 The Newtonian limit

   

9.2 The Newtonian limit 

Most textbooks on general relativity discuss the fact that Newtonian gravitational theory is the limit 
of general relativity as the speed of light tends to infinity. It is a non-trivial task to give a precise 
mathematical formulation of this statement. Ehlers systematized extensive earlier work on this 
problem and gave a precise definition of the Newtonian limit of general relativity that encodes those 
properties that are desirable on physical grounds (see [98].) Once a definition has been given, the 
question remains whether this definition is compatible with the Einstein equations in the sense that 
there are general families of solutions of the Einstein equations that have a Newtonian limit in the 
sense of the chosen definition. A theorem of this kind was proved in [205 ], where the matter 
content of spacetime was assumed to be a collisionless gas described by the Vlasov equation. (For 
another suggestion as to how this problem could be approached, see [109].) The essential 

mathematical problem is that of a family of equations, depending continuously on a parameter , 

which are hyperbolic for  and degenerate for . Because of the singular nature of the 

limit it is by no means clear a priori that there are families of solutions that depend continuously on 
. That there is an abundant supply of families of this kind is the result of [205 ]. Asking whether 

there are families which are k times continuously differentiable in their dependence on  is related to 
the issue of giving a mathematical justification of post-Newtonian approximations. The approach 
of [205] has not even been extended to the case k=1, and it would be desirable to do this. Note 
however that when k is too large, serious restrictions arise [203]. The latter fact corresponds to the 
well-known divergent behaviour of higher order post-Newtonian approximations. 

It may be useful for practical projects, for instance those based on numerical calculations, to use 
hybrid models in which the equations for self-gravitating Newtonian matter are modified by terms 
representing radiation damping. If we expand in terms of the parameter  as above then at some stage 
radiation damping terms should play a role. The hybrid models are obtained by truncating these 
expansions in a certain way. The kind of expansion that has just been mentioned can also be done, at 
least formally, in the case of the Maxwell equations. In that case a theorem on global existence and 
asymptotic behaviour for one of the hybrid models has been proved in [160]. These results have been 
put into context and related to the Newtonian limit of the Einstein equations in [159]. 
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9.3 Newtonian cosmology

   

9.3 Newtonian cosmology 

Apart from the interest of the Newtonian limit, Newtonian gravitational theory itself may provide 
interesting lessons for general relativity. This is no less true for existence theorems than for other 
issues. In this context, it is also interesting to consider a slight generalization of Newtonian theory, 
the Newton-Cartan theory. This allows a nice treatment of cosmological models, which are in conflict 
with the (sometimes implicit) assumption in Newtonian gravitational theory that only isolated 
systems are considered. It is also unproblematic to introduce a cosmological constant into the 
Newton-Cartan theory. 

Three global existence theorems have been proved in Newtonian cosmology. The first [46] is an 
analogue of the cosmic no hair theorem (cf. Section 5.1) and concerns models with a positive 
cosmological constant. It asserts that homogeneous and isotropic models are nonlinearly stable if the 
matter is described by dust or a polytropic fluid with pressure. Thus, it gives information about global 
existence and asymptotic behaviour for models arising from small (but finite) perturbations of 
homogeneous and isotropic data. The second and third results concern collisionless matter and the 
case of vanishing cosmological constant. The second [196] says that data that constitute a periodic 
(but not necessarily small) perturbation of a homogeneous and isotropic model that expands 
indefinitely give rise to solutions that exist globally in the future. The third [191] says that the 
homogeneous and isotropic models in Newtonian cosmology that correspond to a k=-1 Friedmann-
Robertson-Walker model in general relativity are non-linearly stable. 
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9.4 The characteristic initial value problem

   

9.4 The characteristic initial value problem 

In the standard Cauchy problem, which has been the basic set-up for all the previous sections, initial 
data are given on a spacelike hypersurface. However, there is also another possibility, where data are 
given on one or more null hypersurfaces. This is the characteristic initial value problem. It has the 
advantage over the Cauchy problem that the constraints reduce to ordinary differential equations. One 
variant is to give initial data on two smooth null hypersurfaces that intersect transversely in a 
spacelike surface. A local existence theorem for the Einstein equations with an initial configuration of 
this type was proved in [201]. Another variant is to give data on a light cone. In that case local 
existence for the Einstein equations has not been proved, although it has been proved for a class of 
quasilinear hyperbolic equations that includes the reduced Einstein equations in harmonic 
coordinates [95]. 

Another existence theorem that does not use the standard Cauchy problem, and which is closely 
connected to the use of null hypersurfaces, concerns the Robinson-Trautman solutions of the vacuum 
Einstein equations. In that case the Einstein equations reduce to a parabolic equation. Global 
existence for this equation has been proved by Chrusciel [86]. 
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9.5 The initial boundary value problem

   

9.5 The initial boundary value problem 

In most applications of evolution equations in physics (and in other sciences), initial conditions need 
to be supplemented by boundary conditions. This leads to the consideration of initial boundary value 
problems. It is not so natural to consider such problems in the case of the Einstein equations since in 
that case there are no physically motivated boundary conditions. (For instance, we do not know how 
to build a mirror for gravitational waves.) An exception is the case of a fluid boundary discussed in 
Section 2.6. 

For the vacuum Einstein equations it is not a priori clear that it is even possible to find a well-posed 
initial boundary value problem. Thus, it is particularly interesting that Friedrich and Nagy [107 ] 
have been able to prove the well-posedness of certain initial boundary value problems for the vacuum 
Einstein equations. Since boundary conditions come up quite naturally when the Einstein equations 
are solved numerically, due to the need to use a finite grid, the results of [107] are potentially 
important for numerical relativity. The techniques developed there could also play a key role in the 
study of the initial value problem for fluid bodies (cf. Section 2.6). 
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