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Abstract
The robust statistic proposed by Creighton (Creighton J D E 1999 Phys. Rev.
D 60 021101) and Allen et al (Allen et al 2001 Preprint gr-gc/010500)
for the detection of stationary non-Gaussian noise is briefly reviewed. We
compute the robust statistic for generic weak gravitational-wave signals in the
mixture-Gaussian noise model to an accuracy higher than in those analyses,
and reinterpret its role. Specifically, we obtain the coherent statistic for
detecting gravitational-wave signals from inspiralling compact binaries with
an arbitrary network of earth-based interferometers. Finally, we show that
excess computational costs incurred owing to non-Gaussianity is negligible
compared to the cost of detection in Gaussian noise.

PACS numbers: 0480N, 0705K, 9780

1. Introduction

Realistically, detector noise is not Gaussian. Using a network helps by introducing vetoes on
instrumental artefacts. Seeking a robust statistic for non-Gaussian noise is aimed at improving
these vetoes, leading to higher detection efficiencies.

Use of a network of detectors, as opposed to a single detector, is useful for a variety
of reasons. Networks access a larger sky volume and parameter space. They provide better
estimates of parameter values. Most significantly, they can provide better detection confidence,
especially in the presence of non-stationarity. On the flip side, a network search, be it of the
coherent or coincident kind, is much more expensive than a single detector search [1]. For
modelled sources, a reduction in this cost may be achieved by way of analytic maximization
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over source parameters. Indeed, exactly how such a cost reduction can be obtained in detecting
Newtonian chirps in Gaussian noise was shown in [2]. One of the main aims of this study is to
explore if a similar cost reduction is viable in searches of 2PN chirps in non-Gaussian noise.

In this study, we recompute more accurately, the robust statistic of Creighton [3]
and Allen et al [4] for weak gravitational-wave (GW) signals from a generic source, and
reinterpret its role. For this analysis, we model the detector noise as mixture-Gaussian and
stationary. Extension to the case of a network of detectors with independent noises is made in
a straightforward manner. We then specifically study the case of the 2PN chirp. We obtain the
robust statistic for a coherent network search of such signals and show that a cost reduction akin
to that discussed in [2] is possible through analytic maximization over a subset of parameters,
which includes the polarization-ellipse angle, ψ , and the binary orbit’s inclination angle ε.
Finally, we briefly discuss the computational cost accrued in excess of a search in Gaussian
noise and show it to be negligible.

2. Noise model

It is well known that the strain x(t) in a detector is typically noisy. Assuming additive noise
allows us to express this physical quantity as

x(t) = s(t) + n(t) (1)

where s(t) is a gravitational-wave signal and the noise, n(t), is generally non-Gaussian. The
search challenge here is of filtering signals embedded in non-Gaussian noise. Henceforth,
we will often refer to the above quantities by their discrete time-series relatives, x, s and n,
respectively. If the number of points in each times series is N, then the quantities in boldface
live in an N-dimensional vector space. Their counterparts in the frequency domain are denoted
by x̃, s̃ and ñ, respectively.

To make progress in defining a detection statistic, we shall assume a certain model for the
detector noise in this paper. Following Allen et al [4], we take the noise in a given detector to
be described by the general probability distribution function (PDF):

p(ñ) =
(N−1)/2∏

k=1

2

πP 2
k

exp

[
−2gk

( |ñk|2
Pk

)]
(2)

where the covariance of different frequency components, ñk , of the noise is given by

ñkñ
∗
k′ = 1

2δkk′Pk. (3)

We take the noise in a detector to have zero mean, i.e., n̄ = 0. In the particular case where
one has gk(yk) = yk, the above PDF describes Gaussian noise with zero mean. We assume
here that the noise is stationary.

3. Detection statistic

Consider the strain, x, in a given detector. Let the probability that it contains a signal of
amplitude A be denoted by p(x|A). Then the likelihood ratio can be defined as

� = p(x|A)

p(x|0) . (4)

When p(ñ) is chosen to be the PDF of Gaussian noise, the Neyman–Pearson criterion yields
the decision statistic to be

ln � = A × 4 R

[
(N−1)/2∑

k=1

s̃∗
kx̃k

Pk

]
+ const. (5)
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This is the optimal statistic in such noise and for any strength, A, of the signal. For non-
Gaussian noise, however, ln� is generally a non-trivial function of A, and is not necessarily
the optimal statistic for all A.

Since in the first stages of the upcoming detectors, we expect the SNR to be small, we
seek a statistic that is locally optimal for small A [5]. This is given by

L = d ln�

dA

∣∣∣∣
A=0

= 4
(N−1)/2∑

k=1

R

(
s̃∗
kx̃k

Pk

)
g′
k

( |x̃k|2
Pk

)
(6)

where the prime (′) on a function denotes its derivative with respect to its argument.
As an example of non-Gaussian noise, consider the mixture-Gaussian noise

p(n) =
K∑
i=1

pi(n) =
K∑
i=1

wi exp
(− 1

2 n†·Φi · n
)

(2π)N/2
√

det Ri
(7)

where
∑K

i=1 wi = 1, and wi > 0 for all i. Ri is the autocorrelation matrix of the ith component
of the mixture-Gaussian distribution and Φi := (Ri )−1. It is straightforward to infer p(ñ)
from above. Using the derivative of the associated gk in the expression for the locally optimal
statistic (LOS) above, we find

L = 4

p(x|0)
K∑
i=1

pi(x|0)
[

(N−1)/2∑
k=1

R

(
s̃∗
k x̃k

P i
k

)
g′
k

( |x̃k|2
P i

k

)]
(8)

which is just the weighted sum of the LOS for each component of the mixture-Gaussian noise.

4. Special case of non-Gaussian noise

When the detector noise can be modelled as an ambient Gaussian noise interspersed with
occasional large noise bursts (with a Gaussian distributed amplitude), then

p(n) = pG(n) + pB(n)

= w exp
(− 1

2 n†·ΦGi · n
)

(2π)N/2
√

det RG
+

(1 − w) exp
(− 1

2 n†·ΦBi · n
)

(2π)N/2
√

det RB
. (9)

Using the p(ñ) associated with the above distribution in expression (8) for the LOS, we obtain

L = 4

(1 + α)

(N−1)/2∑
k=1

R

(
s̃∗
kx̃k

P ′
k

)
(10)

where

α = pB(x|0)
pG(x|0) = (1 − w)

w

√
det RG

det RB
exp

[
1
2 n†· (ΦG − ΦB)· n

]
. (11)

The above LOS is very similar to that for Gaussian noise, except for a couple of differences.
First, as noted in [4], it is now weighted by the prefactor (1 + α)−1. Second, we find that the
denominator inside the summand in equation (10) is not Pk , but P ′

k:1

1

P ′
k

≡
[

1

PG
k

+
α

PB
k

]
. (12)

1 It is important to note that the contribution to the statistic (10) arising from the second term on the right-hand side

of equation (12) does not necessarily become negligible under the approximation, n†·ΦGi · n 
 n†·ΦBi · n, of [4]. In
other words, such a term should be present even when this approximation is valid.
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Therefore, equation (10) is a small but important generalization of a similar expression derived
in [4]: the interpretation of the prefactor (1 + α)−1 was correctly given in [4] as a factor that
‘vetoes’ the contribution to the LOS arising from large noise bursts. The factorP ′

k
−1 performs a

similar vetoing, but at the level of each frequency band. A new interpretation is the following:
if the presence of a signal coincides with that of a noise burst, then the factor P ′

k
−1 can

disallow incorrect vetoing based purely on the factor of (1 + α)−1. This happens when the
signal magnitude is such that the contribution of the summand turns out to be relatively large
compared to (1 + α).

Armed with the general expression for the LOS, (10), we now examine the specific case
of the detection statistic for the 2PN binary inspiral signal.

5. The inspiral waveform

The GW strain in the Ith detector (with o(I ) denoting the Euler angles of its orientation relative
to a fiducial frame or detector) due to an inspiral chirp is [2]

sI (t) = hij (t)d
Iij = AR

[
Q∗

I S
I (t)eiδc

]
(13)

where QI are (normalized) functionals of the antenna-pattern functions F I :

QI ∝
[

1 + cos2 ε

2
R(F I ) + i cos ε Im(F I )

]
(14)

with F I = F
(
ψ, θ, φ; o(I )

)
(see [6] for a definition) and (θ, φ) being the source-direction

angles. The time variation in the chirp is confined to the quantity SI (t), which we define via
its Fourier transform, S̃I (f ). Denoting fs as a fiducial frequency, which can be chosen to be
the lowest seismic cut-off frequency in a network, the stationary-phase approximation can be
shown to yield

S̃I (f ) ∝
(

f

fs

)−7/6

exp[−i)(I)(f )]. (15)

For the 2PN waveform, one has

)(I)

(
f ; tc, θ, φ, ϑ1, ϑ2) = 2πf τ(I)(θ, φ) + 2πfsϕµ(f ;ϑ1, ϑ2)ϑµ (16)

where τ(I) is the time delay, relative to a fiducial detector, in the arrival of the signal at detector
I and

ϑµ = (
tc, ϑ

1, ϑ2
)

µ = 0, 1, 2 (17)

with [7]

ϑ1 = 5
28 (πMfs)

−5/3η−1 ϑ2 = π

4
(πMfs)

−2/3η−1. (18)

M in (18) is the total mass and η is the ratio of reduced mass to the total mass. The parameter
coefficients are

ϕµ =
(

f

fs

,
3

5

(
f

fs

)−5/3

, ϕ2(f ;ϑ1, ϑ2)

)
(19)

where the explicit form of ϕ2 will not be required here; the reader interested in this form
is referred to [7]. The 2PN chirp, therefore, is completely defined by nine parameters:
(A, δc, ψ, ε, θ, φ, tc , ϑ

1, ϑ2), where A depends on the luminosity distance of the source.
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6. Network statistic

For uncorrelated noise2, it is easy to see that the LOS for a network is the sum of the LOS for
each detector. In the specific case of the non-Gaussian noise distribution given in equation (9),
this implies that in a network of M detectors

LNet =
M∑
I=1

4

(1 + αI )

(N−1)/2∑
k=1

R

(
s̃I∗
k x̃I

k

P ′I
k

)
. (20)

What is not apparent, however, is the fact that the same analytic maximization over parameters
that is possible in Gaussian noise [2] also goes through for non-Gaussian noise. We now
illustrate in the specific case of the non-Gaussian noise distribution in equation (9) that this is
indeed true. For the 2PN waveform, we have

LNet =
M∑
I=1

〈
R
[
eiδcQ∗

I S
I
]
, xI

〉
(I )

(1 + αI )
=

M∑
I=1

R
[
eiδcQ∗

IC
I
]

(21)

where

CI := 〈SI , xI 〉(I )
(1 + αI )

= 4

(1 + αI )

(N−1)/2∑
k=1

R

(
S̃I∗
k x̃I

k

P ′I
k

)
. (22)

Maximizing LNet with respect to δc gives

LNet

∣∣∣
δc

=
∣∣∣∣∣

M∑
I=1

Q∗
IC

I

∣∣∣∣∣ =: |Q · C|. (23)

The above statistic has essentially the same form as that in [2] (which addressed the detection
of Newtonian chirps in Gaussian noise), with the only exception being that the CI are now
defined differently. The difference arising from the extension to 2PN waveforms is confined
to SI , which appears solely in CI and not in QI . Also, the changes owing to non-Gaussianity
appear only in CI through αI and P ′I

k . The parameters ψ and ε, on the other hand, appear
in Q alone. Therefore, the maximization of the above statistic over {ψ, ε} can be performed
analytically in precisely the same way as was first shown in [2]. Consequently, the statistic
resulting from such a maximization is

LNet

∣∣∣
δc,ψ,ε

= ‖CH‖ (24)

where CH is the projection of the network cross-correlation vector C on the helicity plane
H, which is defined in terms of the source-direction angles {θ, φ} and the known orientation
angles, oI , of each detector in a manner identical to that given in [2]. Note that the above
statistic can be applied to searches of signals from deterministic sources other than chirps as
well, as long as such a source can be modelled (i.e., SI of such a signal can be obtained) and
the signal sought is transient (namely, the beam-pattern functions change negligibly while the
signal dwells in the detector bandwidths).

7. Computational costs

Excess cost owing to non-Gaussianity is additive in nature: for detector I, it is determined by
the cost of computing the value of α(I) and, therefore, that of

‖xI‖2 = 〈xI , xI 〉(I ). (25)
2 For treatment of correlated detector noises, see, e.g., [8].
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This is just the cost of N complex multiplications. Thus, for M such data trains, it is 4NM. As
an example, the computational cost of a LIGO-I search for 2PN waveforms in Gaussian noise
is about 1011 flops for mmin = 0.2M� and N = 106.

This cost is much higher compared to the additional cost in non-Gaussian noise, which
for one detector is

4N � 4 × 106. (26)

Computational costs for coherent and coincident searches in Gaussian noise with a network
of detectors is discussed in greater detail in [1].

In conclusion, our robust network statistic for inspiral search in non-Gaussian noise is a
simple generalization of the statistic found for Gaussian noise. The excess computational cost
necessary to make a search robust is much less than costs for Gaussian searches.
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