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Abstract

We discuss nonplanar anomalies in noncommutative gauge theo-
ries. In particular we show that a nonplanar anomaly exists when the
external noncommutative momentum is zero and that it leads to a
non-conservation of the associated axial charge. In the case of non-
planar local anomalies, a cancellation of the anomaly can be achieved
by a Green-Schwarz mechanism. In an example of D3 branes placed
on an orbifold singularity that leads to a chiral theory, the mechanism
involves twisted RR fields which propagate with zero noncommutative
momentum. Global anomalies are not cancelled and, in particular, the
decay ¥ — 2v is allowed.
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1 Introduction

Anomalies play a fundamental role in particle physics [[[]. In field theory, local
anomalies signal an inconsistency of the theory and are therefore considered
as ‘bad’. Global anomalies are ‘good’ since they allow decay processes, such
as m° — 27, which are classically forbidden but observed in nature. Through
anomaly matching conditions, global anomalies restrict microscopic and ef-
fective descriptions [P] which was important in establishing Seiberg duality
[B]- In a consistent string theory, all (local) anomalies must cancel. The man-
ifestation of the consistency in the low energy effective theory is, however,
subtle, as it might involve a cancellation between a tree level diagram and a
one loop diagram. This is the Green-Schwarz mechanism [f].

Recently, there has been much interest in noncommutative field theories,
see [B, [{] for reviews. The issue of anomalies in the framework of noncommu-
tative chiral gauge theories was already discussed by several authors [4]-[[[7].
There are two types of possible anomalies: planar and nonplanar. Planar
anomalies are well understood. They result from graphs that ‘behave’ ex-
actly as in the commutative theory apart from an overall phase factor which
depends only on external momenta [[§, [J], and therefore automatically obey
the usual anomaly equations, such as e.g. eq.(f]) below.

The issue of nonplanar anomalies is subtle. Nonplanar graphs are UV
finite at one loop and therefore it was suggested that these anomalies auto-
matically vanish [[4, [§, [G]. However, Ardalan and Sadooghi pointed out
[[7] that due to UV/IR mixing [20], the nonplanar anomaly does not vanish
(see also [[7))- [

The goal of this work is to clarify the issue of nonplanar anomalies. On one
hand, if one views noncommutativity as a (gauge invariant) regulator, it is
hard to believe that one can introduce a regulator that leads to a conservation
of the axial charge (noncommutativity is, however, not a good regulator in
the sense that the limit # — 0 is not smooth). Another argument against
the vanishing of the anomaly arises from N = 2 SYM [P]]]. In this theory
the U(1)r anomaly belongs to the same multiplet of the conformal anomaly
(the (-function). Since the [ function, generically, does not vanish, it would
be surprising if the U(1)z anomaly vanishes. On the other hand the paradox

Tt is interesting to note that a similar phenomenon of vanishing anomaly exists for
the lattice version of the noncommutative theory [E] It is, however, not clear whether it
survives the continuum limit.



raised in [[4] seems to suggest the vanishing of the nonplanar anomaly as a
unique resolution.

The paradox is the following: consider a U(N) chiral theory which can
be realized by a brane configuration in string theory. Suppose that the U(1)
is potentially anomalous, due to an excess of left handed fermions over right
handed fermions. In the ordinary theory, that would lead to an anomaly,
which can be resolved in string theory by giving an infinite mass to the U(1),
leaving at low energies an SU(N) theory and a global U(1). In those non-
commutative gauge theories which have been obtained as effective low-energy
field theories of string theory one always obtains U(N) gauge groups, rather
than SU(N). In these theories the noncommutativity mixes the U(1) and
the SU(N) parts and the above scenario cannot occur P2, BJ|. A way out,
which was proposed in [[4] is that actually there is no anomaly, though the
matter content is left-right asymmetric, due to the finiteness of the associated
nonplanar graph.

We would like to present a different solution: the nonplanar anomaly
graph is indeed finite and actually vanishes, for any non-zero noncommutative
external momentum. However, the graph is not regulated for exactly zero
external noncommutative momentum - which leads to the integrated anomaly
equation

2 ~
/ Prye 0,5 = —% / Paye Fl, . (1)

In this expression, the integration is restricted to the noncommutative planef].
In particular the anomaly does not vanish. As we shall see, despite of the
anomaly, string theory avoids the inconsistency via a subtle Green-Schwarz
mechanism, which involves closed strings with exactly zero noncommutative
momentum. The resulting low-energy theory would be U(N) (with U(N)
gauge invariance !), with the U(1) being massive only if it carries zero non-
commutative momentum.

We will also discuss global anomalies. Here we claim that due to ([) the
global anomaly does not vanish. In particular the 7% decays. In addition, if
one considers anomaly matching conditions, nonplanar anomalies should be
taken into account as well.

The organization of the manuscript is as follows: in section 2 we describe

2A similarly needed integration over the noncommutative plane was pointed out [@]
in relation with renormalization scale independence of composite operators.



the ambiguity (or freedom) in the definition of currents in the noncommu-
tative theory and the relevance of non-planar anomalies. In section 3 we
review the arguments, using perturbation theory, in favor of the vanishing
of the anomaly for any 6q # 0 and we show that the behavior at g = 0
leads to an integral anomaly equation. In section 4 we show that the point
splitting definition of the non-planar current gives rise to the same integrated
anomaly equation. We carry the analysis both for two and four dimensions.
In section 5 we discuss, briefly, mixed anomalies. Section 6 is devoted to a
discussion and a resolution of the above mentioned paradox in field theory
and in string theory. Finally, in section 7 we discuss the consequences of our
findings on global anomalies.

We use the following conventions throughout the manuscript. [z#, 2], =
10" and 6q stands for 6#”q,. In 4d we consider only theories with space-space
noncommutativity and in 2d we assume an Euclidean signature. Frequently
we will use the notation F'(q) = f(q)|gq=0. By this we mean that F(q) =
f(q) only if ¢ has a zero component along the noncommutative directions,
otherwise F'(¢) = 0.

2 Anomalies in Noncommutative Gauge The-
ories

We will consider a non-commutative gauge theory with group U(1) and a
massless Dirac fermion transforming in the fundamental representation. The
fermionic action is

S:z’/ddw*pw, (2)

where D,¢ = 9,4 +1igA, *1. This action is invariant under global axial
transformations

Sath(z) = iay*P(z). (3)

In trying to derive the axial associated current we are faced with a problem
[B, []. If we define the axial current following the Noether procedure, we
have to decide if the lagrangian is given by i) £ = it * P9 or instead ii)
L' = —i[DY)" x9t . The two lagrangians lead to the same action since under

30f course one can imagine an intermediate definition interpolating among the two
previous possibilities.



integration the %-product satisfies cyclic symmetry. Equivalently, in order to
derive the axial current we can formally promote @ — «(z). Then we should
choose a(x) to multiply ¢(z) on 1) the right or #) the left. The axial currents
associated to these two choices are

D) jh=warty i) G = =t Ryt (4)

The conservation properties of these two currents have been extensively
studied, giving different results for j4 and 74 [[d]-[L6]. This apparently puz-
zling conclusion has the following origin. Although the lagrangians £ and
L' are just related by a total derivative, there is a crucial difference between
them. While L is gauge invariant, £’ behaves under gauge transformations as
an operator in the adjoint representation. These transformation properties
are inherited by j4 and j’4. At the classical level these currents are conserved
and covariantly conserved respectively [§, [[1]]

i) Oujh =0, i) D,jt = 0,44 +iglA,, it =0. (5)

At the quantum level, j’; has been shown to satisfy the non-commutative
counterpart of the ordinary anomaly equation [[, §]. In four dimensions

/ g*
Dk =16

POF,, % Fyp (6)
The current j,4 cannot satisfy a similar equation, since F), is not gauge
invariant. One could think a priori of two possibilities. The divergence of
ja is equal to some gauge invariant completion of F' A F' involving Wilson
line operators. This however would imply that there is an infinite number
of Feynman graphs contributing to the anomaly equation, in contrast to the
ordinary case and to (f§). The second possibility is that the divergence of
Ja remains zero at the quantum level. Explicit calculations have shown that
this is indeed the case [[I0], except for a subtlety. The previous argument
does not constrain those components of the divergence with zero momentum
along the non-commutative directions, since F' A Flg,— is gauge invariant.
Indeed, we will show that j, satisfies

2

/dzl’Nc&qu = —1g7r26“l/p0/d2$NcFuprg. (7)




The subindex NC implies integration along the non-commutative plane. The
existence of a restricted anomaly affecting the current j4 was first pointed
out in [T].

Although we have treated the simple case of the axial symmetry, the
previous considerations apply to any global symmetry and to a U(N) gauge
group. Let us analyze the implications of equation ([]). We consider the
case that % = 0, i.e. non-commutativity restricted to space coordinates. If
the cyclic symmetry of the x-product under integration holds, both currents
define the same gauge invariant charge

Q= [axit = [axsy. (8)

The anomaly equation (f]) implies that @ is not conserved in the presence

of non-zero instanton number. If at the same time the divergence of j, did
vanish, we would encounter a contradiction. This problem does not arise
when j4 satisfies instead ([]). Then, independently of which current we use,
we will arrive at the same conclusion about the variation of the axial charge.

3 Perturbative Non-Planar Anomaly Calcu-
lation

3.1 Two dimensions

We want to derive the anomaly equation satisfied by the gauge invariant
axial current j4 in two-dimensions. We work in Euclidean space, since non-
commutativity in the time coordinate leads to a non-unitary theory [B3].
We need to evaluate (j*(q)j4(—¢q)), where j# denotes the vector current,
i.e. j* = Yty x ¢t for a U(1) theory. It is convenient to use the relation
M5 = €M, valid in two dimensions. This allows us to concentrate on the
correlator (j*(q)j""(—q)), with j'# = 1) * y*1). A straightforward and simple
calculation gives

@i -0) = - [ oo w b e )

where the only difference compared to the commutative case is the appear-
ance of the momentum-dependent phase factor. Due to the different order




Figure 1: The non-planar anomaly in 2d.

of the fields with respect to the %-product in j and j’, the correlator of this
two operators gives rise to a non-planar graph (see fig. 1).

Performing the traces, changing variables and using dimensional regular-
ization in (f), one obtains

— (10)

(1"(9)5"" (—=q))

1 d wiv _ Sprj2 _ Ty uv _ 2

:2/ da:/ d*l  20MY — 6mi? = 2x(1 — x)g"q” + o x(1 — x)q il
0 (2m)d (12 +x2(1 — x)g?)?

For non-vanishing non-commutative momentum (6¢)?, the loop-momentum
dependent phase factor renders the integral UV finite and dimensional reg-
ularization is, in fact, not necessary. The integral can be expressed in terms
of Bessel functions which add up to zero. Thus, for any non-zero g, the
rhs of the previous equation is zero. However, at (q)?> = 0, [] the non-
commutativity parameter does not act as a regulator and we have to use
dimensional regularization. The result for the integral is the same as in the
commutative theory at zero momentum.

We conclude that j4 is conserved at all non-vanishing 6g, i.e. g,j% =0,
and the non-conservation at g = 0 can be expressed in the form

/ P () = it / P e (). (11)
m

This is an integral equation for the 2d anomaly. Thus we learn that the
anomaly exists and that it is concentrated in the zero momentum component
of the current.

4In two-dimensional Euclidean space, (/¢)? = 0 implies ¢ = 0.
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Figure 2: The non-planar anomaly in 4d.

3.2 Four dimensions

We now repeat the previous argument for d = 4. Contrary to the d = 2
case, we will consider only space non-commutativity. We need to evaluate
the triangle graph with one insertion of the axial current j4. As before, the
resulting diagram is non-planar (see fig. 2).

In [IJ] the anomalies in a U(Ny) x U(N3) non-commutative gauge theory
with a chiral fermion in the bifundamental representation were treated in
great detail. Their results imply that if the axial current is coupled through
the non-planar vertex, then for any non-zero non-commutative momentum
fq it satisfies ¢,js(q) = 0. The reason is that for any g # 0, due to loop
momentum dependent phase factors, the integral no longer diverges linearly
and the momentum variable can be shifted. In particular, the phase factors
in the integrals which one gets from the two contributing Feynman diagrams
coincide after the momentum shift and one obtains exact cancellation.

Again, as in the two-dimensional case, this argument breaks down for zero
external non-commutative momentum, since in this case the dependence on ¢
vanishes and the integrals are not regulated by non-commutativity. The shift
in the integral now yields a surface term which gives the anomaly. We then
get the known result for the triangle anomaly for the commutative theory.
In summary, the relation ([) holds independent of whether the axial current
is coupled via the planar or non-planar vertex.

In spite of this, it could have seemed tempting to define the value of the
non-planar anomaly diagrams at zero 6q as the limit from g non-zero. This
point of view was followed in [[I0, [[4, [[G], which led to the conclusion that



non-planar anomalies cancel. We have argued that this way of defining cor-
relators leads to inconsistencies, which are resolved if a non-planar anomaly
survives at zero non-commutative momentum. This is a surprising conclu-
sion from the perspective of ordinary quantum field theories, since it implies
that the non-planar anomaly graphs radically violate the usual analyticity
properties of Green functions. These properties are derived from the require-
ment that commutators of fields vanish for space-like separations. However
in the non-commutative case this does not need to hold along the non-local,
non-commutative directions. In particular, it has been shown that superlu-
minal propagation is possible along the non-commutative directions [2g, B7].
Therefore, there are no a priori requirements on the behaviour of quantum
correlators as a function of the variable fg. On the contrary we should expect
an ordinary behaviour on the variable ¢2, = ¢2 — ¢7 [Bg]. Notice that we are
considering space non-commutativity: [z?, %] = if.

It has been known since [B0] that the limit § — 0 of non-commutative
Green functions is not smooth. A clear example of this is the existence
of a non-zero, # independent, beta-function for pure non-commutative U(1)
B9, B3. In this paper we are encountering similar discontinuities of cor-
relators as functions of the non-commutative momentum. This could have
been expected from the fact that 6 only enters the Feymann integrals in the
combination 6q.

Without restricting to the particular case studied here, one might won-
der what is the correct way to define the value of generic correlators at zero
non-commutative momentum. It would be important to carefully study the
consequences of a loss of analyticity. Another interesting question is the be-
haviour, with respect to this issue, of non-commutative field theories derived
from string theory. Following this line of ideas, we will discuss in section 6
the non-commutative Green-Schwarz mechanism.

4 Non-Planar Anomaly via Point Splitting

The point splitting method provides an alternative and neat derivation of
the non-planar anomaly. Composite operators containing product of fields
evaluated at the same point are generically singular. A proper definition
involves a regularization procedure, which can break some of the symmetries



existing at the classical level. The current j4, regulated by point splitting, is
Ja@) =limeo Pz +5) 7"+ U@+ 5,2 — ) x (@ —5),  (12)

where a Wilson line has been introduced to preserve the gauge invariance of
the regularized expression,

Uz, y) = 9l A0 (13)

The divergence of j% can be derived by expanding the Wilson line in ([2) at
linear order in € and using the equations of motion of the fermionic fields [[]

0,4 (2) = —iglimeo € P(x + 5) 19" % Flu (@) xb(x — 5).  (14)

The rhs of this equation, although proportional to €, may give a finite
result since the correlator of the fermion fields can become singular as the
regulator, €, is removed. Namely, in Fourier space we will have

dil dip

ZqN]A(Q) - Zghme—>06 /(27T)d (27T)d e2 p e 2 q+qbp+p

(v "¢ (p)) Fula —1—p), (15)
with d the space-time dimension. We will treat first the two-dimensional

case [l. Substituting the tree level fermion correlator and performing the p
integration we obtain

L . y Ly ire—
iq,7%(q) = ig lime_oe” Fl,(q) tr(v°4#4%) / 5 He=ba)

= ig lim €€~ 0q)

l
(2m)?
0L PE(q) . 16

0 (e — 0q)? ¢’ Fluw(q) (16)
When 60q # 0, the rhs of this expression tends to zero. We recover thus the
result that non-planar anomalies cancel. The order in which the fermion
fields and the field strength are multiplied in ([[4) is at the origin of this
cancellation. It causes that, even after sending € to zero, the fermion fields

are effectively separated by a distance fq, being ¢ the momentum carried by
the field strength. Therefore their correlator does not become singular. This

SHere we also assume an Euclidean space.



makes clear why the cancellation is not operative at ¢ = 0. Indeed, at this
value ([[§) gives a non-zero result, as it is the case for ordinary theories. In

dimension d we have limg_@e:% = %. Substituting this in ([[) we obtain
that the current j’; satisfies the integrated form of the standard anomaly,
equation ([[1]). This fact is implicit in the analysis of [i].

The anomaly of the non-gauge invariant axial current j/, in (f]) can be
studied in the same way. The regularized version of the current is in this

case
J(@) = U@,z +5) * (@ +5) (") * ' (2 = 5) x U = 5,2) . (17)

The Wilson lines have been introduced in order that the point splitting reg-
ularization does not alter the behavior of the current under gauge transfor-
mations. The divergence of j'* is

0u5() = —Zlime e [Fufe) « 04+ 5) (77) 5 (0 — )+
+ 'z +5) (") * (@ — 5) * Fu(z)] (18)

It is by now well known that the current j/; satisfies the non-commutative
counterpart of the usual anomaly equation of gauge theories [[], §]. We can
easily see how this result arises in the point splitting approach. The crucial
difference between the equations for the divergence of j4 and j’; is the order
in which the field strength and the fermionic fields are multiplied. In ([[7) the
field strength does not separate ¢ and 7 and the effective regularization of the
current due to the star-product does not take place. Namely, the divergence
of 7/ is given by equation ([L6]) with the argument of the l-integration being
just € instead of € — 6q.

We will evaluate now the divergence of the non-planar current j4 in four
dimensions using the same approach. The main difference with the two-
dimensional case is that the relevant contributions to the fermion correlator
in (I9) come from first and second order in perturbation theory. The contri-
bution from tree level cancels since tr(7”v*y°) =0 in d>2. At first order in
perturbation theory we have

_ - L,pa i
L ig( B (D) / d'a Grri) = —dger 28 Ay(p-+1) B, (19)
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where we have used that in four dimension tr(y#yPy%yP~%) = —44etras,

°)
Defining k=p+1 and substituting the previous equation in ([[F]), we obtain
i (q) =

dAk dA il(e—0q)
= 4ig* lim,_, e’ e"Ps / p€ F

2m)* (2m) 2(k — 12 ™

(g — k) kaAp(k) e 29"

(20)

2 Y(e—0 2k i
:—ﬁ—mmwiﬁ—ﬁiawﬂ/ F(kle—0q)) Fuu(q— k) ikaAg(k) e~ 37

272 (e—0q)? (2m)4

The [-integration in this case produces, in addition to (e—0q),/(e—0q)?, the
function f(k,|e—0q|). f can be expressed in terms of Bessel functions, it
is always finite and tends to 1 as |e —fq| tends to zero. Thus the rhs of
(BO) vanishes for 8¢ # 0, as it happens in the two-dimensional case. For
fq = 0 it gives clearly a non-zero result. It is straightforward to analyze the
contribution to the anomaly equation from evaluating the fermion correlator
at second order in perturbation theory. We will not do it explicitly, since the
pattern is as before. At g # 0 the anomaly cancels. The result at g = 0 is
non-zero, combining with (BQ) to promote i(koAg(k) — kgAa(k)) — Fos(k).
Restricted to 8¢ = 0, (BQ) reduces to

2

iquitq) = =2 [ L5 s (0 k) Fas(h) (21)
WIaA\) =162 | (2m) ol o)

which reproduces the integrated anomaly equation ([7).

5 Mixed Anomalies

Similar arguments apply to the local anomalies of chiral gauge theories. Con-
sider a simple case among those treated in [[(], a U(1) x U(1) gauge theory
with a chiral fermion in the bifundamental representation. In the case of a
right handed fermion, the vector currents associated to the groups U(1); and
U(1)y are

Jr =P P kY = (P, (22)
with P, = %(1+fy5). These two currents are in one to one correspondence with

those in (). Thus the analysis of previous sections applies straightforwardly
to local mixed anomalies. We will reduce now to the four dimensional case

11



and only spatial non-commutativity. Equation ([]) implies the existence of
a mixed U(1);U(1); anomaly restricted to #g = 0. Suppose that we add
the necessary chiral matter to cancel U(1)? anomalies, leaving the mixes

anomalies untouched. Then we have

. 1, o

/ done Ol = =53¢ / deye ) FD (23)

for i # j. The variation of the action induced by a gauge transformation A\
due to the anomaly (BJ) is given in Fourier space by

1

ON0S = 1672

/ d'q A () FFO(~g)]py0 (24)

The variation (P4) vanishes unless the gauge parameter is a delta function
A(q) o< 8(Aq). In coordinate space the action (B4) takes the form

(S)\(i)S = m /d2l’ </ dzzNC )\(Z)) (/ dzzNC FF(])) ) (25)

where V¢ represents the (infinite) volume of the non-commutative direc-
tions, and x and z ¢ denote respectively the ordinary and non-commutative
directions. The variation of the action is non-zero only if the integration of
A along the non-commutative directions would cancel the volume factor in
the denominator of (B3).

6 The Noncommutative Green-Schwarz Mech-
anism

In this section we address the paradox of the C?/Z3 orbifold, which was men-
tioned in the introduction and which was raised in [[4]. Consider a collection
of N D3 branes, placed on a C3?/Zs orbifold singularity in a background of
a constant NS-NS 2 form. The resulting noncommutative field theory is a
U(N)? field theory with three generations of bi-fundamental chiral multiplets.
The matter spectrum is summarized in table 1.

Since the theory is chiral there are potential anomalies. The U;(N)?
anomalies cancel, since there are 3N fundamental and 3N anti-fundamental
fermions charged under each of the gauge groups factors. There is, however,

12



Ui(N)x Uy(N)x Us(N)
3 chirals O O 1
3 chirals 1 O O
3 chirals O 1 O

Table 1: The matter content of the C*/Z3 orbifold theory.

a potential U;(N)2U;(1) anomaly. For example, the first row in table 1 de-
scribes the matter content which is charged under both U;(N) and Uy (N).
Only these fermions circulate in a triangle diagram with two external legs
in U;(N) and one leg in Uy(N). One can choose a regularization scheme in
which the local Uy(1) gauge symmetry is anomalous. Hence, the field theory
is sick (to be more precise, only two combinations out of the three U(1)’s are
anomalous). Since this theory arises from a string theory setup, it should be
consistent - probably even in the decoupling limit o/ — 0

Let us review first the string theory solution to this problem in the com-
mutative case [B0]. The type IIB closed string spectrum contains two massless
0-forms fields in the twisted sectors which are localized at the orbifold sin-
gularity. Their coupling to the brane can be written in a convenient way
in terms of three fields C®. They transform under gauge transformations
5(trAY) = 9, and 6CD = —¢®. The C® are constraint to sum to zero
in a gauge invariant way. The action is

3

1 i i i i
S ~ /d4:c {& ; ((tr AD +0,CD)? + X(0°CD + tr 0AD))

+ (C(l) (tr Fﬁ)Fﬁ) —tr Fﬁ)ﬁﬁ)) + cyclic perm.)} . (26)
Upon integration over the three twisted RR-fields and the Lagrange multi-

plier A we get the effective action

3
1672

1 - .
Seff = /d4:c {(tr 8~A(1))§ (tr FF® _ FF(?’)) + cyclic perm.} )

(27)
In addition there is a rank two mass matrix for the three A,(f) s and also (FF)?
terms. The full partition function is gauge invariant. Under a U;(1) gauge

13



u(1) u(1)

+ RR field =0
U(N) U(N) U(N) U(N)
a b

Figure 3: The Green-Schwarz mechanism.

rotation, the anomaly is compensated by the gauge transformation of (R7). In
a diagrammatic language it is described by fig. 3. The triangle diagram (fig.
3a) is cancelled by a tree level diagram which involves an exchange of closed
RR field (fig. 3b), in a generalized Green-Schwarz mechanism. The diagram,
fig. 3b, can be understood as due to an annulus diagram, with two U(N)
insertions on one boundary and one U(1) insertion at the second boundary
(see fig. 4). Thus, in the commutative case gauge invariance is restored by an
axion like field (twisted RR field) that cancels the gauge anomaly and gives a
gauge invariant mass M? ~ 2 to the two anomalous U(1)’s. The third U(1)

o
u@ %
)

Figure 4: The annulus diagram with U(N)? insertions on one boundary and
U(1) insertion at the other.

14



remains massless. The low energy theory, in the commutative case, would
therefore be an SU(N)? x U(1) gauge theory. The two apparently anomalous
local U(1)’s became global and decoupled, yielding a consistent low-energy
theory.

Let us now return to the more complicated non-commutative case. We
will consider again the case where the non-commutativity affects only (two)
space directions. Notice that the C*/Zs orbifold gauge theory has N' = 1
supersymmetry. Thus it is free from the dangerous quadratic infrared diver-
gences due to UV/IR mixing effects, which could render the theory unstable
BT, B2, B3]. However, we would like to stress that the triangle anomaly does
not vanish, due to the contribution from zero non-commutative momentum
flowing into the triangle diagram at the non-planar vertex. This is exactly the
non-planar anomaly which was described in the previous sections. Moreover,
the problem is more severe in the noncommutative case, since U(1) couples
to the rest of the SU(N) theory due to non-commutative gauge invariance
[B9] and therefore the problem cannot be solved by making the U(1) global
(massive).

Furthermore, the action (24) now presents some immediate problems. We
will assume that if a Green-Schwarz mechanism exists in the non-commutative
case, it must be possible to formulate it naturally in terms of the non-
commutative gauge field A,. The reason for this is that the non-planar
anomaly has a simple expression in terms of A,, instead of involving ar-
bitrary powers of this field. However, the first term in (Rg) would not be
gauge invariant under non-commutative gauge transformations. Second the
non-planar anomaly, diagram 3a, exits only for zero non-commutative mo-
mentum fg = 0. However the diagram 3b mediated by the action (@) seems
to exist also for non-zero 6q.

In spite of these problems, it is easy to propose an action similar to (P7)
whose variation under gauge transformations would cancel the non-planar
anomaly

3

Sepf = ——pr—
11 167T2VNC

1 ~ ~
/dzzc {(tr 9-AW), 7 (tr FF® —tr FF®), + cyclic perm.} ,

(28)
where, as in section 5, V¢ is the volume of and the subscript “y” denotes
integration along the non-commutative plane. The coordinates x as well as
the derivatives in (B§) are restricted to the two commutative directions. It is

15



immediate that the gauge variation of the previous expression can cancel the
variation of the action due to the non-planar anomaly, eq. (BJ). The action
(BY) is well defined under noncommutative gauge transformation since each
trace operator is separately integrated along the non-commutative plane. If
we interpret (B§) as derived from a diagram as in fig 3b, it would correspond
to restricting the closed string exchange to g = 0. Notice that only RR fields
from the twisted sectors can participate in the Green-Schwarz mechanism.
In the C3/Z; orbifold there are only two twisted massless 0-form RR fields,
which should couple to a combination of U(1)’s as in the ordinary case.
Although a sum of two U(1)’s is not a noncommutative U (1), one is allowed to
consider linear combinations at ¢ = 0, where the non-commutative structure
trivializes.

We now indicate how the action (B§) results from string theory. Consider
the annulus diagram, fig. 4. The calculation of this diagram for the noncom-
mutative theory, based on the expression for the ordinary theory [B4], was
carried out in [[[4]

e’ 1
. A2y _m 2 1
AR E/u/pappk,a J‘/lllm M2/ dt e M te 37 (09) / dl/1726 2p9k(2l/12+5(u12))’
—00 0

: (29)
where M is a regulator, € is the step function and 145 = 11 — 1,. For any
non-zero #q the integral near t = 0 (the UV) is exponentially suppressed and
yields a zero anomaly. However, for ¢ = 0 this is no longer true and we
have an anomaly. The interpretation is that for g = 0 we have an anomaly
in field theory (non-vanishing triangle diagram) and it is compensated in
a Green-Schwarz mechanism by an exchange of a massless RR field. The
mechanism for g = 0 is exactly the same as in the commutative theory.

For g # 0 the scenario is different. The amplitude (B9) vanishes in this
case, indicating that there is no anomaly in the field theory. The crucial
difference with respect to the previous case is that, in considering a closed
string exchange as in fig. 3b, we cannot discard the massive string modes [B].
The on-shell condition for twisted closed string modes is g"“q,q, + g = 0,
with g denoting the closed string metric. The open and closed string metrics

are related via [
. . 0GH

g =G _W’ (30)
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and thus the on-shell condition is

(31)

In the o/ — 0 limit, the oscillator mass becomes a subleading effect with
respect to the momentum along the non-commutative directions. Assuming
that the massive RR string modes have similar couplings to the field theory
operators as the massless one, it is clear that all of them will contribute
to diagram 3b when fq # 0. Such an exchange is then more adequately
interpreted directly in field theory terms. Its effect is to introduce the non-
commutative damping factor e~3?9” that leads to the cancellation of (7).
Notice that in the o/ — 0 limit, modes with g # 0 are never on-shell
because the kinetic term is suppressed by two powers of o/ with respect to the
momentum in the non-commutative directions. Contrary, when g = 0 the
oscillator mass is the dominant effect in (B1)). This selects the massless closed
string mode, bringing us back to the ordinary Green-Schwarz mechanism.

The Green-Schwarz mechanism has its origin in the fact that non-planar
string annulus diagrams are generically finite. The absence of divergences in
the non-planar annulus can be understood in terms of the closed string modes
using channel duality. Consequently, closed string modes play a fundamental
role in the Green-Schwarz mechanism [[]. The (partial) cancellation of the
non-planar anomaly in non-commutative gauge theories occurs because of the
regularization of the associated triangle graph by non-commutative effects.
This regularization of otherwise divergent Feymann graphs gives rise to one
of the most remarkable characteristics of non-commutative field theories:
UV/IR mixing [R0]. In [RO, B7, the similarity between the non-planar
graphs in non-commutative field theories and in string theory was stressed.
Following these ideas, [BY| showned that the infrared divergences associated
with UV/IR mixing effects in gauge theories can be reproduced in terms
of closed string exchange, where the whole tower of closed string modes
contributes. We propose that a similar pattern applies to the cancellation
of non-planar anomalies (see also [[I{] for a related discussion about flavour
anomalies). In this sense, it can be interpreted as an automatic Green-
Schwarz mechanism [[[4].

Since at g = 0 we have argued that an ordinary Green-Schwarz mecha-
nism takes place, we propose the following Lagrangian for the ‘mass term’ of
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the U(1) in the noncommutative theory
1
L~ a(tr A, +0,0)(q)G* (tr Ay + 0,C)(—q)|og=o0- (32)

The Lagrangian (B) is gauge invariant with respect to noncommutative
gauge transformations. Now, we add to the action the ’axion’ term CFF
and we integrate over the RR field. The resulting action is (£§).

There is a subtle issue that should be discussed. The WZ couplings in
the noncommutative theory are more involved than in the ordinary case, see
details at [}, fF]. However, we assume that the existence of a similar piece
at zero noncommutative momentum is enough for the anomaly cancellation.

We have argued that the non-commutative gauge theory on the C?/Z;
orbifold has non-vanishing mixed anomalies. However they only affect U(1)
modes with zero non-commutative momentum. For these modes both the
non-commutative and the non-abelian structure trivialize, i.e. they do not
mix with the rest under gauge transformations. In (B3) we have proposed
that due to the interaction with the RR field, the ¢ = 0 components of two
of the three U(1)’s become massive. A linear combination of U(1)’s remains
anomaly free as in the ordinary case. Thus the non-commutative U(N)3
structure is preserved, since this only requires that the U(1) excitations with
non-zero noncommutative momentum remain coupled. The excitations with
zero noncommutative momentum become massive and decouple. It is inter-
esting that this splitting, which of course violates Lorentz symmetry, pre-
serves the full gauge symmetry.

7 Global Anomalies

In this section we address the issue of global anomalies. As we have already
mentioned in the introduction, there are two different kinds of anomalies
in noncommutative theories: planar and nonplanar. In particular there are
two kinds of global anomalies. Since planar global anomalies are as in the
commutative situation, we will only consider nonplanar anomalies.
Consider a fermion that transforms in the bifundamental representation
of a product group G x H, where H is a global symmetry and G is either
local or global. Both cases have interesting applications in particle physics.
The prime example of mixed global and local symmetries is the 70 — 2
process. In this case the global symmetry is U(1)4 and the local is U(1)
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(Maxwell). According to the analysis in the previous sections the axial charge
is not conserved. Thus, though we cannot write a local anomaly equation,
we see that no conservation of charge forbids the pion decay, in contrast to
]

The second important case is when both G and H are global. Here
the global anomaly restricts the microscopic structure of the theory (or the
description in terms of a dual theory, as in [B]). According to 't Hooft [P], the
anomaly, which is nothing but the number of fermions species circulating in
the triangle loop, should be the same in the two descriptions (see also[l3]).
This condition imposes stringent restrictions on a possible dual description.

Had the nonplanar anomaly vanished, this restriction could have been re-
moved. However, we claim that the same anomaly matching conditions as in
the commutative theory should be imposed. To see that, we can repeat the
reasoning of 't Hooft. One can gauge the global symmetry with a very weak
coupling [] and add chiral matter to cancel the anomaly. The same "hidden’
chiral sector should guarantee an anomaly free gauge theory in the two de-
scriptions. Therefore the global anomaly should be the same. For this kind
of reasoning in favor of the anomaly matching conditions it is enough that
an integral version of the anomaly exist, since even an integral version of the
anomaly renders the local theory inconsistent. Thus, the noncommutative
theory is not less restrictive than the commutative one.
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