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Abstract

We discuss properties of conformal geodesics on general, vacuum, and

warped product space-times and derive a system of conformal devia-

tion equations. The results are used to show how to construct on the

Schwarzschild-Kruskal space-time global conformal Gauss coordinates which

extends smoothly and without degeneracy to future and past null infinity.
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1 Introduction

Geometrically defined coordinate systems are convenient in the local analysis of
fields but they often degenerate on larger domains. It is well known, for instance,
that Gauss coordinates are of limited use because the underlying geodesics tend
to develop caustics. In [7] conformal Gauss coordinates have been introduced
and successfully employed in local studies of conformally rescaled space-times.
Here the time-like coordinate lines are generated by conformal geodesics, curves
which are associated with conformal structures in a similar way as geodesics
are associated with metrics. In this case the danger of a coordinate break-down
is even more severe, because the conformal geodesics generating the system
can not only develop envelopes or intersections, as occur in caustics of metric
geodesics, but they may even become tangent to each other. However, it will
be shown in this article that the structure responsible for this difficulty also has
useful aspects.

Subsequent analyses of conformal Gauss coordinates revealed that conformal
geodesics possess various remarkable properties. In [4] they have been studied
systematically in the context of the conformal field equations. Though this at
first introduces additional complications into the equations because it requires
the use of Weyl connections, it leads to unexpected simplifications. While the
Bianchi equation satisfied by the rescaled conformal Weyl tensor, which is given
by di jkl = Θ−1 Ci jkl where Θ denotes the conformal factor, always implies
hyperbolic reduced systems of partial differential equations, the generalized
conformal field equations (in vacuum, possibly with a cosmological constant)
admit in the new gauge hyperbolic reductions in which the frame coefficients,
the connection coefficients and the components of the conformal Ricci tensor
are governed by equations of the form

∂τ e
µ
k = . . . , ∂τ Γ̂i

j
k = . . . , ∂τ R̂jk = . . . ,

where τ denotes the time variable in the given gauge and the right hand sides
are given by algebraic functions of the unknowns eµ k, Γ̂i

j
k, R̂jk, d

i
jkl and

known functions on the solution manifold.
Moreover, associated with a conformal geodesic is a function along that

curve, the conformal factor, which is determined up to a constant factor that
can be fixed on a given initial hypersurface. This function necessarily has zeros
at points where the conformal geodesic crosses null infinity. It turns out that for
given data on the initial hypersurface this function can be determined explicitly
and acquires a form which allows us to prescribe to null infinity by a suitable
choice of initial data a finite coordinate location.

In [4] these facts are used to provide a rather complete discussion of Anti-de
Sitter-type solutions, including a characterization of these solutions in terms of
initial and boundary data. In [5] these properties form a basic ingredient of
a detailed investigation of the behaviour of asymptotically flat solutions near
space-like and null infinity under certain assumptions on the Cauchy data for
the solutions. In particular, the cylinder at space-like infinity introduced in
[5] to remove the conformal singularity at space-like infinity is obtained as a
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limit set of conformal geodesics. The results obtained there strongly suggest
that even under the most stringent smoothness assumptions on the conformal
data near space-like infinity the solutions will in general develop logarithmic
singularities at null infinity. However, they also suggest that these singularities
can be avoided if the data satisfy certain regularity conditions at space-like
infinity.

The conversion of these conjectures into facts requires the proof of a certain
existence result for the regular finite initial value problem at space-like infinity

formulated in [5]. While the basic difficulty of this proof has nothing to do
with the specific features of the underlying conformal Gauss system, only the
proof will show that the latter is doing what we expect it to do: to extend
near space-like infinity smoothly and without degeneracy to null infinity if null
infinity admits a smooth differentiable structure at all.

An independent proof that conformal Gauss systems behave this way on gen-
eral space-times is difficult, because it requires the information on the asymp-
totic structure of the solution which we first hope to obtain by completing the
analysis of [5]. The question whether conformal Gauss systems can be used
globally is even more difficult.

In the context of the hyperboloidal initial value problem with smooth initial
data it can be shown that these coordinates remain good for a while and that
they can in fact be globally defined for data sufficiently close to Minkowskian
hyperboloidal data. However, nothing is known for data which deviate strongly
from Minkowskian once. There remains the possibility to study the behaviour
of conformal Gauss systems on specific solutions. It has been shown in [5] that
there exist conformal Gauss systems on the Schwarzschild space-time which
smoothly cover neighbourhoods of space-like infinity including parts of null in-
finity.

One may be tempted to think that this is only possible due to the weakness of
the field in that domain (although it doesn’t look weak in the conformal picture)
while in regimes of strong curvature a break-down of the coordinates will occur.
It turns out that this is not true. It is the main results of this article that
there exist conformal Gauss coordinates on the Schwarzschild-Kruskal space-
time which smoothly cover the whole space-time and which extend smoothly
(in fact analytically) and without degeneracy through null infinity.

This raises hopes that conformal Gauss systems stay regular under much
wider circumstances than expected so far and that we may be able to exploit the
simplicity of the reduced equations and the fact that conformal Gauss systems
provide by themselves the conformal compactification in time directions under
quite general assumptions. How robust these systems really are, whether they
will stay regular under non-linear perturbations of the Schwarschild-Kruskal
space, remains to be seen. Though a general analytical investigation of these
equations appears difficult at present, important information about them may
be obtained by numerical calculations. Conversely, there are good reasons to
believe that it should be possible to give strong analytical support to numer-
ical work based on the use of conformal Gauss systems because the latter are
amenable to a geometric analysis.
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We begin the article by discussing properties of conformal geodesics on gen-
eral space-times and then specialize to vacuum space-times, using also some of
the results which have been obtained already in the articles referred to above.
For later application we work out the conformal geodesic equations on warped
product space-times. Various features of conformal Gauss systems are then
illustrated by explicit examples on Minkowski space-time.

After specializing further to warped product vacuum space-times a confor-
mal Gauss system on the Schwarzschild-Kruskal space-time will be analysed.
Expressions for the conformal geodesics determined by suitably chosen initial
data are derived in terms of elliptic and theta functions. It is shown that the
curves extend smoothly through null infinity and that the associated conformal
factor defines a smooth conformal extension if the congruence is regular. We
do not attempt to derive the explicit expression of the rescaled metric in terms
of the new coordinates, because this cannot be done anyway in more general
situations. Instead, the regularity of the coordinate system and the conformal
extension is established by analysing a system of equations which is the ana-
logue for conformal geodesics of the Jacobi equation for metric geodesics. While
specific features of the Schwarzschild solution are used here, it is clear that sim-
ilar techniques apply in more general cases. We end the article by indicating
as a possible application the numerical calculation of entire asymptotically flat
vacuum solutions.

2 Conformal geodesics on pseudo-Riemannian

manifolds

Before we introduce conformal geodesics we recall a few concepts and formulae
of conformal geometry. On a pseudo-Riemannian manifold (M, g̃) of dimension
n ≥ 3 we consider two operations preserving the conformal structure defined by
g̃: (i) conformal rescalings of the metric

g̃µν → gµν = Ω2 g̃µν , (1)

with smooth conformal factor Ω > 0, (ii) transitions ∇ → ∇̂ of the Levi-Civita
connection ∇ of a metric g in the conformal class of g̃ into (torsion free) Weyl

connections ∇̂ with respect to g̃. In terms of the Christoffel symbols Γ and the
connection coefficients Γ̂, defined by ∇∂µ

∂ν = Γµ
ρ
ν ∂ρ and ∇̂∂µ

∂ν = Γ̂µ
ρ
ν ∂ρ

respectively, the transition is described by

Γµ
ρ
ν → Γ̂µ

ρ
ν = Γµ

ρ
ν + S(f)µ

ρ
ν , (2)

S(f)µ
ρ
ν ≡ δρ µ fν + δρ ν fµ + gµν g

ρλ fλ,

with a smooth 1-form f . For given f the difference tensor S(f) depends only on
the conformal structure of g. The transformation of the Levi-Civita connection
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Γ̃ of g̃ under 1 is a special case of (2) in which the 1-form is exact

Γ̃µ
ρ
ν → Γµ

ρ
ν = Γ̃µ

ρ
ν + S(f)µ

ρ
ν with f = Ω−1 dΩ. (3)

Conversely, if the 1-form f is closed (2) arises locally from a rescaling of g with
a suitable conformal factor. By (2) we have

∇̂ρ gµν = −2 fρ gµν , (4)

It follows from this that ∇̂ preserves the conformal structure of g̃ in the sense
that with a function θ > 0 satisfying on a given curve x(τ) in M

∇̂ẋ θ = θ < f, ẋ >, (5)

the metric θ2gµν is parallely transported along x(τ) with respect to ∇̂.

The curvature tensors of the connections ∇̂ and ∇, defined by (∇̂λ ∇̂ρ −
∇̂ρ ∇̂λ)X

µ = R̂µ νλρX
ν etc., are related by

R̂µ νλρ −Rµ νλρ = 2 {∇[λ Sρ]
µ
ν + Sδ

µ
[λ Sρ]

δ
ν} (6)

were indices are raised or lowered with respect to g. The tensor

L̂µν =
1

n− 2
{ R̂(µν) −

n− 2

n
R̂[µν] −

1

2 (n− 1)
gµν R̂ },

which occurs in the decomposition R̂µ νλρ = 2 {gµ [λ L̂ρ]ν−gµ ν L̂[λρ]− gν[λ L̂ρ]
µ}+

Cµ νλρ of the curvature tensor of ∇̂ into its trace parts and the trace-free, con-
formally invariant conformal Weyl tensor Cµ νλρ, is related to the tensor

Lµν =
1

n− 2
{Rµν −

1

2 (n− 1)
Rgµν },

by the equation

∇ν fµ − fµ fν + gµν
1

2
fλ f

λ = Lµν − L̂µν . (7)

2.1 Conformal geodesics

A conformal geodesic associated with the conformal structure defined by g̃ is
given by a curve x(τ) in M and a 1-form b(τ) along x(τ) such that the equations

(∇̃ẋẋ)
µ + S(b)λ

µ
ρ ẋ

λ ẋρ = 0, (8)

(∇̃ẋb)ν −
1

2
bµ S(b)λ

µ
ν ẋ

λ = L̃λν ẋ
λ, (9)

hold on x(τ). For given initial data x∗ ∈ M , ẋ∗ ∈ Tx∗
M , b∗ ∈ T ∗

x∗
M there

exists a unique conformal geodesic x(τ), b(τ) near x∗ satisfying for given τ∗ ∈ R

x(τ∗) = x∗, ẋ(τ∗) = ẋ∗, b(τ∗) = b∗. (10)
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From (8) it follows that the sign of g̃(ẋ, ẋ) is preserved along x(τ), since we have

∇̃ẋ(g̃(ẋ, ẋ)) = −2 < b, ẋ > g̃(ẋ, ẋ). (11)

In particular, if g̃(ẋ, ẋ) = 0 holds at one point it holds everywhere on x(τ) and
(8) implies that x(τ) can be reparametrized to coincide with a null geodesic of
g̃.

Let x(τ), b(τ) and x̄(τ̄ ), b̄(τ̄ ) be two solutions to (8), (9) with g̃(ẋ, ẋ) 6= 0.
We derive now the conditions under which the curves x(τ), x̄(τ̄ ) coincide locally
as point sets such that there exists a local reparameterization τ = τ(τ̄ ) with
x(τ(τ̄ )) = x̄(τ̄ ). The latter relation and (8) imply ẋ ∂2

τ̄ τ + 2 < b̄ − b, ẋ >
ẋ (∂τ̄ τ)

2 − g̃(ẋ, ẋ)(b̄ − b) (∂τ̄τ)
2 = 0 which is equivalent to the equations

b̄− b = α ẋ♭, ∂2
τ̄ τ + α g̃(ẋ, ẋ) (∂τ̄ τ)

2 = 0, (12)

with some function α. In the first of these equations the index of ẋ is lowered
with the metric g̃. From the first equation and (9) follows

α̇ = 2α < b, ẋ > +
1

2
α2 g̃(ẋ, ẋ), (13)

which together with (12) is equivalent to our requirement. Equations (11), (13)
imply ∂τ (α g̃(ẋ, ẋ)) = 1/2 (α g̃(ẋ, ẋ))2 which has the solutions

α g̃(ẋ, ẋ) =
2α∗ g̃(ẋ∗, ẋ∗)

2 − α∗ g̃(ẋ∗, ẋ∗)∆ τ
,

where ∆ τ = τ − τ∗ and ∆ τ̄ = τ̄ − τ̄∗. From these solutions follows finally with
(12)

∆ τ =
4 e∆ τ̄

1 + 2 e α∗ g̃(ẋ∗, ẋ∗)∆ τ̄
, b̄ = b+

1

g̃(ẋ, ẋ)

2α∗ g̃(ẋ∗, ẋ∗)

2 − α∗ g̃(ẋ∗, ẋ∗)∆ τ
ẋ, (14)

e, α∗, τ∗, τ̄∗ ∈ R, e 6= 0.

Thus, the changes of the initial data (10) which locally preserve the point set
spread out by the curve x(τ) are given by

ẋ∗ → 4 e ẋ∗, b∗ → b∗ + α∗ ẋ, e, α∗ ∈ R, e 6= 0. (15)

The 1-form remains unchanged and an affine parameter transformation results
if α∗ = 0. With suitable choices of the free constants, however, any fractional
linear transformations of the parameter can be obtained and it can be arranged
that τ → ∞ at any prescribed value of τ̄ .

This fact is related to an important difference between conformal geodesics
and metric geodesics. It may happen that the parameter τ on a conformal
geodesic takes any value in R while the curve still acquires endpoints in M as
τ → ±∞. If the transformation in (14) has a pole it may further happen that
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the point sets spread out by x(τ), x̄(τ̄ ) coincide only partly, namely at the points
where the transformation is defined, but each of the curves extends into a region
not entered by the other one. In fact, there may occur an arbitrary number of
such overlaps (we will encounter and make use of this phenomenon below). In
certain contexts it may be preferable to call the union of the corresponding
point sets a conformal geodesic. However, it will be more convenient for us to
preserve this name for a solution of the conformal geodesic equation with its
distinguished parameter.

If the 1-form b is used to define a connection ∇̂ along x(τ) by requiring that
its difference tensor with respect to ∇̃ is given by

∇̂ − ∇̃ = S(b), (16)

equation (8) can be written in the form ∇̂ẋẋ = 0. Thus x(τ) is an autoparallel
with respect to ∇̂. Equation (9), which determines the connection ∇̂ along that
autoparallel, acquires some meaning by comparing it with (7). A congruence
of conformal geodesics, covering smoothly and without caustics an open set U ,
defines a smooth 1-form field b and thus a connection ∇̃ on U . If ∇, f , L
are replaced in (7) by ∇̃, b, L̃ respectively and transvect with ẋ, we find that
equation (9) takes the form of a restriction on the connection ∇̂ in the direction
of the congruence, given by L̂µν ẋ

µ = 0. Here it turns out important that (7)
does not contain the contraction of ∇ν fµ.

Let f be an arbitrary 1-form and ∇̂ = ∇̃ + S(f) the associated Weyl con-
nection. Observing (7) with ∇, L replaced by ∇̃, L̃, we find for any curve x(τ)
in M and 1-form b(τ) along x(τ) the identities

(∇̃ẋẋ)
µ + S(b)λ

µ
ρ ẋ

λ ẋρ = (∇̂ẋẋ)
µ + S(b− f)λ

µ
ρ ẋ

λ ẋρ, (17)

(∇̃ẋb)ν −
1

2
bµ S(b)λ

µ
ν ẋ

λ − L̃λν ẋ
λ (18)

= (∇̂ẋ(b− f))ν −
1

2
(b− f)µ S(b− f)λ

µ
ν ẋ

λ − L̂λν ẋ
λ.

It follows that conformal geodesics are invariant under transitions to general
Weyl connections and, in particular, under conformal rescalings of g̃ in the
following sense: if x(τ), b(τ) is a solution of these equations with respect to ∇̃,
then x(τ), b(τ) − f |x(τ) is a solution of the conformal geodesic equation with

respect to ∇̂ = ∇̃ + S(f). Note that the parameter τ is an invariant of the
conformal class of g̃. It is determined by the initial conditions (10) but it does
not depend on the Weyl connection and the metric in the conformal class chosen
to write the conformal geodesics equations.

Let ek, k = 0, 1, . . . n − 1, be a frame field which is parallel along x(τ) for
the connection ∇̂ of (16) and satisfies g̃(ei, ek) = Θ−2 diag(1, . . . 1,−1, . . . ,−1)
at x(τ∗) with some Θ = Θ∗ > 0. It follows then from (4), (5), that this relation
is preserved along x(τ) with the function Θ = Θ(τ) satisfying

∇̃ẋ Θ = Θ < b, ẋ >, Θ(τ∗) = Θ∗. (19)
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Consider again a congruence of conformal geodesics as above and initial data
Θ∗ chosen such that the function Θ satisfying (19) is smooth and positive on
U . Then the associated 1-form is given in terms of the Levi-Civita connection
∇ of the metric g = Θ2 g̃, for which the frame is orthonormal, by

h(τ) = b(τ) − Θ−1 dΘ|x(τ), (20)

along x(τ). Equations (19) and (11) imply x(τ)

< h, ẋ >= 0, g(ẋ, ẋ) = Θ2 g̃(ẋ, ẋ) = Θ2
∗ g̃(ẋ∗, ẋ∗). (21)

We assume the congruence, the function Θ, and the frame ek to be con-
structed by a suitable choice of the initial data such that

g(ẋ, ẋ) = 1, e0 = ẋ. (22)

From (21) and ∇ = ∇̃ + S(Θ−1 dΘ) = ∇̂ − S(h) follows ∇ẋek = − < h, ek >
ẋ+ g(ẋ, ek)h

♯, where the index of h is raised with g. This implies that

Fẋek ≡ ∇ẋek − g(ẋ, ek)∇ẋẋ+ g(∇ẋẋ, ek) ẋ

= − < h, ek > ẋ+ g(ẋ, ek)h
♯ − g(ẋ, ek)h

♯ + g(h♯, ek) ẋ = 0.

Thus the frame ek, which is parallely propagated with respect to ∇̂, is in general

not parallely but always Fermi-propagated with respect to ∇.
The following general observation, which follows by a direct calculation,

describes the sense in which Fermi-transport is conformally invariant. Let θ > 0
be some conformal factor and g̃, g metrics on M such that g = θ2 g̃. Denote by
F̃ , F the respective Fermi-transports. Let x(τ) be any curve in M such that
g(ẋ, ẋ) = 1. For any vector field X along the curve we then have F̃θ ẋ(θX) =
θ2 FẋX , where θ ẋ is the tangent vector of the curve parametrized in terms of
g̃-arc length.

Applying this to the situation considered above, we see that the g̃-orthonormal
frame Θek is Fermi-transported along the conformal geodesics, if the latter are
parametrized in terms of g̃-arc length.

Let f : M → M be a conformal diffeomorphism of g̃ such that f∗ g̃ = Ω2 g̃
with some function Ω on M . Since conformal geodesics are invariants of the
conformal structure, it is not surprising that f maps conformal geodesics into
conformal geodesics. If K is a conformal Killing vector field its flow defines a
1-parameter family of local conformal diffeomorphism and thus maps the set of
conformal geodesics into itself. Though we will occasionally make use of this
fact, it will not be demonstrated it here and we refer to [10] for the formal
argument.

2.2 The conformal deviation equations

Following the discussion of the Jacobi equation for metric geodesics, we derive
now an analogous system of equations for conformal geodesics. Let x(τ, λ),
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b(τ, λ) be a family of solutions to (8), (9) depending smoothly on a parameter
λ. We denote the tangent vector field of the conformal geodesics, the deviation

vector field of the congruence, and the deviation 1-form by

X = ∂τ x = ẋ, Z = ∂λ x, B = ∇̃Z b,

respectively. Considering x = x(τ, λ) as a map from some open subset of R
2

into M̃ and denoting by Tx its tangent map, gives Tx([∂τ , ∂λ]) = 0, whence
[X,Y ] = ∇̃X Z −∇̃Z X = 0. This, (8), and (∇̃X ∇̃Z − ∇̃Z ∇̃X)X − ∇̃[X,Z] Z =

R̃ (X, Z)X imply the conformal Jacobi equation

∇̃X ∇̃X Z = R̃ (X, Z)X − S(B;X,X) − 2S(b;X, ∇̃X Z), (23)

where (S(b;X,Y ))µ = S(b)ρ
µ
ν X

ρ Y ν for given 1-form b and vector fields X ,
Y . The last two terms on the right hand side of (23) indicate why conformal
geodesics are potentially more useful than metric geodesics for the construction
of coordinate systems. Under suitable circumstances the acceleration induced
by the 1-form b may counteract curvature induced tendencies of the curves to
develop caustics.

Caustics of conformal geodesics can be more complicated than caustics of
metric geodesics because for a given tangent vector there exists (essentially) a
3-parameter family of conformal geodesics with the same tangent vector. More-
over, to analyse them we need to complement the conformal Jacobi equation by
a equation which governs the behaviour of B. Writing (∇̃X ∇̃Z − ∇̃Z ∇̃X) b −
∇̃[X,Z] b = −b R̃ (X, Z), we get from (9) the 1-form deviation equation

∇̃X B = −b R̃ (X, Z) + (∇̃Z L̃)(X, .) + L̃(∇̃X Z, .) (24)

+
1

2
(B · S(b;X, .) + b · S(B;X, .) + b · S(b; ∇̃X Z, .)),

where (B · S(b;X, .))ν = Bµ S(b)ρ
µ
ν X

ρ. We refer to the equations (23), (24)
as to the system of conformal deviation equations. They form a linear system
of ODE’s for Z and B along the curves x(τ).

2.3 Conformal geodesic equations on warped products

For later applications we work out the simplifications of the conformal geodesic
equations which are obtained in the case where g̃ can be written as a warped
product. Thus we assume that there exist coordinates xµ for which the set
I = {0, 1, . . . , n − 1} in which the index µ takes its values can be decomposed
into two non-empty subsets I1, I2 with I = I1 ∪ I2, ∅ = I1 ∩ I2, such that in
terms of the coordinates xA, A ∈ I1, and xa, a ∈ I2, the metric takes the form

g̃ = g̃µν dx
µ dxν = hAB dx

A dxB + f2 kcd dx
c dxd, (25)

9



hAB = hAB(xC), kab = kab(x
c), 1 ≤ p ≡ kab k

ab ≤ n− 1, f = f(xA) > 0.

The Christoffel coefficients are then given by

Γ̃B
A
C =

1

2
hAD (hBD,C + hCD,B − hBC,D), Γ̃b

A
c = −hAD f f,D kbc,

Γ̃B
A
c = 0, Γ̃B

a
C = 0,

Γ̃B
a
c = Γ̃c

a
B =

1

f
f,B k

a
c, Γ̃b

a
c =

1

2
kad (kbd,c + kcd,b − kbc,d).

Those which cannot be derived by symmetry considerations from the coefficients
above, vanish. The curvature tensor has components

RA BCD[g̃] = RA BCD[h], Ra BcD[g̃] = −ka c
1

f
DB DD f, (26)

Ra bcd[g̃] = Ra bcd[k] − 2 hCD f,C f,D k
a

[c kd]b, (27)

whereD denotes the h-Levi-Civita connection with connection coefficients Γ̃A
B
C .

Components which cannot be deduced by symmetry considerations from those
above, vanish. In particular

RA BCd[g̃] = 0, RA bcd[g̃] = 0, Ra BCD[g̃] = 0. (28)

This implies LAc[g̃] = 0,

Lcd[g̃] =
1

2
Rcd[k]−

1

12
kcdR[k] − { 1

12
R[h] +

3 − p

6
f DAD

Af +
(p− 1)(6 − p)

12
DAfD

Af } kcd,

LAB[g̃] =
1

2
RAB[h] − 1

12
hAB R[h] − p

2 f
{DADBf − 1

3
hAB DCD

Cf }

− 1

12 f2
{R[k] − p (p− 1)DCf D

Cf } hAB.

The conformal geodesic equations take the form

ẍA + Γ̃B
A
C ẋ

B ẋC + Γ̃b
A
c ẋ

b ẋc = (29)

−2 (bC ẋ
C + bc ẋ

c) ẋA + (hBC ẋ
B ẋC + f2kbc ẋ

b ẋc)hAD bD,
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ẍa + Γ̃b
a
c ẋ

b ẋc + Γ̃B
a
c ẋ

B ẋc + Γ̃b
a
C ẋ

b ẋC = (30)

−2 (bC ẋ
C + bc ẋ

c) ẋa + (hBC ẋ
B ẋC + f2kbc ẋ

b ẋc)
1

f2
kac bc,

ḃA − Γ̃C
D
A ẋ

C bD − Γ̃c
d
A ẋ

c bd = (31)

(bC ẋ
C + bc ẋ

c) bA − 1

2
(hBC bB bC +

1

f2
kbc bb bc)hAD ẋ

D + L̃AB[g̃] ẋB ,

ḃa − Γ̃c
D
a ẋ

c bD − Γ̃C
d
a ẋ

C bd − Γ̃c
d
a ẋ

c bd = (32)

(bC ẋ
C + bc ẋ

c) ba −
1

2
(hBC bB bC +

1

f2
kbc bb bc) f

2 kac ẋ
c + L̃ab[g̃] ẋ

b.

3 Conformal geodesics on vacuum fields

Though many of the subsequent discussions apply to more general situations, we
shall assume from now on that dimM = 4, sign(g̃) = (1,−1,−1,−1) and that
g̃ satisfies Einstein’s vacuum field equations R̃µν = 0. With the resulting sim-
plification and the notation introduced above the conformal geodesic equations
and the equation for the frame ek now take the form

∇̃ẋẋ+ 2 < b, ẋ > ẋ− g̃(ẋ, ẋ) b♯ = 0, (33)

∇̃ẋb− < b, ẋ > b+
1

2
g̃♯(b, b) ẋ♭ = 0, (34)

∇̃ẋek+ < b, ẋ > ek+ < b; ek > ẋ− g̃(ẋ, ek) b
♯ = 0. (35)

Since these equations admit solutions with vanishing 1-form b, metric geodesics
form on vacuum space-times a subclass of conformal geodesics.

3.1 Conformal geodesics on Minkowski space

Denote by xµ coordinates on Minkowski space (M,η) in which the metric takes
the form η = ηµν dx

µ dxν = (dx0)2−(dx1)2−(dx2)2−(dx3)2 and let ǫk = δµ k ∂µ
be the orthonormal standard frame. There are various possibilities to deter-
mine the solutions to (33), (34), (35). The framework of the normal conformal
Cartan connection (cf. [4]), in which conformal geodesics are defined as “hori-
zontal” curves on a certain bundle allows a purely algebraic calculation of these
curves, because the bundle admits in the case of the conformally compactified

11



Minkowski space a purely group theoretical description. Since the curves on the
bundle space are known explicitly there only remains the task to calculate their
projectioin onto the base space. We just give the result of the calculation.

Besides the initial data (10) we prescribe the value Θ∗ > 0 and a Lorentz
transformation A∗ which determines the initial value ek∗ = Θ−1

∗ Aj∗ k ǫj of the
frame ek. The corresponding solution is given by

Θ(τ) = Θ∗

(

1 + ∆τ < b∗, ẋ∗ > +
1

4
(∆τ)2 η(ẋ∗, ẋ∗) η

♯(b∗, b∗)

)

, (36)

xµ(τ) = xµ∗ +
Θ∗

Θ(τ)

(

∆τ ẋµ∗ +
1

2
(∆τ)2 η(ẋ∗, ẋ∗) b

µ
∗

)

, (37)

bν(τ) = (1 + ∆τ < b∗, ẋ∗ >) b∗ν −
1

2
∆τ η♯(b∗, b∗) ẋ∗ν , (38)

ek =
1

Θ(τ)
Aj k(τ) ǫj , (39)

with a Lorentz transformation A(τ) = (Aj k(τ)) given by

A(τ) = A∗ + ∆τ b♯∗ ẋ
♭
∗

− Θ∗
Θ(τ)

(∆τ ẋ∗ +
1

2
(∆τ)2 η(ẋ∗, ẋ∗) b

♯
∗) ( b∗ ·A∗ +

1

2
∆τ η♯(b∗, b∗) ẋ

♭
∗).

Indices are moved in this subsection with the metric η.
Conformal geodesics which satisfy η(ẋ, ẋ) = 0 at one point coincide (as point

sets) with null geodesics, those for which b∗ = 0 are Minkowski geodesics. If ẋ∗
is space- or time-like we can assume, possibly after a reparametrization, that
< b∗, ẋ∗ >= 0. It follows that the remaining conformal geodesics fall into
one of the following classes. If ẋ∗ and b♯∗ generate a space-like 2-surface in the
tangent space of x∗, the corresponding conformal geodesics is a metric circle in
the plane tangent to that 2-surface. If ẋ∗ and b♯∗ generate a time-like 2-surface
and ẋ∗ is space-like, the corresponding conformal geodesics is a space-like metric
hyperbola in the plane tangent to that 2-surface. If ẋ∗ is space-like and b∗ is
null, the conformal geodesics is a space-like curve in a null planed.

We shall mainly be interested in the last case in which ẋ∗ and b♯∗ generate a
time-like 2-surface and ẋ∗ is time-like. An example of such a conformal geodesic
is given by the curve

x(τ) = (
τ

1 − a2 τ2

4

,
1

a
+

a τ2

2

1 − a2 τ2

4

, 0, 0), |τ | < 2

|a| ,

12



which is a time-like hyperbola satisfying ηµν x
µ(τ)xµ(τ) = − a−2.

We shall use now time-like conformal geodesics to construct coordinate sys-
tems on Minkowski space where the parameter τ on the curves defines a time
coordinate while the other coordinates are obtained by dragging along spa-
tial coordinates on S̃. Most important for us is the fact that the construction
provides a conformal rescaling and extension of Minkowski space to which the
coordinates are adapted in a natural way.

We denote by r∗ the restriction of the standard radial coordinate r on
Minkowski space to the hypersurface S̃ = {x0 = 0}. In spherical coordinates θ,
φ the inner metric induced on S then takes the form h̃ = −(dr2∗ + r2∗ dσ

2)
with dσ2 = dθ2 + sin2 θ dφ2 the standard line element on the 2-sphere. If
we write r∗ = tan(χ2 ) with 0 ≤ χ < π, we find that the conformal factor
Θ∗ = 2 (1 + r2∗)

−1 = 1 + cosχ allows us to realize the conformal embedding of
S̃ into the 3-sphere S = S̃ ∪ {i} with line element Θ2

∗ h̃ = −(dχ2 + sin2 χdσ2),
where i denotes the point {χ = π} at space-like infinity.

To define a congruence of conformal geodesics and a conformal factor, we
choose initial data on S̃ as follows. At x∗ = (0, r∗ u) ∈ S̃, u ∈ R

3 with |u| = 1, we

set b♯∗ = a uc ǫc (sum over c = 1, 2, 3) and ẋ∗ = Θ−1
∗ ǫ0 such that Θ2

∗ η(ẋ, ẋ) = 1.
The function a on S̃ is determined by the following consideration. With the data
above and τ∗ = 0 we get Θ(τ) = Θ∗ (1 − 1

4 τ
2 a2 Θ−2

∗ ) from (36). To obtain, if
possible, a 1-form b which is exact, we require Θ−1 dΘ = b at x∗ which gives
a = 2 r∗ (1+r2∗)

−1. Our data are then spherically symmetric and we can express
the conformal factor (36) and the curves (37) in terms of the time coordinate
t = x0 and the radial coordinate r to obtain

Θ = Θ∗ (1 − 1

4
τ2 r2∗), t =

2 (1 + r2∗) τ

4 − τ2 r2∗
, r =

r2∗ (4 + τ2)

4 − τ2 r2∗
. (40)

To relate these expressions to known facts, we use r∗ = tan χ
2 and set τ

2 = tan s
2

to obtain

Θ = Ωω, with Ω = cos s+ cosχ, ω = 1 + (
τ

2
)2 =

1

cos2 s
2

, (41)

t =
sin s

cosχ+ cos s
, r =

sinχ

cosχ+ cos s
. (42)

Reading the last equation as a coordinate transformation, we get

Ω2 η = Ω2 (dt2 − dr2 − r2 dσ2) = gE ≡ ds2 − dχ2 − sin2 χdσ2.

The set ME = R × S endowed with the metric gE defines the Einstein cosmos.
We see that (42) realizes the well known conformal embedding of Minkowski
space into the Einstein cosmos, which maps the former onto the subset |s ±
χ| < π, 0 ≤ χ < π of ME . The boundary ∂M of this set in ME supplies
representations of future and past null infinity, future and past time-like infinity,
and space-like infinity of Minkowski space, which are given by the subsets J± =
{s±χ = ±π}, i± = {s = ±π, χ = 0}, i0 = {s = 0, χ = π} of ∂M respectively.

13



In terms of τ and Θ we get from (40) the metric

Θ2 η = ω2 (
1

ω2
dτ2 − dχ2 − sin2 χdσ2), (43)

which extends smoothly to J ± but does not extend to i± where ω → ∞. This
is not due to an unfortunate choice of intial data on S̃. The curve τ → z(τ) =
(s = 2 arctan τ

2 , χ = 0) is a conformal geodesic on the Einstein cosmos which
approaches i± as τ → ±∞. The freedom to perform parameter transformations,
characterized by (14), (15), does not allow us to find a parametrization for which
curve extends simultaneously to i− and i+. Thus the separation of i− and i+

realizes a conformal invariant.
It is possible, however, to find reparametrizations under which the rescaled

metric extends smoothly either to i+ or to i−. The curve τ̄ → z̄(τ̄ ) = (s =
s∗ + 2 arctan( τ̄2 − tan s∗

2 ), χ = 0) is again a conformal geodesic, because ∂s is
a Killing vector field for gE . We choose s∗ to be a constant with 0 < s∗ <
π. Then z̄(τ̄ ) is related to z(τ) by the parameter transformation τ = τ̄ (1 +
tan2 s∗

2 − 1
2 τ̄ tan s∗

2 )−1. Comparing with (14) we are led to set τ∗ = 0, τ̄∗ = 0,
4 e = (1 + tan2 s∗

2 )−1, and α∗ η(ẋ∗, ẋ∗) = − tan s∗
2 and to consider the initial

data

´̄x∗ =
1

1 + tan2 s∗
2

ẋ∗, Θ̄∗ = (η(´̄x∗, ´̄x∗)
1
2 =

1

cos2 s∗
2

Θ∗, b̄∗ = b∗ −
tan s∗

2

η(ẋ∗, ẋ∗)
ẋ♭∗.

(44)

Observing these data and setting τ̄
2 = tan s−s∗

2 + tan s∗
2 , we get from (37)

again equations (42), while (36) yields now

Θ̄ = Θ̄∗ (1 − τ̄
tan s∗

2

1 + tan2 s∗
2

+
1

4
τ̄2 tan2 s∗

2 − tan2 χ
2

(1 + tan2 s∗
2 )2

) = Ω ω̄,

with Ω as in (41) and ω̄ = cos−2 (s−s∗)
2 . It follows that the metric

Θ̄2 η = ω̄2 (ds2 − dχ2 − χ2 d σ2) = ω̄2 (
1

ω̄2
dτ̄2 − dχ2 − χ2 d σ2),

extends regularly onto the domain |s− s∗| < π containing i+.
If we insist on a conformal factor Θ which defines a conformal compactifi-

cation of (S̃, h̃) and initial data ensuring b = Θ−1 dΘ on S̃, invariance under
t → − t implies the existence of a point on S̃ where b vanishes. The conformal
geodesic through such a point will then be a metric geodesic. In our first exam-
ple such a point is given by r∗ = 0 and it follows from (40) that the parameter
τ takes values in R and the conformal factor is constant on the curve r = 0.
Thus, in order to achieve a compactification which extends smoothly to i+ for a
finite value of the parameter we have to choose non-time-symmetric initial data
such as (44).

Notice that s∗ could have been chosen to be a function on S̃. The possibility
to change the parametrization while leaving the curves as point sets unchanged
offers a large freedom to select slices of constant parameter value.
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3.2 The conformal factor and the 1-form on general

vacuum fields

In the following we shall derive some general, explicit information on the solu-
tions to (33), (34), (35) (cf. the more general discussion in [4] on solutions to
the vacuum field equations R̃µν = λ g̃µν with a cosmological constant λ).

From (33), (34) follows

∇̃ẋ < b, ẋ >= − < b, ẋ >2 +
1

2
g̃(ẋ, ẋ) g̃♯(b, b), (45)

∇̃ẋ g̃
♯(b, b) =< b, ẋ > g̃♯(b, b), (46)

where the index sharp on the symbol of a metric indicates here and in the
following the contravariant version of that metric.

Assume again that the congruence of conformal geodesics, Θ, and the frame
have been chosen such that (22), whence g̃(ẋ, ẋ) = Θ−2 holds along the congru-
ence. Equation (11) then implies ∇̃ẋ Θ = Θ < b, ẋ >. Taking a derivative and
observing (45) yields ∇̃2

ẋ Θ = 1/2 g̃♯(b, b)Θ−1. Taking another derivative and
observing (46) gives finally

∇̃3
ẋΘ = 0. (47)

In terms of the initial data (10) this yields with Θ∗ =
√

(g̃(ẋ∗, ẋ∗)) the explicit
expression

Θ(τ) = Θ∗ + ∆τ Θ̇∗ +
1

2
(∆τ)2 Θ̈∗ (48)

= Θ∗

(

1 + ∆τ < b∗, ẋ∗ > +
1

4
(∆τ)2 g̃(ẋ∗, ẋ∗) g̃

♯(b∗, b∗)

)

.

Similar steps lead to ∇̃ẋ (g̃(ẋ, ẋ) (g̃♯(b, b))2) = 0, whence

Θ−1 g̃♯(b, b) = Θ−1
∗ g̃♯(b∗, b∗) = 2 Θ̈∗. (49)

In particular, the sign of g̃♯(b, b) is preserved as long as Θ > 0. From (34),
(35) follows ∇̃ẋ(Θ < b, ek >) = 1/2 Θ g̃♯(b, b) g̃(ẋ, ek). From this equation and
(19), (22) the following explicit expression can be derived for the components
bk ≡< b, ek > of the 1-form b in the frame ek

b0 = Θ−1Θ̇, ba = Θ−1da with da =< b∗,Θ∗ ek∗ > . (50)

This implies with (49) the relation

Θ̇2 − δab da db = Θ2 ηjk bj bk = Θ2 g♯(b, b) = g̃♯(b, b) = Θ Θ−1
∗ g̃♯(b∗, b∗) = 2 Θ Θ̈∗.

(51)
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While the expressions (48), (50) depend on invariants built from the initial data,
they are universal in the sense that their form does not depend on the solution
g̃.

Using the representation of the 1-form with respect to the connection of g,
i.e. (20), we can write by (50) on the congruence ek(Θ) = Θ < b, ek > −Θ <
h, ek >. If there is a point on a given curve of the congruence where Θ vanishes
and Θ b and h remain bounded on the curve, (50), (51) imply

ηjkej(Θ) ek(Θ) → 0 as Θ → 0. (52)

3.3 The g̃-adapted form of the conformal geodesic

equation

We write b = b̂+ ζ ẋ♭ (where here and below indices of 1-forms and vectors are

moved with g̃) with b̂ such that

< b̂, ẋ >= 0, whence ζ =
< b, ẋ >

g̃(ẋ, ẋ)
, g♯(b, b) =< b, ẋ >2 + g♯(b̂, b̂). (53)

Equations (33), (34) are then equivalent to ∇̃Θ ẋ Θ ẋ = b̂♯, ∇̃Θ ẋ b̂ = −g̃♯(b̂, b̂)Θ ẋ♭.
We introduce the parameter transformation

τ̄ (τ) = τ̄∗ +

∫ τ

τ∗

dτ ′

Θ(τ ′)
, (54)

with inverse τ = τ(τ̄ ) and set x̄(τ̄ ) = x(τ(τ̄ )). Then x̄′ ≡ ∂τ̄ x̄ = Θ ẋ satisfies
g̃(x̄′, x̄′) = 1 and we obtain the g̃-adapted conformal geodesic equations

∇̃x̄′ x̄′ = b̂♯, ∇̃x̄′ b̂ = β2 x̄
′♭, (55)

where, by (50),

β2 ≡ −g̃♯(b̂, b̂) = δab da db = const. (56)

along the conformal geodesic. These equations bring out the important role of
b̂. If b̂ vanishes at a point it vanishes along x̄(τ̄ ) and the curve is a g̃-geodesics.

We determine the transformation (54) under the assumption that

g♯(b∗, b∗) = g̃(ẋ∗, ẋ∗) g̃
♯(b∗, b∗) < 0. (57)

It follows then from (48) that Θ(τ) vanishes at

τ± = τ∗ −
2 Θ∗

Θ∗ < b∗, ẋ∗ > ∓ |β| , (58)

with τ+ 6= τ−, such that

Θ =
1

4
Θ∗ g

♯(b∗, b∗)(τ − τ+) (τ − τ−), (59)
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and the integration of (54) gives

τ̄ (τ) = τ̄∗ +
1

|β| log
(τ∗ − τ+) (τ − τ−)

(τ − τ+) (τ∗ − τ−)
, (60)

whence

∆τ =
2 Θ∗ sinh( |β|2 ∆τ̄)

|β| cosh( |β|2 ∆τ̄) − Θ∗ < b∗, ẋ∗ > sinh( |β|2 ∆τ̄ )
. (61)

In terms of the parameter τ̄ we also get

Θ =
Θ∗ β2

(

|β| cosh( |β|2 ∆τ̄ ) − Θ∗ < b∗, ẋ∗ > sinh( |β|2 ∆τ̄ )
)2 . (62)

Suppose that the solution admits a smooth conformal extension for which
Θ = 0 on J+, that the extension admits a point i+ such that J + coincides
with the past light cone of i+, and that one of our conformal geodesics, x(τ)
say, passes through i+ for a finite value τi of τ . Then condition (57) precludes
a dicussion of the zero of Θ on x(τ). If (58) describes the zeros of Θ on the
conformal geodesics covering a neighbourhood of x(τ), then, approaching x(τ),
we should find τ± → τi, and consequently β = 0, < b∗, ẋ∗ > 6= 0 on x(τ) and
τi = τ∗ − 2

<b∗,ẋ∗>
.

3.4 The g̃-adapted conformal deviation equations

Denote by x̄(τ̄ , λ), b̂(τ̄ , λ) a smooth family of solutions to (55) with family
parameter λ. As before, we write

X = ∂τ̄ x̄ = x̄′, Z = ∂λ x̄, B̂ = ∇̃Z b̂. (63)

Following the derivation of the conformal deviation equations and observing that
vacuum field equations L̃µν = 0, we obtain the g̃-adapted conformal deviation

equations

∇̃X ∇̃X Z = C (X, Z)X + B̂♯. (64)

∇̃X B̂ = −b̂ C (X, Z) + (∇̃Z g̃
♯(b̂, b̂))X♭ + g̃♯(b̂, b̂) ∇̃X Z

♭, (65)

where C denotes the conformal Weyl tensor of g̃.
While in general ∇̃Z(g̃♯(b̂, b̂)) 6= 0, we have by (56) always g̃♯(b̂, b̂) = const.

along x̄(τ̄ ), which implies ∇̃X (∇̃Z g̃
♯(b̂, b̂)) = ∇̃Z (∇̃X g̃

♯(b̂, b̂)) = 0. Thus the
coefficients of X♭ and ∇̃X Z

♭ in the second line of 65 are constant and known
along x̄(τ̄ ) by their initial data at some τ̄∗.
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3.5 Conformal geodesics and the g̃-adapted conformal

deviation equations on warped product vacuum fields

It will be shown now that on warped product vacuum fields the discussion of the
conformal geodesic equations reduces under suitable assumptions to the analysis
of one equation and that a similar statement is true for the g̃-adapted conformal
deviation equations.

If g̃ can be written in the form (25), the vacuum field equations take the
form

RAC [h] =
p

f
DADCf, Rac[k] = f−(p−2)DA(f (p−1)DAf) kac, (66)

and the dependence of the various fields in the second equation on xa implies

Rac[k] =
R[k]

p
kac, R[k] = p f−(p−2)DA(f (p−1)DAf) = const. (67)

We shall assume from now on that p = 2 and that the indices A, a take values
0, 1 and 2, 3 respectively. Then RABCD[h] = R[h]hA[C hD]B and RAC [h] =
1
2 R[h]hAC and thus 2DADBf = hAB DCD

Cf by the first of equations (66).
Contracting with DA, commuting derivatives yields DB(f2DAD

Af) = 0 if (66)
is used again. It follows

2 c ≡ f2DAD
Af = const., DADBf =

c

f2
hAB, RABCD[h] =

4 c

f3
hA[C hD]B.

(68)

These equations imply with (26), (27)

RA BCD[g̃] =
4 c

f3
hA [C hD]B, R

a
bcd[g̃] =

4 c

f
ka [c kd]b, R

a
BcD[g̃] = − c

f3
ka c hBD.

(69)

It follows that Rµ νλρ = 0 unless c 6= 0.

If Einstein’s vacuum field equation L̃µν = 0 holds, equations (29), (30),
(31), (32) admit solutions satisfying ẋa = 0, bc = 0, and these solutions obey
equations which can be written in the form

Dẋẋ = −2 < b, ẋ > ẋ+ h(ẋ, ẋ) b♯, Dẋb = < b, ẋ > b− 1

2
h♯(b, b) ẋ♭, (70)

where all quantities are derived from h. We shall discuss now the g̃-adapted
version of (70), assuming that ∆ ≡ det(hAB) < 0. With

ǫh =
√

|∆| d x0 ∧ d x1, (71)

it follows that ǫh(ẋ, .) =
√

|∆|(ẋ0 d x1 − ẋ0 d x0) and h♯(ǫh(ẋ, .), ǫh(ẋ, .)) =

−h(ẋ, ẋ). Since the vectors ẋ, b̂♯ are contained in the 2-dimensional space
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spanned by ∂A, A = 0, 1, and < b̂, ẋ >= 0, the equations above and (56)
imply the representation

b̂ = ± β ǫh(Θ ẋ, .) = ± β ǫh(x̄
′, .), (72)

where the sign is determined by the initial conditions and the convention for
β. Using this expression in the second of equations 55, gives β2 x̄′ = Dx̄′ b̂ =
± β ǫh(Dx̄′ x̄′, .), which can be rewritten in the form

Dx̄′ x̄′ = b̂♯. (73)

Thus, the g̃-adapted forms of the two equations (70) are equivalent to each other

and we only have to solve (73) with b̂ as in (72) to obtain a solution to (70).
Observing the formulae for the connection coefficients, the results (28) for

the curvature tensor of warped products, and

CA BCD[g̃] =
4 c

f3
hA [C hD]B, (74)

equations (64), (65) are seen to be equivalent to each other and to the equation

DX DX Z =
2 c

f3
ǫh(X,Z) ǫh(X, .)

♯ ±
(

DZ β ǫh(X, .)
♯ + β ǫh(DX Z, .)

♯
)

. (75)

The sign here is chosen as in (72) and use has been made of the identities

ǫh(ǫh(X, .)
♯ .) = X♭, X h(Z,X) − Z = ǫh(X,Z) ǫh(X, .)

♯.

4 Conformal geodesics on the Schwarzschild

space-time

For our discussions various forms of the Schwarzschild line element will be
needed. Its standard form with mass m is given for r̄ > 2m by

g̃ =

(

1 − 2m

r̄

)

d t2 −
(

1 − 2m

r̄

)−1

d r̄2 − r̄2 d σ2. (76)

In terms of the retarded and advanced null coordinates

w = t− (r̄ + 2m log(r̄ − 2m)), v = t+ (r̄ + 2m log(r̄ − 2m)), (77)

the line element (76) is obtained in the forms

g̃ =

(

1 − 2m

r̄

)

dw2 + 2 dw dr̄ − r̄2dσ2, g̃ =

(

1 − 2m

r̄

)

dv2 − 2 dvdr̄ − r̄2dσ2,

(78)

respectively. These extend analytically into regions where r̄ ≤ 2m. The re-
tarded null coordinate w extends smoothly through J + and through the past
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horizon to the past singularity, while the advanced null coordinate v extends
smoothly through J− and the future horizon to the future singularity.

The transformation

s =
( r̄

2m
− 1

)1/2

exp(
r̄

4m
) sinh(

t

4m
), ρ =

( r̄

2m
− 1

)1/2

exp(
r̄

4m
) cosh(

t

4m
),

applied to (76) with m > 0 produces the Schwarzschild-Kruskal line element

g̃ = K (d s2 − d ρ2) − r̄2 d σ2 with K =
32m3

r̄
exp(− r̄

2m
), r̄ = k(ρ2 − s2),

(79)

where k denotes the inverse of the map ]0,∞[ ∋ r̄ −→ ( r̄
2m − 1) exp( r̄

2m ) ∈
]−1,∞[. This line element extends analytically to a non-degenerate line element
on the domain ρ2 − s2 > −1.

The coordinate r, given for r̄ > 2m by

r̄ =
1

r

(

r +
m

2

)2

resp. r =
1

2

(

r̄ −m+
√

r̄(r̄ − 2m)
)

, (80)

yields the isotropic Schwarzschild line element

g̃ =

(

1 − m
2 r

1 + m
2 r

)2

d t2 − (1 +
m

2 r
)4(d r2 + r2d σ2), r >

m

2
. (81)

On the hypersurface {t = 0} it induces initial data which can be extended
analytically to an initial data set

(S̃ = R
3 \ {0}, h̃ = −(1 +

m

2 r
)4 (d r2 + r2 d σ2), χ̃ = 0), (82)

where χ̃ denotes the second fundamental form. These data may be identified
isometrically with the initial data induced by the Schwarzschild-Kruskal metric
79 on the hypersurface {s = 0} by the transformation

ρ =
r − m

2√
2mr

exp(
(r + m

2 )2

4mr
).

In the following discussions one may think of the conformal geodesics as be-
ing constructed on the Schwarzschild-Kerr solution (79) with initial data being
prescribed on the hypersurface S̃ = {s = 0}. It will be convenient, however,
to specify them in terms of the coordinate r in (82). To discuss the different
aspects of these curves we will use those coordinates which will appear to give
the simplest formulae. Because of the symmetries s → −s and ρ → −ρ, it
will be sufficient to consider the region {s ≥ 0, ρ ≥ 0} if we prescibe data for
the conformal geodesics which respect these symmetries. The data will also be
spherically symmetric.

The function r̄ extends by the first of equations (80) to an analytic function
on S̃ which takes its minimum r̄min = 2m at the “throat” {r = rh ≡ m

2 }. The
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space (S̃, h̃) has two asymptotically flat ends. In terms of (82) the end i1 at
r = ∞ has the “usual” representation, while the end i2 at r = 0 has a coordinate
representation adapted to the metric (1 + m

2 r )
−4 h̃ which may be thought of as

a conformal compactification of h̃ at the end i2. The map

r → (
m

2
)2

1

r
, (83)

which corresponds to the isometry ρ → −ρ allows us to show the equivalence
of the spatial infinities i1 and i2. It leaves r̄ invariant and has {r = rh} as its
fixed point set.

4.1 Conformally compactified Schwarzschild-Kruskal data

and initial data for a congruence of conformal geodesics

We shall in the following prescribe initial data on S̃ for a congruence of conformal
geodesics whose g̃-adapted initial vectors x̄′ coincide with the future directed
unit normals of S̃. By r̄∗ will be denoted the restriction to S̃ of the function r̄ on
the Schwarzschild-Kruskal space-time and r will be considered as a coordinate
on S̃. For the conformal factor we choose

Θ∗ =
1

r̄2∗
=

r2

(r + m
2 )4

(84)

which implies

−Θ2
∗ h̃ = (r +

m

2
)−4 (d r2 + r2 d σ2). (85)

It follows that the transformation r = tan χ
2 , 0 < χ < π (and, to get simple

equations, m
2 = tan µ

2 ) could be used to make the conformal compactification
achieved by Θ∗ manifest in terms of coordinates, since it realizes an embedding
of S̃ into the unit 3-sphere S3 with the poles at χ = 0, χ = π corresponding to
the ends i2, i1 respectively.

The choice (84) is particularly well adapted to the Schwarzschild-Kruskal
geometry and implies simple formulae. However, it is important to note that
our basic results do not depend on it. For the analysis of the field near space-like
infinity other choices might be preferable (cf. [5]), because the metric (85) does
not extend smoothly to space-like infinity.

We set furthermore

b∗ = b̂∗ = Θ−1
∗ dΘ∗ = −2 (r − m

2 )

r (r + m
2 )

d r, (86)

and, observing F ≡ 1 − 2m/r̄∗ = (r − m
2 )2 (r + m

2 )−2, choose

β =
2 r (r − m

2 )

(r + m
2 )3

, (87)
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such that β is analytic on S̃ and β =

√

−g̃♯(b̂∗, b̂∗) = 2
r̄∗

√

F (r̄∗) > 0 near the

end i1 in analogy to our procedure on Minkowski space. If h̃ is used to raise
indices, b̂♯∗ is outward pointing at the ends i1, i2, as it should. With the choices
above the general formula (59) reduces to

Θ = F (r̄∗)

(

(
2 Θ∗
β

)2 − τ2

)

, (88)

where functions with subscript ∗ are assumed to be constant along the conformal
geodesics. Note that our initial data and gauge conditions are preserved by
the isometry (83), and are adapted to the spherical symmetry and the time
reflection symmetry. We have β → −β under (83) and β(r) = 0 precisely for
r = m

2 . This means that conformal geodesic satisfying the initial data above at
points with r = m

2 will be metric geodesics in the hypersurface {ρ = 0} of the
Schwarzschild-Kruskal space-time.

4.2 The conformal geodesic equations on the Schwarzschild

space-time

To discuss conformal geodesics on the Schwarzschild space-time we write the
g̃-adapted form of the conformal geodesic equation in terms of the line element
(76), which can be written in the form (25) with the metric h given by

h = F dt2 − 1

F
dr̄2, F = (1 − 2m

r̄
).

Initial data for the conformal geodesics will be given on the hypersurface S̃ =
{t = 0} with τ∗ = 0, τ̄∗ = 0 on S̃.

Because of (72) (where due to our conventions we have to use the minus
sign), equations (73) take the form

t′′ +
F,r̄
F

r̄′ t′ =
1

F
β r̄′, (89)

r̄′′ − F,r̄
2F

(r̄′)2 +
F F,r̄

2
(t′)2 = F β t′, (90)

with β satisfying (56). Assuming on S̃ that the initial vector is the future
directed unit normal to S̃, the initial data on S̃ are given by

t∗ = 0, r̄∗ > 2m, t′∗ =
1

√

F (r̄∗)
, r̄′∗ = 0, b̂t∗ = 0, b̂r̄∗ = −β(r̄∗)

1
√

F (r̄∗)
.

The g̃-normalization gives

F (t′)2 − 1

F
(r̄′)2 = 1. (91)
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Solving for t′ > 0 and inserting the result into equation (90) gives

0 = r̄′′ +
1

2
F,r̄ −β

√

F + (r̄′)2. (92)

Dividing by the square root and multiplying with r̄′ leads to d(
√

F + (r̄′)2 −
β r̄)/d τ̄ = 0, whence

√

F + (r̄′)2 − β r̄ = γ, (93)

with the constant of integration given by γ =
√

F (r̄∗)−β(r̄∗) r̄∗. It follows that

r̄′ = ±
√

(γ + β r̄)2 − F (r̄), (94)

with a sign which depends on the value of r̄∗.
Given r̄(τ̄ ), we obtain t(τ̄ ) by integrating (t′)2 = (β r̄+γ)2 F−2 for the given

initial conditions. However, the integration of t is in general not particularly
interesting, because t does neither extend smoothly through J+ nor through
the future horizon.

To study the extension of the conformal geodesics through J + it is conve-
nient to use the first of the line elements (78). The conformal geodesic equations
then read

w′′ − 1

2
F,r̄ (w′)2 = −β w′, r̄′′ +

1

2
F F,r̄ (w′)2 + F,r̄ r̄

′ w′ = β (r̄′ + F w′).

These equations imply for r̄ the equations obtained above. The normalization
of the tangent vector reads F (w′)2 + 2w′ r̄′ = 1. Solving for w′ and requiring
w′ > 0 on S̃ gives

w′ =
1

F
(
√

F + (r̄′)2 − r̄′) =
1

√

F + (r̄′)2 + r̄′
, (95)

which has to be integrated with the initial conditions w∗ = −r̄∗ − 2m log(r̄∗ −
2m). Thus w(τ̄ ) can be obtained by a simple integration once r̄(τ̄ ) has been
determined.

To study the extension through the horizon, it is convenient to use the second
of the line elements (78). The conformal geodesic equations then read

v′′ +
1

2
F,r̄ (v′)2 = β v′, r̄′′ +

1

2
F F,r̄ (v′)2 − F,r̄ r̄

′ v′ = −β (r̄′ − F v′).

The normalization of the tangent vector gives now F (v′)2 − 2 v′ r̄′ = 1, which
leads to the equation

v′ =
1

F
(
√

F + (r̄′)2 + r̄′), (96)

which has to be integrated with the initial conditions v∗ = r̄∗+2m log(r̄∗−2m).
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4.2.1 Conformal geodesics on which r̄ is constant

The explicit solution of the key equation (94) requires the discussion of three
different cases. We first consider the borderline solution.

A change of the sign in (94) should occur near conformal geodesics along
which r̄ is constant. Requiring r̄′ = 0 in (92) gives 1/2F ′ = β

√
F . With β

given by (87) this condition has the solution

r̄∗ = r̂ ≡ 5

2
m resp. r = r± ≡ 3 ±

√
5

4
m.

Inserting r̄′ = 0 into (91), using (60) with τ∗ = 0 , τ̄∗ = 0 , and observing (84),
(87) with r = r+ gives on the conformal geodesics on which r̄ = r̂

t =
τ̄

√

F (r̂)
=

25

4
m log

(

2 Θ∗ + β τ

2 Θ∗ − β τ

)

,

and thus t→ ∞ as τ → τi ≡ 2Θ∗(r+)
β(r+) .

It follows now from equations (92), (94) that each of the conformal geodesics
specified by our data falls into one of the following four classes: (i) the confor-
mal geodesics passing through points with r = m

2 , which coincide with metric
geodesics in the Schwarzschild-Kruskal space-time and approach the singular-
ity, (ii) the conformal geodesics passing through points with r = r±, which are
tangent to the static Killing field ∂t and approach time-like infinity for the finite
value τi of their parameters, (iii) the conformal geodesics passing through points
with 0 < r < r− or with r+ < r < ∞, for which r̄ is monotonically increasing,
(iv) the conformal geodesics passing through points with r− < r < m

2 or with
m
2 < r < r+, for which r̄ is monotonically decreasing. Though it will be seen
below that the integration procedure for (94) depends on the classes specified
above, it is clear that our data, which are smooth on S̃, determine a smooth
congruence of conformal geodesics which is free of caustics near S̃.

4.2.2 Conformal geodesics on which r̄ is increasing

Because of the symmetry of the data it is sufficient to discuss the case r+ <
r <∞. Under this assumption the “+” sign holds in (94). The radicand in this
equation factorizes as

(γ + β r̄)2 − F (r̄) =
β2

r̄
(r̄ − r̄∗) (r̄ − α+) (r̄ − α−). (97)

Because γ = −
√

F (r̄∗), it follows that

α± = ±α with α =

√

m r̄∗
2F (r̄∗)

.

Since α < r̄∗ and α → r̂ as r̄∗ → r̂, the polynomial on the right hand side of
(97) has under our assumption three different zeros while in the limit above two
zeros will coincide and the integration procedure needs to be changed.
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The use of the notation

t ≡
(

(α + r̄) r̄∗
(α + r̄∗) r̄

)
1
2

, k ≡
(

1

2
(1 +

α

r̄∗
)

)
1
2

=

(

1

2
(1 +

√

m

2 r̄∗ − 4m
)

)
1
2

, e ≡
√

2 k,

in (94) gives, after an integration,

β τ̄ =
2

e

√

(e2 − 1) (e2 − k2)

1
e

√
1+ α

r̄
∫

1

d t

(1 − e2 t2)
√

(1 − t2) (1 − k2 t2)
,

where, by our assumptions, 1 < e <
√

2, 1√
2
< k < 1. It is well known how to

express the elliptic integral of the third kind which occurs above in terms of theta
functions (for all manipulations involving elliptic integrals, elliptic functions,
theta functions, etc. we refer to [9]). The substition t = sn(u, k) with Jacobi’s
elliptic function sn yields

β τ̄ =
2

e

√

(e2 − 1) (e2 − k2)

u
∫

K

d v

(1 − e2 sn2v)
(98)

= −2Z(c) (u−K) + log

(

θ1(
π

2K (u + c))

θ1(
π

2K (u − c))

)

.

Here Z denotes Jacobi’s zeta function

Z(u) =
d

d u
(log θ4(

π

2

u

K
)) =

2 π

K
sin(π

u

K
)

∞
∑

n=1

q2n−1

1 − 2 q2n−1 cos(π u
K ) + q4n−2

.

Thus Z is an analytic function on the real line with Z(u) > 0 for 0 < u <
K and Z(0) = Z(K) = 0. The theta functions are given in their product
representations by

θ1(z) = 2 q
1
4 sin z

∞
∏

n=1

(1 − q2n) (1 − 2 q2n cos 2 z + q4n),

θ2(z) = 2 q
1
4 cos z

∞
∏

n=1

(1 − q2n) (1 + 2 q2n cos 2 z + q4n),

θ4(z) =
∞
∏

n=1

(1 − q2n) (1 − 2 q2n−1 cos 2 z + q4n−2),

with q = exp(−π K′

K ). The constant K > 0 is the complete integral of the first
kind

K(k) =

1
∫

0

d t
√

(1 − t2) (1 − k2 t2)
,

25



K ′ = K(k′) with k
′2 = 1−k2, and c is the (unique) number in the open interval

]0,K[ satisfying sn (c, k) = 1/e.
With τ∗ = 0, τ̄∗ = 0, (84), and (87) we get from equation (60)

β τ̄ = − log g(τ) with g(τ) ≡ 2 Θ∗ − β τ

2 Θ∗ + β τ
. (99)

Setting now x = K − u to exhibit the symmetries of the solution, we obtain

τ = G(x, k) ≡ 2 Θ∗
β

θ2(
π (c−x)

2K ) exZ(c) − θ2(
π (c+x)

2K ) e−xZ(c)

θ2(
π (c−x)

2K ) exZ(c) + θ2(
π (c+x)

2K ) e−xZ(c)
.

Since the denominator of the function G is positive in an open neighbourhood
of the closed interval [−(K − c),K − c], the function G is analytic there. While
τ̄ → ∞ as u→ c and τ̄ → −∞ as u→ 2K−c by (98), we have now τ → ± 2Θ∗

β ,

whence τ̄ → ±∞, as x → ±(K − c). It follows from the ODE satisfied by r̄
that we can solve the equation above for x(τ) with τ ∈ ] − 2 Θ∗

β , 2 Θ∗

β [. A direct

calculation shows that G′(x, k) > 0 at x = ±(K − c). This implies that x(τ)
extends as an analytic function into an open neighbourhood of [− 2Θ∗

β , 2Θ∗

β ]

Inserting now x(τ) into the equation t = sn(K − x, k), we finally get

r̄∗
r̄

= 1 − 2 (1 − k2) k2

2 k2 − 1

sn2(x(τ))

1 − k2 sn2(x(τ))
. (100)

In the limit when r → r+ we have k → 1 and thus sn(u, k) → tanhu. The
formula (100) thus suggests that the solution r̄(τ, r) of (100) approaches the
constant solution r̄ = r̂ in that limit, as we know already by general arguments.
However, since K → ∞ while c → 1/2 log((

√
2 + 1)/(

√
2 − 1)) as k → 1, the

precise behaviour of the solution in that limit requires a quite careful discussion
involving also the behaviour of G(x, k).

The right hand side of (100) is an analytic function of τ in an open intervall
containing [−τscri(r), τscri(r)], with τscri(r) ≡ 2Θ∗

β = r
(r+ m

2
) (r−m

2
) . It vanishes

precisely at the points τ = ±τscri at which the conformal factor (88) vanishes.
Furthermore, it depends analytically on r for r+ < r <∞. It follows that

r̄(r, τ)Θ(r, τ) is positive and analytic for r ∈]r+,∞[, τ ∈ [−τscri(r), τscri(r)].
(101)

Using the coordinate z = 1
r̄ in the first of the line elements (78) and rescaling

with the conformal factor Ω = z gives the smooth conformal representation

Ω2 g̃ = z2 (1 − 2mz) dw2 − 2 dw d z − d σ2, (102)

of the Schwarzschild metric which extends analytically through future null in-
finity, given here by J+ = {z = 0}.

Integrating (95) with r̄ given by (100) and writing the solution in terms of
z, we obtain our conformal geodesics in the form

τ → (w(τ, r), z(τ, r)). (103)
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From the discussion above it is clear that the first of the functions on the
right hand side is an analytic function of both variables for r ∈]r+,∞[, τ ∈
[−τscri(r), τscri(r)]. We show that this holds true also for the second function.
It is clear that the function w is analytic near S̃. Parametrizing w in terms of
z, we obtain from (94), (95)

dw

d z
= −

(

β2 (1 − r̄∗ z) (1 − α2 z2) + (β + γ z)
√

β2 (1 − r̄∗ z) (1 − α2 z2)
)−1

.

The assertion now follows because the function on the right hand side is analytic
for z in an open interval of the form ] − ǫ, 1

r̄∗
[ with some ǫ > 0.

It follows in particular that there exists a smooth function ŵ(r), with r ∈
]r+,∞[, such that w(τ, r) → ŵ(r) as τ → τscri (or, for symmetry reasons, as
τ → −τscri). We show that

ŵ(r) → ∞ as r → r+, ŵ(r) → −∞ as r → ∞.

The first assertion follows from the observation that

w = −r̂ − 2m log(r̂ − 2m) +
25

4
m log

(

2 Θ∗ + β τ

2 Θ∗ − β τ

)

,

along the conformal geodesic with r̄ = r̂ and the fact that the solutions are
jointly smooth in the initial data and the parameter. The second assertion
follows from a comparison of w with the solution to

d u

d z
= −

(

β2 (1 − r̄∗ z) (1 − (
α

r̄∗
)2) +

1

2

√

(1 − r̄∗ z) (1 − (
α

r̄∗
)2)

)−1

,

which satisfies u = w at z = 1
r̄∗

. Since 0 ≥ dw
d z ≥ d u

d z for z ∈ [0, 1
r̄∗

], it follows
that the value û(r) of u at z = 0 gives an upper estimate for ŵ(r). Since the
direct integration gives û(r) with û(r) → −∞ as r → ∞, the assertion follows.

4.2.3 Conformal geodesics on which r̄ is decreasing

It is sufficient to discuss the case m
2 < r < r−. Now (94) must hold with the

“−” sign. The function α in the factorization (97) then* satisfies r̄∗ < α and
α→ ∞ as r̄∗ → m

2 while α→ r̂ as r̄∗ → r̂. If we set

t ≡
(

1

2
(1 +

α

r̄
)

)
1
2

, k ≡
(

1

2
(1 +

α

r̄∗
)

)− 1
2

, e ≡
√

2,

such that e > 1, 0 < k < 1, the integration of (94) yields

β τ̄ =
√

2 (2 − k2)

1
e

√
1+ α

r̄
∫

1
k

d t

(t2 e2 − 1)
√

(t2 k2 − 1) (t2 − 1)
.
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The substitution k sn(u, k) = 1/t and c ∈]0,K[ such that sn(c, k) = 1/e give

β τ̄ = k2

√

2 − k2

2

K
∫

u

sn2v

1 − k2

2 sn2v
d v = −2Z(c) (u−K) + log

θ4

(

π (u+c)
2K

)

θ4

(

π (u−c)
2K

) .

Setting x = K − u and observing (99), we finally obtain

τ = F (x, k) ≡ 2 Θ∗
β

tanh



k2

√

2 − k2

2

x
∫

0

1 − sn2v

2 − k2 (1 + sn2v)
d v



 . (104)

The function F (x) is real analytic on R with F ′(x) ≥ 0 and F ′(x) = 0 iff
x = (2m + 1)K with m ∈ Z. Thus (104) can be solved to obtain an analytic
function x(τ) which maps the interval ] − τs, τs[, with 2 Θ∗/β < τs ≡ G(K, k),
diffeomorphically onto ] −K,K[. The solution can then be written

r̄ = r̄∗
(2 − k2) (1 − sn2(x(τ)))

2 − k2 (1 + sn2(x(τ)))
. (105)

From the discusssion above it follows that r̄(τ) → 0 and d r̄/d τ → ∓∞ as
τ → ±τs. Thus in this case there does not exists a smooth (though a continuous)
extension of r̄(τ) beyond its physical domain. The limit r → r+ implies k → 1.
In particular, it follows from (104), (105) that the right hand side of (105) goes
in this limit to r̂ for constant τ and τs → τi.

The limit r → m
2 implies k → 0. Since β = 0 at r = m

2 , the expression
for τs appears to give a nonsensical result at that point. However, we have
2 Θ∗ k2/β → 2/m. Expanding the right hand side of (104) and observing that
K(0) = π/2 thus gives τs → π/4m as r → m/2, consistent with the fact the
conformal geodesics approach in the limit metric geodesics with length τ̄ =

τs

Θ∗(r̄∗=2m) = mπ.

To follow the conformal geodesics through the horizon, one has to integrate
for given r̄(τ) the equation

v′ =
γ + β r̄ −

√

(γ + β r̄)2 − F (r̄)

F (r̄)
, (106)

whose right hand side defines a positive analytic function of r̄ for r̄ > 0. The
conformal geodesics are then obtained in the form

τ → x(τ, r) = (v(τ, r), r̄(τ, r)), (107)

where the function on the right hand side are analytic for (τ, r) with r ∈]m2 , r+[,
τ ∈ [0, τs(r)[.

4.3 Analytic coordinates covering the Schwarzschild-

Kruskal space-time and its null infinity

If we set now y1 = r, y2 = φ, y3 = θ on S̃, drag these coordinates along with
the congruence of conformal geodesics constructed in the previous section, and
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set y0 = τ , we obtain a smooth coordinate system near S̃. The purpose of the
following discussion is to establish the following result (we ignore here the co-
ordinate singularity arising from the use of coordinates on S2 which can easily
be removed):

The conformal Gauss system yν defines a smooth global coordinate system

on the Schwarzschild-Kruskal space-time which extends smoothly to null infinity.

It remains to be shown that the conformal geodesics of the congruence do
not develop caustics. Because of the symmetry of the functions (79) and of our
family of curves under s→ −s, ρ→ −ρ, it is sufficient, to control the behaviour
of the congruence on the subset {s ≥ 0, ρ ≥ 0} of the Schwarzschild-Kruskal
space-time. Since the coordinates yµ are regular near S̃, they are known to be
regular in particular near the set {s = 0, ρ = 0}. Therefore we can work with
the coordinates w, r̄ or z, r̄ or v, r̄ respectively.

Using the functions on the right hand sides of (103) and (107), we can in
principle express the corresponding line elements in terms of the coordinates yµ.
Though the resulting metric coefficients will be smooth where (103) and (107)
are analytic, the Jacobian of the transformation may drop rank at various places
and we may end up with a degenerate representation of the metric. Having
available the explicit solution, we could try to check this by a direct calculation.
Since the explicit calculation will be tedious and, in particular, because this
method will not apply to more general cases, we prefer to employ an argument
which is similar to the analysis of the behaviour of metric geodesics congruences
in terms of the Jacobi equation.

Consider the transformation provided by (107). We need to show that the
tangent vector field ẋ = Θ−1 x̄′ = Θ−1X and the connecting vector field x,r =
x̄,r− ẋ τ,r = Z− ẋ τ,r are linearly independent on their domain of definition. In
terms of the 2-form (71) (with h = F d v2 −2 d v d r̄, x0 = v, x1 = r̄) this can be
expressed as the requirement that the invariant Θ−1 ǫh(X,Z) does not vanish.
In the case of (103) the nondegeneracy up to and in fact beyond null infinity
would follow if it could be shown that

−(r̄Θ)2 (ẇ z,r − ż w,r) 6= 0 for r∗ ∈]r+,∞[, τ ∈ [0, τscri(r)].

If z is replaced by r̄ again, this condition translates in terms of x(τ, r) =
(v(τ, r), r̄(τ, r)) and (71) (with h = F dw2 + 2 dw d r̄, x0 = w, x1 = r̄) into the
requirement that

0 6= ǫΘ2h(ẋ, x,r) = Θ ǫh(X,Z),

in the domain given above. Here the factor Θ is of course most significant
because it vanishes at τscri.

The proof that these requirements are met by our transformations relies on a
differential equation satisfied by ǫh(X,Z). To make use of (75), we observe that
the various representations of the Schwarzschild metric with warping function

29



f = r̄ and second metric k = −dσ2 give the value c = 1
2 f

2DAD
Af = −m for

the constant in (69). It follows

DX ǫh(X,Z) = ǫh(DX X,Z) + ǫh(X,DX Z) = ǫh(−β ǫ(X, .)♯, Z) + ǫh(X,DX Z)

= −β h(X,Z) + ǫh(X,DX Z),

and similarly

DX DX ǫh(X,Z) =

β2 ǫh(X,Z) − 2 β h(X,DX Z) + ǫh(X,DX DX Z)

= (β2 +
2m

r̄3
) ǫh(X,Z) +DZ β,

where in the second equation DX Z = DZ X , h(X,X) = 1, and (75) have been
used. The invariant ǫh(X,Z) thus satisfies the ODE

DX DX ǫh(X,Z) − (β2 + k) ǫh(X,Z) = DZ β,

with k = 2m
r̄3 , and on S̃ the initial conditions

ǫh(X,Z)∗ =
(r + m

2 )2

r2
> 1, (DX ǫh(X,Z))∗ = 0 for r ≥ m

2
.

The quantity DZβ, which is constant along the conformal geodesics, is given by

DZβ = β,r = −2
r2 − 2mr + m2

4

(r + m
2 )4

.

It vanishes at r̆± ≡ 2±
√

3
2 m, where r̄(r̆±) = 3m > r̂, and satisfies

DZβ > 0 for
m

2
≤ r < r̆+, DZβ < 0 for r̆+ < r.

A lower estimate for ǫh(X,Z) can be obtained as follows. Denote by u and
v the solutions to the ODE problems

w′′ − (β2 + k)w = f, w(0) = 1, w′(0) = 0,

where f = 0 in the case of u and f = −1 in the case of v. Then u is strictly
increasing with u ≥ cosh(β τ̄ ) for τ̄ ≥ 0, and ǫh(X,Z) can be given in the form

ǫh(X,Z) = u
(

ǫh(X,Z)∗ + (1 − v

u
)β,χ

)

. (108)

Since (u− v)′′− (β2 + k) (u− v) = 1 and the function u− v has vanishing initial
conditions at τ̄ = 0, it follows that u ≥ v for τ̄ ≥ 0. Since v changes its sign, a
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further estimate is needed. We derive a representation of v in terms of u. Since
u > 0 there exists a function f with v = f u. The ODE’s satisfied by u and v
imply for f the equation

f ′′ = −2
u′

u
f ′ − 1

u
,

which has because of the initial conditions for u and v the solution

f = 1 −
∫ τ̄

0

(
1

u2

∫ τ ′

0

u dτ ′′) dτ ′.

Since u is strictly increasing, it follows

0 ≤ 1 − v

u
=

∫ τ̄

0

(
1

u2

∫ τ ′

0

u dτ ′′) dτ ′ ≤
∫ τ̄

0

1

u2
u τ ′ dτ ′ ≤

∫ τ̄

0

τ ′

cosh(β τ ′)
dτ ′

≤ 2

∫ τ̄

0

τ ′ e−β τ
′

dτ ′ =
2

β2
(1 − (β τ̄ + 1) e−β τ̄ ) for τ̄ ≥ 0,

which implies

0 ≤ 1 − v

u
≤ 2

β2
. (109)

A direct calculation gives −1 < 2 β−2DZ β < 0 for r > r̆+. It follows that

ǫh(X,Z)∗ + (1 − v

u
)β,χ ≥ ǫh(X,Z)∗ for

m

2
< r ≤ r̆+,

ǫh(X,Z)∗ + (1 − v

u
)β,χ ≥ ǫh(X,Z)∗ − 1 =

mr∗ + m2

4

r2∗
for r̆+ < r.

Since (62) gives under our assumptions

Θ =
Θ∗

cosh2(β2 τ̄)
, (110)

(108) implies that for given r > m
2 there is a constant c > 0 such that

Θ ǫh(X,Z) ≥ Θ∗c
cosh(β τ̄)

cosh2(β2 τ̄ )
≥ Θ∗c.

In the region covered by (107) it suffices of course to get a lower estimate for
ǫh(X,Z), because Θ is positive where the conformal geodesics approach the
singularity. On the curves with r̄ = r̂, which seperate the domains where (103)
and (107) are valid, c2 ≡ β2 + k with c = const. > 0 and thus

Θ ǫh(X,Z) = Θ (ǫh(X,Z)∗ cosh(c τ̄ ) + c−2DZβ (cosh(c τ̄ ) − 1)

≥ Θ∗ ǫh(X,Z)∗ > 0.

Since β = 0 but k ≥ k∗ = (2m)−2, DZ β = m−2 on the curves starting with
r = m

2 , it follows that Θ = Θ∗ = (2m)−2 and a similar result is obtained.
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4.4 Global numerical evolution for a class of standard

Cauchy data

The methods described above offer a possibility to study in detail the complete
numerical evolution of three-dimensional space-times without symmetries which
are determined by certain asymptotically flat Cauchy data. In [1] has been
shown the existence of smooth, time-symmetric, asymptotically flat solutions of
the vacuum constraint which coincide with certain given time-symmetric initial
data on compact sets and with Schwarzschild data in a neighbourhood of space-
like infinity. If these data can be constructed numerically, it is easy to determine
numerically hyperboloidal initial data implied by the Cauchy data.

Consider the time symmetric initial data set (82). The set S̃ can be em-
bedded by the transformation r = tan χ

2 into the 3-dimensional standard unit
sphere S = S3. With the conformal factor ΘS

∗ = 2 (1 + r2)−1 (1 + m
2 r )

−2 =

2 cos2 χ
2 (1 + m

2 cot χ2 )−2, the rescaled metric (ΘS
∗ )2 h̃ = −(dχ2 + sin2 χdσ2)

coincides with the restriction of the standard metric on S3 to the set S \{i0, iπ}
, where i0 = {χ = 0}, iπ = {χ = π}. If we set m = 0, we get Minkowski data
and conformally compactified Minkowski data respectively.

For given χ0 with π
2 < χ0 < π let ξ be a smooth function on R such that

ξ(x) = 0 for x ≤ π
2 , ξ(x) = 1 for x ≥ χ0 and such that ξ′ ≥ 0. We define ψ ∈

C∞(]−∞, π[) by setting it equal to 1 for x ≤ π
2 and equal to 1+ξ(x) (cot x2 −1)

for π
2 < x < π. Then ψ′ ≤ 0 and 1

2 ≤M ≡ supx<π
dψ
d x (x) <∞.

Suppose we are given time symmetric initial data on R
3 which agree with

Schwarzschild data of mass m < 1
M near space-like infinity and are such that

the metric h̃, suitably written in terms of the coordinates φ, θ, χ on S, satisfies

h̃ = − (1 + m
2 cot χ2 )4

4 cos4 χ
2

(dχ2 + sin2 χdσ2) for χ > χ0. (111)

The conformal factor

Θ∗ =
2 cos2 χ

2

(1 + m
2 ψ(χ))2

, (112)

is smooth on S \{iπ}, coincides for χ ≥ χ0 with ΘS
∗ , has non-vanishing gradient

in S \ {i0, iπ} and goes to zero at iπ. It defines a conformal compactification of
the data such that h = Θ2

∗ h̃ coincides with the standard metric of the 3-sphere
for χ > χ0. We choose initial data b∗ for the 1-form field which annihilate the
normals of the initial hypersurface and satisfy b∗ = Θ−1

∗ dΘ∗ in S \ {iπ}.
Since the time evolution of the data will be Schwarzschild near iπ, it can

be determined there by the methods described above. It is clear that we can
construct a smooth hyperboloidal hypersurface, which coincides with S on the
the set {χ ≤ χ0} and extends to the future null infinity of the Schwarzschild
part. It should not be difficult to determine the corresponding initial data for
the conformal field equations, possibly by a numerical integration (as shown in
[5], this reduces to solving a system of ODE’s). Since there are codes available
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to evolve such data numerically (cf. [2], [8] and the references given there) we
could in principle calculate their evolution in time.

If such data, satisfying (111) for a fixed χ0, can be constructed for sufficiently
small mass m they will be close to corresponding Minkowskian data and the
result of [3] suggests that they will evolve into solutions possessing complete
past and future null infinities and regular points i± at future and past time-like
infinity. If we use a gauge in which b∗ picks up on S \{iπ} a suitable component
in the direction of the tangent vectors of the conformal geodesics, it will be
possible to construct a gauge of the type considered above which smoothly
covers the complete future of the initial hypersurface as well as J+ ∪{i+}. The
work in [8] suggests that such solutions can be calculated numerically in their
entirety.

The numerical calculation of such space-time is, of course, not an end in
itself. In fact, the solution will have somewhat curious features. It follows from
[6] that they will have vanishing Newman-Penrose constants. If the solution
admit regular points i+, it then follows from [7] that the rescaled conformal Weyl
tensor will vanish at those points. This situation, which is more special than the
one considered in [8], suggests that the method of gluing a Schwarzschild end to
a given solution of the constraints produces data of rather restricted radiation
content. However, such calculations will allow us to perform detailed tests of
the code under completely controlled assumptions and to study the robustness
of the code and of the gauge conditions by choosing data with an increasing
value of the mass which eventually yields the time evolution of a collapsing
gravitational field.

5 Concluding remarks

We have described in detail the construction of a global system of conformal
Gauss coordinates on the Schwarzschild-Kruskal solution which extend smoothly
and without degeneracy through null infinity. Furthermore, we have shown that
the conformal factor naturally associated with this system defines a smooth
conformal extension of the Schwarzschild-Kruskal space-time which gives to null
infinity a finite location in the new coordinates which is determined by our choice
of initial data.

We did not try to work out in detail the behaviour of the fields in the
conformal extension constructed here. An analysis of the fields near space-like
infinity can be found in [5]. The behaviour of the fields near time-like infinity,
which is of considerable interest for the numerical calculation of space-times,
has still to be investigated.

There is a property of the Gauss system which we only indicated but which
may turn out to be quite important. While the regularity of a conformal Gauss
systems is essentially decided by its underlying conformal geodesics (considered
here as point sets), there always exists a huge class of different time slicings
based on one and the same underlying congruence of conformal geodesics. The
consequences of this freedom still have to be explored.
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Of course, there are many more such coordinate systems. It would be in-
teresting to see whether the initial data for congruences of conformal geodesics
which lead to such coordinates can be characterized in a general way.
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