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Abstract

Three explicit and equivalent representations for the monodromy of the confor-
mal blocks in the SL(2, C)/SU(2) WZNW model are proposed in terms of the same
quantity computed in Liouville field theory. We show that there are two possible
fusion matrices in this model. This is due to the fact that the conformal blocks,
being solutions to the Knizhnik-Zamolodchikov equation, have a singularity when
the SL(2, C) isospin coordinate x equals the worldsheet variable z. We study the
asymptotic behaviour of the conformal block when x goes to z. The obtained rela-
tion inserted into a four point correlation function in the SL(2, C)/SU(2) WZNW
model gives some expression in terms of two correlation functions in Liouville field
theory.

Introduction

The SL(2,C)/SU(2) (or H+
3 ) WZNW model is the second simplest non compact Confor-

mal Field Theory (i.e. with a continuous spectrum of primary fields) besides Liouville field
theory. This model plays a role in condensed matter physics, as it is believed to describe
the plateau transitions in the Integer Quantum Hall effect [1]. It is also intensively studied

1e-mail address: bponsot@aei-potsdam.mpg.de
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in the context of string theory on AdS3 (see for example [2] for a non exhaustive list of
references). As its characteristics are closely related to those of Liouville field theory, one
may wonder to what extent it is possible to apply to the H+

3 WZNW model the techniques
developped for Liouville field theory (computation of the bulk three point function: [3,4],
bulk one point function in presence of a boundary and boundary two point function [5],
Liouville field theory on the pseudosphere [6], bulk-boundary function [7], boundary three
point function [8], fusion coefficients and proof for crossing symmetry [9, 10]). It turns
out in the former model that the construction for the structure constants [11, 2] can be
achieved mutatis mutandis along the same lines. Less staightforward is a proof for cross-
ing symmetry, as well as the construction of the fusion matrix. In Liouville field theory,
the fusion matrix was constructed as Racah-Wigner coefficients for some well chosen con-
tinuous representations of the quantum group Uq(sl(2,R)) [9, 10]; in this case the proof
for crossing symmetry boiled down to an orthogonality relation for these Racah-Wigner
coefficients. In the H+

3 WZNW model, it was proposed in [12] as a quantum group struc-
ture the ”pair” Uq(sl(2)), Uq′(osp(1|2)). We will not follow this approach here, as it turns
out that there is a way to avoid quantum group methods to construct the fusion matrix:
as it was noticed in [1] and [13], it is possible to adapt to the H+

3 WZNW model some
observation previously made by Zamolodchikov and Fateev in [14] in the context of the
compact SU(2) WZNW model: these authors observed that there exists a 5 point confor-
mal block in the (k+2,1) Minimal Model that satisfies the same Knizhnik-Zamolodchikov
equation [15] as the 4 point conformal block in the SU(2) WZNW model. The adaptation
of this relation to the non compact case is straighforward and allowed to prove crossing
symmetry in the H+

3 WZNW model [13], as a consequence from a similar property of a 5
point function in Liouville field theory. Actually, this method also permits2 to construct
the monodromy of the conformal blocks in the H+

3 WZNW model (i.e. the fusion matrix,
also called fusion coefficients) from the knowledge of the monodromy for a special 5 point
function in Liouville field theory. Let us emphasize on the fact that the fusion matrix
is the most important quantity of a CFT on genus zero, as it encodes the information
on degenerate representations, fusion rules, intermediate states appearing in a four point
function; it also permits the computation of boundary structure constants and enters the
consistency relations satisfied by structure constants [16, 17].
In the work3 [18] is covered the case where one of the external spins corresponds to a
degenerate ŝl(2) representation4, the other spins being generic. The fusion matrix is de-
rived explicitly thanks to the explicit construction of the conformal blocks in this case
(see also [19]), enlarging the method of screening integrals developped in [20]. These
conformal blocks reproduced the fusion rules for ŝl(2) given in [21].
In the present article, we will consider the problem in its full generality when all the
external spins are generic: there is no formula known for the conformal blocks in gen-
eral and the monodromy is infinite dimensional. The paper is organized as follows: in
the first section we will recall some useful information about Liouville field theory and

2This was first observed by J. Teschner.
3I thank V. B. Petkova for pointing out this reference, as well as the work [19].
4Degeneracy arises due to the existence of null vectors.
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the H+
3 WZNW model. In section two we will propose three explicit formulas for the

monodromy of the conformal blocks in H+
3 WZNW, constructed in terms of two Liou-

ville fusion matrices. Let us mention that the case we have here is somewhat different to
all other known cases so far (i.e. minimal models, SU(2) WZNW model, Liouville field
theory), as there are two possible fusion matrices for this model5 (this was first noticed
in [18, 19]): this comes from the fact that the conformal blocks, in addition to the usual
singularities at z = 0, 1,∞, have also a singularity at z = x (this plays an important
role in [22]), where z is the worldsheet variable, and x the isospin variable (or space-time
coordinate). When deriving the formula for the fusion matrix, there are two cases to
consider, depending whether Im(z− x) is positive or negative. This accounts for a phase
factor in the formulas, which is different according to the sign of Im(z − x). In section
three, we will study the asymptotic behavior of the conformal blocks in the limit where x
goes to z, and we will see that they can be expressed as a sum of two Liouville conformal
blocks. The first term is regular in this limit, whereas the second term contains some
singularity. This limit is interpreted as quantum hamiltonian reduction in [23] (with the
external spins satisfying charge conservation conditions). The obtained relation permits
us to rewrite a four point correlation function in the limit x goes to z as a sum over two
Liouville correlation functions. We finish by some concluding remarks; appendix A con-
tains some particular cases of the Liouville fusion coefficients needed in the main text to
derive our main result, in appendix B we recover some well known special cases from our
H+

3 WZNW fusion matrix. Finally, in appendix C we present a way to find degenerate
representations and fusion rules for ŝl(2) from degenerate representations and fusion rules
for the Virasoro algebra.

1 Requisites

1.1 Liouville field theory

Let the Vα(z, z̄) be the primary fields with conformal weight ∆L
α = α(Q − α) where

Q = b+ b−1; b is the coupling constant in Liouville field theory that we shall call for short
LFT. The central charge of the Virasoro algebra is c = 1 + 6Q2.
Let

〈Vα4(∞)Vα3(1)Vα2(z, z̄)Vα1(0)〉 ≡ Vα4,α3,α2,α1(z, z̄)

denote a four point correlation function in LFT and

F s
α21

(α1, α2, α3, α4|z) (1)

be the corresponding conformal block in the s-channel. The conformal block is completly
determined by the conformal symmetry (although there is no known closed form for it in
general), and is normalized such that

F s
α21

(α1, α2, α3, α4|z) ∼z→0 z
∆L

α21
−∆L

α1
−∆L

α2 (1 + O(z)) (2)
5We consider here the two most natural choices for the cuts, as in [26].
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Let us note that the Liouville conformal block depends on conformal weights only.
There exist [24] invertible fusion transformations between s- and t-channel conformal
blocks, defining the Liouville fusion matrix:

F s
α21

(α1, α2, α3, α4|z) =

∫

Q

2
+iR+

dα32F
L
α21α32

[

α3 α2

α4 α1

]

F t
α32

(α1, α2, α3, α4|1 − z) (3)

The explicit expression for the LFT fusion matrix was given in [9], in terms of a b-deformed

4F3 hypergeometric function in the Barnes representation:

FL
α21α32

[

α3 α2

α4 α1

]

=

Γb(2Q− α3 − α2 − α32)Γb(α3 + α32 − α2)Γb(Q− α2 − α32 + α3)Γb(Q− α3 − α2 + α32)

Γb(2Q− α1 − α2 − α21)Γb(α1 + α21 − α2)Γb(Q− α2 − α21 + α1)Γb(Q− α2 − α1 + α21)

Γb(Q− α32 − α1 + α4)Γb(α32 + α1 + α4 −Q)Γb(α1 + α4 − α32)Γb(α4 + α32 − α1)

Γb(Q− α21 − α3 + α4)Γb(α21 + α3 + α4 −Q)Γb(α3 + α4 − α21)Γb(α21 + α4 − α3)

Γb(2Q− 2α21)Γb(2α21)

Γb(Q− 2α32)Γb(2α32 −Q)

1

i

i∞
∫

−i∞

ds
Sb(U1 + s)Sb(U2 + s)Sb(U3 + s)Sb(U4 + s)

Sb(V1 + s)Sb(V2 + s)Sb(V3 + s)Sb(Q+ s)

(4)

with
U1 = α21 + α1 − α2 V1 = Q+ α21 − α32 − α2 + α4

U2 = Q+ α21 − α2 − α1 V2 = α21 + α32 + α4 − α2

U3 = α21 + α3 + α4 −Q V3 = 2α21

U4 = α21 − α3 + α4

The special function entering the formula above is Γb(x) ≡ Γ2(x|b,b−1)
Γ2(Q/2|b,b−1)

, where Γ2(x|ω1, ω2)

is the Double Gamma function introduced by Barnes [25], which definition is

logΓ2(x|ω1, ω2) =

(

∂

∂t

∞
∑

n1,n2=0

(x+ n1ω1 + n2ω2)
−t

)

t=0

The function Γb(x) such defined is such that Γb(x) ≡ Γb−1(x), and satisfies the following
functional relation

Γb(x+ b) =

√
2πbbx−

1
2

Γ(bx)
Γb(x) (5)

Γb(x) is a meromorphic function of x, which poles are located at x = −nb−mb−1, n,m ∈ N.

The function Sb(x) is defined as Sb(x) ≡ Γb(x)
Γb(Q−x)

.
Let us quote the following properties:
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- The Liouville fusion matrix is holomorphic in the following range [9]

|Re(α2 + α3 + α32 −Q)| < Q |Re(α4 + α1 + α32 −Q)| < Q
|Re(α2 + α3 − α32)| < Q |Re(α4 + α1 − α32)| < Q
|Re(α3 + α32 − α2)| < Q |Re(α4 + α32 − α1)| < Q
|Re(α2 + α32 − α3)| < Q |Re(α1 + α32 − α4)| < Q

- It satisfies the symmetry properties

FL
α21,α32

[

α3 α2

α4 α1

]

= FL
α21,α32

[

α4 α1

α3 α2

]

= FL
α21,α32

[

α2 α3

α1 α4

]

(6)

- As the conformal blocks depends on conformal weights only, so does the Liouville
fusion matrix, i.e. is invariant when one of the αi is substituted by Q− αi.

The LFT fusion matrix was built in terms of the Racah-Wigner coefficients for an ap-
propriate continuous series of representations of the quantum group Uq(sl(2,R)) with
deformation parameter q = eiπb2 [9,10]. This construction ensures that the fusion matrix
satisfies the set of Moore-Seiberg equations (or polynomial equations) [26].
Let us quote the pentagonal equation:

∫

Q

2
+iR+

dδ1F
L
β1δ1

[

α3 α2

β2 α1

]

FL
β2γ2

[

α4 δ1
α5 α1

]

FL
δ1γ1

[

α4 α3

γ2 α2

]

= FL
β2γ1

[

α4 α3

α5 β1

]

FL
β1γ2

[

γ1 α2

α5 α1

]

(7)

and the two hexagonal equations:

FL
α21,β

[

α4 α2

α3 α1

]

eiπǫ(∆L
α1

+∆L
α2

+∆L
α3

+∆L
α4

−∆L
α21

−∆L
β) =

∫

Q
2

+iR+

dα32F
L
α21,α32

[

α3 α2

α4 α1

]

FL
α32,β

[

α2 α4

α3 α1

]

eiπǫ∆α32 (8)

where ǫ = ±.
We will also need the Liouville three point function; an explicit formula for it was proposed
in [3, 4]

CL(α3, α2, α1) =
[

πµγ(b2)b2−2b2
]

Q−α1−α2−α3
b

.

Υ0Υb(2α1)Υb(2α2)Υb(2α3)

Υb(α1 + α2 + α3 −Q)Υb(α1 + α2 − α3)Υb(α1 + α3 − α2)Υb(α2 + α3 − α1)

(9)
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where Υb(x)
−1 = Γb(x)Γb(Q − x), γ(x) = Γ(x)

Γ(1−x)
,Υ0 = resx=0

dΥb(x)
dx

, and µ is the cosmo-
logical constant.
A four point function in LFT is written (if the Re(αi), i = 1 . . . 4 are close enough to Q/2)

Vα4,α3,α2,α1(z, z̄) =

=
1

2

∫

Q

2
+iR

dα21C
L(α4, α3, α21)C

L(Q− α21, α2, α1)|F s
α21

(α1, α2, α3, α4|z)|2 (10)

1.2 SL(2,C)/SU(2) WZNW model

Let us denote k the level of the current algebra; k is formally related to the coupling
constant b in LFT by k ≡ b−2 + 2. The central charge of the theory is c = 3k

k−2
. The

primary fields Φj(x|z) have conformal weight ∆j = −b2j(j + 1).
The action of the SL(2,C) currents on the primary fields is given by

Ja(z)Φj(x|w) ∼
Da

j

z − w
Φj(x|w), a = ±, 3 J̄a(z)Φj(x|w) ∼

D̄a
j

z̄ − w̄
Φj(x|w) (11)

where Da
j are differential operators representing the sl(2) algebra

D+
j =

∂

∂x
, D3

j = x
∂

∂x
+ j, D−

j = x2 ∂

∂x
+ 2jx, (12)

the D̄a
j their complex conjugates.

Let

〈

Φj4(∞|∞)Φj3(1|1)Φj2(x|z)Φj1(0|0)
〉

≡ Φj4,j3,j2,j1(x, x̄|z, z̄)

be a four point correlation function in the SL(2,C)/SU(2) WZNW model and
Gs

j21(j1, j2, j3, j4|x, z) be the corresponding s-channel conformal block. It is uniquely de-

fined as the solution of the Knizhnik-Zamolodchikov equation (z(z−1)∂z+b
2D(2)

x )Gs(x|z) =
0, where

D(2)
x = x(x− 1)(x− z)∂2

x

−[(κ− 1)(x2 − 2zx+ z) + 2j1x(z − 1) + 2j2x(x− 1) + 2j3z(x− 1)]∂x

+2j2κ(x− z) + 2j1j2(z − 1) + 2j2j3z (13)

where κ = j1 + j2 + j3 − j4, and the normalization prescription

Gs(x|z) ∼ z∆j21
−∆j2

−∆j1xj1+j2−j21(1 + O(x) + O(z)). (14)

in the limit of taking first z → 0, then x → 0. Let us note that the solutions of the KZ
equation have four singular points, located at z = 0, 1, x,∞, and that there is no closed
form known for the conformal blocks in general.
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The monodromy of the conformal blocks (or fusion matrix of the H+
3 WZNW model) is

defined as

Gs
j21

(j1, j2, j3, j4|x, z) =

∫ − 1
2
+i∞

− 1
2
−i∞

dj32F
H+

3
j21j32

[

j3 j2
j4 j1

]

Gt
j32

(j1, j2, j3, j4|1 − x, 1 − z) (15)

It is our aim to compute this quantity.
We will also need the expression for the three point function [11]

CH+
3 (j3, j2, j1) = (ν(b)b−2b2)1+j1+j2+j3

C0(b)Υb(−2bj1)Υb(−2bj2)Υb(−2bj3)

Υb(−bj1 − bj2 − bj3 − b)Υb(−bj1 − bj2 + bj3)Υb(−bj1 − bj3 + bj2)Υb(−bj2 − bj3 + bj1)

(16)

It is known [11] that the expression for a four point correlation function is (if the Re(ji), i =
1 . . . 4 are close enough to −1

2
).

Φj4,j3,j2,j1(x, x̄|z, z̄) =
∫

− 1
2
+iR

dj21B(j21)C
H+

3 (j4, j3, j21)C
H+

3 (j21, j2, j1)|Gs
j21

(j1, j2, j3, j4|x, z)|2 (17)

where
B(j) = (ν(b))−2j−1γ(1 + b2(2j + 1)).

2 Monodromy of solutions of the KZ equation

2.1 Method

It follows from a remarkable observation of [14] straightforwardly adapted to the non-
compact case that the conformal block of a special 5 point function in LFT satisfies the
same KZ equation as the conformal block in the H+

3 WZNW model (for an explanation
of this relation, see [27]); hence, knowing the precise correspondence between the two
quantities allows us to compute the monodromy of the conformal block in the H+

3 WZNW
model in terms of the monodromy of this 5 point LFT conformal block.
Let F s

α21
(α1, α2,− 1

2b
, α3, α4|x, z) be the 5 point conformal block corresponding to the LFT

correlation function:
〈

Vα4(∞)Vα3(1)V− 1
2b

(x, x̄)Vα2(z, z̄)Vα1(0)
〉

it was shown in [14] that

F s
α21

(α1, α2,−
1

2b
, α3, α4|x, z) =

xb−1α1(1 − x)b−1α3(x− z)b−1α2z
1
2
γ12(1 − z)

1
2
γ13Gs

j21
(j1, j2, j3, j4|x, z) (18)

7



where the parameters of the two theories are related by

2α1 = −b(j1 + j2 − j3 − j4 − b−2 − 1) 2α3 = −b(−j1 + j2 + j3 − j4 − b−2 − 1)
2α2 = −b(j1 + j2 + j3 + j4 + 1) 2α4 = −b(−j1 + j2 − j3 + j4 − b−2 − 1)
α21 = −bj21 + 1

2b
α32 = −bj32 + 1

2b

γ12 = 4b2j1j2 − 4α1α2 γ23 = 4b2j2j3 − 4α2α3

One reads off from (18) the following relation between the two monodromies:

F
H+

3
j21,j32

[

j3 j2
j4 j1

]

ǫ

= eiπǫb−1α2M
− 1

2b
α21,α32

[

α3 α2

α4 α1

]

ǫ

(19)

where ǫ = ±1 depends whether Im(x − z) is negative or positive (this was first seen
in [18,19]). This leads to an ambiguity in the definition of the H+

3 WZNW fusion matrix,
for this reason we shall add to the fusion matrix the subscript ǫ. Nevertheless, this
ambiguity does not appear in the bootstrap, where one considers both the holomorphic
conformal block and its antiholomorphic counterpart.

2.2 Monodromy of the Liouville 5 point conformal block

The monodromy of this special 5 point conformal block decomposes in a succession of
elementary braiding and fusing transformations.
Let us remember that the braiding is related to the fusion the following way [26]:

B−ǫ
α21,α32

[

α4 α2

α3 α1

]

= eiπǫ(∆L
α21

+∆L
α32

−∆L
α3

−∆L
α4

)FL
α21,α32

[

α3 α2

α4 α1

]

(20)

It is then straightforward to obtain the monodromy for this 5 point conformal block thanks
to the picture:

α1

α2
− 1

2b α3

α4α21 α21 − 1
2b

=
∑

s=±B
−ǫ
α21,α1−s 1

2b

[

− 1
2b

α2

α21 − 1
2b

α1

]

α1

− 1
2b α2 α3

α4α1 − s 1
2b
α21 − 1

2b

α1

− 1
2b α2 α3

α4α1 ± 1
2b

α21 − 1
2b

=
∫

dα32F
L
α21−

1
2b

,α32

[

α3 α2

α4 α1 − s 1
2b

]

α1

− 1
2b

α2

α3

α4
α1 ± 1

2b

α32

8



α1

− 1
2b

α2

α3

α4
α1 ± 1

2b

α32

= FL
α1−s 1

2b
,α32−

1
2b

[

α32 − 1
2b

α4 α1

]

α1

− 1
2b

α2

α3

α4
α32 − 1

2b

α32

where the first picture (top left) represents the s-channel 5 point conformal block, and
the last one (bottom right) the t-channel 5 point conformal block.
Collecting the terms together, we get:

M
− 1

2b
α21,α32

[

α3 α2

α4 α1

]

ǫ

=

eiπǫb−1(−α21+α1)FL
−+

[

α1 − 1
2b

α2 α21 − 1
2b

]

FL
++

[

α32 − 1
2b

α4 α1

]

FL
α21−

1
2b

,α32

[

α3 α2

α4 α1 − 1
2b

]

+

eiπǫb−1(−α21−α1+Q)FL
−−

[

α1 − 1
2b

α2 α21 − 1
2b

]

FL
−+

[

α32 − 1
2b

α4 α1

]

FL
α21−

1
2b

,α32

[

α3 α2

α4 α1 + 1
2b

]

(21)

2.3 Fusion matrix of the H+
3 WZNW model

The formula for the H+
3 WZNW fusion matrix follows (see Appendix for this special value

of the Liouville fusion coefficient when one of the αi, i = 1 . . . 4 is equal to −b−1/2):

F
H+

3
j21,j32

[

j3 j2
j4 j1

]

ǫ

= eiπǫb−1α2M
− 1

2b
α21,α32

[

α3 α2

α4 α1

]

ǫ

(22)

F
H+

3
j21,j32

[

j3 j2
j4 j1

]

ǫ

=

πΓ(2 + b−2 + 2j21)Γ(1 + 2j32)

sin π(j1 + j2 − j3 − j4)
×

( eiπǫ(j21−j1−j2)

Γ(2 + b−2 + j21 + j1 + j2)Γ(j21 − j3 − j4)Γ(1 + j32 − j1 + j4)Γ(1 + j3 − j2 + j32)
×

×FL
−bj21,−bj32+1/2b

[

−bj3 + 1/2b −bj2
−bj4 + 1/2b −bj1

]

− eiπǫ(j21−j3−j4)

Γ(2 + b−2 + j21 + j3 + j4)Γ(j21 − j1 − j2)Γ(1 + j32 + j1 − j4)Γ(1 − j3 + j2 + j32)
×

×FL
−bj21,−bj32+1/2b

[

−bj3 −bj2 + 1/2b
−bj4 −bj1 + 1/2b

]

)

(23)

It is possible to obtain an alternative representation for the H+
3 fusion matrix: if we

consider the pentagonal equation (7) applied to the LFT fusion matrix in the special case

9



where α2 = − 1
2b

, and if we use the fusion rules of [28], then the LFT fusion matrices in
(7) which contain α2 = − 1

2b
are some residues of the general fusion coefficients (4). Their

expressions are given in the Appendix A. We then obtain an equation that permits us to
reexpress each LFT fusion matrix in (21)

FL
α21−

1
2b

,α32

[

α3 α2

α4 α1 − 1
2b

]

, FL
α21−

1
2b

,α32

[

α3 α2

α4 α1 + 1
2b

]

in terms of

FL
α21−

1
2b

,α32−
1
2b

[

α3 α2 − 1
2b

α4 α1

]

and FL
α21−

1
2b

,α32−
1
2b

[

α3 α2 + 1
2b

α4 α1

]

Rearranging the terms together, one gets the following representation:

F
H+

3
j21,j32

[

j3 j2
j4 j1

]

ǫ

=

πΓ(2 + b−2 + 2j21)Γ(−2j32 − b−2 − 1)

sin π(j1 + j2 + j3 + j4 + 2 + b−2)
×

(Γ−1(2 + b−2 + j21 + j1 + j2)Γ
−1(2 + b−2 + j21 + j3 + j4)

Γ(−1 − b−2 − j32 − j2 − j3)Γ(−1 − b−2 − j32 − j1 − j4)
×

×FL
−bj21,−bj32

[

−bj3 −bj2
−bj4 −bj1

]

− e−iπǫ(j1+j2+j3+j4+2+b−2)

Γ(j21 − j1 − j2)Γ(j21 − j3 − j4)Γ(1 − j32 + j2 + j3)Γ(1 − j32 + j1 + j4)
×

×FL
−bj21,−bj32

[

−bj3 + 1
2b

−bj2 + 1
2b

−bj4 + 1
2b

−bj1 + 1
2b

]

)

(24)

We can use the same trick again by setting this time α3 = − 1
2b

in (7), so that we can
reexpress

FL
α21−

1
2b

,α32

[

α3 α2

α4 α1 − 1
2b

]

, FL
α21−

1
2b

,α32

[

α3 α2

α4 α1 + 1
2b

]

in terms of

FL
α21,α32

[

α3 α2

α4 − 1
2b

α1

]

and FL
α21,α32

[

α3 α2

α4 + 1
2b

α1

]

10



This gives us a third representation for the H+
3 fusion matrix:

F
H+

3
j21,j32

[

j3 j2
j4 j1

]

ǫ

=

πΓ(−2j21)Γ(1 + 2j32)

sin π(−j1 + j2 − j3 + j4)
×

( eiπǫ(j21+j32−j1−j3)

Γ(−j21 − j1 + j2)Γ(−j21 − j3 + j4)Γ(1 + j32 − j2 + j3)Γ(1 + j32 + j1 − j4)
×

×FL
−bj21+ 1

2b
,−bj32+ 1

2b

[

−bj3 + 1
2b

−bj2
−bj4 −bj1 + 1

2b

]

− eiπǫ(j21+j32−j2−j4)

Γ(−j21 + j1 − j2)Γ(j21 + j3 − j4)Γ(1 + j32 + j2 − j3)Γ(1 + j32 − j1 + j4)
×

×FL
−bj21+ 1

2b
,−bj32+ 1

2b

[

−bj3 −bj2 + 1
2b

−bj4 + 1
2b

−bj1

]

)

(25)

Consistency checks and remarks:

1. One might wonder why on the first picture we did not also consider the case where
the fusion between α21 and − 1

2b
gives α21 + 1

2b
(this comment also applies for the

last picture replacing α21 by α32). It is not difficult to see that if we do the same
reasoning starting with α21 + 1

2b
, we would simply have to replace j21 by −j21 − 1 in

the expression for the fusion matrix. As we consider j21 being of the form −1
2

+ is
with s any real number, it is enough to consider only the case where the result of
the fusion is α21 − 1

2b
(resp. α32 − 1

2b
).

2. The case when one of the external spins corresponds to a ŝl(2) degenerate repre-
sentation, the other external spins being generic can be found in [18]. The fusion
coefficients appear as residues of the general fusion coefficients, and the monodromy
becomes finite dimensional. We checked in this case that it is indeed possible to find
a basis for the conformal blocks in which the fusion transformation takes a block
diagonal form, reproducing thus the results of [18].
The simplest cases j2 = 1/2, j2 = 1/2b2 and j2 = −k/2 can be found in the appendix
B.

3. The SU(2) WZNW model is obtained by substituting b by ib and by giving the
spins j half integer or integer values in the range 0 ≤ j ≤ k, the level k being an
integer in this case. One also has to substitute to Liouville theory the (k + 2, 1)
Minimal Model with central charge

c = 1 − 6(p− q)2

pq
, p = k + 2 ≡ b−2, q = 1.

The second term of the sum in (24) always vanishes as the fusion rules in the SU(2)
WZNW model are such that

1

Γ(j21 − j1 − j2)
=

1

Γ(−n)
= 0

11



with n some positive integer. Only the first term of the sum remains. Then one
uses the fusion rules j21 = j1 + j2 − n and j32 = j3 + j2 −m to rewrite the prefactor
in front of the Liouville fusion matrix. This gives the (ǫ independant) result:

F
SU(2)
j21,j32

[

j3 j2
j4 j1

]

=

=
Γ(2 − b−2 + 2j21)Γ(2 − b−2 + j32 + j3 + j2)Γ(2 − b−2 + j32 + j1 + j4)

Γ(2 − b−2 + 2j32)Γ(2 − b−2 + j21 + j1 + j2)Γ(2 − b−2 + j21 + j3 + j4)
×

× FMM
−bj21,−bj32

[

−bj3 −bj2
−bj4 −bj1

]

(26)

4. It is straightforward to check the following symmetry properties

F
H+

3
j21,j32

[

j3 j2
j4 j1

]

ǫ

= F
H+

3
j21,j32

[

j2 j3
j1 j4

]

ǫ

= F
H+

3
j21,j32

[

j4 j1
j3 j2

]

ǫ

(27)

using the fact that these properties hold for the Liouville fusion matrix.

5. Using the invariance of the LFT fusion matrix w.r.t. conformal weights, one can
notice the following additional symmetry:

F
H+

3
j21,j32

[

j3 j2
j4 j1

]

ǫ

= e−iπǫ(j1+j2+j3+j4+2+b−2)F
H+

3
j21,j32

[

j̃3 j̃2
j̃4 j̃1

]

ǫ

(28)

where j̃ ≡ −j − k
2
≡ −j − 1 − 1

2b2
, as well as:

F
H+

3
j21,j32

[

j3 j2
j4 j1

]

ǫ

= eiπǫ(j21−j1−j2)F
H+

3

j21,j̃32

[

j̃3 j2
j̃4 j1

]

−ǫ

(29)

F
H+

3
j21,j32

[

j3 j2
j4 j1

]

ǫ

= eiπǫ(j32−j2−j3)F
H+

3

j̃21,j32

[

j3 j2
j̃4 j̃1

]

−ǫ

(30)

These relations are known to exist in the SU(2) WZWN model [29] (see also [30]).
The difference is that in the SU(2) case, eiπǫ(...) is replaced by (−1)(...): the reason
for this is that there is no ǫ dependence in the SU(2) case, as we saw above.

6. If Re(ji), i = 1 . . . 4 are close enough to −1
2
, one is still in the range where both the

Liouville fusion matrix that appear in the formulae (23,24,25) remain holomorphic.

7. Hexagonal equation:
We believe that the Moore-Seiberg equations continue to hold even in non-compact
conformal field theories, for coherency of the operator algebra (there is no proof for

12



this statement in general). In the special case of LFT, it was proven in [9, 10]; this
allows us to derive the following equation for the monodromy of a 5 point conformal
block in LFT:

M
− 1

2b

α21,β

[

α4 α2

α3 α1

]

ǫ

e
iπǫ(∆L

α1
+∆L

α2
+∆L

α3
+∆L

α4
−∆L

α21−
1
2b

−∆L
β
)
=

∫
Q

2
+i∞

Q

2
−i∞

dα32M
− 1

2b
α21,α32

[

α3 α2

α4 α1

]

ǫ

M
− 1

2b

α32−
1
2b

,β

[

α2 α4

α3 α1

]

ǫ

e
iπǫ∆L

α32−
1
2b (31)

As the monodromy for a 5 point function in LFT depends on braiding (i.e. depends
on ǫ), it fixes the ǫ appearing in the exponential, which should be the same as the
one parametrizing the LFT monodromy.
It is possible to derive the relation

M
− 1

2b

α32−
1
2b

,β

[

α2 α4

α3 α1

]

ǫ

= M
− 1

2b

α32,β

[

α4 α2

α1 α3

]

ǫ

eiπǫb−1β (32)

this leads us to the hexagonal equation for F
H+

3
j21,q

[

j3 j2
j4 j1

]

ǫ

F
H+

3
j21,q

[

j4 j2
j3 j1

]

ǫ

eiπǫ(∆j1
+∆j2

+∆j3
+∆j4

−∆j21
−∆q−j1−j2−j3−j4+j21+q) =

∫ − 1
2
+i∞

− 1
2
−i∞

dj32F
H+

3
j21,j32

[

j3 j2
j4 j1

]

ǫ

F
H+

3
j32,q

[

j2 j4
j3 j1

]

ǫ

eiπǫ(∆j32
−j32) (33)

where β and q are related by β = −bq + 1
2b

.
Let us note that the situation here seems to be different from the already known
cases (rational CFT’s and LFT): appearently, the fusion matrix, for ǫ given, satisfies
one hexagonal equation only, and not two. But as ǫ can take two values +1 and -1,
we indeed have two hexagonal equations in this model.

8. Pentagonal equation:
I don’t have much to say about it as I don’t know how to prove it. It has to hold,
as I believe the theory would be dead otherwise.

9. Let us introduce for short δ = j1 + j2 + j3 + j4 + 2 + b−2, and let us consider for
example (28). This equation is a consequence of the following equality between
conformal blocks:

Gs
j21

(j1, j2, j3, j4|x, z) = (xz−1 − 1)δx2(j1+j2+1+ 1
2b2

)(1 − x)2(j3+j2+1+ 1
2b2

)

× z−(j1+j2+1+ 1
2b2

)(1 − z)−(j3+j2+1+ 1
2b2

) Gs
j21

(j̃1, j̃2, j̃3, j̃4|x, z) (34)

13



We now insert this expression into a four point function

Φj4,j3,j2,j1(x, x̄|z, z̄) =

=

∫

− 1
2
+iR

dj21B(j21)C
H+

3 (j4, j3, j21)C
H+

3 (j21, j2, j1)|Gs
j21(j1, j2, j3, j4|x, z)|2

(35)

We can rewrite this equation thanks to the following property of the three point
function

CH+
3 (j3, j̃2, j̃1) = (ν(b))−b−2

B(j2)B(j1)C
H+

3 (j3, j2, j1) (36)

where B(j) is the two point function.
It follows

Φj4,j3,j2,j1(x, x̄|z, z̄) = (B(j4)B(j3)B(j2)B(j1))
−1 |z|−2(j1+j2+1+ 1

2b2
)|1 − z|−2(j3+j2+1+ 1

2b2
)

×|xz−1 − 1|2δ|x|4(j1+j2+1+ 1
2b2

)|1 − x|4(j3+j2+1+ 1
2b2

)(ν(b))2b−2 ×
∫

− 1
2
+iR

dj21B(j21)C
H+

3 (j̃4, j̃3, j21)C
H+

3 (j21, j̃2, j̃1)|Gs
j21(j̃1, j̃2, j̃3, j̃4|x, z)|

2

(37)

from which we conclude the following relation holding at the level of correlation
functions between Φj4,j3,j2,j1(x, x̄|z, z̄) and Φj̃4,j̃3,j̃2,j̃1

(x, x̄|z, z̄):

Φj4,j3,j2,j1(x, x̄|z, z̄) = (B(j4)B(j3)B(j2)B(j1))
−1 Φj̃4,j̃3,j̃2,j̃1

(x, x̄|z, z̄)
×|xz−1 − 1|2δ|x|4(j1+j2+1+ 1

2b2
)|1 − x|4(j3+j2+1+ 1

2b2
)(ν(b))2b−2

×|z|−2(j1+j2+1+ 1
2b2

)|1 − z|−2(j3+j2+1+ 1
2b2

).

(38)

3 Study of the singular behavior x→ z

Let us denote ψα2
α1,α21

(z) the Liouville chiral vertex operators. They satisfy the operator
product expansion:

ψα2
α1,α21

(z)ψ
− 1

2b

α21 ,α21−
1
2b

(x) ∼x→z (x− z)b−1α2FL
α21,α2−

1
2b

[

α2 − 1
2b

α1 α21 − 1
2b

]

ψ
α2−

1
2b

α1,α21−
1
2b

(z) +

+ (x− z)
1
b
(Q−α2)FL

α21,α2+
1
2b

[

α2 − 1
2b

α1 α21 − 1
2b

]

ψ
α2+ 1

2b

α1,α21−
1
2b

(z) (39)

If we insert this relation into (18), we find that the asymptotic behavior when x → z of
the 4 point conformal block in the H+

3 WZNW is related to the 4 point conformal block

14



in LFT:

Gs
j21

(j1, j2, j3, j4|x, z) ∼x→z z
− 1

2
γ12−b−1α1(1 − z)−

1
2
γ13−b−1α3×

×
[

FL
α21,α2−

1
2b

[

α2 − 1
2b

α1 α21 − 1
2b

]

F s
α21−

1
2b

(α1, α2 −
1

2b
, α3, α4|z)

+ (x− z)
1
b
(−2α2+Q)FL

α21,α2+ 1
2b

[

α2 − 1
2b

α1 α21 − 1
2b

]

F s
α21−

1
2b

(α1, α2 +
1

2b
, α3, α4|z)

]

(40)

The first term of the sum is regular at x = z, whereas the second one is singular.
It is easy to see that the Liouville conformal block F s

α21−
1
2b

(α1, α2 − 1
2b
, α3, α4|z) has the

same monodromy as F s
−bj21

(−bj1,−bj2,−bj3,−bj4|z); if we then study the behavior when
z → 0 of the first Liouville conformal block multiplied by the spatial factor in front of the
bracket, we then see that we have indeed the equality

F s
−bj21

(−bj1,−bj2,−bj3,−bj4|z) =

z−
1
2
γ12−b−1α1(1 − z)−

1
2
γ13−b−1α3F s

α21−
1
2b

(α1, α2 −
1

2b
, α3, α4|z) (41)

A similar study for the second Liouville conformal block of the sum allows us to rewrite
(40) as

Gs
j21

(j1, j2, j3, j4|x, z)

∼x→z

[

Γ(2 + b−2 + 2j21)Γ(2 + b−2 + j1 + j2 + j3 + j4)

Γ(2 + b−2 + j21 + j1 + j2)Γ(2 + b−2 + j21 + j3 + j4)
F s

−bj21
(−bj1,−bj2,−bj3,−bj4|z) +

+
Γ(2 + b−2 + 2j21)Γ(−2 − b−2 − j1 − j2 − j3 − j4)

Γ(j21 − j1 − j2)Γ(j21 − j3 − j4)
F s

−bj21(−bj̃1,−bj̃2,−bj̃3,−bj̃4|z) ×

× (x− z)δz−δ+j1+j2+1+ 1
2b2 (1 − z)j3+j2+1+ 1

2b2

]

(42)

Remarks:

1. It is straightforward to check the property

Gs
j21

(j̃1, j̃2, j̃3, j̃4|x, z) ∼x→z

(x− z)−δzδ−(j1+j2+1+ 1
2b2

)(1 − z)−(j2+j3+1+ 1
2b2

)Gs
j21

(j1, j2, j3, j4|x, z)
(43)

We recover here a straighforward consequence of equation (34).

15



2. Let us consider again the case of the SU(2) WZNW model: for the same reason we
mentionned previously, the factor

1

Γ(j21 − j1 − j2)

makes the singular term of (42) vanish. Then one sees that up to a normalization
of the chiral vertex operators preserving the polynomial equations, G(z) is nothing
but the conformal block

F s
−bj21

(−bj1,−bj2,−bj3,−bj4|z)

of the (k + 2, 1) minimal model.

3. Degenerate representations and fusion rules for ŝl(2) are well known [21]; in appendix
C we show how this relation permits us to recover them.

4. It is instructive to use relation (42) to express the behavior when x → z of a
correlation function in H+

3 in terms of two correlation functions in Liouville field
theory.
We consider

Φj4,j3,j2,j1(x, x̄|z, z̄)

=

∫

D

dj21B(j21)C
H+

3 (j4, j3, j21)C
H+

3 (j21, j2, j1)|Gs
j21

(j1, j2, j3, j4|x, z)|2,

(44)

the external spins are such that Re(ji), i = 1, . . . 4 are close enough to −1
2
, and

D = −1
2
+ iR. Inserting (42), one then sees that the prefactor in front the conformal

block
|F s

−bj21
(−bj1,−bj2,−bj3,−bj4|z)|2 multiplied by the H+

3 three point function recom-
bines to give the Liouville three point function

CL(−bj4,−bj3, Q+ bj21)C
L(−bj21,−bj2,−bj1).

Similarly the prefactor of the conformal block |F s
−bj21

(−bj̃1,−bj̃2,−bj̃3,−bj̃4|z)|2 (us-
ing the property that the Liouville conformal blocks depend on the Liouville con-
formal weights) multiplied by the H+

3 three point function recombines to give the
Liouville three point function

(B(j1)B(j2)B(j3)B(j4))
−1CL(−bj̃4,−bj̃3, Q+ bj21)C

L(−bj21,−bj̃2,−bj̃1)
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We have

Φj4,j3,j2,j1(x, x̄|z, z̄) ∼x→z

a

∫

D

dj21C
L(−bj4,−bj3, Q+ bj21)C

L(−bj21,−bj2,−bj1)|F s
−bj21

(z)|2 +

+ |x− z|2δ|z|−2δ+2(j1+j2+1+ 1
2b2

)|1 − z|2(j3+j2+1+ 1
2b2

) × (B(j1)B(j2)B(j3)B(j4))
−1 ×

× b

∫

D

dj21C
L(−bj̃4,−bj̃3, Q+ bj21)C

L(−bj21,−bj̃2,−bj̃1)|F̃ s
−bj21

(z)|2

(45)

with a = γ(j1+j2+j3+j4+2+b−2), b = γ(−j1−j2−j3−j4−2−b−2). A LFT four
point correlation function should factorize over the domain D′ = −1

2
− 1

2b2
+iR; so we

have to deform the contour of integration from D = −1
2
+ iR to D′ = −1

2
− 1

2b2
+ iR

in order to rewrite the expression in terms of correlation functions in LFT. While
we deform the contour, we pick up a finite number of those poles −bjp which are in
the range b

2
< Re(−bjp) < Q

2
, that come from the Liouville three point functions of

the regular term (there are no poles coming from the Liouville three point functions
of the singular term in this case). It would be of course possible to give whatever
values we like for the external spins (for example we could consider them to be real),
then the residues that would be picked up depend on a case by case study, as the
poles jp depend on the values of the external spins j1 . . . j4.

Hence we can rewrite the behavior of the 4 point function in the H+
3 WZNW model

in terms of 4 point functions in LFT:

Φj4,j3,j2,j1(x, x̄|z, z̄) ∼x→z aV−bj4,−bj3,−bj2,−bj1(z, z̄) + bV−bj̃4,−bj̃3,−bj̃2,−bj̃1
(z, z̄)×

(B(j1)B(j2)B(j3)B(j4))
−1 × |x− z|2δ|z|−2δ+2(j1+j2+1+ 1

2b2
)|1 − z|2(j3+j2+1+ 1

2b2
)

+(Residues). (46)

5. If we make the same analysis as above studying this time the behavior when x→ 1
of the conformal block, we find (this is a consequence of a relation already noticed
in [31]):

Gs
j21

(j1, j2, j3, j4|x, z) ∼x→1 z
−j2(1 − z)−j2Gs

j̃21
(j̃1, j2, j3, j̃4|

z

x
, z) (47)

It is of course possible to make an analysis similar to the one made above to get
some relation at the level of correlation functions.

Concluding remarks

There are several points that deserve further study:

• It remains of course to understand precisely the physical meaning of the singularity
of the conformal blocks when x ∼ z.
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• It is straightforward to construct in the case of the spherical branes [2] the boundary
three point function along the lines of [8]: the normalization for the boundary
operators was computed in [2], and the fusion matrix in this case is like the one of
equation (26) (by changing b−2 into −b−2, and the (k+2, 1) minimal model replaced
by LFT). As for the AdS2 branes, it seems to be a problem to construct a cyclic
invariant boundary three point function, as well as to recover the boundary two
point function of [2].

• It is worth trying to generalize this method to the supersymmetric case: this could
maybe lead to a proof at the level of correlation functions for the duality between
N=2 Liouville and the superconformal SL(2)/U(1) model [32]; maybe the results
presented here work can also help at proving rigorously the duality conjectured
by [33] between the sin-Liouville theory and SL(2)/U(1) WZNW model.

• It would be very interesting to build the fusion matrix as a 6j symbol of a quantum
group. The proposal of [12] is the ”pair” Uq(sl(2)), Uq′(osp(1|2)). In particular, such
a construction would ensure the validity of the pentagonal equation. We hope to be
able to say more about this problem in the future.
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Appendix A. Some residues of the Liouville fusion ma-

trix

It is well known that in the case where one of α1, . . . , α4, say αi equals −n
2
b − m

2
b−1

where n,m ∈ N and where a triple (∆α4 ,∆α3 ,∆α21), (∆α21 ,∆α2 ,∆α1) which contains ∆αi

satisfies the fusion rules of [28], one will find that the fusion coefficients that multiply the
conformal blocks are residues of the general fusion coefficient.
In the case where α2 = −1

2
b, the fusion rules are:

{

α21 = α1 − s b
2

α32 = α3 − s′ b
2

where s, s′ = ±.
There are four entries for the fusion matrix in this special case

FL
α1−sb/2,α3−s′b/2

[

α3 −b/2
α4 α1

]

≡ FL
s,s′

which expressions are well known to be:

F++ =
Γ(b(2α1 − b))Γ(b(b − 2α3) + 1)

Γ(b(α1 − α3 − α4 + b/2) + 1)Γ(b(α1 − α3 + α4 − b/2))

F+− =
Γ(b(2α1 − b))Γ(b(2α3 − b) − 1)

Γ(b(α1 + α3 + α4 − 3b/2) − 1)Γ(b(α1 + α3 − α4 − b/2))

F−+ =
Γ(2 − b(2α1 − b))Γ(b(b− 2α3) + 1)

Γ(2 − b(α1 + α3 + α4 − 3b/2))Γ(1 − b(α1 + α3 − α4 − b/2))

F−− =
Γ(2 − b(2α1 − b))Γ(b(2α3 − b) − 1)

Γ(b(−α1 + α3 + α4 − b/2))Γ(b(−α1 + α3 − α4 + b/2) + 1)

(48)

The dual case where α2 = −b−1/2 is obtained by substituting b by b−1.

Appendix B. Special cases of the H+
3 fusion matrix

Degenerate representations and fusion rules are well known for ŝl(2) [21]. We will study
three easy cases.

1. j2 = 1/2
This case was first derived in [14].
The fusion rules are j21 = j1 + 1/2 (+), j21 = j1 − 1/2 (−). We are in the case
where the second term of the sum (24) always vanishes. It is straightforward to use
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the results of Appendix A to get

F
H+

3
++ =

Γ(b2(−2j1 − 1))Γ(b2(1 + 2j3) + 1)

Γ(b2(−j1 + j3 + j4 + 1/2) + 1)Γ(b2(−j1 + j3 − j4 − 1/2))

F
H+

3
+− =

Γ(b2(−2j1 − 1))Γ(b2(−2j3 − 1))

Γ(−b2(j1 + j3 + j4 + 3/2))Γ(b2(−j1 − j3 + j4 − 1/2)

F
H+

3
−+ =

Γ(1 + b2(1 + 2j1))Γ(1 + b2(1 + 2j3))

Γ(1 + b2(j1 + j3 + j4 + 3/2)))Γ(1 + b2(j1 + j3 − j4 + 1/2))

F
H+

3
−− = − Γ(1 + b2(1 + 2j1))Γ(−b2(2j3 + 1))

Γ(b2(j1 − j3 − j4 − 1/2))Γ(b2(j1 − j3 + j4 + 1/2) + 1)

2. j2 = 1/2b2

This case can be found in [18], but as we use the same normalisation as [11], we
shall compare directly with this last paper.
The fusion rules are

j21 = j1 +
1

2b2
(+), j21 = j1 −

1

2b2
(−), j21 = −j1 − k/2 (x).

We find it more convenient to work directly with the representation (24). The
second LFT fusion matrix of the sum is equal to 1 in the cases:

j21 = j1 −
1

2b2
, or j21 = −j1 − 1 − 1

2b2

j32 = j3 −
1

2b2
, or j32 = −j3 − 1 − 1

2b2
,

and equal to zero otherwise. It is then straightforward to compute

F
H+

3
++ =

Γ(−2j1 − b−2)Γ(2j3 + b−2 + 1)

Γ(−j1 + j3 + j4 + b−2/2 + 1)Γ(−j1 + j3 − j4 − b−2/2)

F
H+

3
+− =

Γ(−2j1 − b−2)Γ(−2j3 − 1)

Γ(−j1 − j3 − j4 − 1 − b−2/2)Γ(−j1 − j3 + j4 − b−2/2)

F
H+

3
+x =

Γ(−2j1 − b−2)Γ(2j3 + 1)Γ(−2j3 − 1 − b−2)

Γ(−b−2)Γ(−j1 + j3 − j4 − b−2/2)Γ(−j1 − j3 + j4 − b−2/2)

F
H+

3
−+ =

Γ(2j1 + 2)Γ(2j3 + b−2 + 1)

Γ(j1 + j3 + j4 + b−2/2 + 2)Γ(j1 + j3 − j4 + 1 + b−2/2)

F
H+

3
x+ =

Γ(−2j1)Γ(2j1 + 2 + b−2)Γ(2j3 + b−2 + 1)

Γ(1 + b−2)Γ(−j1 + j3 + j4 + b−2/2 + 1)Γ(j1 + j3 − j4 + 1 + b−2/2)

(49)
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For other cases the second LFT fusion matrix contributes; we find:

F
H+

3
−− =

e−iπǫb−2
Γ(2j1 + 2)Γ(−2j3 − 1)

Γ(j1 − j3 − j4 − b−2/2)Γ(j1 − j3 + j4 + 1 + b−2/2)

F
H+

3
−x = − e−iπǫ(2j3+b−2)Γ(2j1 + 2)Γ(2j3 + 1)Γ(−2j3 − 1 − b−2)

Γ(−b−2)Γ(j1 + j3 + j4 + 2 + b−2/2)Γ(j1 − j3 − j4 − b−2/2)

F
H+

3
x− = − e−iπǫ(2j1+b−2)Γ(−2j1)Γ(2j1 + 2 + b−2)Γ(−2j3 − 1)

Γ(1 + b−2)Γ(−j1 − j3 − j4 − 1 − b−2/2)Γ(j1 − j3 + j4 + 1 + b−2/2)

FH+
3

xx = Γ(−2j1)Γ(2j3 + 1)Γ(2j1 + 2 + b−2)Γ(−2j3 − 1 − b−2)

× sin π(−b−2) sin π(j1 − j3 − j4 − b−2/2) sinπ(−j1 + j3 − j4 − b−2/2)

π2 sin π(j1 + j3 + j4 + 2 + 3b−2/2)

− e−iπǫ(j1+j3+j4+2+3b−2/2)Γ(−2j1)Γ(2j3 + 1) sin π(j1 + j3 + j4 + 2 + b−2/2)

Γ(−2j1 − 1 − b−2)Γ(2j3 + 2 + b−2) sin π(j1 + j3 + j4 + 2 + 3b−2/2)

These coefficients are in agreement with [11] for the choice ǫ = 1 , excepted for F
H+

3
xx ,

where there seems to be a slight discrepancy in some of the arguments of the gamma
functions. (We did not redo the computations of [11], where the fusion matrix was
obtained thanks to an explicit integral representation for the conformal blocks).

3. j2 = −k/2
This elementary case was explicitly mentionned in [14]. The fusion rule is j21 =
−j1 − k/2. The first term of the sum vanishes and the second LFT fusion matrix is
equal to one. It remains to evaluate the product of gamma functions; we find:

FH+
3 = e−iπǫ(j1+j3+j4+1+ 1

b2
)

Appendix C. Fusion rules for ŝl(2) algebra at generic

level

We present here a way to find degenerate representations and fusion rules for ŝl(2) from
the knowledge of the degenerate representations and fusion rules of the Virasoro algebra.
We derived in the main text the following asymptotic behavior when x → z for the
conformal blocks of the SL(2,C)/SU(2) WZNW, relating them to two Liouville conformal
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blocks:

Gs
j21

(j1, j2, j3, j4|x, z)

∼x→z

[

Γ(2 + b−2 + 2j21)Γ(2 + b−2 + j1 + j2 + j3 + j4)

Γ(2 + b−2 + j21 + j1 + j2)Γ(2 + b−2 + j21 + j3 + j4)
F s

−bj21
(−bj1,−bj2,−bj3,−bj4|z) +

+
Γ(2 + b−2 + 2j21)Γ(−2 − b−2 − j1 − j2 − j3 − j4)

Γ(j21 − j1 − j2)Γ(j21 − j3 − j4)
F s

−bj21
(−bJ1,−bJ2,−bJ3,−bJ4|z) ×

× (x− z)j1+j2+j3+j4+2+b−2

z−j3−j4−1− 1
2b2 (1 − z)j3+j2+1+ 1

2b2

]

with Ji = ji − 1
2b2

.
Although there is no closed form known for the Liouville conformal blocks, they are

completly determined by the conformal symmetry. They depend on conformal weights
only, i.e. are invariant when −bji (resp. −bJi) is changed into Q+ bji (resp. Q+ bJi).

1. Degenerate representations of the Virasoro algebra.
It is well known that the case where ji (resp. Ji) equals n

2
+ m

2
b−2 with n,m non

negative integers, corresponds to a degenerate Virasoro representation V−bji
(resp.

V−bJi
). The conformal block F s

−bj21
then only exists for a finite number of values of

−bj21 [28]:

− bj21 = −bj1 + bj2 − ub− vb−1.

where u, v are integers such that 0 ≤ u ≤ n, 0 ≤ v ≤ m.
It would be equivalent to write Q+ bj21 instead of −bj21 in equation (50) since the
Virasoro representations V−bj and VQ+bj are equivalent. We will see that this fact
will play an important role in the determination of the degenerate representations
and fusion rules for ŝl(2).

2. Degenerate representations and fusion rules for ŝl(2).
Let us call for short F 1 the first Liouville conformal block of the sum (50) and the
second one F 2.

Claim 1 The spin jm,n that labels the degenerate representation of ŝl(2) Pjn,m
are

also labels for the degenerate Virasoro representation V−bjn,m
or V−bJn,m

.

In other words, it means that Pjn,m
is a degenerate representation of ŝl(2) iff:

(a) jn,m =
n

2
+
m

2
b−2 or

(b) jn,m = −
(n

2
+ 1
)

−
(

m

2
+

1

2

)

b−2. (50)

with n,m non negative integers.
We now provide two rules that will allow us to determine the ŝl(2) fusion rules:
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Rule 1 If j2 is such that both V−bj2 and V−bJ2 correspond to degenerate Virasoro

representations, then the admissible ŝl(2) fusion rules consist of the set of common
fusions rules plus j21 = j1 + j2 if j2 is of the form (a), and j21 = −j1 − j2 − 2− b−2

if j2 is of the form (b).

Rule 2 If j2 is such that V−bj2 is a degenerate Virasoro representation and not V−bJ2

(or converse), then the ŝl(2) fusion rules are such that the factor Γ−1(j21 − j1 − j2)
in front of F 2 should be equal to zero (resp. Γ−1(2 + b−2 + j21 + j1 + j2) in front of
F 1). Note that this case happens only if m=0.

We shall start by three easy examples as the generalization is straightforward.

(a) Examples:

i. j2 = 1
2

In this case we have −bj2 = − b
2

so the Virasoro representation V− b
2

is

degenerate. The fusion rules are:

− bj21 = −bj1 −
b

2
, −bj21 = −bj1 +

b

2
, or

Q+ bj21 = −bj1 −
b

2
, Q+ bj21 = −bj1 +

b

2
. (51)

(52)

Let us turn to F 2: −bJ2 = − b
2
+ 1

2b
does not correspond to any degenerate

Virasoro representation. We use rule 2 to select the admissible set of fusion
rules, and find

j21 = j1 + j2, j21 = j1 − j2. (53)

ii. j2 = 1
2b2

In this case we have −bj2 = − 1
2b

so the Virasoro representation V− 1
2b

is
degenerate. The allowed values for j21 are:

− bj21 = −bj1 −
1

2b
, −bj21 = −bj1 +

1

2b
, or

Q+ bj21 = −bj1 −
1

2b
, Q+ bj21 = −bj1 +

1

2b
. (54)

As for the second term, we have −bJ2 = 0, which corresponds to the
identity representation. The fusion rules are −bj21 = −bj1+ 1

2b
orQ+bj21 =

−bj1 + 1
2b

. The common set of fusion rules consists of

− bj21 = −bj1 +
1

2b
, −bj21 = bj1 −

1

2b
+Q. (55)
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According to the rule 1, we should also include −bj21 = −bj1 − 1
2b

.
As a conclusion, we are left with the following three possibilities:

− bj21 = −bj1 −
1

2b
, −bj21 = −bj1 +

1

2b
, −bj21 = bj1 −

1

2b
+Q. (56)

iii. j2 = −k
2

In this case −bj2 = b+ 1
2b

does not correspond to any degenerate Virasoro
representation, and −bJ2 = Q. As VQ and V0 are equivalent Virasoro
representations, we see that −bJ2 = Q actually corresponds to the identity
representation. Hence the fusion rules are −bj21 = −bj1 + 1

2b
or −bj21 =

bj1 + b + 1
2b

. The latter rule is the only acceptable one, as it makes the
term Γ−1(2 + b−2 + j21 + j1 + j2) in front of F 1 vanish.
Let us note that the ŝl(2) representation P− k

2
plays a role very similar to

the identity, as the decomposition of its tensor product with an arbitrary
representation Pj gives the representation P−j− k

2
only.

(b) General case:

i. j2 = n
2

+ m
2
b−2, with n ∈ N, m ∈ N.

The allowed values for j21 are either

j21 = j1 − j2 + u+ vb−2 or

j21 = j2 − j1 − (u′ + 1) − (v′ + 1)b−2, (57)

where 0 ≤ u ≤ n, 0 ≤ v ≤ m, 0 ≤ u′ ≤ n, 0 ≤ v′ ≤ m− 1.

ii. j2 = −
(

n
2

+ 1
)

−
(

m
2

+ 1
2

)

b−2, with n ∈ N, m ∈ N.
The allowed values for j21 are either

j21 = j1 − j2 − (U + 1) − (V + 1)b−2 or

j21 = j2 − j1 + U ′ + V ′b−2, (58)

where 0 ≤ U ≤ n, 0 ≤ V ≤ m− 1, 0 ≤ U ′ ≤ n, 0 ≤ V ′ ≤ m.

These results are in agreement with [21].
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