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Abstract

The metric of a spacetime with a parallel plane (pp)-wave can be obtained in a
certain limit of the space AdS5×S5. According to the AdS/CFT correspondence,
the holographic dual of superstring theory on that background should be the
analogous limit of N = 4 supersymmetric Yang-Mills theory. In this paper we
shall show that, contrary to widespread expectation, non-planar diagrams survive
this limiting procedure in the gauge theory. Using matrix model techniques as
well as combinatorial reasoning it is demonstrated that a subset of diagrams
of arbitrary genus survives and that a non-trivial double scaling limit may be
defined. We exactly compute two- and three-point functions of chiral primaries
in this limit. We also carefully study certain operators conjectured to correspond
to string excitations on the pp-wave background. We find non-planar linear
mixing of these proposed operators, requiring their redefinition. Finally, we show
that the redefined operators receive non-planar corrections to the planar one-loop
anomalous dimension.
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1 Introduction and Conclusions

The AdS/CFT correspondence asserts a duality between type IIB superstring
theory quantized on the background space AdS5×S5 and N = 4 supersymmetric
Yang-Mills theory in four dimensional Minkowski space. Recently, it has been
observed that a certain limit of the AdS5×S5 geometry yields a parallel plane-wave
(pp-wave) space-time [1]. This background has the virtue that the superstring
can readily be quantized there [2]. The pp-wave geometry is obtained in a large
radius of curvature and large angular momentum limit. In the Yang-Mills theory
dual, which was discussed in [3], this translates to the limit

N → ∞ and J → ∞ with
J2

N
fixed, gYM fixed (1.1)

where N is the rank of the U(N) gauge group and J is the isospin quantum
number which is conjugate to the phase of the complex combination of two scalar
fields Z(x) = 1√

2
(Φ1(x) + iΦ2(x)). The Yang-Mills coupling constant gYM (and

the string coupling gs = g2
YM/4π) are held constant and a new parameter, J2/N

appears in the limit. The validity of such large J limits has been discussed in
[4]. The BPS bound ∆ ≥ J implies that the operators of interest have large
conformal dimensions ∆. The simplest example of such an operator is the chiral
primary field

1√
JNJ/2

Tr ZJ(x) (1.2)

which saturates the bound. More generally, one is interested in correlation func-
tions containing a large number (of O(J)) Z(x)Z(x) . . . Z(x) of fields such that
∆−J stays finite as J → ∞. Note that for all J the fields (1.2) are protected op-
erators: Their two and three point functions do not receive quantum corrections
beyond the free field sector of super Yang-Mills theory.

In [3] it has been assumed that the gauge theory remains planar in the limit
(1.1). This assumption, which was used extensively in [3], deserves to be studied
more carefully. In fact3 it had been observed in [5] that, if J tends to infinity
sufficiently rapidly with N , non-planar diagrams will eventually dominate over
planar ones. In this paper we shall point out that the particular scaling given
in eq.(1.1) corresponds to the most interesting case where some (but not all) of
the non-planar diagrams are surviving the limiting procedure. This allows us to
demonstrate that eq.(1.1) actually corresponds to replacing the standard ’t Hooft
limit by a an interesting novel double-scaling limit of Yang-Mills theory. It will be
shown below that in some ways this new limit resembles the double scaling limit

3Cf the discussion of this point in a footnote on page 8 of [3]. Actually, in [5] it was shown
that if one scales J ∼ N non-planar diagrams dominate over planar ones. This is consistent with
our finding that the scaling J ∼

√
N corresponds precisely to the critical situation where (the

generic) non-planar diagrams are neither dominant nor subdominant w.r.t. planar diagrams.
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of the “old matrix models” of non-critical bosonic string theory discovered in [6].
One consequence is that, in order to keep exact orthonormality of the operators
(1.2), their correct normalization involves a non-trivial scaling function

(

JNJ
sinh

(

1
2

J2

N

)

1
2

J2

N

)− 1
2

Tr ZJ(x) (1.3)

After establishing that the recipe (1.1) does not fully suppress non-planar
diagrams we are immediately led to the following puzzling question: What, then,
characterizes the classes of diagrams that are favored, respectively suppressed,
in this novel limit? By carefully investigating the pertinent combinatorics we
find the following picture: Interpreting the operator TrZJ as a discrete closed
string consisting of J “string bits” (see [3] and references therein) non-planar
diagrams contributing to this operator correspond to the string splitting into
multiple strings in intermediate channels. Taking J large may be interpreted as
a continuum limit: The number of string bits diverges and the string becomes long
and macroscopic. On the other hand, taking N large acts towards suppressing
the string splitting. We then find that the scaling J2 ∼ N leads to a delicate
balance between the two effects such that microscopic strings, made out of only
a small number of string bits (small w.r.t. J), are suppressed but macroscopic
strings, made out of a large number of bits (i.e. of O(J)), survive.

We also look at the three point correlation function of the chiral primaries
(1.3), which are protected as well, and find the exact scaling function. As it
explicitly encodes information for arbitrary genus, it would be fascinating if its
structure could be understood from the string side [7].

The present picture is very clear in the case of operators which are protected
by supersymmetry, such as (1.3). In the case of unprotected operators, their
quantum corrections require further analysis. Interactions involve index loops
which produce factors of N . In the ’t Hooft limit of Yang-Mills theory, these
factors are controlled by making the coupling constant small, g2

YM ∼ 1/N . In the
limit (1.1), gYM is finite, so we depend on the large J limit to suppress factors
of N . We shall present evidence, based on a one-loop computation, that this
suppression indeed occurs in two-point correlators of the operators4

On(x) =
1√

J NJ/2+1

J
∑

l=1

Tr[φ3Z
l φ4 Z

J−l ] e
2π i n l

J (1.4)

which were introduced in ref.[3]. There, it was argued that these operators
correspond to states of the string theory on the pp-wave background, On ↔
a† 8

n a
7
−n|0, p+〉, and that their conformal dimensions should match eigenvalues of

4As we shall see below the sum in eq.(1.4) should actually start at l = 0.
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the pp-wave string Hamiltonian,

E =
∞
∑

n=0

Nn

√

1 +
4πgsN

J2
n2 (1.5)

where Nn is the occupation number of a state of excitation level n. As a simple
check of the duality, ref.[3] showed that this formula is indeed reproduced by the
planar limit of Yang-Mills theory. In this paper, as a warm-up exercise, we will
reproduce this computation in detail.

The precise definition of the operators (1.4) is actually quite subtle. As for
(1.3), non-planar diagrams also survive even at the classical level. But unlike

(1.3), here it is not sufficient to replace the planar normalization factor (JNJ+2)−
1
2

by a scaling function since even their orthogonality is violated at the non-planar
level. Furthermore, at one-loop order, non-planar diagrams survive the limit (1.1)
as well and contribute to the two-point correlator of (1.4). The main effect of the
non-planar diagrams then is to mix these operators so that linear combinations of
them are required to obtain redefined operators with a fixed conformal dimension.
One of our central results is that after this redefinition, at the one-loop level and
to first order in J4

N2 , the limit (1.1) is well-defined for these operators.
Finally, we find that there is a non-planar contribution to the scaling dimen-

sion of the redefined operators5: eq.(1.5) receives corrections of order g2
YM

J2

N
.

Relying on the proposed duality [3], this implies that the pp-wave string spec-
trum is renormalized by string loops. It would be very interesting to extend this
result to higher orders in g2

YM and J4

N2 .

2 Double scaling limit of chiral primary two-

point functions

The simplest example of double-scaling occurs in the normalization of the chiral
primary operator Tr

(

ZJ(x)
)

. This operator saturates a BPS bound, ∆ − J = 0

and in the limit (1.1) it is identified with the BPS ground state of the string theory
sigma model on the pp-wave background. Its normalization can be computed
from its two-point function,

GJJ ′

(x) = 〈0|Tr
(

ZJ(x)
)

Tr
(

Z̄J ′

(0)
)

|0〉 (2.1)

U(1) symmetry implies that this vanishes unless J = J ′. Non-renormalization
theorems exist for the two- and three-point functions of chiral primaries. These

5 In the first version of this paper we had overlooked this contribution due to some erroneous
analyticity assumptions in the evaluation of a minor subset of the required sums in the scaling
limit. After that, the paper [14] appeared, which contained the correct treatment of this
correction. In addition, [14] interprets, under some assumptions, this result using string field
theory, while otherwise nicely confirming our results concerning the existence of the double
scaling limit as well as the phenomenon of operator mixing.
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correlation functions are then given exactly by their free field limits. In particular,
this means that the scaling dimension of such operators is equal to its free field
limit. Four-point functions of these operators are known to receive radiative
corrections.

Thus, we can evaluate (2.1) in free field theory. There, conformal invariance
gives the exact coordinate dependence of the correlator and it remains to solve
the combinatorial problem of taking into account all contractions of the free field
propagators. The latter is conveniently summarized by a correlator in a Gaussian
complex matrix model6,

GJJ ′

(x) =
δJJ ′

|x|2J

(

g2
YM

8π2

)J

〈TrZJ TrZ̄J〉 (2.2)

where
〈TrZJ TrZ̄J〉 =

∫

dZdZ̄ TrZJ TrZ̄J e−TrZ̄Z (2.3)

Hereafter, in this paper, we shall use the notation that 〈0|...|0〉 corresponds to
the vacuum expectation value in the quantum field theory defined by the action
(5.5) and 〈...〉 denotes an expectation value of the appropriate matrices in the
matrix model defined by (2.3).

The correlator (2.3) can be computed using matrix model techniques (see
Appendix A). The result is

〈TrZJ TrZ̄J〉 =
1

J + 1

(

Γ(N + J + 1)

Γ(N)
− Γ(N + 1)

Γ(N − J)

)

(2.4)

where it is assumed that N > J > 0.
The result eq.(2.4) is simple and explicit and will enable us to understand the

nature of the scaling limit eq.(1.1). In fact it is straightforward to expand eq.(2.4)
as a series in 1

N2 and extract, for general J , the corrections to the (trivial) planar
limit JNJ

〈TrZJ TrZ̄J〉 =
2NJ

J + 1

∞
∑

h=0

1

N2h







∑

1≤i1<i2<...i2h+1≤J

i1 · i2 · . . . · i2h+1







(2.5)

The terms in this expansion can be organized in an interesting way as follows

〈TrZJ TrZ̄J〉 = J NJ

{

1 +

[(

J

4

)

+

(

J

3

)]

1

N2

+

[

21

(

J

8

)

+ 49

(

J

7

)

+ 36

(

J

6

)

+ 8

(

J

5

)]

1

N4
+ . . .

}

= JNJ

{

1 +
∞
∑

h=1

4h
∑

k=2h+1

ah,k

(

J

k

)

1

N2h

}

(2.6)
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Figure 1:

The structure of this result is easy do understand combinatorically. We have
to find the possible ways of connecting two necklaces with each, respectively, J
white (Z’s) and J black (Z̄’s) beads according to the following rules: (a) each
connection has to link a black to a white bead (b) in order to find the O(NJ−2h)
contribution the connections have to be drawn without crossing on a genus h
surface such that no handle of the surface can be collapsed without pinching
a connection. Let us call all connections that run (possibly after topological
deformation) parallel to another connection “reducible”. Eliminate all reducible
connections. This will lead to a number of inequivalent, irreducible graphs on the
genus h surface. These have k connections ranging between at least k = 2h + 1
connections (easy to see) and at most k = 4h connections (harder to see). Even
for a given number of irreducible connections there are (starting from genus h = 2)
an increasing number ah,k of inequivalent irreducible graphs. Once these numbers
are worked out (this is a formidable problem, except for genus 1, where k = 3, 4
and there is only one irreducible graph in each case, see figure 1) the total number

of graphs of irreduciblity type k with J connections is given by ah,k

(

J
k

)

. This

explains the above expansion eq.(2.6). We are now ready to investigate the large
J limit of the correlator; we see from eq.(2.6)

〈TrZJ TrZ̄J〉 = JNJ

{

1 +
∞
∑

h=1

ah,4h

(4h)!

J4h

N2h
+ . . .

}

(2.7)

that the terms involving ah,4h stay finite in the double scaling limit J,N → ∞
iff we keep J2

N
finite while all other terms in eq.(2.7) vanish. This means that

non-planar diagrams survive to all orders in 1/N2. In addition the above analysis
allows for the interpretation of the scaling limit eq.(1.1) already mentioned in the
introduction: Clearly, in light of eq.(2.6), the omission of the subleading terms
eliminates diagrams with “skinny” handles consisting of only a small number of
string bits. The meaning of the double scaling limit is therefore that it combines

6Note that we use the standard normalization for a complex matrix model (see appendix A).
Since our calculations in the field theory are done using Tr(TaTb) = 1

2
δa,b Wick contractions of

the field Z(x) come with an additional factor of 1

2
compared to the matrix Z.
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a continuum limit (taking the size of lattice strings to infinity) with a large N
limit (ensuring that only “fat” handles are allowed). This is very similar to the
matrix model double scaling limits discovered in [6]. One apparent difference is
that in these “old” double scaling limits there is an exponential growth of the
number of graphs at fixed genus. However, this exponential factor (which in our
case would be a term like cJ) is well known to be non-universal, reestablishing
the close similarity.

It is straightforward to explicitly find the scaling function from eq.(2.4)

GJJ ′

(x) =
δJJ ′

|x|2J

(

g2
YMN

8π2

)J

· J ·
sinh

(

1
2

J2

N

)

1
2

J2

N

(2.8)

incidentally yielding the numbers ah,4h = (4h)!/((2h+ 1)!22h).
At this point, one might raise the objection that the correct gauge group for

the AdS/CFT correspondence is SU(N) rather than U(N) and the sub-leading
orders in the large N expansion differ for these two groups. Indeed, the analog
of (2.4) can be found for SU(N),

〈TrZJ TrZ̄J〉SU(N) =

J !N−J+2(−1)J +
J
∑

p=1

(

J
p

)2 (−1)J−p(J − p)!Np−J

(p+ 1)

(

Γ(N + p+ 1)

Γ(N)
− Γ(N + 1)

Γ(N − p)

)

It can be seen that this formula has the same asymptotics in large J as the
previous case of U(N), though it has slower rate of convergence to the asymptote.
From this, we conclude that the large J limit of the U(N) and SU(N) gauge
theories are similar enough that we can focus on U(N). Of course, this is true
only for the scaling limit that we are considering. If, for example, J goes to
infinity faster than N1/2, the limit could be more complicated.

Other two-point functions easily evaluated (for U(N)) are

〈0|Tr
(

ZJ(x)Φ3(x)
)

Tr
(

Z̄J ′

(0)Φ3(0)
)

|0〉 =
(

g2
YM

8π2

)J+1
δJJ ′

|x|2J+2

(

Γ(N + J + 2)

Γ(N)
− Γ(N + 1)

Γ(N − J − 1)

)

−→ δJJ ′

|x|2J+2

(

g2
YMN

8π2

)J+1

·
sinh

(

1
2

J2

N

)

1
2

J2

N

(2.9)

and

J
∑

p=0

〈0|Tr
(

ZJ−p(x)Φ3(x)Zp(x)Φ4(x)
)

Tr
(

Z̄J ′−q(0)Φ4(0)Z̄q(0)Φ3(0)
)

|0〉 =

δJJ ′

|x|2J+4

(

g2
YM

8π2

)J+2 (
Γ(N + J + 2)

Γ(N)
− Γ(N + 1)

Γ(N − J − 1)

)

6



−→ δJJ ′

|x|2J+4

(

g2
YMN

8π2

)J+2

·
sinh

(

1
2

J2

N

)

1
2

J2

N

(2.10)

The last of these is a correlator of a chiral primary field with a one which isn’t a
chiral primary. This is due to the fact that the summation effectively symmetrizes
the operator product. Since the sum depends on non-planar diagrams, the terms
individually must also. This means that the quantity of interest,

〈0|Tr
(

ZJ−p(x)Φ3(x)Zp(x)Φ4(x)
)

Tr
(

Z̄q(0)Φ4(0)Z̄J−q(0)Φ3(0)
)

|0〉
must contain non-planar graphs in the limit (1.1). We shall discuss non-planar
corrections to this correlator in section 4.

3 Three-point functions

It is interesting to consider the three-point function of chiral primary fields. In
the AdS/CFT correspondence, such three-point functions should coincide with a
3-point amplitude for certain BPS states of the graviton. In the present case, we
shall see that, like the case of the two-point correlator of chiral primary operators,
the three-point function also obtains contributions from all genera in the limit
(1.1).

Consider the three-point function of chiral primary operators

GJKL(x, y) = 〈0|Tr
(

ZJ(x)
)

Tr
(

ZK(y)
)

Tr
(

Z̄L(0)
)

|0〉

= δL−J−K,0

(

g2
YM

8π2

)J+K
1

|x|2J |y|2K
〈TrZJTrZKTrZ̄J+K〉 (3.1)

with (0 < J,K, L < N), where again the remaining expectation value can be
evaluated using matrix model techniques (cf. appendix A)

〈TrZJTrZKTrZ̄J+K〉 =
1

J +K + 1

{

Γ(N + J +K + 1)

Γ(N)
+

Γ(N + 1)

Γ(N − J −K)

− Γ(N + J + 1)

Γ(N −K)
− Γ(N +K + 1)

Γ(N − J)

}

(3.2)

The scaling limit of the three-point function is

GJKL(x, y) = 2 δL−J−K,0 (J +K)

(

g2
YMN

8π2

)J+K
1

|x|2J |y|2K
· (3.3)

sinh
(

J(J+K)
2N

)

sinh
(

K(J+K)
2N

)

(J+K)2

2N

(3.4)

We see that all genera contribute. Furthermore, the dependence of these func-
tions on the parameters J2/N,K2/N, L2/N is one which cannot be removed by
normalizing the operators. This implies a dependence of the three-point ampli-
tude on the three parameters which are left over in the double-scaling limit.
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4 Computing momentum correlators

We consider the following operators

On(x) =
1√

J NJ/2+1

J
∑

l=0

Tr[φ3Z
l φ4 Z

J−l ] e
2π i n l

J (4.1)

Notice that these operators differ from those introduced in [3] by the inclusion of
l = 0 in the summation range. This difference will turn out to be important for
what follows. We shall be interested in the two point correlator 〈On1(x) Ōn2(0)〉
up to next to leading order inN2. In the free theory limit one has after contracting
the φ3 and φ4’s

〈On1(x) Ōn2(0) 〉0−loop =

1

J NJ+2

(

g2
YM

8π2|x|2
)J+2 J

∑

p,q=0

〈Tr[ZJ−p Z̄J−q ] Tr[Zp Z̄q ] 〉 e 2π i
J

(n1 p−n2 q)(4.2)

The remaining correlator splits into a disconnected and connected piece

〈Tr[ZJ−p Z̄J−q ] Tr[Zp Z̄q ] 〉 = δp,q [J | p] + [J | p, q ] (4.3)

where we have defined

[J | p ] = 〈Tr[ZJ−p Z̄J−p ] 〉 〈Tr[Zp Z̄p ] 〉
[J | p, q ] = 〈Tr[ZJ−p Z̄J−q ] Tr[Zp Z̄q ] 〉conn (4.4)

The disconnected piece may easily be deduced from eq. (2.4) by making use of
the identity

〈Tr(ZJ+1)Tr(Z̄J+1)〉 = (J + 1)〈Tr(ZJ Z̄J)〉 (4.5)

The result reads

[J | p] = NJ+2 +NJ
[

(

J − p+ 2
4

)

+
(

p+ 2
4

)

]

+O(NJ−2) (4.6)

The combinatorics of the connected contributions goes as follows. As the leading
disconnected contribution to eq. (4.3) scales as NJ+2 we shall be interested only
in the planar connected contribution to [J | p, q ]. The relevant contractions are
depicted in figure 2. Assume J − q > p and q > p. Then we connect k of the
(J − q) Z̄’s with k of the p Z’s. There are (p − k + 1) (J − q − k + 1) ways of
doing this and we should sum over these k contractions as k = 1, . . . , p. All the
remaining contractions (depicted by dashed lines in the figure) are completely
determined by planarity once the middle k lines have been chosen. If we have no
middle contractions (k = 0) all the p Z’s are contracted with p Z̄’s on the same
ellipse, leaving (q − p) Z̄’s on the right ellipse of figure 2 to be contracted with

8



k

J−p J−q p q

Figure 2: The contractions

the left ellipse. There are then (q − p) (p+ 1) (J − q + 1) ways of doing this. We
hence see that

[J | p, q ] = NJ
[ 1

6
p (p+ 1) (3J + 1 − p− 3q)

+(q − p) (p+ 1) (J − q + 1)
]

+ O(NJ−2)

for (q > p , J − q > p) (4.7)

For different regions of p and q the correlator is determined by the two obvious
symmetries (p ↔ q) and (p → J − p, q → J − q) of [J | p, q ]. One may now
Fourier transform eq. (4.6) and eq. (4.7) and deduce the leading behaviours in
J2/N . For the disconnected contribution one finds

Dn1−n2 =
J
∑

p=0

[J | p ] e
2π i
J

(n1−n2) p =

NJ+2 (J + 1) δn1,n2+

+NJ J5



















1
60

n1 = n2
8π2n2

1−3

384n4
1π4 n1 = −n2

2π2(n1−n2)2−3
24(n1−n2)4π4 n16 = n2

+NJ O(J4) + O(NJ−2) (4.8)

in the limit of large J . Let us now turn to the connected non-diagonal contribution
to the correlator eq. (4.2). The summation domain for p and q then splits into
four sectors (q > p, J − q > p), (q > p, J − q < p), (q < p, J − q > p) and
(q < p, J − q < p) and due to the symmetries of [J | p, q ] the sum over these four
sectors may be reduced to a single sum over the domain (q > p, J − q > p) with
varying phase factor contributions. Explicitly one has to evaluate the double sum

Cn1,n2 = 2
[J/2]−1
∑

p=0

J−p−1
∑

q=p+1

[J | p, q ]
(

cos[2π
J

(p n1 − q n2)]+ cos[2π
J

(q n1 −p n2)]
)

(4.9)
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where [J/2] = J/2 for J even and [J/2] = (J +1)/2 for J odd. As [J | p, q ] scales
as p3 the double sum eq. (4.9) will scale as J5 and its contribution is relevant
to the momentum correlator in the double scaling limit. Performing the sums in
eq. (4.9) and taking the J → ∞ limit we find

Cn1,n2 = NJ J5



































1
40

n1 = n2 = 0
3−2π2 n2

24 n4π4 n := n1/26 = 0, n2/1 = 0
21−2π2 n2

48 n4π4 n := n1 = n2 and n16 = 0 6 = n2
9

32n4π4 n := n1 = −n2 and n16 = 0 6 = n2
2 n1

2−3 n1 n2+2 n2
2

8 n1
2 n2

2 (n1−n2)2 π4 n16 = n2 and n16 = 0 6 = n2

(4.10)

up to terms of order NJ O(J4) and O(NJ−2). We now have to worry about the
contributions along the “diagonals” p = q and J − q = p which were omitted in
the double sum of eq. (4.9). The counting now works analogously, for the first
case (p = q) one has

Cp=q
n1−n2 = NJ

[J/2]
∑

p=0

1
6
(p+ 1) p (3J + 1 − 4p) 2 cos[ 2π

J
(n1 − n2)p ] (4.11)

and for the second case (J − q = p) one finds

CJ−q=p
n1−n2 = NJ

[J/2]
∑

p=0

[

1
6
(p+ 1) p (2p+ 1) + (p+ 1)2 (J − 2p)

]

2 cos[ 2π
J

(n1 − n2)p ]

(4.12)
These sums can be worked out explicitly, however, we already see at this point

that they will not contribute at order J5 as the summand scales as p3. We hence
have that

Cp=q
n1−n2 ∼ CJ−q=p

n1−n2 ∼ NJ O(J4) (4.13)

and these contributions are suppressed in the limit eq. (1.1). Summarizing we
have thus found that

〈On1(x) Ōn2(0) 〉0−loop =

(

g2
YM

8π2|x|2
)J+2

[

δn1n2 +
J4

N2
Mn1n2 + O(

J3

N2
)
]

(4.14)

where we have introduced the symmetric real matrix Mn̄m̄ given by

M00 =
1

24
M0n̄ = 0 Mn̄m̄ =































2π2(n̄−m̄)2−3
24(n̄−m̄)4π4 + 2 n̄2−3 n̄ m̄+2 m̄2

8 n̄2 m̄2 (n̄−m̄)2 π4 |n̄| 6= |m̄|

1
60

+ 21−2π2 n̄2

48 n̄4π4 n̄ = m̄

105+8π2n̄2

384 n̄4 π4 n̄ = −m̄
(4.15)
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Note the decoupling of the zero momentum sector (M0n̄ = 0) which corresponds
to the groundstate not mixing under perturbation theory with the excited states
in the dual string picture. This result tells us that we have to renormalize our
momentum operators according to

Õn(x) =
∑

m

[

δnm − J4

2N2
Mnm

]

Om(x) (4.16)

in order to maintain orthogonality up to order J4/N2, i.e. 〈 Õn Õm 〉 ∝ δn,m.

5 Computing anomalous dimensions

In this section we shall review the computation of anomalous dimensions of op-
erators which are of interest to us in this paper. The correlation functions of
interest are those of traces of products of the scalar fields, for example

〈0| : TrΦα1(x) . . .Φαp
(x) :: TrΦβ1(0) . . .Φβq

(0) : |0〉 =

δpqg
2p
YM∆p(x)

∑

Perm P

(

δα1βP (1)
. . . δαpβP (p)

)

+ quantum corrections (5.1)

Here, the dots : ... : indicate normal ordering, so that the vacuum expectation
value of each individual operator vanishes. In the following, we will omit the
normal ordering symbols. The first term on the right-hand-side is the correlator
in the free field limit. The other terms, are given by radiative corrections to the
free field limit. In this section, we will compute these radiative corrections to the
next order in g2

YM.

5.1 Notation

The field content of N = 4 supersymmetric Yang-Mills theory in four dimensions
are the scalars, Φα(x) where the Greek indices α, β, . . . = 1, ..., 6 transform under
the R-symmetry SO(6)∼SU(4), vectors Aµ(x) where µ = 1, 2, 3, 4 is the space-
time index and a sixteen component spinor Ψ(x). These fields are Hermitean
N × N matrices and for the most part in the following, the gauge group will be
U(N). These fields can be expanded in terms of the generators T a of U(N) as

Φα(x) =
N2−1
∑

a=0

φa
α(x)T a , Aµ(x) =

N2−1
∑

a=0

Aa
µ(x)T

a , Ψ(x) =
N2−1
∑

a=0

ψa(x)T a (5.2)

where T 0
kl = 1√

2N
δkl is the U(1) generator. We use the letters a, b, . . . = 0, . . . , N2 − 1

to denote components in the Lie algebra of U(N). The conventions for the gener-
ators and structure constants are

[

T a, T b
]

= ifabcT c , Tr(T aT b) =
1

2
δab

11



Also,
N2−1
∑

a=0

T a
ijT

a
kl =

1

2
δilδjk ,

N2−1
∑

a=1

T a
ijT

a
kl =

1

2

(

δilδjk −
1

N
δijδkl

)

and
fabcfa′bc = Nδaa′

, fabcfabc = N(N2 − 1)

We shall also need the identity

Tr(T aAT bB) Tr(T cC T dD) f ead f ebc = (5.3)
1
8

(

TrATrC TrBD + TrB TrDTrAC − TrACBD − TrADBC
)

along with

Tr(T ā A) Tr(T āB) = 1
2
TrAB − 1

2N
TrATrB

Tr(T ā AT āB) = 1
2
TrATrB − 1

2N
TrAB (5.4)

where A,B,C,D are N × N matrices and ā = 1, . . . , N2 − 1 runs only over the
SU(N) indices. We use the conventions of [11, 12].

The Euclidean space action of N = 4 supersymmetric Yang-Mills theory is

S =
∫

d4x
1

g2
YM







1

4
F a

µνF
a
µν +

1

2
(Dµφ

a
α)2 +

1

4

6
∑

α,β=1

fabcfadeφb
αφ

c
βφ

d
αφ

e
β+

+
1

2
ψ̄aΓµDµψ

a +
1

2
fabcψ̄aΓαφb

αψ
c
}

(5.5)

where the curvature is F a
µν = ∂µA

a
ν−∂νA

a
µ+fabcAb

µA
c
ν and the covariant derivative

is Dµφ
a = ∂µφ

a + fabcAb
µφ

c. (Γµ,Γα) are the ten-dimensional Dirac matrices in
the Majorana-Weyl representation.

Vertices and propagators can be read off from the action (5.5). We will work
in the Feynman gauge where the free field limit of the vector field propagator is

〈0|Aa
µ(x)A

b
ν(0)|0〉0 = g2

YMδ
abδµν

1

4π2[x]2

In this gauge, it resembles the free scalar field propagator

〈0|φa
α(x)φb

β(0)|0〉0 = g2
YMδ

abδαβ
1

4π2[x]2

N = 4 supersymmetric Yang-Mills theory contains no dimensional parame-
ters. Furthermore, because of the high degree of supersymmetry, it has vanishing
beta function for the coupling constant gYM and is a conformal field theory. How-
ever, individual Feynman diagrams are divergent and the explicit computations
that we do in the following will require a regularization. For this purpose, we

12



(1)

Figure 3: The relevant graphs of the self energy, gluon exchange and four-point
interaction contributing to the leading radiative corrections of two-point scalar
field trace operators.

will use regularization by dimensional reduction. Four dimensional N = 4 super-
symmetric Yang-Mills theory is a dimensional reduction of the ten-dimensional
N = 1 theory. We can obtain a regularization of the four dimensional theory
which still has sixteen supersymmetries (but of course is no longer conformally
invariant) by considering a dimensional reduction to 2ω dimensions, rather than
4 dimensions. In this reduction, the fermion content is still a sixteen-component
spinor (which originally was the Weyl-Majorana spinor in ten dimensions). There
are 10−2ω rather than 6 flavors of scalar field and 2ω rather than 4 polarizations
of the vector field.

The Green function for the Laplacian in 2ω dimensions is

∆(x) =
∫

d2ωp

(2π)2ω

eip·x

p2
=

Γ(ω − 1)

4πω[x2]ω−1
(5.6)

When we work in 2ω-dimensions, the right-hand side of this equation should
replace 1/4π2[x2] in propagators. Useful formulae for Feynman integrals in 2ω-
dimensions can be found in refs.[11, 12].

5.2 One-loop integrals

The Feynman diagrams which contribute to radiative corrections to two-point
correlators of scalar trace operators are depicted in figure 3. The first diagram in
figure 3 contains the self-energy of the scalar field. Feynman rules and conventions
for vertices can be deduced from the action (5.5).

The self-energy of the scalar field was computed with the present notational
conventions in refs.[11, 12]. Written as a correction to the scalar propagator, it
is

〈0|φa
α(x)φb

β(0)|0〉 =

g2
YMδαβ∆(x)

(

δab + δāb̄

[

− g2
YMNΓ(ω − 1)

8πω(2 − ω)(2ω − 3)

]

[x2](2−ω) + . . .

)

(5.7)

Note that the quantum correction only affects the SU(N) indices. The . . . denote
terms of order at least g6

YM.
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The other quantum correction that we must take into account occurs in the
correlator of four scalar fields,

Γabcd
αβγδ(x) ≡ 〈0|φa

α(x)φb
β(x)φc

γ(0)φd
δ(0)|0〉

= g4
YM∆2(x)

(

δacδbdδαγδβδ + δadδbcδαδδβγ

)

+ δΓabcd
αβγδ(x) (5.8)

The first term on the right-hand-side is the free field limit and δΓabcd
αβγδ(x) denotes

the radiative corrections, which we shall compute to order g6
YM. The relevant

Feynman diagrams are the second and third diagrams in figure 3. When these
diagrams are combined, the total contribution is conveniently summarized in a
combination of three different tensor structures,

δΓabcd
αβγδ(x) = g6

YM×
[ (

δαγδβδf
eacf ebd + δαδδβγf

eadf ebc
) [

Γ(ω−1)
4πω(2−ω)(2ω−3)

]

[x2]2−ω∆2(x) + (5.9)

(δαδδβγ − δαγδβδ) f
eabf ecd

[

Γ2(ω−2)Γ2(ω−1)Γ(3ω−4)
16πωΓ2(2ω−2)Γ(4−2ω)

]

[x2]2−ω∆2(x) + (5.10)

δαβδγδ

(

f edaf ecb + f edbf eca
) [

Γ2(ω−2)Γ2(ω−1)Γ(3ω−4)
16πωΓ2(2ω−2)Γ(4−2ω)

]

[x2]2−ω∆2(x)
]

(5.11)

Here, we have dropped a possible contact term which, in four dimensions, is
proportional to the Dirac delta function δ(x) and therefore cannot contribute.
The terms are arranged so that the first part (5.9) is symmetric, the second term
(5.10) is anti-symmetric and the third term (5.11) is diagonal in the indices α
and β. We caution the reader that the symmetric term (5.9) is not traceless.
However, it is the only one which will be needed when we compute the leading
radiative corrections to a correlator of chiral primary operators.

5.3 Cancellation of leading radiative corrections to 2-point

correlator of chiral primary operators

The cancellation of leading order corrections to two- and three-point functions
of chiral primary operators was demonstrated in ref.[13]. Here, to check our own
procedure, and further develop the matrix model approach to computations we
will redo this check of the no-renormalization theorem.

We will consider the two-point correlator of chiral primary operators,

〈0|TrZJ(x) TrZ̄J(0)|0〉 =
∆J(x)

2J
· 〈TrZJ TrZ̄J〉 + . . . (5.12)

The first term on the right-hand-side is the free field limit which is given by
the Feynman diagram depicted in figure 4. The last bracket in this term is the
matrix model correlation function in eqn.(2.3). The factor ∆J (x) is the J ′th
power of the scalar correlation function and the combinatorics of taking traces of
Lie algebra generators in the appropriate permutations is solved by the matrix
model correlator, which we have evaluated explicitly in eqn.(2.4).
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J
Tr Z  (0)Tr Z (x) 

J

Figure 4: Feynman diagram for the free field limit of the correlator
〈0|TrZJ(x) TrZ̄J(0)|0〉. There are J scalar propagators connecting the points
x and 0.

Radiative corrections to this result arise from the Feynman diagrams, typical
ones of which are depicted in figure 5. The first of the diagrams represent the
radiative correction coming from the self-energy of the scalar field. As we dis-
cussed in the previous subsection, this gives a contribution consisting of a factor
of the scalar self-energy times the number of scalar lines in the diagram. Thus,
the correction from self-energies is

[

− g2
YMNΓ(ω − 1)

8πω(2 − ω)(2ω − 3)

]

· [x2](2−ω)2−J∆J(x) · J2〈TrT āZJ−1 TrT āZJ−1〉

where we have taken into account that the interaction affects only the SU(N)
part of the propagator by inserting the SU(N) generators T ā into the traces and
eliminating one factor of Z and Z̄ from each trace, respectively. The factor of J2

reflects the fact that there are J positions at which T ā could be inserted in each
product. This equation can be simplified using (5.4) to get

[

− g2
YMNΓ(ω − 1)

8πω(2 − ω)(2ω − 3)

]

· [x2](2−ω)2−J∆J(x)
J2

2
〈TrZJ−1Z̄J−1− 1

N
TrZJ−1TrZ̄J−1〉

(5.13)

(1)

Figure 5: Feynman diagrams contributing to the order g2
YM corrections to the

correlator 〈0|TrZJ(x) TrZ̄J(0)|0〉. There are either J scalar lines with one inser-
tion of a scalar self-energy sub-diagram or two lines connected by either a vector
line with two three-point vertices or one four-point scalar vertex.

The second and third of these diagrams represents the correction which cor-
relates four of the scalar fields. This is the object Γ which we studied in the
previous section in eqs.(5.8)-(5.11). To take this correction into account, we
must insert the four-point module Γ in all appropriate ways. The result is given
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by the formula

J2

4

J−2
∑

k,q=0

〈0|Tr
(

T aZk(x)T bZJ−2−k(x)
)

Tr
(

T cZ̄q(0)T dZ̄J−2−q(0)
)

|0〉Γabcd
zzz̄z̄(x)

The factor of J2 in the above expression arises from the fact that there are J
places to insert the first leg of Γ into each of the two traces in the correlator. The
position of the second insertion on each side is then summed over. The factor of 4
in the denominator arises from the fact that all crossings have already been taken
into account in Γ so that, to prevent double counting, the insertions should be
ordered. It is more convenient to use the cyclic symmetry of the trace to consider
all orderings and divide by their number - thus the factor of 4. Using the identity
in (5.3), and the explicit form of the four-point module in eqn.(5.9), we get the
formula

J2

8

[

g2
YMΓ(ω − 1)

4πω(2 − ω)(2ω − 3)

]

[x2]2−ω2−J∆J(x)

×
J−2
∑

k,q=0

〈TrZkTrZ̄qTrZJ−2−kZ̄J−2−q − TrZkZ̄qZJ−2−kZ̄J−2−q〉 (5.14)

In order to show that the radiative corrections cancel to order g2
YM, we must

demonstrate that the sum of the two contributions, (5.13) and (5.14) is zero.
This requires an identity for the matrix model correlation functions

〈TrZJ−1Z̄J−1 − 1

N
TrZJ−1TrZ̄J−1〉 = (5.15)

1

N

J−2
∑

k,q=0

〈TrZkTrZ̄qTrZJ−2−kZ̄J−2−q − TrZkZ̄qZJ−2−kZ̄J−2−q〉 (5.16)

This identity can easily be shown to follow from a Schwinger-Dyson equation of
the Gaussian matrix model. Showing that it is true is entirely equivalent to the
manipulations of Lie algebra matrices which was outlined in section 2 of ref.[13].

5.4 The first radiative correction to the anomalous dimen-

sion of unprotected operators to leading order in J2

N

Here we shall be interested in calculating the first radiative correction to the
anomalous dimension of the unprotected operators given in (4.1). Our calculation
implies evaluating the first radiative correction to the following quantity

J
∑

p,q=0

〈Tr
[

φ3(x)Z
J−p(x)φ4(x)Z

p(x)
]

Tr
[

φ3(0)Z̄q(0)φ4(0)Z̄J−q(0)
]

〉e 2πi
J

(n1p−n2q)

(5.17)
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The calculation is conveniently split into four parts each of which is treated
making use of our modules from before

1. Corrections coming from self-energies, CSE

These result from replacing one free propagator of type 〈φφ〉 or 〈ZZ〉 by
the relevant one of the following two modules

〈0|Za(x)Z̄b(0)|0〉 = −δab
g2
YMN

8π2(2 − ω)
∆(x)

〈0|φa
α(x)φb

β(0)|0〉 = −δab δαβ
g2
YMN

8π2(2 − ω)
∆(x)

2. Corrections involving the correlator of four Z fields, C4Z

These are obtained by replacing a pair of Z-propagators with the following
module which can easily be derived from the general correlator (5.9)–(5.11)

〈0|Za(x)Zb(x)Z̄c(0)Z̄d(0)|0〉 =
g2
YM

4π2(2 − ω)

[

f eadf ebc + f eacf ebd
]

(∆(x))2

(5.18)

3. Corrections involving the correlator of four φ-fields, C4φ

These we get by replacing the two φ-propagators with the following quantity

〈0|φa
3(x)φ

b
4(x)φ

c
3(0)φd

4(0)|0〉 =
g2
YM

4π2(2 − ω)

[

f eadf ebc
]

(∆(x))2 (5.19)

4. Corrections involving the correlator of two Z-fields and two φ-fields, C2Zφ

These are obtained by replacing one Z-propagator and one φ-propagator
with the following module

〈0|φa
3(x)Z

b(x)φc
3(0)Z̄d(0)|0〉 =

g2
YM

4π2(2 − ω)

[

f eadf ebc
]

(∆(x))2 (5.20)

Inserting the given modules in all possible ways and taking care of the remaining
contractions by use of the trace formulas in section 5.1 we obtain to the leading
order in N and all orders in J

C0
SE = A0 ·

{−J
2
− 1 n16 = n2

−J2

2
− 3J

2
− 1 n1 = n2

C0
4Z = A0 ·

{

J
2

n16 = n2
J2

2
− J

2
n1 = n2

C0
4φ = A0 ·

{

1 n16 = n2

1 n1 = n2

C0
2φZ = A0 ·

{

0 n16 = n2

2J cos
(

2πn2

J

)

n1 = n2
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where

A0 =
g2
YMN

4π2(2 − ω)

(

1

2

)J+2

NJ+2
[

x2
]2−ω

∆J+2(x) (5.21)

It is easy to understand the combinatorial factors of (J + 2) and (J + 1)(J + 2)
occurring in the self-energy correction. The factor (J + 2) counts the number of
propagators and the (J +1) the number of momentum states. The results neatly
sum up to

C ≡ CSE + C4Z + C4φ + C2Zφ

=

{

0 n16 = n2

A0 · 2J
(

cos
(

2πn2

J

)

− 1
)

n1 = n2

The contribution to the correction of the anomalous dimension coming from pla-
nar diagrams thus reads

(δ∆)0 =
g2
YMNn

2

J2
(5.22)

which is the same as the result obtained in reference [3]. We note, however, that
it is crucial for the cancellations to take place that we include p, q = 0 in our
summation range (5.17).

5.5 The first radiative correction to the anomalous di-

mension of unprotected operators to two orders in J2

N

Calculation of the first radiative correction to the anomalous dimension can be
carried out to higher orders in the double scaling parameter following exactly the
same recipe as in the previous section. For the explicit computations it is useful
to employ an effective matrix model interaction vertex representing the four point
modules of eq. (5.18), eq. (5.19) and eq. (5.20). These computations are rather
technical and we have chosen to present them in detail in appendix B.

The outcome of this analysis is that up to next to leading order in N the
correlation function in question at one-loop reads

〈On1(x) Ōn2(0) 〉1-loop =

−g
2
YMN

J2

[x2]2−ω

4π2 (2 − ω)

(

g2
YM

8π2 |x|2
)J+2 [

2n1 n2 (2π)2 〈On1 Ōn2〉0-loop +
J4

N2
Dn1,n2

]

(5.23)

where

〈On1 Ōn2〉0-loop = δn1,n2 +
J4

N2
Mn1,n2 (5.24)
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is the tree-level correlator of eq. (4.14) and where Dn1,n2 is the symmetric genus
one mass renormalization matrix given by (n̄6 = 0)

D0,0 = 0 D0,n̄ = 0 Dn̄1,n̄2 =

{

2
3

+ 5
n̄1

2 π2 for |n̄1| = |n̄2|
2
3

+ 2
n̄1

2 π2 + 2
n̄2

2 π2 for |n̄1| 6= |n̄2| (5.25)

This result teaches us that for the redefined operators Õn(x) of eq. (4.16) we have

〈 Õ)n1(x)
˜̄On2(0) 〉1-loop = −g

2
YMN

J2

[x2]2−ω

4π2 (2 − ω)

(

g2
YM

8π2 |x|2
)J+2

[

2n1 n2 (2π)2 δn1,n2 − (n1 − n2)
2 (2π)2 J

4

N2
Mn1,n2 +

J4

N2
Dn1,n2

]

(5.26)

The diagonal piece of this result gives rise to a non-planar correction of the one-
loop anomalous dimension of these operators

(δ∆)1 = g2
YM

J2

(2π)2N2

[ 1

3
+

5

2 n̄2 π2

]

. (5.27)

It would be very interesting to reproduce this result from a genus one string
theory calculation.
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A Complex matrix model technology

Much of our insight into the nature of the scaling limit eq.(1.1) comes from the
exact result eq.(2.4) which we have not been able to find in the literature. Here
we will explain its derivation using matrix model techniques.

We start from the normalized Gaussian measure for complex N ×N matrices
Zi,j =ReZi,j + i ImZi,j with Z̄i,j =ReZj,i − i ImZj,i

[dZdZ̄] = dZdZ̄ exp(−TrZZ̄), (A.1)

where the flat measure dZdZ̄ is an abbreviation of

dZdZ̄ =
N
∏

i,j=1

dReZi,j dImZi,j

π
(A.2)

Thus
∫

[dZdZ̄] = 1, and matrix model expectation values are given by 〈. . .〉 =
∫

[dZdZ̄] . . .. The model has a U(N)×U(N) symmetry (since the action and the
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measure are invariant under independent left and right group multiplication Z →
UZV † where U, V are unitary). Correlators invariant under the full symmetry
(i.e. sums of products of traces of powers of ZZ̄) are calculable with known
techniques [8]. Correlators with less symmetry are more difficult even though the
potential is Gaussian. For our purposes we are interested in correlators invariant
under the adjoint action of just one U(N) symmetry: Z → UZU †. Now the
general invariant correlator contains traces of arbitrary words made out of Z and
Z̄, a problem that has not been solved to our knowledge. However, in the special
case where the traces contain either just Z’s or Z̄’s the problem is solvable by
character expansion techniques [9], or, alternatively, by the method of Ginibre
[10]. For completeness we will briefly explain both.

In order to apply the first method one expands the parts of the correlator
containing the Z’s and the Z̄’s separately in the basis of unitary group characters
(Schur functions) χh(Z) and χh′(Z̄) labeled by Young diagrams h,h′. Then one
uses [9] that, even though the matrices are complex instead of unitary, the inner
product

〈χh(Z) χh′(Z̄)〉 = δh,h′ Ωh (A.3)

is still orthogonal, with a Young diagram dependent, explicitly known normaliza-
tion factor Ωh (see [9] for precise definitions). By Schur-Weyl duality the expan-
sion coefficients are expressed with the help of the characters of the symmetric
group SN . E.g. in the simplest case 〈TrZJ TrZ̄J〉 one has

TrZJ =
∑

h

chh(J) χh(Z) (A.4)

where chh(J) is the character of the symmetric group SJ corresponding to the
representation h and evaluated for the conjugacy class of J-cycles. Thus, using
eq.(A.3),

〈TrZJ TrZ̄J〉 =
∑

h

(

chh(J)
)2

Ωh (A.5)

Now it is easy to show that for J−cycles chh(J) is non-zero only for Young
diagrams consisting of a single hook of boxes with row length k and column
length J − k. For the hooks one has chh(J) = ±1 and (see [9]) Ωh =

∏k
i=1(N −

1 + i)
∏J−k

m=1(N −m) and thus (clearly
∑

h becomes a sum over the J possible
hooks)

〈TrZJ TrZ̄J〉 =
J
∑

k=1

k
∏

i=1

(N − 1 + i)
J−k
∏

m=1

(N −m) (A.6)

which may be summed to the expression eq.(2.4). In a similar way we find

〈TrZJTrZKTrZ̄J+K〉 =

(

J+K
∑

k=K+1

−
J
∑

k=1

)

k
∏

i=1

(N − 1 + i)
J+K−k
∏

m=1

(N −m) (A.7)

which upon summing gives eq.(3.2).
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An alternative method consists in diagonalizing Z by a similarity transforma-
tion

XZX−1 = diag(z1, . . . , zN), (A.8)

with X a complex matrix and z1, . . . , zN the complex eigenvalues of Z. As shown
by Ginibre in 1965 [10] the non-diagonal degrees of freedom can be integrated
out leading to the following joint probability density for the eigenvalues of Z

P (z1, . . . , zN) = K−1 exp

(

−
N
∑

i=1

|zi|2
)

∏

1≤i≤j≤N

|zi − zj |2, K = πN
N
∏

j=1

j! (A.9)

Here the normalization is such that

∫

C|

N
∏

i=1

d 2zi P (z1, . . . , zN) = 1. (A.10)

Furthermore, one can derive an explicit expression for the correlation function
involving n eigenvalues, defined as follows (n < N)

Rn(z1, . . . , zn) ≡
∫

C|

N
∏

i=n+1

d 2zi P (z1, . . . , zN). (A.11)

The result reads [10]

Rn(z1, . . . , zn) = π−n (N − n)!

N !
exp

(

−
n
∑

k=1

|zk|2
)

det(KN(zi, zj))|i,j=1,...,n (A.12)

where

KN(zi, zj) =
N−1
∑

l=0

(ziz
∗
j )

l

l!
. (A.13)

Making use of the expression (A.12) for n = 1, n = 2 and n = 3 one easily
derives (2.4) and (3.2).

B Evaluating C4Z,C2φZ,C4φ and CSE

B.1 C4Z

Let us begin with the computation of C4Z , i.e. the insertion of the module
eq. (5.18) into the correlator. Here it is useful to represent the expression
eq. (5.18) through an effective four point vertex in the matrix model of the form
: Tr(Z2Z̄2 −ZZ̄ZZ̄) :. This effective vertex appears in a normal ordered fashion,
disallowing self-contractions. After performing the φ3 and φ4 contractions one is
then led to evaluate the correlator

〈TrZJ−p Z̄J−q TrZp Z̄q : Tr(Z2Z̄2 − ZZ̄ZZ̄) :〉 (B.1)
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Contacting the two Z’s in the effective vertex with the outside Z̄’s one produces,
after some manipulations, the following three terms

(A) =
q−1
∑

l=0

J−q−1
∑

m=0

〈Tr(ZJ−p Z̄m+q+1−l Zp Z̄J+l−q−1−m)

−Tr(ZJ−p Z̄m+q−l Zp Z̄J+l−q−m)〉

(B) =
q−1
∑

l=1

l−1
∑

m=0

〈Tr(ZJ−p Z̄J−q)
(

TrZ̄m Tr(Zp Z̄q−m) − TrZ̄m+1 Tr(Zp Z̄q−m−1)
)

〉

(C) =
q−2
∑

l=0

q−l−2
∑

m=0

〈Tr(ZJ−p Z̄J−q)
(

TrZ̄m+2 Tr(Zp Z̄q−m−2)

−TrZ̄m+1 Tr(Zp Z̄q−m−1)
)

〉

to be augmented by the corresponding terms obtained by swapping p → J − p
and q → J − q. We are interested in these correlators to orders NJ+3 and NJ+1.
Term (A) is of leading order NJ+1 and hence its evaluation is simple: swap
m→ J − q − 1 −m in the second sum to obtain

(A) =
q−1
∑

l=0

J−q−1
∑

m=0

〈Tr(ZJ−p Z̄J−m−l Zp Z̄ l+m) − Tr(ZJ−p Z̄J−m−l−1 Zp Z̄ l+m+1)〉

=
q−1
∑

l=0

〈Tr(ZJ−p Z̄J−l Zp Z̄ l) 〉 −
q−1
∑

l=0

〈Tr(ZJ−p Z̄ l+1 Zp Z̄J−1−l) 〉

= NJ+1
q−1
∑

l=0

Min[J − p, J − l, p, l] −
q
∑

l=1

Min[J − p, l, p, J − l]

= −NJ+1 Min[J − p, J − q, p, q] (B.2)

up to terms of order NJ−1. Turning to the contributions (B) and (C) we observe
that they also are of telescope type and only the lowest and highest values of the
summation indices m contribute:

(B) =
q−1
∑

l=1

〈Tr(ZJ−p Z̄J−q)
(

N Tr(Zp Z̄q) − TrZ̄ l Tr(Zp Z̄q−l)
)

〉

= (q − 1)N 〈Tr(ZJ−p Z̄J−q) Tr(Zp Z̄q) 〉

−
q−1
∑

l=1

〈Tr(ZJ−p Z̄J−q) TrZ̄ l Tr(Zp Z̄q−l) 〉

(C) =
q−2
∑

l=0

〈Tr(ZJ−p Z̄J−q)
(

TrZ̄q−l Tr(Zp Z̄ l) − TrZ̄ Tr(Zp Z̄q−1)
)

=
q
∑

l=2

〈Tr (ZJ−p Z̄J−q) TrZ̄ l Tr(Zp Z̄q−l) 〉

−(q − 1) 〈Tr (ZJ−p Z̄J−q)TrZ̄ Tr(Zp Z̄q−1) 〉 (B.3)
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But now the second term in (B) telescopes with the first term in (C) and we
obtain

(B) + (C) =

(q − 1)N 〈Tr(ZJ−p Z̄J−q) Tr(Zp Z̄q) 〉 − q 〈TrZ̄ TrZp Z̄q−1 TrZJ−p Z̄J−q〉
+〈Tr(ZJ−p Z̄J−q) TrZ̄q TrZp 〉 (B.4)

Adding in the swapped p→ J − p and q → J − q contributions we thus find the
result

C1
4Z = (J − 2)N (J | p, q) − 2NJ+1 Min[J − p, J − q, p, q]

+〈Tr(ZJ−p Z̄J−q) TrZ̄q TrZp 〉 + 〈Tr(Zp Z̄q) TrZ̄J−q TrZJ−p 〉
−q p (J − 1| p− 1, q − 1) − q (J − p) (J − 1| p, q − 1)

−(J − q) p (J − 1| p− 1, q) − (J − q) (J − p) (J − 1| p, q) (B.5)

up to terms of order NJ−1 and where we have defined

(J | p, q) ≡ 〈Tr(ZJ−p Z̄J−q ) Tr(Zp Z̄q )〉 = δp,q [J | p] + [J | p, q] . (B.6)

B.2 C2φZ

For the evaluation of C2φZ we use an analogous strategy and represent the inser-
tion of the module eq. (5.20) into eq. (5.17) by an effective matrix model vertex
of the form

V2φZ ≡ g2
YM ∆(x)2

4π2 (2 − ω)

1

8
: Tr [φ, Z̄] [φ̄, Z] : (B.7)

where we have introduced the complex matrices φ and φ̄ corresponding to the real

fields φi(x) and φi(0) with i = 3, 4. Note, that one needs to work with complex
matrices in the effective matrix model description of the combinatorics for the
real fields φi(x) in order to ensure that only fields at points x and 0 are contracted
and not at 0 − 0 or x− x. This is a purely technical maneuver to ensure correct
combinatorics. The : : denote normal ordering as before. It is easy to convince
oneself that eq. (B.7) is the correct object by inserting it into a trial correlator

〈Tr(φAZ B) Tr(φ̄ C Z̄D)V2φZ〉 =

TrATrC TrBD + TrB TrDTrAC − TrDACB − TrADBC (B.8)

as it should be from (5.3) and (5.20).
The C2φZ correlator then reads

C2φZ = 〈Tr(φZJ−p φ4 Z
p) Tr(φ̄ Z̄q φ̄4 Z̄

J−q) : Tr(φZ̄φ̄Z+Z̄φZφ̄−Z̄φφ̄Z−φZ̄Zφ̄) :〉
(B.9)
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where we have chosen to insert a 2φ3 Z module. Clearly for the second choice
2φ4 Z one gets a factor of 2. Now contract the φ̄ in the effective vertex to find

〈Tr
(

ZJ−p φ4 Z
p : (ZφZ̄ + Z̄φZ − ZZ̄φ− φZ̄Z) :

)

Tr(φ̄ Z̄q φ4 Z̄
J−q )〉 (B.10)

now contract the φ4’s

〈Tr(ZJ−p Z̄J−q φ̄ Z̄q Zp : (ZφZ̄ + Z̄φZ − ZZ̄φ− φZ̄Z) : 〉 (B.11)

and finally contract the remaining φ’s. In order to keep track of the normal
ordered Z and Z̄ in the effective vertex we denote them by calligraphic letters Z
and Z̄. One then has the four terms

〈Tr(ZJ−p Z̄J−q Z̄) Tr(Z̄q Zp Z) + Tr(Z ZJ−p Z̄J−q ) Tr(Z̄ Z̄q Zp )

−Tr(ZJ−p Z̄J−q ) Tr(Z̄ Z̄q Zp Z) − Tr(Z ZJ−p Z̄J−q Z̄) Tr(Z̄q Zp) 〉 (B.12)

In the above we are not allowed to contract the Z and Z̄ with each other. How-
ever, we may circumvent this problem by forgetting about this property of the Z’s
in the propagator and subtracting off the ZZ̄ contraction to correct our mistake,
e.g.

〈Tr(ZJ−p Z̄J−q Z̄) Tr(Z̄q Zp Z)〉 =

〈Tr(ZJ−p Z̄J+1−q ) Tr(Z̄q Zp+1 )〉 − 〈Tr(ZJ Z̄J)〉 (B.13)

But now the correlator is easy to evaluate and one finds

C2φZ = (J + 1| p, q + 1) + (J + 1| p+ 1, q)

−(J + 1| p+ 1, q + 1) − (J + 1| p, q)
+2N (J | p, q) − 2 〈Tr(ZJ Z̄J)〉 (B.14)

which is the exact result. The total contribution to the correlator comes with a
factor of 2 and we know every term in the above to leading and subleading order
in N .

B.3 C4φ

To deduce the C4φ contribution one starts out from

〈Tr(T a ZJ−q T b Zq) Tr(T c Z̄p T d Z̄J−p) 〉 〈0|φa
3 φ

b
4 φ

c
3 φ

d
4 |0〉 (B.15)

and inserts the C4φ module eq. (5.19) into the last term. Upon using the identity
eq. (5.3) one finds

C4φ = 〈TrZJ−q TrZ̄p Tr(Zq Z̄J−p)〉 + 〈TrZq TrZ̄J−p Tr(ZJ−q Z̄p)〉
−〈Tr(ZJ−q Z̄p Zq Z̄J−p)〉 − 〈Tr(ZJ−q Z̄J−p Zq Z̄p)〉

= 〈TrZJ−q TrZ̄p Tr(Zq Z̄J−p)〉 + 〈TrZq TrZ̄J−p Tr(ZJ−q Z̄p)〉
−2NJ+1 Min[J − p, J − q, p, q] (B.16)

where we have used that 〈Tr(ZJ−q Z̄p Zq Z̄J−p)〉 = NJ+1 Min[J − p, J − q, p, q] to
leading order in N .
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B.4 CSE

We now turn to the contribution from the self-energy sector. It is simply given by
−N times the number of free propagators of the tree-level result plus a correction
piece due to the missing U(1) contractions in the 1-loop corrected propagator due
to eq. (5.4). The outcome is

CSE = −(J + 2)N (J |p, q) + 2 Tr(ZJ Z̄J)

+p(J − q) (J − 1|p− 1, q) + p q (J − 1|p− 1, q − 1)

+(J − p) (J − q) (J − 1|p, q) + (J − p) q (J − 1|p, q − 1) . (B.17)

B.5 The Sum and its Fourier Transform

In summing up all the results of subsections B.1-4 one sees that many terms
cancel out. We are then left with

2C2φZ + C4φ + C4Z + CSE =

2
{

(J + 1| p, q + 1) + (J + 1| p+ 1, q) − (J + 1| p+ 1, q + 1) − (J + 1| p, q)
}

+〈Tr(ZJ−p Z̄J−q) TrZ̄q TrZp 〉 + 〈Tr(Zp Z̄q) TrZ̄J−q TrZJ−p 〉
+〈TrZJ−q TrZ̄p Tr(Zq Z̄J−p)〉 + 〈TrZq TrZ̄J−p Tr(ZJ−q Z̄p)〉
−4〈TrZJZ̄J〉 − 4NJ+1 Min[J − p, J − q, p, q] (B.18)

In the above all terms except 〈TrZJ Z̄J〉 will turn out to be relevant in the double
scaling limit eq. (1.1).

The first line of the right hand side of eq. (B.18) may be Fourier transformed
by multiple telescoping. One finds

2
J
∑

p,q=0

{

(J + 1| p, q + 1) . . .− (J + 1| p, q)
}

zp wq =

−2 (1 − z−1) (1 − w−1)
J
∑

p,q=1

(J + 1| p, q) zpwq

−4N 〈TrZJ+1 Z̄J+1〉 + 4 〈TrZJ+1 TrZ̄J+1〉 + 8J NJ+1 (B.19)

where z = exp(2π i n1/J) and w = exp(−2π i n2/J). We thus recover the genus-0
correlator 〈On1 Ōn2〉0-loop in the sum of the second line7. Note that there is a
relevant contribution to the scaling limit from the first term in the last line of
(B.19).

To evaluate the minimum sum

− 4
J
∑

p,q=0

Min[J − p, p, J − q, q] zpwq (B.20)

7The shift of J → J + 1 in this term is irrelevant in the scaling limit and results in an
additional factor of N in the tree-level correlator.
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we proceed as follows. Split up the individual p and q sums according to
∑J

p=0 =
∑J/2

p=0 +
∑J

p=J/2+1 assuming J even. By reversing the orders of the resulting sums
over p and q in the domain larger than J/2 via p′ = J − p and q′ = J − q one can
turn eq. (B.20) into

− 4
J/2
∑

p,q=0

Min[p, q] (zq + z−q) (wq +w−q)− (subleading terms of orderJ2) (B.21)

Now this apparently is

An1,n2 = −16
J/2
∑

p=0

{

p
∑

q=0

q cos(2π n1

J
p) cos(2π n2

J
q) +

J/2
∑

q=p+1

p cos(2π n1

J
p) cos(2π n2

J
q)
}

(B.22)
which upon performing the sums explicitly turns out to be

A0,0 = −2 J3

3
An̄1,0 =

2 J3

n̄1
2 π2

A0,n̄2 =
2 J3

n̄2
2 π2

An̄1,n̄2 = 0

An̄1,n̄1 = − J3

n̄1
2 π2

= An̄1,−n̄1 where |n̄1| 6= |n̄2|, n̄16 = 0 6 = n̄2 (B.23)

What remains to be done is the Fourier transform of the four cubic trace corre-
lators in eq. (B.18) which may be rewritten as

〈Tr3〉 =
J
∑

p,q=0

〈TrZp TrZ̄q Tr(ZJ−p Z̄J−q) 〉 (zp + z−p) (wq + w−q) (B.24)

Now

〈TrZp TrZ̄q Tr(ZJ−p Z̄J−q) 〉 =

N2 δp,0 δq,0 〈TrZJ Z̄J 〉 + δp,q 〈TrZJ−p Z̄J−p〉 〈TrZp TrZ̄p〉C
+δp,0N 〈TrZ̄q Tr(ZJ Z̄J−q)〉C + δq,0N 〈TrZp Tr(ZJ−pZ̄J)〉C (B.25)

which upon using

〈TrZp Tr(ZJ−pZ̄J)〉C = NJ+1(J − p+ 1) p+ O(NJ−1)

yields to the order in N and J, p, q we are working at

〈TrZp TrZ̄q Tr(ZJ−p Z̄J−q) 〉 = (B.26)

δp,0 δq,0 (NJ+3 +
(

J + 1
4

)

NJ+1) + δp,0N
J+1 (J − q) q + δq,0N

J+1 (J − p) p

Fourier transforming this result by making use of

∫ 1

0
dx x (1 − x) cos(2π nx) =

{

− 1
2 n2 π2 for n6 = 0
1
6

for n = 0
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yields

〈Tr3〉 = 4
(

NJ+3 +
(

J + 1
4

)

NJ+1
)

+J3NJ+1























4
3

n1 = 0 = n2
2
3
− 2

n2
2 π2 n1 = 0; n26 = 0

2
3
− 2

n1
2 π2 n2 = 0; n16 = 0

− 2
n1

2 π2 − 2
n2

2 π2 n16 = 0 6 = n2

(B.27)
Finally turning to the relevant term in eq. (B.19) we get

− 4N 〈TrZJ+1 Z̄J+1 〉 = −4
(

NJ+3 +
(

J + 2
4

)

NJ+1
)

(B.28)

Adding eq. (B.23), eq. (B.27) and eq. (B.28) we see that we obtain the final result
of (working with the normalization of the operators On defined in eq. (4.1))

〈On1 Ōn2〉1-loop =
{

−2 (2π)2 n1 n2
N

J2
〈On1 Ōn2〉0-loop −

J2

N
Dn1,n2

}

× [pole] (B.29)

where

D0,0 = 0 D0,n̄2 = 0 = Dn̄1,0 Dn̄1,n̄1 =
2

3
+

5

n̄1
2 π2

= Dn̄1,−n̄1

Dn̄1,n̄2 =
2

3
+

2

n̄1
2 π2

+
2

n̄2
2 π2

where |n̄1| 6= |n̄2| . (B.30)

Indeed this correlator vanishes for n1 = 0 or n2 = 0.
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