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Regularization parameters for the self-force in Schwarzschild spacetime: Scalar case
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We derive the explicit values of all regularization parameters~RP! for a scalar particle in an arbitrary
geodesic orbit around a Schwarzschild black hole. These RP are required within the previously introduced
mode-sum method for calculating the local self-force acting on the particle. In this method, one first calculates
the ~finite! contribution to the self-force due to each individual multipole mode of the particle’s field, and then
applies a certain regularization procedure to the mode sum, involving the RP. The explicit values of the RP
were presented in a recent paper@L. Baracket al., Phys. Rev. Lett.88, 091101~2002!#. Here we give the full
details of the RP derivation in the scalar case. The calculation of the RP in the electromagnetic and gravita-
tional cases will be discussed in an accompanying paper.
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I. INTRODUCTION

The space-based gravitational wave detector LISA~Laser
Interferometer Space Antenna!, scheduled for launch aroun
2011@1#, will open up a window for the low-frequency ban
below 1 Hz, allowing access to a variety of black ho
sources. As one of its main targets, LISA is expected to
tect the outburst of gravitational radiation emitted during
capture of a compact star by a supermassive black hole
105– 107 solar masses black hole of the kind now believed
reside in the cores of many galaxies, including our own@2#.
Designing accurate gravitational waveform templates for
type of astrophysical event requires an accurate knowle
of the orbital evolution, including the effect of radiation r
action. The evolution of such extreme mass-ratio syste
can be modeled by considering a pointlike test particle m
ing in the fixed gravitational field of a black hole. One th
addresses the question of the localself-forceacting on this
particle. ~In special cases, one may study the orbital evo
tion under radiation reaction using global energy-moment
balance techniques@3#. However, such techniques appear
sufficient when dealing with the astrophysically realistic ca
of nonequatorial eccentric orbits in Kerr spacetime.!

There exists a well established formal framework for c
culating self-forces in curve spacetime: DeWitt and Breh
@4# first obtained a formal expression for theelectromagnetic
self-force. More recently, Mino, Sasaki, and Tanaka~MST!
@5# have worked out the case of thegravitational self-force.
@The same results, in both the electromagnetic and grav
tional cases, were obtained by Quinn and Wald~QW! @6#
using a different method.# The case of the scalar self-forc
was then analyzed by Quinn@7#. Recently, the two groups o
Barack and Ori~BO! and Mino, Nakano, and Sasaki~MNS!
have reported@8# on a practical method for implementing th
above formal results, allowing actual calculations of the s
force for any geodesic orbit in Schwarzschild spacetime. T
purpose of the present paper~together with the one accom
panying it@9#! is to provide a full account of the method an
results reported in@8#.
0556-2821/2002/66~8!/084022~15!/$20.00 66 0840
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The notion of self-forces is briefly described as follow
Consider a pointlike particle carrying a chargeq, which may
represent here a scalar charge, an electric charge, or a m
The particle is assumed to move freely in the curved ba
ground of a black hole with massM@q. In the limit q
→0, such a particle is known to move along a geodesic
the background geometry. However, when endowed wit
finite charge~or mass!, the particle no longer traces a bac
ground geodesic, as a result of interaction with its own fie
The finite-charge~or finite-mass! correction to the particle’s
motion is then described in terms of a ‘‘self-force’’: Treatin
the particle’s field as a linear perturbation on the fixed bla
hole background, the particle’s equation of motion is writt
as

maa5Fa
self, ~1!

where m is the particle’s mass,aa denotes its~covariant!
four-acceleration, andFa

self}O(q2) describes the leading
order self-force effect.~In the gravitational case, the four
acceleration, as well as the self-force, may be defin
through a mapping of the particle’s worldline into a traje
tory in the background spacetime—see Ref.@10#.! The for-
mal construction ofFa

self is described in@5,6# for the gravi-
tational case, in@4,6# for the electromagnetic case, and in@7#
for the scalar case. In all cases, the self-force is constru
through

Fa
self5 lim

x→z
Fa

tail~x!1trivial local terms, ~2!

wherez represents a point on the particle’s worldline whe
the self-force is being evaluated,x is a point in the neighbor-
hood ofz, and the local terms are given explicitly in@4–7#
~they include the Abraham-Lorentz-Dirac force in the sca
and electromegnetic cases!. The quantityFa

tail(x), the ‘‘tail’’
force, is a nonlocal contribution to the self-force, whose o
currence reflects the essentialnonlocalnature of the radiation
reaction effect in curved spacetime: waves emitted by
©2002 The American Physical Society22-1
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particle may backscatter off spacetime curvature and l
interact back with their emitter. The tail force may formal
be constructed through a worldline integral as@4,6,7#

Fa
tail~x!5 lim

e→01

qE
2`

t02e

¹̂aG@x,z~t!#dt, ~3!

wheret is the proper time along the particle’s worldline,t0
is the value oft at the intersection of the worldline with th
past light cone ofx, G symbolizes a Green’s function for th

particle’s field, and¹̂a is a certain first-order differential op

erator acting onG @the explicit form of ¹̂a , as well as the
type of the Green’s function~whether a biscalar, a bivecto
or a bitensor! depend on the case considered—see@4–7# for
details#. Notably, when geodesics in vacuum spacetime
considered~which is often the situation, especially in th
gravitational case!, the tail force constitutes thesole contri-
bution to the self-force. It is the actual evaluation of the t
part that has rendered practical calculations of the self-fo
most challenging.

It is instructive ~and later useful! to write Eq. ~3! in the
form

Fa
tail~x!5Fa

full~x!2Fa
dir~x!, ~4!

whereFa
full(x) and Fa

dir(x), the ‘‘full’’ and ‘‘direct’’ forces,
are the quantities constructed by replacing the integral in
~3! with *

2`
t01e and*t02e

t01e , respectively. The ‘‘full’’ forceFa
full

is directly obtained from the particle’s ‘‘full’’ field by acting

with q¹̂a @for the scalar case, e.g., see Eq.~15! below#. The
‘‘direct’’ force Fa

dir is the ‘‘divergent piece’’ to be removed
which is associated with the instantaneous effect of wa
propagating directly along the particle’s light cone. Note th
the ‘‘tail’’ force is hence attributed to waves scatteredinside
the particle’s past light-cone.

A direct implementation of the MST and QW scheme f
calculating the self-force in a weak field was introduced
cently by Pfenning and Poisson@11#. To allow a practical
implementation of this formal scheme for strong-field orbi
BO devised a multipole-mode decomposition method, re
ing directly on MST and QW’s formal result~2!. BO’s mode-
sum methodwas formulated first for the scalar self-forc
@12#, and later for the gravitational self-force@13#. This
method has been tested and fully implemented for calcu
ing the scalar self-force in several cases@14,15#. The mode
sum scheme~which we review in the next section! is based
on decomposing the tail force into individual multipol
mode contributions, relating these contributions to the ‘‘f
force’’ modes—which are accessible to standard numer
analysis—and then summing over the mode contributio
subject to a certain regularization procedure. This proced
requires knowledge of certain analytic parameters,
‘‘regularization parameters’’~RP!, whose values depend o
the orbit under consideration. The RP values were deri
previously for a few special orbits in Schwarzschild spa
time: for radial and circular orbits in the scalar case@12# and
for radial trajectories in the gravitational case@13,16#. These
~rather cumbersome! calculations were carried out through
08402
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special local perturbative expansion of the Green
function’s multipole modes, relying directly on the integr
formula ~3!.

In this paper, we present a different approach for the c
culation of the RP, based on a direct multipole decompo
tion of the ‘‘direct’’ piece of force. This new approach~al-
ready outlined in@8#! allowed a rather convenient calculatio
of all RP values for ageneralgeodesic orbit in Schwarzs
child spacetime, as we describe in this paper. In particula
provided an independent verification for the RP values in
special cases considered previously~using the l-mode
Green’s-function analysis as mentioned above!. Two variants
of the new calculation method were worked out indepe
dently by the two groups of BO and MNS, yielding the sam
RP values@8#. The calculation by MNS has been reported
@18#. This paper presents full details of the RP derivation
BO @17#.

In its basis, the calculation method presented here is
plicable to all three sorts of self-forces: scalar, electrom
netic, and gravitational. We find it most instructive to co
centrate first on the scalar case, as a toy model. This m
captures the essential parts of the calculation techniq
while avoiding several complexities and delicate issues
show up in the gravitational and electromagnetic cases
this paper, we thus focus on the scalar model, leaving
treatment of the gravitational and electromagnetic cases t
accompanying paper.

It should be commented that other approaches for the
culation of the self-force, not directly relying on the MS
and QW formal scheme, were also suggested rece
Lousto @19# introduced an approach also based on a mu
pole decomposition but employing a proposed zeta-func
regularization scheme. Other methods were proposed by
kano and Sasaki@20# and Detweiler@21#. Most recently, De-
tweiler and Whiting@22# presented an alternative formula
tion of the self-force problem in curved spacetime, whi
was shown to yield the same result for the self-force as
previous MST-QW formulation. This new formulation pro
vides an elegant physical interpretation of the self-force
the force applied by the ‘‘radiative’’ part of the particle
self-field.

The paper is arranged as follows. In Sec. II, we review
mode-sum method, and define the regularization parame
The scalar toy model to be considered in this paper is in
duced in Sec. III. The expression for the ‘‘direct’’ part of th
scalar force is introduced and processed in Sec. IV, an
being formally decomposed into modes in Sec. V. We th
prepare for the calculation of the RP by introducing a use
coordinate system, in Sec. VI. The main part of our calcu
tion is contained in Sec. VII, where, through an investigati
of the direct force’s multipole modes, we obtain all RP va
ues for a general trajectory in Schwarzschild spacetime. S
tion VIII summarizes the RP values, and Sec. IX provid
some concluding remarks.

Throughout this paper we use geometrized units~with G
5c51), and metric signature2111.

II. REVIEWING THE MODE-SUM APPROACH

The mode-sum method was introduced in Ref.@12# for the
scalar self-force, and in Ref.@13# for the gravitational self-
2-2
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REGULARIZATION PARAMETERS FOR THE SELF- . . . PHYSICAL REVIEW D 66, 084022 ~2002!
force. Here we review it using a slightly different perspecti
~and notation!.

In the mode-sum scheme, one first formally expands
three quantitiesFa

tail(x), Fa
full(x), and Fa

dir(x) appearing in
Eq. ~4! into multipole l modes as

Fa
tail~x!5(

l 50

`

Fa
(tail) l~x!,

Fa
full~x!5(

l 50

`

Fa
(full) l~x!, ~5!

Fa
dir~x!5(

l 50

`

Fa
(dir) l~x!

~where, recall,x represents an off-worldline point in th
neighborhood of the self-force evaluation pointz). Here,
Fa

(tail) l , Fa
(full) l , and Fa

(dir) l are the quantities obtained b
summing over all azimuthal numbersm ~and, in the gravita-
tional case, also over all ten tensor harmonics!, for a given
multipole numberl. An important benefit of the multipole
decomposition is the fact that, whereasFa

full and Fa
dir both

diverge atx→z, their individual modes attain finite value
even at the particle’s location~though they are usually foun
to be discontinuous there!. Applying the multipole decompo
sition to Eq.~4!, we obtain

Fa
(tail) l~x!5Fa

(full) l~x!2Fa
(dir) l~x!. ~6!

Considering now MST and QW’s expression for the se
force, Eq.~2!, we have

Fa
self5Fa

tail~x5z!5(
l

Fa
(tail) l~x5z! ~7!

~hereafter we ignore the trivial local terms and focus on
tail contribution!. Note that since the tail forceFa

tail(x) is
regular at the particle’s locationz @5,6#, one getsFa

self by just
evaluating the tail force atx5z. We can then write, using
Eq. ~6!,

Fa
self5(

l
lim
x→z

Fa
(tail) l~x!5(

l
@ lim

x→z
Fa

(full) l~x!2 lim
x→z

Fa
(dir) l~x!#,

~8!

where the direction of the limitx→z is considered aspre-
scribed. It is important to note here that each of the tw
limits lim

x→z
Fa

(full) l(x) and lim
x→z

Fa
(dir) l(x) is, in general,

directional dependent. This, however, does not pose a p
lem ~and the third equality in the above chain of equalities
valid! if the direction of the limit is prescribed: one then on
has to make sure that the two limits of the full and dire
forces are taken in a consistent manner~i.e., from the same
direction!.

In the last expression of Eq.~8!, the sum overl modes is
guaranteed to converge@as Fa

tail(x) is a regular function#.
However, the individual sums over the full-force modes a
08402
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over the direct-force modes usually diverge. Suppose n
that one could construct a functionha

l that would make the
sum ( l@ lim

x→z
Fa

(full) l(x)2ha
l # convergent. Then, we would

have@continuing the chain of equalities~8!#

Fa
self5(

l
@~ lim

x→z
Fa

(full) l~x!2ha
l !2~ lim

x→z
Fa

(dir) l~x!2ha
l !#

5(
l

~ lim
x→z

Fa
(full) l~x!2ha

l !2(
l

~ lim
x→z

Fa
(dir) l~x!2ha

l !.

~9!

In principle, the ‘‘regularization function’’ha
l is to be ob-

tained by exploring the behavior of the full-force modes
large l. However, this function can also be deduced by a
lyzing the large-l behavior of the local quantityFa

(dir) l—a
task accessible to analytic treatment. In all cases consid
so far, the functionha

l was found to have the general form

ha
l 5AaL1Ba1Ca /L, ~10!

with L[ l 11/2, and where Aa , Ba , and Ca are
l-independent coefficients whose values depend on the
tails of the trajectory under consideration. Defining

Da[(
l 50

`

@ lim
x→z

Fa
(dir) l~x!2AaL2Ba2Ca /L#, ~11!

we finally get from Eq.~9!

Fa
self5(

l 50

`

@ lim
x→z

Fa
(full) l~x!2AaL2Ba2Ca /L#2Da .

~12!

Equation~12! constitutes the basic formula for construc
ing the self-force through the mode-sum method. The f
quantitiesAa , Ba , Ca , andDa are called the ‘‘regulariza-
tion parameters’’~RP!. The full modesFa l

full , recall, are di-
rectly obtained from the ‘‘full’’ field modes@see Eq.~15!
below for the construction of the full force in the scal
case#, which, in turn, are calculated using standard numeri
techniques. Equation~12! thus describes a practical schem
for constructing the self force, given the values of the RP

In this paper~dealing with the scalar self-force! and in the
accompanying paper~dealing with the gravitational and elec
tromagnetic self-forces! we derive the values of all RP
needed for implementing Eq.~12! for any geodesic orbit in
Schwarzschild spacetime.

III. SCALAR TOY MODEL

We consider a particle of a scalar chargeq, moving freely
in the vacuum exterior of a Schwarzschild black hole w
massM@q. In the lack of self-force, the particle move
along a geodesiczm(t) with specific energy and angular mo
mentum parametersE andL, respectively. We shall conside
the self-force acting on the particle at a point along its wor
line which we denote byz[(t0 ,r 0 ,u0 ,w0) ~where t,r ,u,w
2-3
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L. BARACK AND A. ORI PHYSICAL REVIEW D 66, 084022 ~2002!
are the standard Schwarzschild coordinates!. Let also x
[(t,r ,u,w) denote a point in the close neighborhood ofz.

The particle induces a scalar fieldF full(x), which we
shall treat as a linear perturbation over the fixed Schwa
child background. In our model, the fieldF full(x) is assumed
to satisfy the~minimally coupled! Klein-Gordon equation

hF full[F ;a
full; a524pr, ~13!

where a semicolon denotes covariant differentiation with
spect to the background geometry, and the scalar charge
sity is given by

r~x!5qE
2`

`

d4@x2z~t!#~2g!21/2dt ~14!

(g being the metric determinant!. We now define the ‘‘full
force’’ as the vector field

Fa
full~x![qF ,a

full . ~15!

Note that both the full fieldF full(x) and the full force
Fa

full(x) obviously diverge on the worldline, but are othe
wise well defined.

The force definition~15! complies with Quinn’s definition
@7#. It differs from the expression used by MNS, which i
volves a spatial projection of the scalar force@see Eq.~1.3! in
@18##. We prefer to adopt here the force definition~15! for
several reasons.~i! It is a simpler definition, which neverthe
less serves as an effective toy model for the realistic gr
tational case.~ii ! It avoids the need to consider an of
worldline extension of the four-velocity, as necessary
defining the spatially projected force.~iii ! The force model
~15! is naturally derived from a Lagrangian formalism, and
hence consistent with global stress-energy conservatio
unlike the spatially projected force@7,23#.

Finally, we introduce the notions of the ‘‘direct’’ fieldFdir

and the ‘‘tail’’ field F tail5F full2Fdir ~see @7,18#!, from
which the direct and tail forces are derived by

Fa
dir~x!5qF ,a

dir , Fa
tail~x!5qF ,a

tail . ~16!

Recall that the ‘‘direct’’ field is the part of the scalar fie
propagated directly along the particle’s light cone, while t
‘‘tail’’ part is associated with reflections of the fieldinside
the light cone.

IV. DIRECT FORCE: PRELIMINARIES

The form of the direct scalar fieldFdir was worked out by
MNS @18# ~see also some preliminary results in@24#!, by
studying the Hadamard expansion of the field equation.
e(x) denote the spatial geodesic distance from the pointx to
the geodesicz(t) ~i.e., the length of the short geodesic se
tion connectingx to the worldline and normal to it!, and let
dxm[xm2zm. Then, the direct scalar field obtained by MN
can be written in the form

Fdir~x!5
q f̂~dx!

e
1const, ~17!
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where f̂ is a regular function ofdx ~andz) satisfying

f̂ 511O~dx2! ~18!

~the explicit form of f will not be needed in the analysi
below!. Introducing the squared geodesic distanceS(dx)
[e2, the direct scalar force is then given by

Fa
dir~x!5qF ,a

dir5q2@ f̂ ,aS21/22~ f̂ /2!S23/2S,a#. ~19!

Consider now the Taylor expansion of the functionS(dx)
aboutdx50. We write this expansion as

S5S01S11S21•••, ~20!

where S0 ,S1 , . . . represent terms of homogeneous ord
dx2,dx3, . . . , respectively. Note that this decomposition
S is no longer covariant, and the individual termsSn will
depend on the choice of coordinate system. Below we s
need only the two leading terms,S0 andS1, which we obtain
in Appendix A. We find

S05~gmn
0 1umun!dxmdxn, ~21a!

S15~ulugGab
l0 1gab,g

0 /2!dxadxbdxg, ~21b!

whereua[dxa/dt is the four-velocity atz, andGab
l0 andgab

0

denote, respectively, the connection coefficients and me
functions evaluated atdx50 ~namely, atx5z). Substituting
Eqs. ~18! and ~21! in Eq. ~19!, we now obtain a Taylor ex-
pansion for the direct force, which we may express as

Fa
dir~x!5q2@e0

23Pa
(1)1e0

25Pa
(4)1e0

27Pa
(7)1•••#. ~22!

Here,e0[S0
1/2, andPa

(n) denote terms of homogeneous ord
O(dxn). Note that the term of the form}e21dx in Eq. ~19!
can be written as}e27(e6dx)}e27dx7 and then be ab-
sorbed in the terme0

27Pa
(7) . Similarly, terms of the form

}e23dx2 may be expressed as}e25dx4 and be absorbed in
e0

25Pa
(4) , and so on. Note also that the three terms presen

in Eq. ~22! are of ordersdx22, dx21, anddx0, respectively.
The three dots (•••) in that equation represent terms th
vanish in the limitdx→0 @such as, e.g.,e0

29Pa
10}O(dx)]. In

the following analysis, we shall need the explicit values
only Pa

(1) andPa
(4) , which are given by

Pa
(1)52

1

2
S0,a , ~23a!

Pa
(4)52

1

2
S0S1,a1

3

4
S0,aS1 . ~23b!

Now, in constructing the self-force, one is merely co
cerned with the behavior of the direct force atx→z—see,
e.g., Eq.~8!. Thus, the terms represented by the three d
(•••) in Eq. ~22!, which vanish in the limitx→z, are irrel-
evant for calculating the self-force, and may be ignored
our analysis. We hence introduce a ‘‘revised’’ version of t
direct force by omitting these terms~retaining, though, the
notationFa

dir),
2-4
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Fa
dir5q2@Fa

(A)1Fa
(B)1Fa

(C)#, ~24!

where

Fa
(A)[e0

23Pa
(1) , Fa

(B)[e0
25Pa

(4) , Fa
(C)[e0

27Pa
(7) .

~25!

Note that this splitting ofFa
dir holds for any choice of coor

dinatesxm which are sufficiently regular in the neighborhoo
of z ~though the coefficientsPa

(n) will depend on the choice
of coordinates!.

V. MULTIPOLE DECOMPOSITION

Next, we consider the multipole decomposition ofFa
dir .

Let

Fa
dir~x!5(

lm
Fa

lm~r ,t !Ylm~u,w!, ~26!

whereYlm(u,w) are spherical harmonics. We denote byF6a
l

the totall-mode contribution to the direct force atz,

F6a
l [ lim

dr→06
(
m

Fa
lm~r ,t0!Ylm~u0 ,w0!. ~27!

Note thatF6a
l 5 lim

x→z
Fa

(dir) l(x) @as in Eq.~8!, e.g.#, where

the direction of the limit is explicitly specified such thatx
approachesz ‘‘from the radial direction.’’ The6 sign corre-
sponds to the two possible radial limits,r→r 0

1 or ratherr
→r 0

2 . This choice of taking the radial limit appears mo
convenient in our multipole-mode scheme. In particular, i
most easily implemented in the~numerical! calculation of
the full force modes~recall that the limitx→z of both the
direct and full forces must be taken from the same directio!.

Equation~27! is invariant under rotation in the subspa
of angular coordinatesu,w. We take advantage of this prop
erty, and redefine the angular coordinates such thatz is lo-
cated at the pole, i.e.,u050. Due to angular-momentum
conservation, the particle is now confined to move on a pl
of constantw, which we take asw50,p ~the value of thew
coordinate is fixed along the particle’s trajectory, apart fro
a ‘‘jump’’ at the two polesu50,p). The particle’s four-
velocity now satisfiesuw50.

The above setup is beneficial in that thel modeF6a
l is

now composed of only the axially symmetricm50 har-
monic: Recall thatYlm vanishes atu50 for anymÞ0, and
Yl ,m50(u50)5@L/(2p)#1/2Pl(1), where Pl(cosu) is the
Legendre polynomial andP(1)51. Consequently, we find
from Eq. ~27!

F6a
l 5 lim

dr→06

@L/~2p!#1/2Fa
l ,m50~r ,t0!. ~28!

The modeFa
l ,m50 is given by the integral
08402
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Fa
l ,m50~r ,t !5E Fa

dir~r ,t,u,w!@Yl ,m50#* dV

5@L/~2p!#1/2E Fa
dir~r ,t,u,w!Pl~cosu!dV,

~29!

wheredV[dcosu dw and the asterisk denotes complex co
jugation. Combining Eqs.~28! and~29!, we finally obtain the
following integral expression for the totall-mode direct
force:

F6a
l 5 lim

dr→06

L

2pE Fa
dir~r ,t0 ,u,w!Pl~cosu!dV. ~30!

VI. REGULAR COORDINATE SYSTEM

The coordinate system (t,r ,u,w) is singular atu5u0
50. This singularity makes the expansion~20!, ~21! inappli-
cable in these coordinates. To overcome this difficulty,
introduce the two ‘‘locally Cartesian angular coordinates’’

x5r~u!cosw, y5r~u!sinw, ~31!

wherer(u) is a sufficiently regular, odd function ofu, ad-
mitting the expansion

r~u!5u1r1u31r2u51•••. ~32!

For later convenience we shall also demand thatr(u) grows
monotonously within the entire domain 0<u,p, such that
r(u) is invertible. @An obvious natural choice would ber
5u; however, later we shall make the specific choicer(u)
52 sin(u/2) which will simplify our calculations.#

Using the relationsdr/du511r2h1(r2) and r2/sin2u
511r2h2(r

2) @easily followed from the above definition o
r(u)], whereh1 andh2 are both regular functions ofr2, one
finds that the contravariant components of the metric ten
now take the form

gxx5r 22~11x2h11y2h2!,

gyy5r 22~11y2h11x2h2!,

gxy5r 22~h12h2!xy. ~33!

The pointz is located atx5y50. The above tensorgab is
perfectly regular in the neighborhood of this point—and so
the covariant metricgab . In the particle’s location itself,x
5y50, the line element takes the simple form

gxx
0 5gyy

0 5r 0
2 , gxy

0 50 ~34!

@along withgtt
0 52(122M /r 0) andgrr

0 5(122M /r 0)21].
Note that the particle’s geodesic is confined toy50 and

correspondinglyuy50. Also, sincez is located atx5y50,
we havedxx5x, dxy5y. Finally, we comment that the par
ticle’s angular momentum is given asL5ux evaluated at z
~but note thatux is not conserved along the geodesic!.
2-5
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VII. INVESTIGATING THE l MODE OF THE DIRECT
FORCE

A. Is the x\z limit interchangeable with the Legendre
integral?

We now explore in more detail thel-mode direct force
F6a

l , based on the integral formula~30!. Recalling that the
direct force itself is composed of three terms, Eq.~24!, we
write

F6a
l 5q2@Fa

(A) l1Fa
(B) l1Fa

(C) l #, ~35!

whereFa
(W) l (W standing forA, B, or C) denotes the contri-

bution toF6a
l @through Eq.~30!# due to the termFa

(W) of the
direct force,

F6a
(W) l5 lim

dr→06

L

2pE Fa
(W)~r ,t0 ,u,w!Pl~cosu!dV. ~36!

Recall that the various termsFa
(W) are given in Eq.~25!.

The task of evaluating the various contributionsF6a
(W) l

would be much simplified if we could interchange the lim
dr→06 and the integration in Eq.~36!. Is such an inter-
change allowed? In Appendix B we address this quest
and show that interchanging thedr→06 limit and the Leg-
endre integral is indeed allowed forW5B andW5C; how-
ever, as evident from the explicit calculation below, such
interchange is not valid forW5A. Here we present a heu
ristic argument suggesting why the interchange is valid
W5B,C, and why it might fail forW5A. A sketch of a
mathematical proof is provided in Appendix B.

For a given small separationdx5x2z, assume that al
components ofdxa scale asdr ~we assumedrÞ0). Sincee0

then scales likedr too, we find that the various termsFa
(W)

scale as

Fa
(A)5e0

23Pa
(1)}dr 22,

Fa
(B)5e0

25Pa
(4)}dr 21, ~37!

Fa
(C)5e0

27Pa
(7)}dr 0,

where the proportion coefficients only depend on the ‘‘dire
tion’’ of dxa ~i.e., on the ratios between its various comp
nents!. To consider the interchangeability of the limit an
integral in Eq.~36!, one is mainly concerned with the con
tribution to the integral from smallx,y values~i.e., from the
immediate neighborhood of the integrand’s singular pointz).
To find out how this small piece of integral scales withdr ,
we consider the small integration area aroundz, in the xy
plane, defined byr5(x21y2)1/2,dr ~for a givendrÞ0).
Observing that this integration area scales likedr 2 and rely-
ing on the scale relations~37!, one finds that this small-dr
contribution to the integral scales likedr 0 for F6a

l (A) , like dr 1

for F6a
l (B) , and likedr 2 for F6a

l (C) . Namely, upon taking the
limit dr→0, the small-dr piece of integration vanishes fo
W5B,C, but not forW5A. This suggests that we may in
terchange the limit and integration forW5B,C, but not for
08402
n,

n

r

-
-

W5A. A more rigorous mathematical treatment implies th
this is indeed the case~see Appendix B!.

We are thus allowed to write

Fa
l (B,C)5

L

2pE Fa
(B,C)~r 0 ,t0 ,x,y!Pl~cosu!dV. ~38!

However, forW5A we must use the original expression,

F6a
l (A)5 lim

dr→06

L

2pE Fa
(A)~r ,t0 ,x,y!Pl~cosu!dV. ~39!

For later convenience we give here explicitly the form
Fa

(B,C) for r 5r 0 ,t5t0. We have

Fa
(B)5 ê0

25Pa
(4)~x,y!, Fa

(C)5 ê0
27Pa

(7)~x,y!, ~40!

wherePa
(n)(x,y) is a polynomial of homogeneous ordern in

x andy, andê0 is the reduction ofe0 to dr 5dt50: We find,
recallingr25x21y2 anduy50,

ê05~r 0
2r21ux

2x2!1/2. ~41!

Note thatê0 is an even function of bothx andy—a fact that
will play a crucial role in the analysis below.

B. Calculating F a
l „C…

Let us first evaluate the termFa
l (C) . We observe that the

integrand in Eq.~38! is composed of three factors:ê0
27

3Pa
(7)(x,y)3Pl(cosu). Sinceê0 and cosu(r) are even func-

tion of both x and y, then so are the factorsê0
27 and

Pl(cosu). However, each of the eight terms ofPa
(7)(x,y)

~proportional tox7y0,x6y, . . . ,x0y7) is of odd power in ei-
ther x or y. Hence, the overall integrand in Eq.~38! is com-
posed only of terms which are odd in eitherx or y. As a
consequence, the integral is found to vanish identica
yielding

Fa
l (C)50. ~42!

C. Calculating F a
l „B…

We next turn to considerFa
l (B) . The integrand in Eq.~38!

now takes the formê0
253Pa

(4)(x,y)3Pl(cosu). Note that
the polynomialPa

(4)(x,y) may now contain terms which ar
even in bothx and y, yielding, in general, a nonvanishin
contribution to the integral. To proceed, one thus has to
provided with the explicit form ofPa

(4) .
The explicit form of the polynomialPa

(4)(x,y) is obtained
by substituting forS0 andS1 ~and their gradients! from Eqs.
~21! in Eq. ~23b!, taking dr 5dt50 and recallingdx5x,
dy5y, anduy50. One thereby obtains

Pa
(4)~x,y!5Pa

(x)x41Pa
(xy)x2y21Pa

(y)y4 for a5t,r ,x,
~43a!

Py
(4)~x,y!5Py

(x)x3y1Py
(y)xy3, ~43b!
2-6
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where the various coefficients are explicitly given by

Pr
(x)52

1

2
@ f 21ṙ 2r 0~2ux

22r 0
2!1r 0

21~2ux
413ux

2r 0
21r 0

4!#,

Pr
(xy)52

1

2
r 0@3ux

212r 0
212 f 21ṙ 2~ux

22r 0
2!#,

Pr
(y)52

1

2
r 0

3~12 f 21ṙ 2!, ~44!

Pt
(x)52r 0utṙ ~ux

22r 0
2/2!, Pt

(xy)52r 0utṙ ~ux
22r 0

2!,

Pt
(y)5

1

2
r 0

3utṙ , ~45!

Px
(x)50, Px

(xy)5
1

2
r 0uxṙ ~r 0

222ux
2!, Px

(y)5
1

2
r 0

3uxṙ ,

~46!

Py
(x)5r 0uxṙ ~ux

22r 0
2/2!, Py

(y)52
1

2
r 0

3uxṙ . ~47!

In these expressionsf [(122M /r 0), r [̇ur , and all four-
velocity components are evaluated atz. Note that the com-
ponentsPt

(4) , Pr
(4) , andPx

(4) consist of only terms which are
evenin both x and y. On the other hand, they component
Py

(4) contains only terms which areodd in both coordinates.
Consider first they component: Both terms}x3y and

}xy3 of the polynomialPy
(4) yield, upon integrating, no con

tribution to Fy
l (B) , and one immediately obtains

Fy
l (B)50. ~48!

The other components ofFa
l (B) do not similarly vanish: Re-

calling x5r cosw and y5r sinw, and expressingê0 in the
form ê05r 0r(u)(11r 0

22ux
2cos2w)1/2, we may write the

double integral in Eq.~38! in the factorized form

Fa
l (B)5r 0

25I uI a
w , ~49!

where

I u[
L

2pE21

1 Pl~cosu!

r~u!
d cosu, ~50a!

I a
w[E

0

2pPa
(x)cos4w1Pa

(xy)cos2w sin2w1Pa
(y)sin4w

~11r 0
22ux

2cos2w!5/2
dw.

~50b!

We now take advantage of the freedom we still have
specifying the functionr(u), and make the convenien
choice

r52 sin~u/2!. ~51!

With this choice, the integralI u becomes a standard on
reading simply
08402
n

I u5~2p!21 ~52!

@see, e.g., Eq.~7.225-3! of @25##. The integralI a
w , in turn, is

a linear combination of standard elliptic integrals. It can
expressed as

I a
w5aaK̂~w!1baÊ~w!, ~53!

whereK̂(w) andÊ(w) are two complete elliptic integrals o
the first and second kinds, respectively, the argumentw is
given by

w[
ux

2

r 0
21ux

2
, ~54!

and the coefficientsaa andba read

aa52
4

3
~r 0 /ux!

3w21/2@a(x)Pa
(x)1a(xy)Pa

(xy)1a(y)Pa
(y)#,

~55!

ba52
4

3
~r 0 /ux!w

23/2@b(x)Pa
(x)1b(xy)Pa

(xy)1b(y)Pa
(y)#,

with

a(x)5~w12!~w21!,

a(xy)522~w21!,

a(y)5~3w22!,
~56!

b(x)52~w21!2~w11!,

b(xy)52~w22!~w21!,

b(y)52~122w!.

The explicit form of the desired contributionFa
l (B) ~for

a5r ,t,x) is finally obtained by inserting the values ofPa
(x) ,

Pa
(xy) , and Pa

(y) @given in Eqs.~44!–~47!# in the above ex-
pressions foraa and ba , constructingI a

w through Eq.~53!,
and substituting in Eq.~49!. This yields

Fr
l (B)5

1

r 0
2

~ ṙ 222ut
2!K̂~w!1~ ṙ 21ut

2!Ê~w!

p f V3/2
, ~57a!

Ft
l (B)5

1

r 0
2

utṙ @K̂~w!22Ê~w!#

pV3/2
, ~57b!

Fx
l (B)5

1

r 0

ṙ @K̂~w!2Ê~w!#

p~ux /r 0!V1/2
, ~57c!

whereV[11ux
2/r 0

2 .
Note the remarkable fact that the contributionFa

l (B) is
independent of l.
2-7



,

-
ly
th

-

it

,

po-

L. BARACK AND A. ORI PHYSICAL REVIEW D 66, 084022 ~2002!
D. Calculating FÁa
l „A…

Finally, let us evaluateF6a
l (A) . Recalling Fa

(A)5e0
23Pa

(1)

and using Eqs.~23a! and ~21a!, Eq. ~39! becomes

F6a
l (A)52@L/~2p!#~gab

0 1uaub!F̃6
lb , ~58!

where

F̃6
lb[ lim

dr→06

E dxbe0
23Pl~cosu!dV. ~59!

Note that we have already taken here the limitdt→0, hence
the integrand (}dxb) vanishes identically forb5t. Also,
since cosu(r) ande0, given explicitly by

e05@r 0
2r21grr

0 dr 21~urdr 1uxx!2#1/2, ~60!

are both even functions ofy, the integral in Eq.~59! obvi-
ously vanishes forb5y. Hence,

F̃6
l t 5F̃6

ly50. ~61!

Consider now Eq.~59! for the two remaining components
b5r ,x. First, we change the integration variables tox,y.
Since the Jacobian is](u,w)/](x,y)5(rr8)21 ~where r8
5dr/du), Eq. ~59! becomes

F̃6
lb[ lim

dr→06

E dxbe0
23H~r!dxdy, ~62!

whereH(r)[Pl(cosu)sinu(rr8)21. The functionH(r) is a
regular, even function ofu ~and of r), with H(0)51. We
thus write it asH(r)511r2Ĥ(r), where the functionĤ(r)
admits a regular~even! Taylor expansion atr50. Accord-
ingly, we divideF̃6

lb into two contributions,

F̃6
lb5 lim

dr→06

~ I 1
b1I 2

b!, ~63!

where

I 1
b[E dxbe0

23dxdy,

~64!

I 2
b[E dxbe0

23r2Ĥ~r!dxdy.

Consider first the contributionI 2
b : Near r50, the inte-

grand in this term scales likedr 0, thus the integrated singu
lar contribution scales likedr 2. Hence, based on precise
the same argument applied in Appendix B with regard to
term Fa

(C) , we find that the integralI 2
b is sufficiently regular

to allow us to interchange the orders of thedr→0 limit and
integration,

lim
dr→06

I 2
b5I 2

b~dr 50!. ~65!
08402
e

Doing so, we find that the contribution fromI 2
b to F̃6

lb van-
ishes for eitherb5r or b5x: For b5r , the integrand van-
ishes identically; forb5x, the integrand, evaluated atdr
50, becomes an odd function ofx @see Eq.~41!#, which
vanishes upon integrating.

To calculate the remaining contributionI 1
b , we divide the

domain of integration in Eq.~64! into two regions: LetH in

denote the square2h,x,y,h, for some particular 0,h
,1 ~say,h51/10), and letHout denote the remaining inte
gration area over the sphere, outsideH in. Correspondingly,
we divide the integralI 1

b into two contributions, asI 1
b5I 1

b in

1I 1
bout. Now, since the integrand ofI 1

bout contains no singu-
larity ~the only singularity on the sphere occurs atx5y
50, which is located in H in), in evaluating
limdr→06I 1

bout(dr ) we are allowed to interchange the lim
and integration,

lim
dr→06

I 1
bout5I 1

bout~dr 50!. ~66!

Precisely as in the case of the integralI 2
b considered above

this contribution is then found to vanish for eitherb5r or
b5x. We are thus left withF̃6

lb5 limdr→06I 1
b in , namely,

F̃6
lb5 lim

dr→06

E
2h

h E
2h

h

dxbe0
23dxdy. ~67!

We proceed by considering separately the two com
nentsb5r and b5x. Let us begin with ther component:
Rescaling the integration variables asX[x/dr and Y
[y/dr , we find

F̃6
lr 5 lim

dr→06

E
2h/dr

h/dr E
2h/dr

h/dr

@ ẽ6~X,Y!#23dXdY, ~68!

where

ẽ6[e0 /dr 56@grr
0 1r 0

2~X21Y2!1~ur1uxX!2#1/2,
~69!

and the6 sign refers to the sign ofdr . Note thatẽ6 ~and
hence the entire integrand! is independent ofdr , such that
the dr→06 limit becomes trivial:

F̃6
lr 56E

2`

` E
2`

`

@grr
0 1r 0

2~X21Y2!1~ur1uxX!2#23/2dXdY

[6U. ~70!

This is an elementary integral@see, e.g., Eq.~3.252-3! of
@25#, in conjunction with Eq.~3.252-2! therein#, yielding

U5~2p/r 0!@r 0
2ur

21grr
0 ~r 0

21ux
2!#21/2. ~71!

Note the relation

U52
2p f

r 0
2ut

, ~72!
2-8
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which stems directly from the ‘‘radial’’ geodesic equation
motion, (ur)25ut

22(12ux
2/r 0

2) f .
Consider next the caseb5x. It is not possible to treat this

case the same as the caseb5r , by changing the integration
variables toX,Y: doing so, the integrand becomesXẽ6

23 ,
and the double integral does not strictly converge at infin
We therefore apply here a different method to evaluate
limit dr→06 in Eq. ~67!. First, we expressF̃6

lx as

F̃6
lx5 lim

dr→06

E
2h

h E
2h

h

xS0
23/2dxdy, ~73!

where, recall,S05e0
25r 0

2(x21y2)1grr
0 dr 21(urdr 1uxx)2

~with the limit t→t0 already taken!. Now, S0 is quadratic in
dxa, and its derivative with respect tox is a linear combina-
tion of bothx anddr . One easily obtains the relation

x5aS0,x1bdr , ~74!

where the coefficientsa andb are given by

a5
1

2~r 0
21ux

2!
, b52

uxur

r 0
21ux

2
. ~75!

Substitutingx from Eq. ~74! in Eq. ~73!, we expressF̃6
lx as

the sum of two integrals:

F̃6
lx5 lim

dr→06

FaE S0,xS0
23/2dxdy1bE dr e0

23dxdyG
[aI i1bI i i . ~76!

In what follows we show thatI i vanishes, leaving us with
only the contribution fromI i i , which is just proportional to
the r componentF̃6

lr calculated above.
Considering firstI i , we carry out the trivial integration

over x, obtaining

I i5 lim
dr→06

E
2h

h

@22S0
21/2#x52h

x5h dy. ~77!

The integration overy is then a standard one, but one do
not need to carry it out explicitly: Observing that the int
grand is now a regular function ofy anddr throughout the
entire range of integration, we are allowed to interchange
limit and integration. Noticing thenS0(dr 50,x51h)
5S0(dr 50,x52h), we immediately conclude

I i50. ~78!

Consider nextI i i . Comparing with Eq.~67! ~for the r com-
ponents! we find simplyI i i 5F̃6

lr , hence

F̃6
lx5bF̃6

lr 56bU. ~79!

Having calculated all components ofF̃6
lb , we may now

constructF6a
l (A) through Eq.~58!. We obtain
08402
.
e

s

e

F6t
l (A)57@L/~2p!#ut~ur1bux!U56

L f ur

r 0
21ux

2
, ~80a!

F6r
l (A)57@L/~2p!#@ f 211ur~ur1bux!#U56

L f 21ut

r 0
21ux

2
,

~80b!

F6x
l (A)57@L/~2p!#@b~r 0

21ux
2!1uxur #U50, ~80c!

F6y
l (A)50, ~80d!

where we have substituted forU andb from Eqs.~72! and
~75!, respectively.

Note the remarkable fact that the contributionF6a
l (A) is

preciselyproportional toL.

VIII. VALUES OF THE REGULARIZATION PARAMETERS

In conclusion of the calculation carried out in the previo
section, we have found that thel-mode direct forceF6a

l is
composed of only two contributions: one—completely d
scribed byF6a

l (A)—is precisely proportional toL, and the
other—completely described byF6a

l (B)—is independent ofL.
No other powers ofL are present. Recalling the definition o
the RP in Sec. II, we then conclude that the termF6a

l (A) con-
tributes only to the parameterAa and that the termF6a

l (B)

contributes only toBa . Recalling Eq.~35!, we identify the
RP as

LA6a5q2F6a
l (A) , Ba5q2F6a

l (B) , Ca50. ~81!

Furthermore, from Eq.~11! we immediately getDa50. The
explicit values ofA6a and Ba are then obtained by subst
tuting the expressions derived above for the quanti
F6a

l (A,B)—Eqs.~48!, ~57!, and~80!.
To give a useful summary of the RP values thus obtain

we shall transform the angular coordinatesx,y back to the
standardu,w coordinates, in which the orbit is equatori
~i.e., confined tou5p/2). The quantitiesFr

dir(x) andFt
dir(x)

are unaffected by this transformation, therefore ther and t
components of all RP are unchanged. However,Fx

dir andFy
dir

transform toFu
dir and Fw

dir in a manner which is not com
pletely trivial, and we need to find the correspondingu andw
components of the RP. Note thata priori there is no guaran-
tee that the RP will transform like vectors at the evaluat
point, because the RP depend onFa

dir in the neighborhood of
z; and the transformation (x,y)→(u,w) involves nontrivial
functions of the angular coordinates, which may affect
mode decomposition. However, in Appendix C we show t
in fact all the RP do transform~in this particular coordinate
transformation! like four-vectors atz. It is trivial to show that
at the evaluation point

x,u5y,w50 x,w52y,u51. ~82!

@For concreteness we consider here the transformation
scribed by ap/2 rotation about the horizontal axisw50,
which takes z from the pole to the point (u0 ,w0)
2-9
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5(p/2,2p/2)—see Fig. 1 and Appendix C for more detai
Note, however, that the RP in theu,w coordinates do no
depend onw0, due to the symmetry of rotations inw.#
Therefore,Bw5Bx andBu52By ~and the same forAw ,Au).
Note that ux(z) now becomesuw[L, the conserved azi
muthal angular momentum. In the standardu,w coordinates,
the RP are then given byAu5Bu50,

A6r57
q2

r 0
2

E
f V

, A6t56
q2

r 0
2

ṙ

V
, Aw50, ~83a!

Br5
q2

r 0
2

~ ṙ 222E 2!K̂~w!1~ ṙ 21E2!Ê~w!

p f V3/2
,

~83b!

Bt5
q2

r 0
2

Eṙ @K̂~w!22Ê~w!#

pV3/2
, ~83c!

Bw5
q2

r 0

ṙ @K̂~w!2Ê~w!#

p~L/r 0!V1/2
, ~83d!

Ca5Da50, ~83e!

where

w[
L 2

L 21r 0
2

, V[11L 2/r 0
2 , ~84!

f [(122M /r 0), and ṙ 2[(ur)25E 22 f V. Recall E52ut
and L5uw are the~conserved! specific energy and angula
momentum parameters.

We comment that the parameterA6a is normal to the
four-velocity:A6aua50. However, the parameterBa ~as the
self-force itself in our model! is, in general,not normal to
ua: An explicit calculation yields

FIG. 1. A sketch showing the various quantities involved
constructing the coordinate transformation (x,y)→(u,w). Shown is
the ‘‘northern’’ hemispheret5r 5const,u>0. The particle moves
along an equatorial orbit, and is momentarily located at (u,w)
5(p/2,2p/2). x,y is a pair of ‘‘locally Cartesian angular coord
nates’’ at the particle’s location, as described in the text.
08402
Baua522
q2

r 0
2

ṙ Ê~w!

pV1/2
. ~85!

Finally, we give here the RP values for the special case
a radial geodesic, i.e.,L50: Noting, in this case,w50, V

51, and ṙ 25E 22 f , and recallingK̂(0)5Ê(0)5p/2, the
nonvanishing components in Eqs.~83! reduce to

A6r
radial57

q2

r 0
2 ~E/ f !, A6t

radial56
q2

r 0
2

ṙ , ~86a!

Br
radial5

q2

2r 0
2

f 21~E 222 f !, Bt
radial52

q2

2r 0
2
Eṙ .

~86b!

@The vanishing ofBw
radial is obvious from symmetry consid

erations. Note thatBw vanishes at the limitw→0 despite the
factor L in the denominator, becauseK̂(w)2Ê(w)5O(w)
5O(L 2).# These values are in agreement with the ones
rived in @12# using thel-mode Green’s-function expansio
method.

IX. CONCLUDING REMARKS

The mode-sum scheme described by Eq.~12!, with the
explicit RP values calculated in this paper, Eqs.~83!, pro-
vides one with a practical means—yet one based on a ph
cally well-established regularization scheme—for calculat
the scalar self-force for any geodesic orbit around
Schwarzschild black hole. Recall that the full modesFa

(full) l

needed for fully implementing this mode-sum scheme are
be obtained from thel modes of the scalar fieldF, which, in
turn, are to be calculated using standard numerical te
niques.

The RP values derived here, Eqs.~83!, were obtained in-
dependently by MNS@18# using a different approach. In the
analysis, MNS decomposed the direct field using the ‘‘st
dard’’ u,w coordinates~in which the motion is equatorial!, in
which case themÞ0 modes contribute as well. MNS the
derived an analytic expression for the contribution of ea
l ,m mode of the direct force, expanded in powers ofM /r .
By explicitly summing up this expansion~and summing over
m), MNS were able to recover all RP values.

The RP values~83! reduce, in the special cases of rad
motion (L50) or circular motion (ṙ 50), to the values de-
rived previously@12# using a completely independent an
lytic approach ~namely, by locally analyzing thel-mode
Green’s function, as we briefly mention in the Introduction!.
In these cases, the values of the parametersAa , Ba , andCa
have also been confirmed numerically, by calculating
full-force modes@15#.

The RP calculation method presented in this paper is
rectly applicable to the more realistic case of thegravita-
tional self-force acting on a mass particle, as well as to
case of theelectromagneticself-force acting on an electri
cally charged particle. Both cases shall be treated in an
companying paper@9#, where we obtain the gravitational an
2-10
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electromagnetic RP for general orbits in Schwarzsch
spacetime~the results in the gravitational case were provid
in @8#!. The extension of our scalar field analysis to the gra
tational and electromagnetic cases involves several c
plexities which require special care. In particular, one has
tackle the technical issue of extending the four-velocity v
tor off the worldline@9#. A more fundamental issue concern
the gauge dependence of the gravitational self-force@10#.
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APPENDIX A: DERIVATION OF S0 AND S1

In this appendix, we calculate the two leading terms in
expansion ofS[S(x,z) @the square of the geodesic distan
from the pointx to the geodesicz(t)] in powers of dxm

[xm2zm. This expansion takes the form

S5S01S11S21•••, ~A1!

in which the termSn is of homogeneous orderdxn12, and
we wish to calculateS0 andS1.

In flat space, using Cartesian coordinatesya ~with ya

50 at z), we obviously haveS5(hab1uaub)yayb[S0,
wherehab is the flat space metric. In curved space~or in
curvilinear coordinates!, each of the termsSn ~like S itself!
will be a certain function ofgab and its derivatives. From
simple dimensionality considerations, it is clear thatS0 may
not include any derivatives ofgab , and thatS1 may include
only first-order derivatives of the latter~in addition togab
itself!.

Let ya be locally Cartesian coordinates at the evaluat
point z, with ya50 at z. Namely, atx5z, the metric func-
tions in the coordinatesya are justhmn , and their first-order
derivatives vanish. Since no second- or higher-order der
tives appear inS up to the desired order, we must have

S5~hab1ua8ub8 !yayb1O~y4!, ~A2!

where a prime denotes vectorial components in theya coor-
dinate system. We now transform fromya back to our origi-
nal coordinatesxm. Recall thatS is a biscalar, and is henc
invariant under this transformation. Writing the Taylor e
pansion ofya(dxm),

ya5
]ya

]xl
dxl1

1

2

]2ya

]xm]xn
dxmdxn1O~dx3! ~A3!

~in which all coefficients are evaluated atz), and substituting
it in the right-hand side of Eq.~A2!, we find
08402
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S5F ~hab1ua8ub8 !
]ya

]xl

]yb

]xe Gdxldxe

1F ~hab1ua8ub8 !
]ya

]xl

]2yb

]xm]xnGdxldxmdxn

1O~dx4!.

Comparing this to Eq.~A1!, we identify the first and second
terms on the right-hand side withS0 and S1, respectively.
Using the obvious tensorial transformation rule, we find

S05~gle1ulue!dxldx«. ~A4!

To calculateS1 we need the second-order transformation c
efficients, which are given by

]2yb

]xm]xn
5Gmn

e ]yb

]xe

@see, e.g., Eq.~3.2.11! of @26##. Therefore,

S15F ~hab1ua8ub8 !
]ya

]xl

]yb

]xe
Gmn

e Gdxldxmdxn

5~gle1ulue!Gmn
e dxldxmdxn.

Recalling that

gleGmn
e dxldxmdxn5

1

2
gmn,ldxldxmdxn,

we finally obtain

S15~ulugGab
l0 1gab,g

0 /2!dxadxbdxg. ~A5!

APPENDIX B: INTERCHANGEABILITY OF THE r\r 0

LIMIT AND THE LEGENDRE INTEGRAL

In this appendix, we explore the interchangeability of t
limit and integration in Eq.~36!—an issue crucial for the
calculation carried out in Sec. VII. For convenience, let
write F6a

(W) l5@L/(2p)#F̂6a
(W) l , where

F̂6a
(W) l[ lim

dr→06

E
0

p

duE
0

2p

dwFa
(W)~r ,t0 ,u,w!

3Pl~cosu!sinu. ~B1!

Here, recall,W stands forA, B, or C, with

Fa
(A)[e0

23Pa
(1) , Fa

(B)[e0
25Pa

(4) , Fa
(C)[e0

27Pa
(7) ,

~B2!

wheree0 is given explicitly in Eq.~60!, andPa
(n) represents

a polynomial of homogeneous ordern in dxm[xm2zm. We
shall show that interchanging the limit and integration in E
~B1! is valid for W5B,C, and explain why our proof fails in
the caseW5A.
2-11
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We begin by considering the caseW5B. Let R[udr us for
some 0,s,1. Consider the range of smalldr ~such that
R,1). We split theu integral in Eq.~B1! into three do-
mains: ~i! u,R, ~ii ! R,u,1, and ~iii ! 1,u,p. Corre-
spondingly, the above double integral can be expresse
Ii1Ii i 1Ii i i , hence

F̂6a
(B) l5 lim

dr→06

Ii~dr !1 lim
dr→06

Ii i ~dr !1 lim
dr→06

Ii i i ~dr !.

~B3!

Consider first the internal integralIi :

Ii~dr !5E
0

R

duE
0

2p

dwFa
(B)~dr ,u,w! Pl~cosu!sinu.

~B4!

Since at the relevant limitR→0, we haveu!1 throughout
the range of integration, and we may approximate this in
gral @using sinudu.rdr, as well asPl(cosu).1 andr(R)
.R] as

Ii~dr !.E
0

R

rdrE
0

2p

dwFa
(B)~dr ,r,w!. ~B5!

Now, Fa
(B)5e0

25Pa
(4) . We may bounde0 and Pa

(4) as e0

.c1udr u and uPa
(4)u,c2r4, where hereaftercn are some

positive constants. Consequently,Fa
(B) can be bounded a

uFa
(B)u,c3udr u25r4,c3udr u25R4. Since the ‘‘integration

area’’ in Eq.~B5! is pR2, we then obtain the upper bound

uIi u,pc3udr u25R65c4udr u6s25. ~B6!

Taking, e.g.,s50.9, we find thatuIi u,c4udr u0.4 and hence it
vanishes at the limitdr→06:

lim
dr→06

Ii~dr !50. ~B7!

Consider nextIi i , which is defined by the double integra

Ii i ~dr !5E
R

1

duE
0

2p

dwFa
(B)~dr ,u,w! Pl~cosu!sinu.

~B8!

Let us introduce the quantityDFa
(B)[Fa

(B)(dr )2Fa
(B)(dr

50), and the corresponding integral

DIi i ~dr ![E
R

1

duE
0

2p

dwDFa
(B)~dr ,u,w!Pl~cosu!sinu,

~B9!

such that

Ii i ~dr !5DIi i ~dr !1E
R

1

duE
0

2p

dwFa
(B)~dr 50,u,w!

3Pl~cosu!sinu. ~B10!
08402
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Sinces,1, in the entire range~ii ! we haveudr u!R<u ~for
udr u!1), and thusudr u!r. We may approximateDFa

(B) at
udr u!1 as

DFa
(B).d~e0

25Pa
(4)!/d~dr !udr 503dr . ~B11!

From Eq. ~60! ~and recallinguxu<r) we observe that, a
dr 50, e0

21 and d(e0
21)/d(dr ) are bounded from above b

}r21 and}const, respectively. Atdr 50, we may also up-
per boundPa

(4) and dPa
(4)/d(dr ) by }r4 and }r3, respec-

tively. Applying these bounds in Eq.~B11! we then obtain

uDFa
(B)u,c5udr ur22. ~B12!

@Note that in Eq.~B11! we have assumed that eitherSor Pa
(4)

~or both! include terms linear indr . In special cases wher
only terms quadratic indr are present in both quantities, w
shall instead arrive at the bounduDFa

(B)u,c6dr 2r23. Since
udr u/r!1, this is even smaller than the bound~B12!, and so
the entire derivation below remains valid.#

Using Eq.~B12! and recallinguPl(cosu)u<1, we can now
boundDI i i (dr ) by

uDIi i ~dr !u,c5E
R

1

duE
0

2p

dw sinuudr ur22

52pc5E
R

1

du sinuudr ur22. ~B13!

Since sinu/r anddu/dr are bounded in domain~ii !, the last
integral can now be bounded as

uDIi i ~dr !u,c6udr u E
r(R)

r(1)

r21dr. ~B14!

@We point out here that in the way we have chosenr(u) in
Sec. VII—see Eq.~51!—du/dr is unbounded atu→p. It is
this divergence that forced us to terminate domain~ii ! at u
51, and to introduce domain~iii !.# Upon integration, we
find

uDIi i ~dr !u,c6udr u@ lnr~1!2 lnr~R!#. ~B15!

For smallR we haver(R).R5udr us; therefore

uDIi i ~dr !u,c6ln r~1!udr u2sc6udr u lnudr u. ~B16!

Clearly, both terms vanish asdr→06, hence

lim
dr→06

DIi i ~dr !50. ~B17!

From Eq.~B10!, we then have
2-12
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lim
dr→06

Ii i ~dr !5 lim
dr→06

E
R(dr )

1

duE
0

2p

dw Fa
(B)~dr 50,u,w!

3Pl~cosu!sinu

5E
0

1

duE
0

2p

dw Fa
(B)~dr 50,u,w!

3Pl~cosu!sinu. ~B18!

Finally, consider the third contribution,Ii i i , defined by

Ii i i ~dr !5E
1

p

duE
0

2p

dwFa
(B)~dr ,u,w!Pl~cosu!sinu.

~B19!

In full analogy with the analysis above, we define

DIi i i ~dr !5E
1

p

duE
0

2p

dwDFa
(B)~dr ,u,w!Pl~cosu!sinu.

~B20!

The above bound,uDFa
(B)u,c5udr ur22, is valid in range~iii !

too. Since in this ranger is bounded from below, we ma
now write uDFa

(B)u,c7udr u; and sincePl(cosu) and sinu are
both bounded by unity, the entire integrand is then boun
by c7udr u:

uDIi i i ~dr !u,c7udr u E
1

p

duE
0

2p

dw52p2c7udr u. ~B21!

Again, this quantity vanishes at the limitdr→0; hence, by
the same considerations used above for range~ii ! @see the
chain of Eqs.~B18!#, we obtain

lim
dr→06

Ii i i ~dr !5E
1

p

duE
0

2p

dw Fa
(B)~dr 50,u,w!

3Pl~cosu!sinu. ~B22!

Substituting Eqs.~B7!, ~B18!, and ~B22! in Eq. ~B3!, we
obtain

F̂a
l (B)5E

0

p

duE
0

2p

dwFa
(B)~dr 50,u,w!Pl~cosu!sinu.

~B23!

Namely, in the calculation ofF̂6a
l (B)—and thus alsoF6a

l (B)—we
are allowed to interchange the limitdr→0 and the integra-
tion. Note that sinceF̂a

(B) admits a well-defined limit atdr
→0 ~except atu50—which, however, was shown not t
affect the integral!, we have omitted its6 label.

The same proof can immediately be applied toF̂6a
l (C) .

EvaluatingIi , we find this time thatuFa
(C)u is bounded from

above byc8udr u27r7,c8udr u27R7, hence~taking agains
50.9)

uIi u,c9udr u27R95c9udr u9s275c9udr u1.1→0 ~B24!
08402
d

as dr→0. Evaluating nextDIi i , we obtain this time@in
analogy with Eq.~B12!# uDFa

(C)u,c10udr u/r, and hence

uDIi i ~dr !u,c11udr u E
r(R)

r(1)

r0dr,c12udr u, ~B25!

which again vanishes asdr→0. The calculation ofDIi i i
proceeds exactly as forW5B ~the only difference is that
now DFa

(C)}udr u/r instead ofudr u/r2, but this does not af-
fect the above evaluation ofDIi i i in any way!. Again we find
uDIi i i (dr )u,2p2c13udr u, which vanishes at the limitdr
→0. We conclude that the limit and integration may be
terchanged forW5C as well,

F̂a
l (C)5E

0

p

duE
0

2p

dwFa
(C)~dr 50,u,w!Pl~cosu!sinu.

~B26!

Finally, it is instructive to see how the above type of a
guments fails forW5A. SinceFa

(A)5e0
23Pa

(1) , in evaluating
Ii one obtains uIi u,c14udr u23R35c14udr u3(s21). Then,
evaluatingDIi i , one obtains

uDIi i ~dr !u,c15udr u E
r(R)

r(1)

r22dr, ~B27!

which at the limit of smallR yields uDIi i (dr )u,c15udr u/R
5c15udr u12s. Obviously, for anys<1 the bound forIi will
fail to vanish asdr→0, and for anys>1 the bound forDIi i
will fail to vanish at this limit.@Note also that in the cases
>1 the inequalityudr u!r, used above in evaluatingDIi i , is
no longer valid throughout range~ii !.# In fact, it becomes
evident from the explicit calculation in Sec. VII that forW
5A the limit dr→0 cannotbe interchanged with the inte
gration.

APPENDIX C: TRANSFORMING TO EQUATORIAL
ORBIT

In Sec. VII, we analyzed the multipole decomposition
the direct force in a Schwarzschild coordinate system
which the particle is momentarily at the pole. We then tra
formed to locally Cartesian angular coordinatesx,y and cal-
culated the RP in the systemxpo

m [(t,r ,x,y). Usually~e.g., in
numerical calculations! one adopts a more natural pair o
angular coordinates, in which the particle’s orbit is confin
to the equatorial plain (u5p/2)—throughout this appendix
we shall denote this system byxeq

m [(t,r ,u,w). The goal of
this appendix is, given the RP values in the systemxpo

m , to
obtain the corresponding values in the systemxeq

m .
In the systemxeq

m we haveuu50 anduw5L, where, re-
call, L is the conserved specific angular momentum. Let
2-13
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particle be momentarily at (u,w)5(u0 ,w0)5(p/2,2p/2).1

Consider the set of spherical coordinatesũ,w̃, defined such
that the particle is located at their pole,ũ50, andw̃50,p
coincides withu5p/2—see Fig. 1.~These are, in fact, the
same spherical coordinates used throughout the paper;
we merely use a different notation, as the symbolsu,w are
reserved for the angular coordinates of thexeq

m system.! The
‘‘locally Cartesian’’ coordinates atz are then given by@see
Eq. ~31!#

x5r~ũ !cosw̃52 sin~ ũ/2!cosw̃,
~C1!

y5r~ũ !sinw̃52sin~ ũ/2!sinw̃.

Relating the spherical coordinatesũ,w̃ to the standard pai
u,w is a straightforward geometrical problem, and one fin

cosũ52sinu sinw, cotw̃5tanu cosw. ~C2!

This allows us to expressx,y directly as functions ofu,w.
We obtain

x~u,w!521/2
sinu cosw

A12sinu sinw
,

~C3!

y~u,w!521/2
cosu

A12sinu sinw
,

which describes explicitly the transformation betweenxeq
m

andxpo
m . Note that this transformation is regular on the ent

sphere@except at the point (u,w)5(p/2,p/2), which, how-
ever, is irrelevant for our analysis#.

1We consider here a specific value ofw0 in order to simplify the
following expressions, and to make the correspondence betwee

x̃,ỹ and x,y coordinates~see below! easily apparent. Note, how
ever, that our final result—the RP values in the systemxeq

m —does
not depend on the choice ofw0, as thel-mode decomposition of the
direct force in that system is invariant under rotations about
polar axis.
ct
at

n-

ice
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Given the above transformation rule, the desired com
nentsFu

dir andFw
dir are constructed as

Fu
dir5x,uFx

dir1y,uFy
dir ,

~C4!
Fw

dir5x,wFx
dir1y,wFy

dir .

It is now useful to consider the Taylor expansion of the va
ous partial derivatives about the particle’s location: Introdu
ing Du[u2p/2 andDw[w2(2p/2), we find

x,u52
3

4
DuDw1O~dx4!, ~C5a!

x,w512
1

8
Dw22

3

8
Du21O~dx4!, ~C5b!

y,u5212
1

8
Dw21

1

8
Du21O~dx4!, ~C5c!

y,w52
1

4
DuDw1O~dx4!, ~C5d!

whereO(dx4) represents corrections of fourth order inDu
andDw. Substituting these exapnsions in Eqs.~C4!, we ob-
tain, near the particle’s location,

Fu
dir.2Fy

dir , Fw
dir.Fx

dir , ~C6!

where corrections are due to terms of the forme0
27Pa

(7) ~re-
call the notation introduced in Sec. IV! and higher-order
terms that vanish atx→z. From the analysis of Sec. VII, it is
clear that such correction terms do not contribute to eit
Fa

(A) or Fa
(B) , and their contribution toFa

(C) vanishes in the
multipole decomposition. Hence, none of the RP will be
fected by omitting these correction terms and replacing
approximation in Eq.~C6! with an exact equality. Conse
quently, we find that the RP transform underxpo

m →xeq
m as

vectors atz, namely

Ru52Ry , Rw5Rx , ~C7!

whereRa stands for any of the RP~obviously,Rt andRr do
not change!. Note also the relationsuu52uy(z)(50) and
uw5ux(z) (ut andur do not change!.
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