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Regularization parameters for the self-force in Schwarzschild spacetime: Scalar case
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We derive the explicit values of all regularization paramet@&B) for a scalar particle in an arbitrary
geodesic orbit around a Schwarzschild black hole. These RP are required within the previously introduced
mode-sum method for calculating the local self-force acting on the particle. In this method, one first calculates
the (finite) contribution to the self-force due to each individual multipole mode of the particle’s field, and then
applies a certain regularization procedure to the mode sum, involving the RP. The explicit values of the RP
were presented in a recent paper Baracket al, Phys. Rev. Lett88, 091101(2002]. Here we give the full
details of the RP derivation in the scalar case. The calculation of the RP in the electromagnetic and gravita-
tional cases will be discussed in an accompanying paper.
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I. INTRODUCTION The notion of self-forces is briefly described as follows.
Consider a pointlike particle carrying a chamgewhich may
The space-based gravitational wave detector LiS#ser  represent here a scalar charge, an electric charge, or a mass.
Interferometer Space Antennacheduled for launch around The particle is assumed to move freely in the curved back-
2011[1], will open up a window for the low-frequency band ground of a black hole with mass!>q. In the limit g
below 1 Hz, allowing access to a variety of black hole —0, such a particle is known to move along a geodesic of
sources. As one of its main targets, LISA is expected to dethe background geometry. However, when endowed with a
tect the outburst of gravitational radiation emitted during thefinite charge(or mass, the particle no longer traces a back-
capture of a compact star by a supermassive black ho|e_g{0und geodesic, as a result of interaction with its own field.
10°- 10 solar masses black hole of the kind now believed toThe finite-chargeor finite-mass correction to the particle’s
reside in the cores of many ga]axieS, inc|uding our c[@:h motion is then described in terms of a “self-force”: Treating
Designing accurate gravitational waveform templates for thighe particle’s field as a linear perturbation on the fixed black
type of astrophysical event requires an accurate knowledg@ole background, the particle’s equation of motion is written
of the orbital evolution, including the effect of radiation re- @s
action. The evolution of such extreme mass-ratio systems
can be modeled by considering a pointlike test particle mov- Hay= Fff”, (1)
ing in the fixed gravitational field of a black hole. One then
addresses the question of the losalf-forceacting on this Where u is the particle’s massa, denotes its(covarian}
particle. (In special cases, one may study the orbital evolufour-acceleration, and®"x0(q?) describes the leading-
tion under radiation reaction using global energy-momentunorder self-force effect(In the gravitational case, the four-
balance techniqud$8]. However, such techniques appear in-acceleration, as well as the self-force, may be defined
sufficient when dealing with the astrophysically realistic casghrough a mapping of the particle’s worldline into a trajec-
of nonequatorial eccentric orbits in Kerr spacetime. tory in the background spacetime—see Ré&f)].) The for-
There exists a well established formal framework for cal-mal construction oFf,e'f is described ir{5,6] for the gravi-
culating self-forces in curve spacetime: DeWitt and Brehmeational case, ifi4,6] for the electromagnetic case, and
[4] first obtained a formal expression for tekectromagnetic  for the scalar case. In all cases, the self-force is constructed
self-force. More recently, Mino, Sasaki, and Tandk5T)  through
[5] have worked out the case of tigeavitational self-force.
[The same results, in both the electromagnetic and gravita- FSel'= |im F'@(x) + trivial local terms, 2
tional cases, were obtained by Quinn and Wea@V) [6] X—2
using a different metho¢l.The case of the scalar self-force
was then analyzed by Quinid]. Recently, the two groups of wherez represents a point on the particle’s worldline where
Barack and OriBO) and Mino, Nakano, and Sasalk#INS)  the self-force is being evaluatexis a point in the neighbor-
have reportedi8] on a practical method for implementing the hood ofz, and the local terms are given explicitly 4 —7]
above formal results, allowing actual calculations of the self{they include the Abraham-Lorentz-Dirac force in the scalar
force for any geodesic orbit in Schwarzschild spacetime. Thand electromegnetic case3he quantityFtD"j‘"(x), the “tail”
purpose of the present papgogether with the one accom- force, is a nonlocal contribution to the self-force, whose oc-
panying it[9]) is to provide a full account of the method and currence reflects the essenti@nlocalnature of the radiation
results reported if8]. reaction effect in curved spacetime: waves emitted by the
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particle may backscatter off spacetime curvature and latespecial local perturbative expansion of the Green's-
interact back with their emitter. The tail force may formally function’s multipole modes, relying directly on the integral
be constructed through a worldline integral[4s5,7] formula (3).

In this paper, we present a different approach for the cal-
culation of the RP, based on a direct multipole decomposi-
tion of the “direct” piece of force. This new approadhl-
ready outlined if8]) allowed a rather convenient calculation
of all RP values for ageneralgeodesic orbit in Schwarzs-
is the value ofr at the intersection of the worldline with the CPild spacetime, as we describe in this paper. In particular, it
past light cone ok, G symbolizes a Green’s function for the prowded an mdependent verlflcatl_on for t_he RP values in the

A special cases considered previoudlysing the I-mode
particle’s field, andv, is a certain first-order differential op- Green’s-function analysis as mentioned aboWevo variants
erator acting oG [the expncit form OfVaH as well as the of the new Calculation method were Work.ed .Out indepen-
type of the Green’s functiofivhether a biscalar, a bivector, dently by the two groups of BO and MNS, yielding the same
or a bitensor depend on the case considered—igee7] for ~ RP valueg8]. The calculation by MNS has been reported in
detaild. Notably, when geodesics in vacuum spacetime ar%LS]- This paper presents full details of the RP derivation by
considered(which is often the situation, especially in the O[17]
gravitational casg the tail force constitutes theole contri-
bution to the self-force. It is the actual evaluation of the talil
part that has rendered practical calculations of the self-forc
most challenging.

It is instructive (and later usefulto write Eq.(3) in the
form

Fl(x)=lim g ° .6lxz(n)]dr, &

— 0
e—0"

where is the proper time along the particle’s worldling,

In its basis, the calculation method presented here is ap-
plicable to all three sorts of self-forces: scalar, electromag-
netic, and gravitational. We find it most instructive to con-
Eentrate first on the scalar case, as a toy model. This model
captures the essential parts of the calculation technique,
while avoiding several complexities and delicate issues that
show up in the gravitational and electromagnetic cases. In
this paper, we thus focus on the scalar model, leaving the
treatment of the gravitational and electromagnetic cases to an
accompanying paper.

. . . ' It should be commented that other approaches for the cal-
are the qlﬂ"ﬂt't'es CPT‘:‘trUCted bY replacing the mtegrafLI:n EGulation of the self-force, not directly relying on the MST

(3) with [ 2, " and f TS*E’ respectively. The “full” forcefF, and QW formal scheme, were also suggested recently.
is directly obtained from the particle’s “full” field by acting Lousto[19] introduced an approach also based on a multi-

with q@a [for the scalar case, e.g., see Etp) below]. The pole decomposition but employing a proposed zeta-function
“direct” force FI" is the “divergent piece” to be removed regularization scheme. Other methods were proposed by Na-

which is associated with the instantaneous effect of wave‘§ano and SasakR0] and Detweilef21]. Most recently, De-

propagating directly along the particle’s light cone. Note thatPNe'le; ?hnd Wlffu;lng[22] ptr)iasen_ted an agternatwtg formuhlfa-h
the “tail” force is hence attributed to waves scatteiadide lon ot the Ssefl-lorce problem In curved spacetime, whic
the particle’s past light-cone. was shown to yield the same result for the self-force as the

A direct implementation of the MST and QW scheme for previous MST-QW formulation. This new formulation pro-

calculating the self-force in a weak field was introduced re-Vides an elegant physical interpretation of the self-force as

cently by Pfenning and Poissdii1]. To allow a practical the f_orce applied by the “radiative” part of the particle’s
implementation of this formal scheme for strong-field orbits,selfljﬂeld' . d as foll In Sec. Il iew th
BO devised a multipole-mode decomposition method, rely- € paper is arranged as 1ollows. In Sec. 1, we review the
ing directly on MST and QW's formal resulp). BO's mode- mode-sum method, and define the regularization parameters.
sum methodwas formulated first for the scalar self-force The sc_alar toy model to be co_nsidered n this paper is intro-
[12], and later for the gravitational self-forde3]. This duced in Sec.. II_I. The expression for the “d!rect” part of the.
method has been tested and fully implemented for calcula _cglar fforcenls éntroduced gndtproc%sseq 'g Sec\./ % a?r? IS
ing the scalar self-force in several ca$éd,15. The mode €ing formaily decomposed Into modes In Sec. V. Ve then
sum scheméwhich we review in the next sectipiis based prepare for the calcylatlon of the RP by introducing a useful
on decomposing the tail force into individual multipole- Eoordmatets_ystgm,én Se\?l.IVI.hThe rtT;]am p?rt Of. our ctialcyla—
mode contributions, relating these contributions to the “full lon IS contaned in Sec. VIi, where, through an investigation

force” modes—which are accessible to standard numerica‘i’f the direct force’s multlpo!e modes, we (_)btam all .RP val-
analysis—and then summing over the mode contribution ues for a general trajectory in Schwarzschild spacetime. Sec-
jon VIII summarizes the RP values, and Sec. IX provides

subject to a certain regularization procedure. This procedur .

requires knowledge of certain analytic parameters, theOme concludlngl remarks. . ”
“regularization parameters{RP), whose values depend on Throughout th|s_ paper we use geometrized ugitsh G
the orbit under consideration. The RP values were derived ¢~ 1), @nd metric signature + + +.
previously for a few special orbits in Schwarzschild space-
time: for radial and circular orbits in the scalar c4%$&] and

for radial trajectories in the gravitational cd4e3,16. These The mode-sum method was introduced in R&2] for the
(rather cumbersomealculations were carried out through a scalar self-force, and in Ref13] for the gravitational self-

Fa'00=Fg" () =Fgx), (@

where F™"(x) and F4"(x), the “full” and “direct” forces,

II. REVIEWING THE MODE-SUM APPROACH
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force. Here we review it using a slightly different perspectiveover the direct-force modes usually diverge. Suppose now
(and notation that one could construct a functidni that would make the

In the mode-sum scheme, one first formally expands alkum 3,[lim F(af””)'(x)—h'a] convergent. Then, we would
three quantitie@(x), F"'(x), and F%"(x) appearing in -

Eq. (4) into multipolel modes as have[continuing the chain of equalitig8)]

. © . FseIfZE [(IimF(fu”)l(X)_hl )_(IimF(dir)|(X)_h| )]
tail — (tail)l a ‘oz a a 7 a a
Fa'00=2 FE' (), .
» =2| (IimFS””)'(x)—h'a)—Z (imF D (x) —h! ).
full o — (fully| X—z X—z
Fil(x) |§:o F(x), (5)

(€)

_ ” . In principle, the “regularization function’h! is to be ob-
Fd'r(X)ZE F(dlr)l(x) . . . a
a “ o tained by exploring the behavior of the full-force modes at

largel. However, this function can also be deduced by ana-

(where, recall,x represents an off-worldline point in the lyzing the larget behavior of the local quantitf™'—a

neighborhood of the self-force evaluation poijt Here, task accessible to analytic treatment. In all cases considered
Flabt - bl = and FU' are the quantities obtained by SO far, the functiorn!, was found to have the general form
summing over all azimuthal numbens(and, in the gravita-
tional case, also over all ten tensor harmohiésr a given
multipole numberl. An important benefit of the multipole
decomposition is the fact that, whereBS" and F¢" both
diverge atx—z, their individual modes attain finite values
even at the particle’s locatiofthough they are usually found

h! =A,L+B,+C,/L, (10)

with L=l+1/2, and whereA,, B,, and C, are
I-independent coefficients whose values depend on the de-
tails of the trajectory under consideration. Defining

to be discontinuous thereApplying the multipole decompo- * '
sition to Eq.(4), we obtain D,=> [limFd'(x)-A L-B,~C,/L], (11
=0 xz
F(tail)l(x): F(full)l(x) . F(dir)l(x). (6)

we finally get from Eq.(9)

Considering now MST and QW'’s expression for the self-
force, Eq.(2), we have

o0

erlf:E [“m':(an”)'(x)_Aal_—Ba—Ca/L]—Da-
|

=0 x-z
Feii— Ftaa”(XZZ)ZEI Ul (x = 7) @) (12

Equation(12) constitutes the basic formula for construct-
(hereafter we ignore the trivial local terms and focus on theng the self-force through the mode-sum method. The four
tail contribution. Note that since the tail forc€®@'(x) is  quantitiesA,, B,, C,, andD, are called the “regulariza-
regular at the particle’s locatian[5,6], one getsS®"by just  tion parameters{RP). The full modesF™', recall, are di-
evaluating the tail force at=z. We can then write, using rectly obtained from the “full” field modegsee Eq.(15)
Eq. (6), below for the construction of the full force in the scalar
casd, which, in turn, are calculated using standard numerical
, ; . . i techniques. EquatiofiL2) thus describes a practical scheme
erlfzzl "mFga")l(X):Z [im V00— imFEY' 001, for constructing the self force, given the values of the RP.
X—Z X—Z X—Z . . . .
®) In this paper(dealmg Wlth th.e scalar se!f-fqrtand in the
accompanying papédealing with the gravitational and elec-
where the direction of the limik—z is considered apre- ~ tromagnetic self-forcgswe derive the values of all RP
scribed It is important to note here that each of the two Needed for implementing E@12) for any geodesic orbit in

limits lim__F®Y'(x) and lim F@)(x) is, in general, ~Schwarzschild spacetime.
X—z @ ! !

X—z @

directional dependent. This, however, does not pose a prob-
lem (and the third equality in the above chain of equalities is
valid) if the direction of the limit is prescribed: one then only  We consider a particle of a scalar chamyenoving freely
has to make sure that the two limits of the full and directin the vacuum exterior of a Schwarzschild black hole with
forces are taken in a consistent manfiez., from the same massM>q. In the lack of self-force, the particle moves
direction. along a geodesiz*( ) with specific energy and angular mo-

In the last expression of E¢8), the sum ovet modes is  mentum parameteand L, respectively. We shall consider
guaranteed to converdges th"'(x) is a regular functioh the self-force acting on the particle at a point along its world-
However, the individual sums over the full-force modes andine which we denote by=(ty,rq,60,¢0) (Wheret,r,0,¢

Ill. SCALAR TOY MODEL
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are the standard Schwarzschild COOI’din)it@t also x WhereiE is a regu|ar function obx (andz) Satisfying
=(t,r,0,¢) denote a point in the close neighborhoodzof
The particle induces a scalar fieli™'(x), which we f=1+0(5x?) (18)
shall treat as a linear perturbation over the fixed Schwarzs-
child background. In our model, the fied"(x) is assumed (the explicit form of f will not be needed in the analysis
to satisfy the(minimally coupled Klein-Gordon equation ~ below). Introducing the squared geodesic distar&ex)
=¢?, the direct scalar force is then given by
OoM=pM = —amp, (13) _ _
’ FI(x)=qd% =g S - (112S%%S,]. (19
where a semicolon denotes covariant differentiation with re- '
spect to the background geometry, and the scalar charge den- Consider now the Taylor expansion of the functdx)

sity is given by aboutsx=0. We write this expansion as
* B S=S+ S, +S,+ - - -, (20
p(X)=qf S'x—2z(n](—g) Ydr (14
’°° where §,S;, ... represent terms of homogeneous orders
ox?,6x3, ..., respectively. Note that this decomposition of

(g being the metric determinagntWe now define the “full

force” as the vector field Sis no longer covariant, and the individual terr8s will

depend on the choice of coordinate system. Below we shall
Flul(x)=qa™". (15  need only the two leading termSy andS,;, which we obtain
' in Appendix A. We find
Note that both the full fieldd™'(x) and the full force

_(n0 v
Fll(x) obviously diverge on the worldline, but are other- So= (g, T u,U,) OX* X, (213
wise well defined. _ N0 | O @ sy B
The force definition(15) complies with Quinn’s definition S1=(UrUyLap+ Gap,,/2) OX7OXEOXT, (21D

[7]. It differs from the expression used by MNS, which in-

a— a i _ H \O 0
volves a spatial projection of the scalar fofsee Eq(1.3) in whereu®=dx*/dr is the four-velocity az, andl", ; andg,;

- denote, respectively, the connection coefficients and metric
[18]]. We prefer to adopt here the force definitigte) for functions evaluated afx=0 (namely, atx=z). Substituting

several reasongi) It is a simpler definition, which neverthe- . :
less serves as$a)n effectiveR[oy model for the realistic graviEqs'gls) and (21). in Eq. (19), we now obtain a Taylor ex-
tational case.(ii) It avoids the need to consider an off- pansion for the direct force, which we may express as
worldline extension of the four-velocity, as necessary for Fd"(x)=q2[ea3P(l)+655P(4)+657P(7)+ 1. (22
defining the spatially projected forcéii) The force model “ “ “ “
(15) is naturally derived from a Lagrangian formalism, and isHere,e,=St'?, andP{" denote terms of homogeneous order
hence consistent with global stress-energy conservation-g(sx"). Note that the term of the forme 18x in Eq. (19)
unlike the spatially projected fordg,23]. . can be written asce '(e®8x)xe 76x’ and then be ab-
Finally, we introduce the notions of the "direct’ fie™  sorped in the terme;’P7). Similarly, terms of the form
and the “tail” field ®™=@M -0 (see[7,18), from . -352 may be expressed ase °8x* and be absorbed in
which the direct and tail forces are derived by €5 °P™W, and so on. Note also that the three terms presented
Fix) =g, Fllix) = g (16) in Eq. (22) are of orde'rsﬁxfz, 5x*1! andox°, respectively.
@ @ “ @ The three dots (- -) in that equation represent terms that
Recall that the “direct” field is the part of the scalar field vanish in the limitsx—0 [such as, e.geg °PxO(8x)]. In
propagated directly along the particle’s light cone, while thethe following analysis, we shall need the explicit values of
“tail” part is associated with reflections of the fieldside  only P{” andP", which are given by
the light cone.

PI-— 25, (233
IV. DIRECT FORCE: PRELIMINARIES 2"
The form of the direct scalar fiel®%" was worked out by 1 3
MNS [18] (see also some preliminary results [i24]), by P=— 550512t 750451 (23b)
studying the Hadamard expansion of the field equation. Let
€(x) denote the spatial geodesic distance from the potot Now, in constructing the self-force, one is merely con-

the geodesia(7) (i.e., the length of the short geodesic sec-cerned with the behavior of the direct force xat> z—see,

tion connecting to the worldline and normal to)itand let ¢ g, Eq.(8). Thus, the terms represented by the three dots
OXH=xH—zH*, Then, the direct scalar field obtained by MNS ( . ) in Eq (22), which vanish in the ||m|1x_>Z, are irrel-

can be written in the form evant for calculating the self-force, and may be ignored in
Hox) our analysis. We hence introduce a “revised” version of the
DIr(x) = q +const, 17) direct force by omitting these ternisetaining, though, the

notationF",
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Fa =g [FP+FP+FO, (24)

where
F&A)E€63P&1),

B)_— _—5p(4 C)— _—7Tp(7
FB=¢PW, FO=¢7p0.

(29

Note that this splitting of 4" holds for any choice of coor-

dinatesx* which are sufficiently regular in the neighborhood

of z (though the coeﬁicient@&”) will depend on the choice
of coordinates

V. MULTIPOLE DECOMPOSITION

Next, we consider the multipole decomposition Feff".
Let

F?Jf(x)=% FIM(r,H)Y'™(6,¢), (26)

whereY'™( 6, ¢) are spherical harmonics. We denotede
the totall-mode contribution to the direct force at

@

lim > Fi(r,to)Y'™(6o,¢0). 27

sr—o= M

Fl, =

Note thatF'ia=IimX_>ZF£Yd")'(x) [as in Eq.(8), e.g)], where
the direction of the limit is explicitly specified such that
approacheg “from the radial direction.” The=* sign corre-
sponds to the two possible radial limits;»rg or ratherr

—>r8

most easily implemented in th@umerical calculation of
the full force modegrecall that the limitx— z of both the

. This choice of taking the radial limit appears most
convenient in our multipole-mode scheme. In particular, it is

PHYSICAL REVIEW D 66, 084022 (2002
F'C;mzo(r,t)=f FI(r.t,0,0)[Y'™=°]*dQ

=[L/(2w)]1’2f FI"(r t,6,¢)P (cos9)dQ,
(29

whered(Q)=dcosfd¢ and the asterisk denotes complex con-

jugation. Combining Eqg28) and(29), we finally obtain the

following integral expression for the totdtmode direct
force:

L )
lim Zf FI(r ty,0,0)P(cosg)dQ. (30)

or—0—

Fl.=

VI. REGULAR COORDINATE SYSTEM

The coordinate systemt,f,6,¢) is singular até= 6,
=0. This singularity makes the expansi@d), (21) inappli-
cable in these coordinates. To overcome this difficulty, we
introduce the two “locally Cartesian angular coordinates”

x=p(@)cose, y=p(d)sine, (31
wherep(0) is a sufficiently regular, odd function &, ad-
mitting the expansion

p(0)=0+p 03+ p,0°+ - - .. (32
For later convenience we shall also demand @) grows
monotonously within the entire domain0¥<<sr, such that
p(#) is invertible.[An obvious natural choice would be
= 0; however, later we shall make the specific choi¢®)
=2 sin(@2) which will simplify our calculationg.

Using the relationsdp/dé=1+ p?h;(p?) and p?/sirf6
=1+ phy(p?) [easily followed from the above definition of
p(6)], whereh, andh, are both regular functions @, one

direct and full forces must be taken from the same diregtion finds that the contravariant components of the metric tensor

Equation(27) is invariant under rotation in the subspace NoW take the form
of angular coordinates, ¢. We take advantage of this prop-
erty, and redefine the angular coordinates such zhatlo-
cated at the pole, i.e§p=0. Due to angular-momentum
conservation, the particle is now confined to move on a plane
of constantp, which we take ag=0,7 (the value of thep
coordinate is fixed along the particle’s trajectory, apart from
a “jump” at the two poles#=0,7). The particle’s four-
velocity now satisfiea?=0.

The above setup is beneficial in that thenodeF',  is
now composed of only the axially symmetrio=0 har-
monic: Recall thaty'™ vanishes ap=0 for anym=0, and
Y!'m=0(9=0)=[L/(27)]¥?P,(1), where P,(cos) is the
Legendre polynomial an®(1)=1. Consequently, we find

g*=1"2(L+xhy+y?hy),
g"Y=r"%(1+y?h; +x°h,),

g¥=r"2(h;—hy)xy. (33
The pointz is located ax=y=0. The above tens@®” is
perfectly regular in the neighborhood of this point—and so is
the covariant metrig,z. In the particle’s location itselfx
=y=0, the line element takes the simple form

ggx: ggy:rg1 gSyZO (34)

from Eq.(27) [along withg®= — (1—2M/rg) andg® = (1—2M/rg) 1.
| . o Note that the particle’s geodesic is confinedyte 0 and
FL,= lim [L/(2m)]YF,m0(r o). (28)  correspondinglyu’Y=0. Also, sincez is located ak=y=0,

sr—0~ we havedx*=x, éxY=y. Finally, we comment that the par-
ticle’s angular momentum is given &%= u, evaluated at z
The modeF'C;m=o is given by the integral (but note thatu, is not conserved along the geodesic

084022-5
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VII. INVESTIGATING THE | MODE OF THE DIRECT
FORCE

A. Is the x—z limit interchangeable with the Legendre
integral?
We now explore in more detail themode direct force
F'ia, based on the integral formul&0). Recalling that the

direct force itself is composed of three terms, Ez2d), we
write

Fl =g FW+F® L O, (35
whereF")' (W standing forA, B, or C) denotes the contri-
bution toF', , [through Eq(30)] due to the ternF") of the
direct force,

L
FMWI= Jim Zf FW(r,to,0,0)P (cosf)dQ. (36)
Sr—0"

Recall that the various terns") are given in Eq(25).
The task of evaluating the various contributioR§")'

would be much simplified if we could interchange the limit

or—0* and the integration in Eq(36). Is such an inter-

PHYSICAL REVIEW D 66, 084022 (2002

W=A. A more rigorous mathematical treatment implies that
this is indeed the cadsee Appendix B
We are thus allowed to write

L
FLSB,C):EJ’ FBO(rg,t0,x,y)P/(cosh)dQ. (38

However, forW=A we must use the original expression,

F& = lim

Ta

Sr—0~

L A
—Wf FA(r,tg,x,y)P(cosh)dQ. (39

For later convenience we give here explicitly the form of
FBO for r=ry,t=t,. We have

FP=e PRy, FO=6"P(xy), (40

WherePg‘)(x,y) is a polynomial of homogeneous ordein

x andy, ande, is the reduction of, to 5r = st=0: We find,
recalling p?=x?+y? andu,=0,
2)1/2.

€0=(rgp*+ux (41)

change allowed? In Appendix B we address this questionNote thate, is an even function of botk andy—a fact that

and show that interchanging th# — 0~ limit and the Leg-
endre integral is indeed allowed fa¥=B andW=C; how-

ever, as evident from the explicit calculation below, such an

interchange is not valid fotwW=A. Here we present a heu-

ristic argument suggesting why the interchange is valid for

W=B,C, and why it might fail forW=A. A sketch of a
mathematical proof is provided in Appendix B.

For a given small separatiofix=x—z, assume that all
components 0bx“ scale air (we assumer #0). Sincee,
then scales likesr too, we find that the various ternig")
scale as

FW =y 3pMocsr =2,
F®) =gy 5PWoc r 1,

(37

FO =, "PMoc 10,

will play a crucial role in the analysis below.

B. Calculating F(©)

Let us first evaluate the terfd (). We observe that the
integrand in Eq.(38) is composed of three factorég !
X P{(x,y) X P,(cos6). Sincee, and cos(p) are even func-
tion of both x and y, then so are the factors, ' and
P,(cos6). However, each of the eight terms &¢")(x,y)
(proportional tox’y°,x%y, ... x%") is of odd power in ei-
therx or y. Hence, the overall integrand in E@®8) is com-
posed only of terms which are odd in eitheror y. As a
consequence, the integral is found to vanish identically,
yielding

FI(©=o. (42

C. Calculating F(®

where the proportion coefficients only depend on the “direc- o i(B) _ )
tion” of 8x“ (i.e., on the ratios between its various compo- Ve next turn to considef,™ . The integrand in E(38)

nenty. To consider the interchangeability of the limit and now takes the forme, >x P{)(x,y)x P,(cosf). Note that
integral in Eq.(36), one is mainly concerned with the con- the polynomialP{¥)(x,y) may now contain terms which are

tribution to the integral from smak,y values(i.e., from the
immediate neighborhood of the integrand’s singular pgjnt
To find out how this small piece of integral scales wéh,
we consider the small integration area aroumdn the xy
plane, defined by = (x>+y?)¥2<r (for a given ér#0).
Observing that this integration area scales bké and rely-
ing on the scale relation&7), one finds that this smak¥
contribution to the integral scales likg° for F'(?) | like ort
for F'®  and like 6r? for F'{$). Namely, upon taking the
limit 6r—0, the smallér piece of integration vanishes for
W=B,C, but not forW=A. This suggests that we may in-
terchange the limit and integration fév=B,C, but not for

even in bothx andy, yielding, in general, a nonvanishing
contribution to the integral. To proceed, one thus has to be
provided with the explicit form ofP®

The explicit form of the polynomialP*)(x,y) is obtained
by substituting forS; andS; (and their gradienjsfrom Egs.
(21) in Eq. (23b), taking ér=6t=0 and recallingdx=x,
dy=y, andu,=0. One thereby obtains

PW(x,y)=PXx44+ ptiy2y24 pWy4 - for a=t,r,x,
(43a

PI(x,y)=P{x%y +PYxy?, (43b)
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where the various coefficients are explicitly given by

1 .
E[f‘1r2r0(2uf—r§)+r51(2u§+ 3uZra+rg)],

pEX):_
1 i

POy = — Ero[3u§+ 2r2+2fr2(u2-r3)],
1 .

PP=—2Srj(1—171r?), (44)

P¥=—rour(ui—r32), P =—rour(ui—r3),

1 .
P =3 rour, (45)
() (xy) L r(r2 2 () L
PY=0, P =5 oUxr (15— 2uy), Py =5 oux
(46)
(9 r(u2—r2 ) 1a
Py7=roUxr (Uz—r5/2), Py == 5ToUxl- (47)
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lp=(2m)" 1 (52

[see, e.g., Eq(7.225-3 of [25]]. The integrall ¢, in turn, is
a linear combination of standard elliptic integrals. It can be
expressed as

1¢=a,K(w)+b,E(w), (53)

whereK (w) andE(w) are two complete elliptic integrals of
the first and second kinds, respectively, the arguners
given by

2

Uy

w= (54)

Cr2u?’
and the coefficients, andb, read

4 3y Y g p () 4 g p(y) 1 g p )
a,=— 7 (ro/uyw ¥ atIpld 4 g pty) 4 aMpW],

3
(55)
b,=— g(rolux)w‘yz[ b P4 hCN PO 4 H(PpW

In these expressiont=(1—2M/r), r=u’, and all four- with

velocity components are evaluatedzatNote that the com-

ponentsP{?, P andP{® consist of only terms which are

evenin both x andy. On the other hand, thg component

P{*) contains only terms which aredd in both coordinates.
Consider first they component: Both termscx®y and

xxy?® of the polynomialP" yield, upon integrating, no con- a=(3w-2),

tribution to F\®, and one immediately obtains (56)

b =2(w—1)3(w+1),

aW=(w+2)(w—1),

at=—-2(w—-1),

Fi®=o0. (48)

The other components &%) do not similarly vanish: Re- b = —(w=2)(w-1),

calling x=p cose andy=p sine, and expressing, in the
form ey=rop(0)(1+r,%uicog¢)?, we may write the
double integral in Eq(38) in the factorized form

b =2(1-2w).

The explicit form of the desired contributioR®) (for
a=r,t,x) is finally obtained by inserting the values Bf?

Fi®=rg19¢, 49
a 07T 49 PO and PY) [given in Eqgs.(44)—(47)] in the above ex-
where pressions fora, andb,, constructingl? through Eq.(53),
and substituting in Eq49). This yields
o L (1 Pi(cosb) d 0 (508
=—| —————dcosé, g - . ~
27) 1 p(6) @ L (r2—2u?)K(w) + (r2+u?)E(w)
T Ve - 57
a
|¢_J'2ﬂng)co§‘¢+ Pcode sirfe+ P(ay)sin“cpd °
*“ Jo (1471, %ulco¢)%? i £ 1 ur[K(w)—2E(w)] (575
(500 ™ 32 ’
We now take advantage of the freedom we still have in o A
specifying the functionp(6), and make the convenient I(®) 1 r[K(w)—E(w)]
choice P/ = (579

Fo a(ug/ro)V¥? ’
=2sin6/2). 51
P "(6/2) B8 whereV=1+u?/r3.
Note the remarkable fact that the contributigif® is
independent of.|

With this choice, the integral’ becomes a standard one,
reading simply
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D. Calculating F'{%)

Finally, let us evaluaté'"} . Recalling F{"= ¢, PV
and using Egs(239 and (213, Eq. (39) becomes

FI% = —[LI(2m)1(q0s+uup)FE, (58)

where

F'P= lim | 6xPe; P (cosh)dQ. (59)

or—0~

Note that we have already taken here the ligtit-0, hence
the integrand ¢ 8x?) vanishes identically fo3=t. Also,
since co9(p) and €y, given explicitly by

€0=[rop?+gn or2+(u,or +ux)?]Y, (60)
are both even functions of, the integral in Eq(59) obvi-
ously vanishes foB=y. Hence,

Fl'=FY=o0.

(61)

Consider now Eq(59) for the two remaining components,

B=r,x. First, we change the integration variablesxty.
Since the Jacobian i8(6,¢)/d(x,y)=(pp') " * (where p’
=dp/d6), Eq. (59 becomes

F'’= lim faxﬁeo H(p)dxdy,

Sr—0~

(62

whereH(p)=P,(cosé)sind(pp’) L. The functionH(p) is a
regular, even function of (and of p), with H(0)=1. We

thus write it asH (p) = 1+ p?H(p), where the functiomd (p)
admits a regulafever) Taylor expansion ap=0. Accord-

ingly, we divideF'? into two contributions,

F'= lim (14+15), (63)
5I‘~>01
where
|f>‘zf oxP ey dxdy,
(64)

IEEJ 5XB663p2|:|(p)dXdy.

Consider first the contributiohs : Near p=0, the inte-

grand in this term scales likér°, thus the integrated singu-
Hence, based on precisely
the same argument applied in Appendix B with regard to the

lar contribution scales likeSr2.

termF(), we find that the integral? is sufficiently regular
to allow us to interchange the orders of the—0 limit and
integration,

lim 15=15(6r=0).
or—0"

(65)
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Doing so, we find that the contribution frot§ to F'# van-
ishes for eitheB=r or B=x: For B=r, the integrand van-
ishes identically; for8=x, the integrand, evaluated ar
=0, becomes an odd function of [see Eq.(41)], which
vanishes upon integrating.

To calculate the remaining contributidfi, we divide the
domain of integration in Eq(64) into two regions: LetH™
denote the square-h<x,y<h, for some particular &h
<1 (say,h=1/10), and letH°" denote the remaining inte-
gration area over the sphere, outsid®. Correspondingly,
we divide the integral? into two contributions, a${=1%"
+15°" Now, since the integrand ¢£°“" contains no singu-
larity (the only singularity on the sphere occursxaty
=0, which is located in H™, in evaluating
lim s _o=15°"(6r) we are allowed to interchange the limit
and integration,

lim 1§°U=| 8o 5y =),
Sr—0~

(66)

Precisely as in the case of the integrdlconsidered above,
this contribution is then found to vanish for eithée=r or

B=x. We are thus left Witﬁ:'leim&ﬂotlfi”, namely,
(67)

We proceed by considering separately the two compo-
nentsB=r and S=x. Let us begin with the component:
Rescaling the integration variables a&=x/ér and Y
=vy/ér, we find

- h/ ér h/ ér
F'= lim f [e.(X,Y)] 3dXdY, (68
Sr—0. —h/ér J —hilsr
where
e.=eo/8r=~[gp T X2+ Y2+ (U +uX)?]
(69

and the=x sign refers to the sign ofr. Note thate. (and
hence the entire integranis independent obr, such that
the 6r — 0. limit becomes trivial:

F'i:tf f [9% +r2(X2+Y2) + (u,+uX)?]¥dXdY

=+U. (70)

This is an elementary integrabee, e.g., Eq(3.252-3 of
[25], in conjunction with Eq(3.252-2 therein, yielding

U=(2m/rg)[riu?+gl (r3+u?)] 12 (7
Note the relation
2mf
IMoUt
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which stems directly from the “radial” geodesic equation of
motion, U")?=u2—(1—uZ/r3)f.

Consider next the cagg=X. It is not possible to treat this
case the same as the cg&er, by changing the integration

variables toX,Y: doing so, the integrand becom&%;?’,

and the double integral does not strictly converge at infinity.
We therefore apply here a different method to evaluate the

limit 8r —0* in Eq. (67). First, we expres&” as

_ h [h
Fix= Iimf J xS, ¥2dxdy, (73
sr—ot? ~hJ=h

where, recall,So= e2=r3(x?>+y?) +g2 8r2+ (U, or + Uyx)?
(with the limit t—t, already taken Now, S; is quadratic in
o6x%, and its derivative with respect tois a linear combina-
tion of bothx and ér. One easily obtains the relation

X=aSy,+ B4, (74)
where the coefficients and 8 are given by
1 u,u,
a=———, =-— . 75
2(r2+u?) r2+u? 79

Substitutingx from Eq. (74) in Eq. (73), we expres& > as
the sum of two integrals:

FX=lim
Sr—0*

Eali-i-,BI” .

Y|

af %,xsg3’2dxdy+ﬁf or e 3dxd

(76)

In what follows we show that; vanishes, leaving us with
only the contribution fromi;; , which is just proportional to

ther componenf"" calculated above.
Considering firstl;, we carry out the trivial integration
overx, obtaining

h
im [ [—2s 5" ay.
sr—0*” ~h

The integration ovey is then a standard one, but one does

not need to carry it out explicitly: Observing that the inte-
grand is now a regular function gfand ér throughout the

limit and integration. Noticing thenSy(dr=0x=+h)
=Sy(6r=0x=—h), we immediately conclude

Consider next;; . Comparing with Eq(67) (for ther com-
ponent$ we find simplyl;; =I~:'tr , hence
FX=pF""=+puU. (79

Having calculated all components t#, we may now
constructF'i(ﬁ) through Eq.(58). We obtain

PHYSICAL REVIEW D 66, 084022 (2002

I(A)_ — Lfu,
Fip=+[L/(2m) Ju(u, + BuyU=*——7, (803
r0 X
A . L~ tu,
FU®==[L/m) [ +u (U + BudJU=+——,
ro+ux
(80b)
FI®=x[L/(2m)][B(r3+u?)+uu,JU=0, (800
FiP=o0, (80d)

where we have substituted for and 8 from Egs.(72) and
(75), respectively.

Note the remarkable fact that the contributi&f?) is
preciselyproportional toL.

VIIl. VALUES OF THE REGULARIZATION PARAMETERS

In conclusion of the calculation carried out in the previous
section, we have found that thienode direct force=', , is
composed of only two contributions: one—completely de-
scribed by F'"—is precisely proportional td., and the
other—completely described 1%/ (®)—is independent of..

No other powers oL are present. Recalling the definition of
the RP in Sec. II, we then conclude that the téftf) con-
tributes only to the parametek, and that the terrrF'i('Z)
contributes only tB,. Recalling Eq.(35), we identify the
RP as

LA.,=q’F'®  B,=q?F®, c,=0. (81
Furthermore, from Eq11) we immediately geD,=0. The
explicit values ofA. , andB, are then obtained by substi-
tuting the expressions derived above for the quantities
F'AB)_Eqs.(48), (57), and(80).

To give a useful summary of the RP values thus obtained,
we shall transform the angular coordinatey back to the
standard 6,¢ coordinates, in which the orbit is equatorial
(i.e., confined to9= 7/2). The quantities"(x) andF"(x)
are unaffected by this transformation, therefore thend t
components of all RP are unchanged. Howeﬁé\’, and FS"
transform toF§" and F$" in a manner which is not com-
pletely trivial, and we need to find the correspondéand ¢
components of the RP. Note thafpriori there is no guaran-
fee that the RP will transform like vectors at the evaluation
point, because the RP dependl@i‘f in the neighborhood of
z and the transformationx(y)— (6,¢) involves nontrivial
functions of the angular coordinates, which may affect the
mode decomposition. However, in Appendix C we show that
in fact all the RP do transforrtin this particular coordinate
transformationlike four-vectors at. It is trivial to show that
at the evaluation point

Xg=Y,=0 X, ,=-y,=1 (82
[For concreteness we consider here the transformation de-
scribed by a7/2 rotation about the horizontal axig=0,

which takes z from the pole to the point €y, ¢q)
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=0

FIG. 1. A sketch showing the various quantities involved in

constructing the coordinate transformationy) — (6,¢). Shown is
the “northern” hemisphereé=r=const, §=0. The particle moves
along an equatorial orbit, and is momentarily located @to}
=(ml2,—wl2). X,y is a pair of “locally Cartesian angular coordi-
nates” at the particle’s location, as described in the text.

=(ml2,— w/2)—see Fig. 1 and Appendix C for more details.
Note, however, that the RP in th& ¢ coordinates do not
depend ongy, due to the symmetry of rotations ip.]
ThereforeB,=B, andB,= —B, (and the same foh, ,A).
Note thatu,(z) now becomesu,=L, the conserved azi-
muthal angular momentum. In the stand@g coordinates,
the RP are then given b&,=B,=0,

A ~+9 £ A —+q A,=0 83
il’__'—r_zW’ it_—FV1 o Y ( ED
0 0
02 (r2= 28K (w) + (r2+E?)E(w)
' r wfVv32 ,
(83b
BTN R
q°Er[K(w) —2E(w)]
Bi=— 2 : (830
2 r[K(w)—E(w
A TR —Ew)) 834
ro  a(Llrg) VY2
C,=D,=0, (838
where
— ‘62 — 27,2
—m, V=1+L /I'O, (84

0

f=(1-2M/ro), and r’=(u’)?=£%-fV. Recall £=—u,
and L=u,, are the(conservell specific energy and angular
momentum parameters.

We comment that the parametér., is normal to the
four-velocity: A ,u“=0. However, the parametér, (as the
self-force itself in our modelis, in general,not normal to
u®: An explicit calculation yields

PHYSICAL REVIEW D 66, 084022 (2002

9* rE(w)

a: —
rg YA

B,u

a -2 (85)

Finally, we give here the RP values for the special case of
a radial geodesic, i.e£=0: Noting, in this casew=0, V
=1, andr?=¢£2—f, and recallingk (0)=E(0)= n/2, the
nonvanishing components in Eq83) reduce to

N

2

o)

A= :%(5/1‘), A= i?—g'r, (86a
2 2
B[adialzq—zf_l(EZ—Zf), B;’adialz _ q_zgr
2rg ro
(86b)

[The vanishing oB*® is obvious from symmetry consid-
erations. Note thaB, vanishes at the limitv— 0 despite the

factor £ in the denominator, becaus&w) — E(w)=0(w)
=0(L£?).] These values are in agreement with the ones de-
rived in [12] using thel-mode Green’s-function expansion
method.

IX. CONCLUDING REMARKS

The mode-sum scheme described by Ei), with the
explicit RP values calculated in this paper, E(®3), pro-
vides one with a practical means—yet one based on a physi-
cally well-established regularization scheme—for calculating
the scalar self-force for any geodesic orbit around a
Schwarzschild black hole. Recall that the full modeg""
needed for fully implementing this mode-sum scheme are to
be obtained from themodes of the scalar field, which, in
turn, are to be calculated using standard numerical tech-
nigues.

The RP values derived here, E483), were obtained in-
dependently by MN$18] using a different approach. In their
analysis, MNS decomposed the direct field using the “stan-
dard” 6, ¢ coordinategin which the motion is equatoriglin
which case then#0 modes contribute as well. MNS then
derived an analytic expression for the contribution of each
I,m mode of the direct force, expanded in powers\Mbfr .

By explicitly summing up this expansidiand summing over
m), MNS were able to recover all RP values.
The RP value$83) reduce, in the special cases of radial

motion (£=0) or circular motion (=0), to the values de-
rived previously[12] using a completely independent ana-
lytic approach (namely, by locally analyzing thé-mode
Green’s function, as we briefly mention in the Introducjion
In these cases, the values of the parame&ersB,,, andC,,
have also been confirmed numerically, by calculating the
full-force modeq 15].

The RP calculation method presented in this paper is di-
rectly applicable to the more realistic case of tavita-
tional self-force acting on a mass particle, as well as to the
case of theelectromagneticself-force acting on an electri-
cally charged particle. Both cases shall be treated in an ac-
companying papdQ], where we obtain the gravitational and
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electromagnetic RP for general orbits in Schwarzschild ay* ayP

spacetimédthe results in the gravitational case were provided S=|(745tU ;u[’;)—A XM o€

in [8]). The extension of our scalar field analysis to the gravi- Ix* Ixe

tational and electromagnetic cases involves several com- o 208

plexities which require special care. In particular, one has to +| (gogtulul )‘QL Iy SxM Sx XY
tackle the technical issue of extending the four-velocity vec- aB mEaTB goN axbgx?

tor off the worldline[9]. A more fundamental issue concerns .
the gauge dependence of the gravitational self-fot€g. +0O(ox%).

Comparing this to Eq(A1), we identify the first and second
ACKNOWLEDGMENTS terms on the right-hand side with, and S;, respectively.

. R . . Using the obvious tensorial transformation rule, we find
We are grateful to Lior Burko, Yasushi Mino, Hiroyuki g

Nakano, and Misao Sasaki for interesting discussions and Sp= (gt UyU,) X  OXE. (A4)
stimulating interaction. L.B. was supported by the Marie Cu-
rie Fund through the European Community program IHP-To calculateS; we need the second-order transformation co-
MCIF-99-1 under contract number HPMF-CT-2000-00851. efficients, which are given by
. ay* ay”
APPENDIX A: DERIVATION OF Sy AND S, =T
axtax” MV oxe

In this appendix, we calculate the two leading terms in the
expansion oS=$§(x,z) [the square of the geodesic distance[see, e.g., Eq3.2.11 of [26]]. Therefore,
from the pointx to the geodesiz(7)] in powers of ox*
=x*—2z#. This expansion takes the form ay* ayP

S1=| (7apFUpup)—

re, | 6% oxt x>

ax™ axe
S=Sp+Si+ S+ -, (A1)
=(gke+u}\ue)F;V6X)\5XM6)(V-
in which the termS, is of homogeneous ordeix"*?, and _
we wish to calculatés, andS;. Recalling that
In flat space, using Cartesian coordinategs (with y“ 1
=0 atz), we obviously haveS=(7,z+U,Uz)y*y?=S,, g}\el";yé‘xk&(M&VZEQMVYACS‘XA&(M(‘)‘XV,

where 7,4 is the flat space metric. In curved spa@e in
curvilinear coordinates each of the terms,, (like Sitself)
will be a certain function ofy,; and its derivatives. From
simple dimensionality considerations, it is clear tBgtmay S = (U U.T 4+ g0 . /2)ox?oxBox? A5
not include any derivatives @, s, and thatS, may include (UnUyTap+ Gap,/2) ' (AS)
only first-order derivatives of the lattém addition tog,,

we finally obtain

itself). APPENDIX B: INTERCHANGEABILITY OF THE r—rg
Let y* be locally Cartesian coordinates at the evaluation LIMIT AND THE LEGENDRE INTEGRAL
point z, with y*=0 atz Namely, ax=2z, the mefric func- In this appendix, we explore the interchangeability of the

tions in the coordinateg” are just,,, , and their first-order  |init and integration in Eq(36)—an issue crucial for the

derivatives vanish. Since no second- or higher-order derivasy|cylation carried out in Sec. VII. For convenience, let us
tives appear irS up to the desired order, we must have write FO' = [L/(2m) JEW)' | where

S=(7apt ULUp)Y Y +O(y*), (A2) I

T 2
lim f dof deFM(r.ty,0,0)
or—0~* 0 0

where a prime denotes vectorial components inytheoor- )

dinate system. We now transform froyff back to our origi- X P\ (cos6)sine. (B1)

nal coordinatex*. Recall thatSis a biscalar, and is hence

invariant under this transformation. Writing the Taylor ex-

pansion ofy“(ox*), FR= 3P0, FO=;5P@, FO=¢ PO,
(B2)

Here, recall W stands forA, B, or C, with

Iy 1 Py«
ZLSX)‘-}— y

- > -oxox'+0(8x%)  (A3)  wheree, is given explicitly in Eq.(60), andP{" represents

2 IxXHIx a polynomial of homogeneous ordelin x*=x*—z*. We
shall show that interchanging the limit and integration in Eq.

(in which all coefficients are evaluatedzt and substituting (B1) is valid forW=B,C, and explain why our proof fails in

it in the right-hand side of EqA2), we find the caseN=A.

y&’
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We begin by considering the ca®é=B. LetR=|dr|*for  Sinces<1, in the entire rangéi) we have|dr|<R= 0 (for
some 0<s<<1. Consider the range of smafr (such that |ér|<1), and thugér|<p. We may approximataFgB) at
R<1). We split the§ integral in Eq.(B1) into three do- |sr|<1 as
mains: (i) <R, (i) R<6<1, and(iii) 1<f<. Corre-
spondingly, the above double integral can be expressed as AE® ~d(e=5P™)/d( s < S B11
Ii+Iii+Z-iiia hence o (EO [ ) ( r)|5f:0 r. ( )

E®I= lim Z,(sr)+ lim Z,(6r)+ lim Ty (). From Eq_.1(60) (and_gecalling|x|<p) we observe that, at
- or=0, ¢, andd(ey )/d(or) are bounded from above by

sr—0* Sr—0* or—04 1 ’
«p~1 and«const, respectively. Abr =0, we may also up-
(B3) ~1 and t tively. ABr =0 |
o ' _ per boundP®) and dP{*)/d(sr) by «p* and «p>, respec-
Consider first the internal integrd] : tively. Applying these bounds in E4B11) we then obtain
R 2m 5 | ) (B) -2
Ii(ﬁr)=f daf deF®(sr,6,0) P'(cosd)sin 6. |AF [ <cs|ér|p™*. (B12
0 0

B4 . .
B4 [Note that in Eq(B11) we have assumed that eitf@or P{*

Since at the relevant limiR—0, we haveg<1 throughout (Or both include terms linear irdr. In special cases where
the range of integration, and we may approximate this inte©nly terms quadratic idr are present in both quantities, we

gral [using sinddé=pdp, as well asP'(cosf)=1 andp(R)  shall instead arrive at the boudF{¥|<csor?p~2. Since
~R] as |Sr|lp<1, this is even smaller than the bou(®fL2), and so

the entire derivation below remains valid.
Using Eq.(B12) and recallind P'(cos6)|<1, we can now

R 2
Ii(ﬁr)zfo pdpfo deF®(sr,p,0). (BS  boundAl;(5r) by

2

(B)— .—5p(4) (4) 1
Now, F{®=¢;°P®  We may bounde, and PV as ¢, |AI“(5r)|<c5f do [ "desing|sr|p-2
R 0

>c,|or| and |P®¥|<c,p*, where hereaftecc, are some

positive constants. Consequentl*}/(f) can be bounded as L
B — — H [H 1 .

|FEY)’|’§03|6r| 5pf‘<c3|25r| °R*. Since the “integration zzwcsf d@sin|sr|p 2. (B13)

area” in Eq.(B5) is R, we then obtain the upper bound R

|Ti| < el or|T°RP=cy4|or[%7°. (B6)  Since sidlp andda/dp are bounded in domaifii), the last

. ! _integral can now be bounded as
Taking, e.g.s=0.9, we find thatZ,|<c,| 6r|®*and hence it

vanishes at the limitr —0~: o)
AT (8r)|<cg|or f “Ldp. B14
lim Z,(6r)=0. (B7) | i ( )| 6| | p(R)p p ( )
5r4>0r
[We point out here that in the way we have chogén) in
Sec. VIl—see Eq(51)—dé/dp is unbounded ab— . It is
1 o this divergence that forced us to terminate dom@inat 6
Iii(‘sr):f dgf deF®(6r,6,0) P'(cosd)siné. =1, and to introduce domaifiii).] Upon integration, we
R 0

find
(B8)

Consider next;; , which is defined by the double integral

Let us introduce the quantitAF®=F®(sr)—FE) (sr |AZ;i(dr)|<cg|or|[Inp(1)—Inp(R)].  (B1H
=0), and the corresponding integral
For smallR we havep(R)=R=|ér|%; therefore

1 2
AZ; (5S¢ EJ dHJ deAF®) (8, 0,0)P'(cos)siné,
i(or) R Jo 0T ( #)P(cost) |ATZ; (5r)|<cgln p(1)|5r|—scg|or|In|sr|.  (B16)

(B9)
such that Clearly, both terms vanish a% —0~, hence
1 2w lim AZ;(ér)=0. (B17)
In<ar>=AIn<5r>+f def deF®(sr=0,0,¢) 50
R 0
X P'(cos6)sin 6. (B10)  From Eq.(B10), we then have
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lim Z;(ér)= lim
Sr—0" Sr—0~

X P'(cos#)sin g

1 2
f daJ de F®(6r=0,0,0)
R(4r) 0

1 2w
=f def de F®)(s5r=0,6,¢)
0 0

X P'(cos6)sin 6. (B19)

Finally, consider the third contributiort;; , defined by

T 2
Im(ﬁr)zfl defo deF®(6r,6,0)P'(cosh)siné.
(B19)

In full analogy with the analysis above, we define

T 2
AIiii(ér):J daf deAF®(sr,6,0)P'(cosh)sing.
1 0
(B20)

The above boundAF(®)|<cg|8r|p 2, is valid in rangeliii )
too. Since in this range is bounded from below, we may
now write|AF®)|<c-| 6r|; and sinceP'(cosé) and sind are

PHYSICAL REVIEW D 66, 084022 (2002

as or—0. Evaluating nextAZ;, we obtain this timelin
analogy with Eq(B12)] |AF{®)|<c,4ér|/p, and hence

p(1)
azyon|<corl | pdp<cidarl, @29
p

which again vanishes adr—0. The calculation ofAZ;;
proceeds exactly as foN=B (the only difference is that
now AF(©ec| r|/p instead of| 8r|/p?, but this does not af-
fect the above evaluation &7Z;;; in any way. Again we find
|AZ;;i (6r)|<2m?cqg 6r|, which vanishes at the limitr
—0. We conclude that the limit and integration may be in-
terchanged foWW=C as well,

R T 2w
FL§C>:I def deF©(sr=0,6,0)P'(cosh)siné.
0 0
(B26)
Finally, it is instructive to see how the above type of ar-

guments fails folW=A. SinceF V= ¢, 3P, in evaluating
7, one obtains |Z;|<cy48r| SR¥=cy46r[3¢" Y. Then,

both bounded by unity, the entire integrand is then boundeeévaluatingAZ;;, one obtains

by c,| ér|:
T 2
|AZm(§r)|<c7|5r|f def de=2m2cs|6r|.  (B21)
1 0

Again, this quantity vanishes at the limdt —0; hence, by
the same considerations used above for rafigd see the
chain of Eqs(B18)], we obtain

lim Z;; (6r)=

T 2
J daf de F®(6r=0,0,0)
Sr—0. 1 0

X P'(cos6)sin 6. (B22)

Substituting Eqs(B7), (B18), and (B22) in Eq. (B3), we
obtain

. T 2m
FlofB):f dgj deF®(6r=0,0,¢)P'(cos)sin 6.
0 0
(B23)

Namely, in the calculation df'(®)—and thus als&'(5)—we

are allowed to interchange the limét —0 and the integra-
tion. Note that sincd={®) admits a well-defined limit asr
—0 (except atd=0—which, however, was shown not to
affect the integral we have omitted itst label.

The same proof can immediately be applied RYS) .
EvaluatingZ; , we find this time thatF(“)| is bounded from
above bycg|dr|~"p’<cg|6r|"'R’, hence(taking agains
=0.9)

|Zi|<col8r| " "RO=cq| 6| "=cq|6r|11>0 (B24)

p(1)
Az (on)|<cador] | Cpid @20
p

which at the limit of smallR yields |AZ;;(6r)|<cig or|/R
=C44 6r|17S. Obviously, for anys<1 the bound forZ; will
fail to vanish asor —0, and for anys=1 the bound foZ;
will fail to vanish at this limit.[Note also that in the case
=1 the inequality 6r|<p, used above in evaluatingZ;; , is
no longer valid throughout rang@).] In fact, it becomes
evident from the explicit calculation in Sec. VII that fav
=A the limit r—0 cannotbe interchanged with the inte-
gration.

APPENDIX C: TRANSFORMING TO EQUATORIAL
ORBIT

In Sec. VII, we analyzed the multipole decomposition of
the direct force in a Schwarzschild coordinate system in
which the particle is momentarily at the pole. We then trans-
formed to locally Cartesian angular coordinaxeg and cal-
culated the RP in the systexfj,=(t,r,x,y). Usually(e.g., in
numerical calculationsone adopts a more natural pair of
angular coordinates, in which the particle’s orbit is confined
to the equatorial plain {= 7/2)—throughout this appendix
we shall denote this system b= (t,r,0,¢). The goal of
this appendix is, given the RP values in the systéf to
obtain the corresponding values in the systefn

In the systenx“ we haveu’=0 andu,= L, where, re-

eq
call, £ is the conserved specific angular momentum. Let the
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particle be momentarily até @)= (6, ,¢0) = (7/2,— 7/2).} Given the above transformation rule, the desired compo-
Consider the set of spherical coordinate®, defined such NentsFg" andFS" are constructed as

that the particle is located at their poie=0, an_d?,ézo,w FOr—x Oy FOT,

coincides withd= r/2—see Fig. 1(These are, in fact, the ’ ‘
same spherical coordinates used throughout the paper; here
we merely use a different notation, as the symhilg are
reserved for the angular coordinates of #fg system) The
“locally Cartesian” coordinates at are then given bysee

: . . c4
FO=x JF{"+y FO". ©4

It is now useful to consider the Taylor expansion of the vari-
ous partial derivatives about the particle’s location: Introduc-

Eq. (31)] ing A= 60— /2 andA o=@ —(— 7/2), we find
x=p(6)cosp=2 sin(6/2)cose, X g=— %A 6A o+ O(5x%), (C5a
(CY
y=p(8)sing=2sin(8/2)sin. 1 3
o x,¢:1—§A¢2—§A02+0(a§<4), (C5b)
Relating the spherical coordinat@se to the standard pair
0,¢ is a straightforward geometrical problem, and one finds 1 1
_ ~ y,g:—1—§A¢2+§A02+0(5x4), (C50
cosf=—sinf#sing, cotp=tand cose. (C2
This allows us to express,y directly as functions o, ¢. Yo=— %A 0A o+ O(6xY), (C5d

We obtain
where O(6x*) represents corrections of fourth order A9

X(6,0) =212 siné cose andA ¢. Substituting these exapnsions in E¢S4), we ob-
¢ J1—sinfsing’ tain, near the particle’s location,
(C3) ngl’2 _ ngl’ ’ I:((’jpir2 ngr ' (CG)
cosé

where corrections are due to terms of the fasg/ P{") (re-

call the notation introduced in Sec. J\and higher-order
terms that vanish at—z. From the analysis of Sec. VI, itis
clear that such correction terms do not contribute to either
F® or F®®  and their contribution td='") vanishes in the
multipole decomposition. Hence, none of the RP will be af-
fected by omitting these correction terms and replacing the
approximation in Eq.(C6) with an exact equality. Conse-

0, :21/2 ,
YO = anasne

which describes explicitly the transformation betw
andxg,. Note that this transformation is regular on the entire
sphere[except at the pointd, ¢) = (7/2,7/2), which, how-
ever, is irrelevant for our analygis

We consider here a specific value @f in order to simplify the
following expressions, and to make the correspondence between t
X,y andx,y coordinates(see below easily apparent. Note, how-
ever, that our final result—the RP values in the systéfp—does
not depend on the choice ef,, as the-mode decomposition of the

quently, we find that the RP transform undef,—xg, as

ygctors atz, namely

RGZ_Ry, R(p:RXl (C7)

whereR,, stands for any of the R®bviously,R; andR, do

direct force in that system is invariant under rotations about theéot changg Note also the relations,= —u,(z)(=0) and

polar axis.

U,=Uy(2) (u; andu, do not change
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