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Abstract
We analyse the scalar potentials of maximal gauged three-dimensional
supergravities which reveal a surprisingly rich structure. In contrast to
maximal supergravities in dimensions D � 4, all these theories possess a
maximally supersymmetric (N = 16) ground state with negative cosmological
constant � < 0, except for the SO(4, 4)2 gauged theory, whose maximally
supersymmetric groundstate has � = 0. We compute the mass spectra of
bosonic and fermionic fluctuations around these vacua and identify the unitary
irreducible representations of the relevant background (super)isometry groups
to which they belong.

In addition, we find several stationary points which are not maximally
supersymmetric, and determine their complete mass spectra as well. In
particular, we show that there are analogues of all stationary points found
in higher dimensions, among them are de Sitter (dS) vacua in the theories
with noncompact gauge groups SO(5, 3)2 and SO(4, 4)2, as well as anti-de
Sitter (AdS) vacua in the compact gauged theory preserving 1

4 and 1
8 of the

supersymmetries. All the dS vacua have tachyonic instabilities, whereas there
do exist nonsupersymmetric AdS vacua which are stable, again in contrast to
the D � 4 theories.

PACS number: 0465

1. Introduction

Maximal (N = 16) gauged supergravities [1, 2] are the most symmetric of all known field
theories in three spacetime dimensions. Their unique position is not least a consequence of
the presence of the ‘maximally extended’ Lie algebra E8(8) which plays a very special role in
their construction. In contrast to gauged supergravities in higher dimensions, the vector fields
appear via a non-Abelian Chern–Simons term rather than the usual Yang–Mills term, implying
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a non-Abelian duality between scalars and vectors which has no analogue in dimensionsD > 3
because suitable non-Abelian extensions of higher-rank tensor gauge theories do not appear
to exist. As required by supersymmetry and the matching of bosonic and fermionic degrees
of freedom on-shell, these vectors do not introduce new propagating degrees of freedom over
and above the scalar fields already present in these theories (in the ungauged version of the
theory obtained by torus reduction from eleven dimensions, eight Kaluza–Klein vectors and
28 vectors coming from the rank-3 antisymmetric tensor are dualized to scalar fields [3]).
The fact that the number of gauge fields is not a priori fixed entails a much greater variety
of gaugings with both compact and noncompact gauge groups G0 ⊂ E8(8) than in higher
dimensions.

In this paper, we will focus on the semisimple gaugings obtained in [1, 2] and investigate
the associated scalar field potentials, which arise through the gauging. The existence of
maximal gauged supergravities with non-semisimple gauge groups will be demonstrated
in a separate publication; again, there are more possibilities than in higher dimensions as
well as new phenomena without higher-dimensional analogues. The potentials of gauged
N = 16 supergravity are substantially more complicated than the potentials of maximal
gauged supergravities in dimensions D � 4, and arguably the most intricate potentials ever
encountered in the context of supergravity (and perhaps beyond). A glimpse of their structural
wealth is already offered by their maximally supersymmetric stationary points (at the origin
V = I ) which exist for all the semisimple gauge groupsG0, and which we study in some detail
here. Our analysis nicely exemplifies the representation theory of supergroups G containing
the D = 3 AdS group SO(2, 2) [4]. In fact, the model contains representative examples of
almost all such supergroups, including the exceptional ones G(3) and F(4).

Although a general study of the extremal properties of the potentials appears to be beyond
reach with present techniques, considerable progress can be made by adapting a technique first
introduced by Warner [5], which consists in studying the potential on a restricted subspace of
scalar fields which are singlets under some fixed subgroup of the gauge group. In a previous
paper by one of the authors [6], this technique was already employed to identify a number
of nontrivial stationary points for the SO(8) × SO(8) gauged theory. Here, we continue this
analysis by working out the potentials for various other gauge groups and singlet sectors, and
exhibit several new nontrivial stationary points. In addition, we give general mass formulae
which allow us to compute the full mass spectra at each of these stationary points. A good
part of our analysis relies on the computational methods developed in [6], which are described
in greater detail in [7].

Let us briefly summarize the most interesting facets of our findings. The compact
gauge group G0 = SO(8)2 admits AdS vacua preserving 1

4 and 1
8 , respectively, of the

supersymmetries. In addition, for gauge groups G0 = SO(8)2 and SO(7, 1)2 we identify
nonsupersymmetric AdS vacua which unlike their known higher-dimensional analogues are
stable in the sense that all scalar fields satisfy the Breitenlohner–Freedman bound [8]. For
the noncompact gauge group G0 = SO(5, 3)2 we find the first example of a maximal
supersymmetric model with both AdS and dS stationary points. The potential corresponding
to the gauge group G0 = SO(4, 4)2 even interpolates between a dS stationary point and
a maximally supersymmetric vacuum with vanishing cosmological constant. As a more
exotic example, we investigate the potential of the theory with exceptional gauge group
G2 × F4(−20), and find a nontrivial supersymmetric AdS stationary point, which breaks
the maximal N = (7, 9) supersymmetry in an asymmetric way to a residual N = (0, 1)
supersymmetry and an unbroken SU(3)× SO(7)− symmetry.

Further motivation for our studies comes from the appearance of gauged supergravities
in the AdS/CFT correspondence [9]. In particular, their scalar potentials turn out to carry
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the information about holographic renormalization group flows in the boundary quantum field
theories, see e.g. [10–12] for work in higher dimensions. Flows in three-dimensional gauged
supergravities have recently been studied in the N = 8 theories related to the D1–D5 system
[13]. The maximal (N = 16) theories remain to be fully exploited in this context; in particular,
they may have a role to play in the supergravity description of matrix string theories [14, 15].
We should like to emphasize that not much is known about the boundary (super)conformal
field theories related to the maximal AdS supergravities in three dimensions. What is known
is that, in the absence of propagating degrees of freedom in the bulk, the pure CS theories
reduce to Liouville and WZNW theories on the boundary (or their supersymmetric extensions)
[16–18]. An important question concerns the extendibility of the background superisometries
with more than N = 4 supersymmetry on the boundary worldsheet to infinite-dimensional
superalgebras containing the Witt–Virasoro algebra.

Finally, pure CS theories in three dimensions are known to occupy a central place in
the classification of knot invariants à la Jones Witten. While the significance of the gauge
groups found here, in particular the noncompact ones, in that context is not clear (most of the
previous work [19–21] is based on the compact gauge groups SU(2)), one could hope that
gauged supergravity might also provide a much wider framework for investigations in D = 3
differential geometry and topology.

This paper is organized as follows. In section 2, we give a brief review of the three-
dimensional maximal gauged supergravities, in particular their scalar potentials, stationarity
conditions, and the computation of the mass matrices around a given stationary point. In
section 3, we analyse in some detail the maximally N = (8, 8) supersymmetric vacua of
the theories with gauge group SO(p, 8−p) × SO(p, 8−p). The spectra of physical fields
are organized by the corresponding superextensions of the AdS3 group SO(2, 2), except for
p = 4 for which the ground state is Minkowskian. In section 4, we extend this analysis to the
exceptional gauge groups which all admit a maximally supersymmetric AdS vacua. Section 5
finally is devoted to further extremal points in the scalar potentials which do not preserve the
full supersymmetry.

2. Potential and mass matrices

Let us briefly recall the pertinent facts about gauged maximal (N = 16) supergravity in three
dimensions, which we will need here, especially those concerning the scalar potential. For
further information, we refer readers to [1, 2] where the construction of the gauged theories
has been explained in great detail. In addition, we here present some new formulae which will
enable us to calculate the various mass matrices at the stationary points under consideration.

The gauging of N = 16 supergravity was achieved in [1, 2] by minimally coupling the
scalar fields to their dual vector fields. This induces a non-Abelian duality between vectors
and scalars, which has no analogue in higher dimensions. Due to the fact that the number
of gauge fields is not determined a priori (unlike in dimensions D � 4), there is a richer
variety of possible gauge groupsG0, all of which are subgroups of the rigidE8(8) symmetry of
ungaugedN = 16 supergravity. As in the ungauged theory [3, 22] the 128 propagating scalar
fields of the theory are conveniently described as elements of the coset space E8(8)/SO(16),
i.e. in terms of a matrix VMA in the adjoint (fundamental) representation of E8(8) subject to
the transformations

V(x) −→ g(x)V(x)h−1(x), g(x) ∈ G0 ⊂ E8(8), h(x) ∈ SO(16). (2.1)

Here, we use indices A,B, . . . and M,N , . . . = 1, . . . , 248 as collective labels for the
E8(8) generators, such that the former transform under local SO(16) ⊂ E8(8) while the latter
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transform under the full E8(8) in the ungauged theory, and under the gauge group G0 in
the gauged theory. Under the SO(16) subgroup, the E8(8) generators {tM} split into 120
compact ones XIJ ≡ −XJI and 128 noncompact ones YA, with SO(16) vector indices
I, J, . . . ∈ 16, and spinor indices A,B, . . . ∈ 128, with a corresponding split in the collective
labels M,N , . . . = ([IJ ], A), . . . . We will also need the conjugate SO(16) spinors labelled
by dotted indices Ȧ, Ḃ, . . . .

The scalar potential of N = 16 gauged supergravity is thus a function on the coset space
E8(8)/SO(16). It is explicitly given by

V = − 1
8g

2
(
AIJ1 A

IJ
1 − 1

2A
IȦ
2 AIȦ2

)
, (2.2)

where the tensors A1 and A2, respectively, transform in the 1 + 135 and 1920 representations
of SO(16). A third tensorAȦḂ3 , transforming in the 1 +1820, governs the Yukawa couplings of
the matter fermions to the scalars; unlike its analogues in dimensionsD � 4, it is algebraically
independent of A1 and A2. These tensors are defined as

AIJ1 = 8
7θδIJ + 1

7TIK |JK,

AIȦ2 = − 1
7�

J

AȦ
TIJ |A, (2.3)

AȦḂ3 = 2θδȦḂ + 1
48�

IJKL

ȦḂ
TIJ |KL,

in terms of the so-called T-tensor

TA|B = VM
AVN

B�MN , θ = 1
248η

MN�MN (2.4)

where �I
AȦ

are the standard SO(16) �-matrices. The numerical tensor�MN is the embedding
tensor of the gauge group G0 ⊂ E8(8), i.e. it may be thought of as the restriction of the
E8(8) Cartan–Killing form ηMN to G0. As shown in [1, 2] all consistency conditions, and in
particular the maximal supersymmetry of the gauged theory, are satisfied as a consequence of
a single algebraic condition on this embedding tensor, namely

P27 000� = 0 (2.5)

where P27 000 is the projector onto the 27 000 representation in the decomposition

(248 × 248)sym = 1 ⊕ 3875 ⊕ 27 000. (2.6)

The condition (2.5) entails that only the SO(16) representations 1, 135, 1820 and 1920 can
appear in �. More specifically, we have

�IJ |KL = −2θδIJKL + 2δI [K�L]J +�IJKL,

�IJ |A = − 1
7�

[I
AȦ
�J ]Ȧ, (2.7)

�A|B = θδAB + 1
96�IJKL�

IJKL
AB ,

where �IJ ,�IJKL and �IȦ denote the 135, 1820 and 1920 representations of SO(16),
respectively (hence �II = 0 and �I

AȦ
�IȦ = 0, and �IJKL is completely antisymmetric

in its four indices). For the semisimple gauge groups identified in [2] the embedding tensor�
has no component transforming as the 1920 representation, and we will therefore set

�IȦ = 0, (2.8)

in the remainder of this paper. As we will explain elsewhere, however, this component is
needed for the non-semisimple gaugings.

Stationary points of the scalar potential (2.2) are characterized by
δV

δ�A
= 0 ⇐⇒ 3AIM1 AMȦ2 = AȦḂ3 AIḂ2 , (2.9)
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where the derivative is taken with respect to a left invariant vector field �A along the coset
manifold E8(8)/SO(16). By an adaptation of the arguments of [23], it has been shown in
[2] that the number of unbroken supersymmetries at a stationary point is determined by the
number of eigenvalues αi of AIJ1 satisfying

16α2
i = AIJ1 A

IJ
1 − 1

2A
IȦ
2 AIȦ2 = 4

g2L2
. (2.10)

Here L denotes the AdS scale, which is set by the value V0 of the potential at the stationary
point, namely

4

g2L2
≡ − 8

g2
V0, (2.11)

(as is well known, unbroken supersymmetry requires the value of V0 to be non-positive).
Maximal supersymmetry is then equivalent to AIȦ2 = 0.

By use of the formulae given in section 4.3 of [2] it is straightforward to compute the scalar
mass matrix at any given stationary point, which is given by the matrix of second derivatives,

−4g−2MAB ≡ −8g−2 δ2

δ�Aδ�B
V

= 3
4

(
�I
AȦ
AJȦ2 AJḂ2 �I

ḂB
+ �I

AȦ
AJȦ2 AIḂ2 �J

ḂB

)
+ 3

4A
IJ
1 A

IJ
1 δAB − 3

4A
II
1 TA|B

+ 1
2�

I

AȦ
AIJ1 A

ȦḂ
3 �J

ḂB
− 1

4�
I

AȦ
AȦĊ3 AĊḂ3 �I

ḂB
+ 1

4�
I

AȦ
AȦĊ3 �I

ĊC
TC|B. (2.12)

Because the derivatives have been taken with respect to a left invariant vector field, the scalar
kinetic term is uniformly normalized,

Lkin = 1
4e∂

µ�A∂µ�
A + · · · , (2.13)

independently of which stationary point of the potential one is expanding around.
A substantial part of this paper will be devoted to studying the mass matrices at the origin

V = I . By (2.4) the T-tensor then coincides with the embedding tensor, i.e. T = �. Since
�IJ |A = 0 for all the semisimple gaugings considered in this paper, we have

AIȦ2

∣∣
V=I = 0, (2.14)

and the stationarity condition (2.9) is trivially satisfied. By the same token, all these stationary
points preserve maximal supersymmetry. Observe that this is not true in dimensions D � 4
where the origin V = I is not a stationary point of the potential, unless the gauge group
is compact. Not unexpectedly, the scalar mass matrix (2.12) simplifies considerably when
V = I : with

AIJ1 = −θδIJ +�IJ AȦḂ3 = 2θδȦḂ + 1
48�IJKL�

IJKL

ȦḂ
, (2.15)

we obtain

−4g−2MAB |V=I = (
3
4�

IJ�IJ − 1
32�KLMN�KLMN

)
δAB

+
(− 1

12�IM�MJKL + 1
32�IJMN�MNKL

)
�IJKLAB

+ 1
2304�IJKL�MNPQ�

IJKLMNPQ

AB , (2.16)

for the semisimple gaugings with �IJ |A = 0. This expression is independent of θ (that this
should be so is obvious for G0 = E8(8), where �MN = θηMN and the potential is constant).
Note, however, that θ is not a free parameter, but fixed by group theory in relation to the other
components of the embedding tensor. The only tunable free parameter is the overall gauge
coupling constant g.
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Let us next turn to the vector bosons. They carry indices M,N , . . . , transforming in
the adjoint representation of G0. In the absence of mass terms, the vectors do not represent
propagating degrees of freedom. However, at the stationary points the G0 symmetry is
spontaneously broken to its maximal compact subgroup H0. Consequently, the vector fields
associated with the noncompact generators of G0 will absorb the corresponding Goldstone
bosons and thereby acquire a mass in a D = 3 (topological) variant of the Brout–Englert–
Higgs effect. This can be directly seen from the vector field equation of motion, namely
equation (3.32) of [2], which we quote here for the reader’s convenience:

εµνρ�MNBνρN = 2e�MNVN
APµA + · · · , (2.17)

(the dots stand for fermionic terms not relevant for our argument). At a given stationary point,
this equation reduces to

εµνρ�MNBνρN = 2eg�MKVK
AVL

A�NLBµN , (2.18)

forming a set of massive self-duality equations [24]. The vector mass matrix at this vacuum
is hence obtained by restricting gVM

AVL
A�NL to the subgroupG0. Since the eigenvalues of

a product of matrices are invariant under cyclic permutation of the factors, the vector masses
may equivalently be extracted from the matrix

g−1Mvec
AB = VM

A�MNVN
B = TA|B. (2.19)

This shows that in accordance with the counting of degrees of freedom, never more than
128 vector fields can simultaneously become massive—although there are gauge groups with
higher dimension, such as the noncompact E7(7) × SL(2). At the symmetric vacuum V = I ,
the matrix (2.19) simplifies to the projection of the embedding tensor onto the noncompact
part of the gauge group, cf (2.7),

g−1Mvec
AB

∣∣
V=I = �A|B = θδAB + 1

96�IJKL�
IJKL
AB . (2.20)

It is then evident that only those vector fields corresponding to noncompact generators in the
gauge group acquire a mass at V = I . In this way, some propagating bosonic degrees of
freedom are shifted from the scalar sector to the vector fields. As we will see very explicitly,
this effect is beautifully realized for all gaugings.

For the maximally supersymmetric stationary points, for which AIȦ2 = 0, the fermion
masses are simply given by the eigenvalues of the matrixAȦḂ3 . All gravitinos remain massless
(with a formal mass term dictated by the ambient AdS geometry) and will pair up with the
dreibein and the massless vector fields transforming under the unbroken compact subgroup
H0 ⊂ G0 according to the sign of the associated eigenvaluesαi in (2.10) into (nonpropagating)
supermultiplets so as to reproduce the purely topological Lagrangians of [25]. For all other
stationary points supersymmetry is partially broken, and we have AIȦ2 �= 0. In that case,
some of the fermions become Goldstinos, and the gravitinos acquire a mass by the super
Brout–Englert–Higgs effect. To find out which supersymmetries are preserved one must look
for Killing spinors satisfying δψI = δχȦ = 0. Designating the variations along the direction
of broken supersymmetry by ϕI , we split the matter fermions as

χȦ = ηȦ +AIȦ2 ϕI , ψIµ = ψ̃I
µ + D̂µϕ

I , (2.21)

where AIȦ2 ηȦ = 0, thereby diagonalizing the fermionic mass terms, such that the masses can
be read off directly from the eigenvalues ofAIJ1 andAȦḂ3 at the stationary point in question. In
summary, there is thus a fermionic analogue of the transferral of physical degrees of freedom
from the matter fields to some of the previously nonpropagating gauge fields, in precise
agreement with the supermultiplet structure required by the background superisometries.



Vacua of maximal gauged D = 3 supergravities 5303

3. Maximally supersymmetric vacua for gauge groups G0 = SO(p, 8 − p) × SO(p, 8 − p)

In this section and the following one, we concentrate on the maximally supersymmetric
stationary points and determine the mass matrices for all gauge groups identified in [2]. In
particular, we will demonstrate that the mass spectra for the various gauge groups are indeed
consistent with the representation theory of the corresponding supergroups as far as it has been
developed [4, 26]. In addition, we determine the representations and spectra for the exceptional
supergroupsG(3) and F(4), which apparently do not admit an oscillator construction of the
type considered in [4, 26].

3.1. Embedding of the gauge groups

The gauge groups SO(p, 8 − p) × SO(p, 8 − p) for p = 0, 1, . . . , 4 are the only known
solutions of (2.5) with vanishing singlet contribution, i.e. θ = 0. They are embedded into
E8(8) via its SO(8, 8) subgroup (with p + q = 8),

SO(p, q)× SO(p, q) ⊂ SO(8, 8) ⊂ E8(8). (3.1)

At the supersymmetric extremum for V = I , the symmetry is broken down to the maximally
compact subgroup

H0 = SO(p)× SO(q)× SO(p)× SO(q) ⊂ SO(8)× SO(8). (3.2)

It is useful to note here that, apart from the case p = 1, the verification that V = I is indeed a
(maximally supersymmetric) stationary point does not even require explicit knowledge of the
embedding tensor (2.5) and the vanishing of �IJ |A for the gauge groups considered here, but
is a direct consequence of the fact that there is no H0-invariant tensor in the decomposition of
the 1920. Thus A2 must vanish at the H0-invariant point, implying stationarity and maximal
supersymmetry. We emphasize this point because in dimensions D � 4 the A2-tensor does
contain singlets with respect to the unbroken compact gauge group when V = I , violating
supersymmetry and the stationarity condition, see section 5.1.

Let us now study the embedding in somewhat more detail. Under the SO(8) × SO(8)
subgroup of E8(8) the relevant SO(16) representations decompose as follows3:

16v −→ (8v, 1) + (1, 8v)

120 −→ (28, 1) + (1, 28) + (8v, 8v)
(3.3)

128s −→ (8s, 8s) + (8c, 8c)

128c −→ (8s, 8c) + (8c, 8s).

Accordingly, we split the vector indices I as a ≡ I for I ∈ {1, . . . , 8}, and ā ≡ I − 8 for
I ∈ {9, . . . , 16}. The compact part of SO(8, 8) is then composed of the two 28 representations
occurring in the decomposition of 120, while its noncompact part is identified with the (8s, 8s).
In terms of SO(8) γ -matrices, the embedding tensor reads

�ab|cd = 1
4 (Pαγ Pβδ −QαγQβδ)γ

ab
αβ γ

cd
γ δ

�āb̄|c̄d̄ = 1
4 (QαγQβδ − Pαγ Pβδ)γ

āb̄
αβ γ

c̄d̄
γ δ

�αβ|γ δ = 2(PαγQβδ −Qαγ Pβδ),

(3.4)

3 Contact with the results forD = 4, N = 8 is established by noting that with respect to the diagonal SO(8) the E7(7)
subgroup consists of the representations 28 + 35v + 35s + 35c , while the SL(2), which commutes with it, is made out
of the three singlets arising in the decomposition of the 120 and the 128s .
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with all other components vanishing (in particular, all components with dotted indices:
�α̇β̇|γ̇ δ̇ = · · · = 0). The symbols P andQ are defined by

Pαβ =
{
δαβ for α, β ∈ {1, . . . , p}
0 otherwise,

Qαβ =
{
δαβ for α, β ∈ {p + 1, . . . , 8}
0 otherwise,

(3.5)

such that Pαβ + Qαβ = δαβ , which shows explicitly the embedding (3.2), cf [2]. From the
form of � it is evident that the ratio of the two coupling constants is −1. Furthermore, it is
straightforward to verify that this tensor indeed satisfies the projection condition (2.5). To this
end, we rewrite the compact part�IJ |KL as

�ab|cd = − 1
2γ

abcd
αβ Pαβ + 3

8 (p − q)δcdab, �āb̄|c̄d̄ = 1
2γ

āb̄c̄d̄
αβ Pαβ − 3

8 (p − q)δc̄d̄
āb̄
,

which shows that they are indeed of the form (2.7) with θ = 0. Using a triality rotated version
of the decomposition of SO(16) �-matrices given in [27] (see appendix A), one likewise
verifies the last equation in (2.7) for�A|B .

For later use, we also record the results for the tensors A1 and A3 for V = I , which are

Aab1 = 1
4 (p − q)δab, Aāb̄1 = − 1

4 (p − q)δāb̄, (3.6)

and (using the decomposition of the 128c in (3.3))

A
αγ̇βδ̇

3 = 1
2δγ̇ δ̇(qPαβ + pQαβ), A

α̇γ β̇δ

3 = − 1
2δα̇β̇ (qPγδ + pQγδ). (3.7)

The value of the cosmological constant at the maximally supersymmetric vacuum is hence
given by

� = − 2

L2
= −2g2(p − q)2. (3.8)

In particular,� vanishes for p = q , i.e. for gauge groupG0 = SO(4, 4)× SO(4, 4).

3.2. SO(8)× SO(8)

For the compact gauging, the gauge group remains unbroken at the origin. The background
isometry group around this point is G = OSp(8|2,R) ×OSp(8|2,R) which has the bosonic
part (SL(2,R)× SO(8))2. The physical spectrum is given by the tensor product of two (left
and right) singleton supermultiplets according to

(8v + 8s, 8v + 8s), (3.9)

under SO(8)L×SO(8)R. Representation theory of OSp(8|2,R) gives the conformal weights
of the states in this multiplet [4]:

SO(8) 8v 8s
�0

1
4

3
4

(3.10)

From this, one reads that the physical spectrum around the origin consists of 128 scalars and
128 spin- 1

2 fields with

Fields SO(8)L × SO(8)R (�0, �̄0) m2L2

Scalars (8v, 8v)
(

1
4 ,

1
4

) − 3
4

(8s, 8s)
(

3
4 ,

3
4

) − 3
4

Fermions (8v, 8s )
(

1
4 ,

3
4

)
0

(8s, 8v)
(

3
4 ,

1
4

)
0

(3.11)
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The relation between mass and conformal dimension� = �0 + �̄0 in three dimensions is given
by [28, 29]

�(�− 2) = m2L2 for scalars
(�− 1)2 = m2L2 for fermions
(�− 1)2 = m2L2 for massive self-dual vectors,

(3.12)

which gives the mass values in the last column of (3.11) in units of the inverse AdS length (2.11).
They indeed agree with the spectrum computed from (2.15), (2.16). All mass eigenvalues
satisfy the Breitenlohner–Freedman bound [8, 30]

m2L2 � −1. (3.13)

The stationary point hence is stable as is implied by supersymmetry. The metric and the
massless gravitino fields form a separate (unphysical) ‘multiplet’ together with the massless
self-dual vector fields. They transform in the adjoint representation of G.

3.3. SO(7, 1)× SO(7, 1)

The background isometry group at the origin is G = F(4) × F(4), whose bosonic part is
(SL(2,R)× SO(7))2. The physical spectrum around this point is given by the tensor product
of two (left and right) massless unitary supermultiplets according to

(1 + 8 + 7, 1 + 8 + 7), (3.14)

under SO(7)L×SO(7)R . To the best of our knowledge, the representation theory of F(4) has
not been worked out so far. We can however invert the reasoning which for the compact gauge
group led to (3.11), and derive the conformal weights from the masses of the supergravity
fields. Computing the masses from (2.15), (2.16) and (2.20) gives rise to

Fields H0 (�0, �̄0) m2L2

Scalars (1, 1)
(

4
3 ,

4
3

)
16
9

(8, 8)
(

5
6 ,

5
6

) − 5
9

(7, 7)
(

1
3 ,

1
3

) − 8
9

Fermions (1, 8)
(

4
3 ,

5
6

)
49
36

(7, 8)
(

1
3 ,

5
6

)
1

36

Vectors (1, 7)
(

4
3 ,

1
3

)
4
9

(7, 1)
(

1
3 ,

4
3

)
4
9

(3.15)

For simplicity, we have omitted half of the fermionic fields which arise with opposite chirality.
Note that fourteen vector fields have become massive due to the Brout–Englert–Higgs-like
effect, corresponding to the noncompact directions in the gauge group. The corresponding
massless scalar (Goldstone) fields have not been included in the table. The conformal
dimensions in (3.15) have been computed via (3.12). This confirms the structure of the
spectrum as a tensor product of F(4) supermultiplets (3.14) whose conformal dimensions are
given by

SO(7) 7 8 1

�0
1
3

5
6

4
3

(3.16)

Note, that this poses a highly nontrivial consistency check on the masses obtained in our
supergravity computation. Furthermore, it is obvious from these values that the oscillator
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construction developed in [4] does not apply here because it can only produce values �0 which
are multiples of 1

4 .

3.4. SO(6, 2)× SO(6, 2)

The background isometry group at the origin is G = SU(4|1, 1)× SU(4|1, 1). The physical
spectrum around this point is given by the tensor product of two (left and right) massless
unitary supermultiplets according to

(1+2 + 4+ + 60 + 4− + 1−2, 1+2 + 4+ + 60 + 4− + 1−2). (3.17)

Representation theory of SU(4|1, 1) gives the conformal weights of the states in this multiplet
(cf [4], table 3, n = 4):

SO(6)×U(1) 1+2 4+ 60 4− 1−2

�0
3
2 1 1

2 1 3
2

(3.18)

Note that this is the unique supermultiplet of SU(4|1, 1) which upon tensoring a left with a
right copy reproduces the correct spins for the supergravity fields, including the 24 massive
(self-dual) vector fields which correspond to the noncompact directions of the gauge group. In
particular, this rules out the similar multiplet of [4] (table 2), whose states combine the same
SU(4) quantum numbers (3.17) with different values of �0, giving rise to massive spin-2 states
which do not occur in the supergravity.

From (3.18) one may read the physical spectrum around the origin,

Fields H0 (�0, �̄0) m2L2

Scalars (1+2, 1+2)
(

3
2 ,

3
2

)
3

(4+, 4+) (1, 1) 0

(60, 60)
(

1
2 ,

1
2

) −1

(4−, 4−) (1, 1) 0

(1−2, 1−2)
(

3
2 ,

3
2

)
3

(1+2, 1−2)
(

3
2 ,

3
2

)
3

(1−2, 1+2)
(

3
2 ,

3
2

)
3

(4
−
, 4+) (1, 1) 0

4+, 4−) (1, 1) 0

Fermions (1+2, 4+) ( 3
2 , 1) 9

4

(4+, 60)
(
1, 1

2

)
1
4

(60, 4−)
(

1
2 , 1

)
1
4

(4−, 12−)
(
1, 3

2

)
9
4

(12+, 4−)
(

3
2 , 1

)
9
4

(4+, 1−2)
(
1, 3

2

)
9
4

Vectors (1+2, 60)
(

3
2 ,

1
2

)
1

(1−2, 60)
(

1
2 ,

3
2

)
1

(3.19)
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which again gives complete agreement with the masses computed in supergravity from (2.15),
(2.16) and (2.20). As above, we have omitted half of the vector and half of the fermion fields
which arise with opposite chirality.

3.5. SO(5, 3)× SO(5, 3)

The background isometry group at the origin is G = OSp(4∗|4)× OSp(4∗|4). The physical
spectrum around this point is given by the tensor product of two (left and right) massless
unitary supermultiplets according to

((1, 3) + (4, 2) + (5, 1), (1, 3) + (4, 2) + (5, 1)) . (3.20)

Representation theory ofOSp(4∗|4) gives the conformal weights of the states in this multiplet
[26],

SO(5)×SO(3) (5, 1) (4, 2) (1, 3)

�0 1 3
2 2

(3.21)

From this one may read the physical spectrum around the origin,

Fields H0 (�0, �̄0) m2L2

Scalars (5, 1, 5, 1) (1, 1) 0

(4, 2, 4, 2)
(

3
2 ,

3
2

)
3

(1, 3, 1, 3) (2, 2) 8

Fermions (5, 1, 4, 2)
(
1, 3

2

)
9
4

(4, 2, 1, 3)
(

3
2 , 2

)
25
4

Vectors (5, 1, 1, 3) (1, 2) 4

(1, 3, 5, 1) (2, 1) 4

(3.22)

This again agrees with the spectrum computed from (2.15), (2.16) and (2.20).

3.6. SO(4, 4)× SO(4, 4)

From (3.6) it follows that for this gauge group both tensors A1 and A2 vanish at the origin.
The theory hence possesses a maximally supersymmetric Minkowski vacuum4. From (2.15),
(2.16) and (2.20), we find the spectrum

Fields # m2

Scalars 96 4g2

Fermions 128 4g2

Vectors 32 4g2

(3.23)

4. Maximally supersymmetric vacua for exceptional gaugings

One notable peculiarity of three-dimensional maximal gauged supergravity is the possibility of
having exceptional gauge groups. Thus, the question naturally arises whether these gaugings
4 In [2], this vacuum was misidentified as an AdS stationary point.
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which do not have any higher-dimensional counterparts also possess nontrivial extremal
structures. Again, all of these theories admit a maximally supersymmetric AdS vacuum
at the scalar origin V = I . If we gauge the full E8(+8), the scalar potential reduces to a
cosmological constant. The smaller we choose the gauge group the richer we expect the
structure of the potential to become, and therefore, it is particularly interesting to study the
second-simplest case, E7(+7) × SL(2), as well as the most compact form of the smallest
exceptional gauge group, G2 × F4(−20). We will discuss the embedding of these two gauge
groups and their maximally supersymmetric vacua in some detail. For all the other possible
exceptional gauge groups [2], we simply list the supermultiplet structures of the physical field
content around the maximally supersymmetric AdS vacuum.

4.1. G2 × F4(−20)

For this gauge group, the embedding tensor assumes a rather simple form. The relevant SO(16)
representations decompose as follows under the subgroupG2 × SO(9):

16v −→ (7, 1) + (1, 9)

120 −→ (14, 1) + (1, 36) + (7, 1) + (7, 9)

128s −→ (1, 16) + (7, 16).

(4.1)

Accordingly, we split the SO(16) vector indices as I = (i, ĵ ). The embedding tensor then
reads

�ij |kl = 12Pij
kl ≡ 8δklij + 2Cijkl, �îĵ |k̂l̂ = −8δk̂l̂

îĵ
, �αβ = −δαβ, (4.2)

with all other components zero. Here P is the projector onto the G2 subgroup of SO(7), with
Cijkl the G2-invariant tensor made out of the octonionic structure constants [31], obeying

CijmnCmnkl = 8δklij − 2Cijkl . (4.3)

We see that the ratio of coupling constants is indeed
(− 3

2

)
. Furthermore, � can be brought

into the form (2.7) with

θ = −1, �IJ = diag(9δij ,−7δîĵ ), �AB = −δAB + CAB, (4.4)

with the G2-invariant tensor

CAB = δαβ diag(−7, δij ), (4.5)

showing that this indeed gives a solution of the projection condition (2.5). At the origin V = I ,
the gauge group is broken down to its maximally compact subgroup G2 × SO(9). Together
with the 16 supercharges and the AdS3 group SO(2, 2), this combines into the background
isometry group G = G(3)L×OSp(9|2,R)R , i.e. the supersymmetries split asN = (7, 9). The
spectrum around this point is given by the tensor product of two (left and right) supermultiplets
ofG(3) andOSp(9|2,R), respectively. Comparing to the masses computed from (2.15), (2.16)
and (2.20), we identify their conformal weights as

(G2)L 7 1

�0
3
4

5
4

×
SO(9)R 16 16

�̄0
1
4

3
4

(4.6)

With (3.12), this gives the correct supergravity masses, which we do not write explicitly here.
Note that (4.6) consistently describes 16 massive self-dual vector fields, corresponding to the
noncompact directions in the gauge group.
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4.2. E7(7) × SL(2)

In terms of the SO(8) × SO(8) decomposition of section 2.1, the embedding tensor of this
gauge group is given by

�ab|cd = (P1)ab
cd ≡ δcdab,

�ab|c̄d̄ = (P1)ab
c̄d̄ ≡ δc̄d̄ab,

�āb̄|cd = (P1)āb̄
cd ≡ δcd

āb̄
,

�āb̄|c̄d̄ = (P1)āb̄
c̄d̄ ≡ δc̄d̄

āb̄
,

�ab̄|cd̄ = −�b̄a|cd̄ = −�ab̄|d̄c = �b̄a|d̄c = (P1)ab̄
cd̄ − 3(P2)ab̄

cd̄ ,

�αβ|γ δ = δ
γ

(αδ
δ
β) − 1

2δαβδ
γ δ,

�α̇β̇|γ̇ δ̇ = δ
γ̇

(α̇δ
δ̇
β̇)

− 1
2δα̇β̇δ

γ̇ δ̇,

(4.7)

where P1 and P2 are projectors onto the SU(8) and U(1) subgroups of SO(16), respectively,
with

(P1)ab̄
cd̄ := δc(aδ

d
b) − 1

8δabδ
cd (P2)ab̄

cd̄ := 1
8δabδ

cd . (4.8)

We see that the relative coupling strength is indeed (−3). Furthermore, the embedding tensor
is invariant under triality rotations interchanging 35v → 35s → 35c → 35v . The background
isometry group atV = I is given by theN = (16, 0) supergroup G = SU(8|1, 1)L×SU(1, 1)R.
The physical spectrum is described by tensoring a (left) supermultiplet of SU(8|1, 1) [4], with
a singlet on the right:

SU(8)L×U(1)L 700 56+ + 56− 28+2 + 28−2 8+3 + 8−3 1+4 + 1−4

�0
1
2 1 3

2 2 5
2

×
IR 1

�̄0
3
2

(4.9)

The supergravity masses are again obtained from (3.12). The tensor product (4.9) consistently
includes 70 massive self-dual vector fields

(
� = (

1
2 ,

3
2

))
corresponding to the noncompact

directions of E7(7) and two massive self-dual vector fields of opposite spin
(
� = (

5
2 ,

3
2

))
associated with the noncompact directions of SL(2).

4.3. Spectra of the other exceptional gaugings

Here, we list the physical mass spectra around the maximally supersymmetric vacuum for the
remaining exceptional gaugings. They again factor into tensor products under the two factors
of the background isometry group G = GL×GR . For simplicity, we restrict ourselves to giving
the conformal dimensions �0, �̄0 for the states in these factors, from which three-dimensional
spins and masses may be extracted via s = |�0 − �̄0|,� = �0 + �̄0, and (3.12).

• G2(2) × F4(4) : G = D1
(
2, 1; − 2

3

)
L

×OSp(4∗|6)R
SU(2)L×SU(2)L (1, 2) (2, 1)

�0
3
2 2

×
SU(2)R×USp(6)R (1, 14) (2, 14′) (3, 6) (4, 1)

�̄0 1 3
2 2 5

2

(4.10)
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• E6(6) × SL(3) : G = OSp(4∗|8)L × SU(1, 1)R

SU(2)L×USp(8)L (1, 42) (2, 48) (3, 27) (4, 8) (5, 1)

�0 1 3
2 2 5

2 3

×
IR 1

�̄0 2

(4.11)

• E6(2) × SU(2, 1) : G = SU(6|1, 1)L ×D1
(
2, 1; − 1

2

)
R

SU(6)L×U(1)L 200 15+ + 15− 6+2 + 6−2 1+3 + 1−3

�0
1
2 1 3

2 2

×
SU(2)R×SU(2)R (2, 1) (1, 2)

�̄0 1 3
2

(4.12)

• E6(−14) × SU(3) : G = OSp(10|2,R)L × SU(3|1, 1)R

SO(10)L 16 16

�0
1
4

3
4

×
SU(3)R×U(1)R 3+ + 3− 1+2 + 1−2

�̄0
3
4

5
4

(4.13)

• E7(−5) × SU(2) : G = OSp(12|2,R)L ×D1
(
2, 1; − 1

3

)
R

SO(12)L 32 32

�0
1
4

3
4

×
SU(2)R×SU(2)R (2, 1) (1, 2)

�̄0
3
4

5
4

(4.14)

• E8(8) : G = OSp(16|2,R)L × SU(1, 1)R
This gauging is special in that the scalar potential becomes trivial (a negative cosmological
constant), and all scalar fields are absorbed into vector fields. The theory can thus be
considered as a maximally supersymmetric SO(16) CS theory coupled to 128 massive
self-dual vectors and 128 spin- 1

2 fields. The spectrum is simply obtained from tensoring
the singleton multiplet of OSp(16, 2|R) with a singlet on the right:

SO(16)L 128 128

�0
1
4

3
4

×
IR 1

�̄0
5
4

(4.15)
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5. Vacua without maximal supersymmetry

We here do not aim at an exhaustive classification of nontrivial stationary points, but rather
would like to discuss and to illustrate some salient features, in particular those which have
no analogues in higher-dimensional gauged supergravities. Highly efficient symbolic algebra
tools together with worked out examples that illustrate how to use them for the calculation of
potentials like (5.5) can be found in [7].

5.1. Vacua in higher-dimensional noncompact gaugings

Let us first briefly recall the known structure of extrema in higher-dimensional maximal
noncompact gaugings. In D = 4, the noncompact SO(p, q) gaugings (p+q = 8) were
originally obtained in [32, 33] by analytic continuation of the compact gauged theory [34].
The structure of the scalar potential is similar to (2.2),

V = −g2
(

3
4A

ij

1 A
ij

1 − 1
24A

i
2jklA

i
2jkl

)
, (5.1)

where the indices i, j, . . . denote SU(8) indices. The tensors A1 and A2 are functions on the
coset manifoldE7(7)/SU(8) and transform in the 36 and 420 of SU(8), respectively. Together,
they form the 912 of E7(7).

At the origin V = I , the gauge group is broken down to its maximally compact subgroup
H0 = SO(p) × SO(q). But unlike in three dimensions, this point is not a stationary point in
the noncompact gaugings. This is because, except for the compact gauged theory, the tensor
Ai2jkl does not vanish at V = I , as may be anticipated from the fact that the 420 contains
singlets under H0 = SO(p)× SO(q) unless p = 0. Vanishing Ai2jkl would imply stationarity
and maximal supersymmetry, but this would be incompatible with the non-existence of
proper superextensions of the four-dimensional AdS group, i.e. simple supergroups containing
SO(3, 2) × (SO(p) × SO(8 − p)) as maximal bosonic subgroup for p �= 0 [35, 36]. Recall
that, by contrast, in three dimensions no singlets appear in the decomposition of A2 underH0,
and this was sufficient to imply the existence of maximally supersymmetric stationary points.

The search for stationary points of the noncompact potentials has been pursued in [37] by
restricting the potential to singlets under certain subgroups of the gauge group. Summarizing
their results, there is no stationary point of the SO(7, 1) gauged theory which leaves the
G2 ⊂ SO(7) invariant, and no stationary point with at least SU(3) invariance in the SO(6, 2)
gauged theory. The potential of the SO(5, 3) gauged theory on the other hand does exhibit a
stationary point away from the origin with SO(5)× SO(3) residual symmetry [38]. It is found
by computing the potential in the truncation to the only singlet under SO(5) × SO(3) and
has a positive cosmological constant. Similarly, it has been found that the SO(4, 4) gauged
theory admits a dS vacuum with remaining SO(4) × SO(4) symmetry. Both these dS points
have been shown to be unstable in the sense that they admit tachyonic scalar fluctuations with
V ′′ = −2V [39, 40].

In five dimensions the potential for the SO(p, q) (p + q = 6) gauged theory is given
by [23]

V = −g2 (
6

452A
ab
1 A

ab
1 − 1

96A
abcd
2 Aabcd2

)
, (5.2)

where the indices a, b, . . . now denote USp(8) indices. The tensors A1 and A2 transform in
the 36 and 315 of USp(8), respectively, and together combine into the 351 of E6(6).

Again, the scalar origin V = I is not a stationary point in the noncompact gaugings—the
315 under H0 = SO(p) × SO(q) contains singlets unless p = 0. The existence of critical
points in the SO(5, 1) and SO(4, 2) gauged theories which preserve at least an SO(5) and
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SO(4) × SO(2) subgroup, respectively, has been excluded in [23]. A stationary point with
positive cosmological constant, again for V �= I , has been identified in the SO(3, 3) gauged
theory. Presumably it, too, is unstable.

5.2. SO(8)× SO(8)

Several stationary points breaking the diagonal of this group down to a group containing
SU(3) have been presented in [6]. All of these correspond to known stationary points of
D = 4, N = 8 supergravity. Here, we want to complete this list by also giving analogues of
D = 4 stationary points breaking SO(8) down to SO(7)− and G2.

In what follows, we will designate by SO(7)+ the subgroup of SO(8) stabilizing the
spinor ψα = δα8, and by SO(7)− the subgroup stabilizing the co-spinor φα̇ = δα̇8̇. With
the conventions of appendix A, their intersection G2 will also stabilize the vector vi = δi8.
Those generators ofE8 which are invariant under (G2)diag form an SL(2)×SL(2) subalgebra
(where one of these SL(2) is just the SL(2) from E7(+7) × SL(2) ⊂ E8(+8) which will show
up whenever we form a diagonal SO(p, 8 − p)). Hence we parametrize the four-dimensional
manifold of (G2)diag singlets in the coset E8/SO(16) by

V = exp(vV ) exp(sS) exp(−vV ) exp(wW) exp(zZ) exp(−wW), (5.3)

where the generatorsV, S, respectivelyW,Z, correspond to one compact and one noncompact
generator of each SL(2). Using the same decomposition as in (3.3), these generators read
explicitly

V CB =
(

2δa8δb̄8 − 1
4δ
ab̄

)
f[ab̄]B

C SCB = (
2δα8δβ8 − 1

4δ
αβ

)
fαβBC

W CB = 1
4δ
ab̄f[ab̄]B

C ZCB = 1
4δ
αβfαβBC .

(5.4)

Using the SO(8)× SO(8) embedding tensor (3.4), the corresponding potential reads

−8g−2V = 243
8 + 7

2 cosh(2s) + 49
8 cosh(4s) + 1141

64 cosh(s) cosh(z)

+ 427
64 cosh(3s) cosh(z)− 7

64 cosh(5s) cosh(z)− 25
64 cosh(7s) cosh(z)

+ 21
8 cos(4v)− 7

2 cos(4v) cosh(2s) + 7
8 cos(4v) cosh(4s)

− 21
64 cos(4v) cosh(s) cosh(z) + 21

64 cos(4v) cosh(3s) cosh(z)

+ 7
64 cos(4v) cosh(5s) cosh(z)− 7

64 cos(4v) cosh(7s) cosh(z)

− 1645
128 cos(v −w) sinh(z) sinh(s) + 651

128 cos(v −w) sinh(z) sinh(3s)

+ 7
128 cos(v −w) sinh(z) sinh(5s)− 49

128 cos(v −w) sinh(z) sinh(7s)

− 315
64 cos(3v +w) sinh(z) sinh(s) + 133

64 cos(3v +w) sinh(z) sinh(3s)

− 7
64 cos(3v + w) sinh(z) sinh(5s)− 7

64 cos(3v +w) sinh(z) sinh(7s)

+ 35
128 cos(7v +w) sinh(z) sinh(s)− 21

128 cos(7v +w) sinh(z) sinh(3s)

+ 7
128 cos(7v +w) sinh(z) sinh(5s)− 1

128 cos(7v +w) sinh(z) sinh(7s). (5.5)

Setting v = 0, this reduces to the potential on the three-dimensional manifold of SO(7)+diag
singlets,

−8g−2V = 33 + 7 cosh(4s) + 35
2 cosh(s) cosh(z) + 7 cosh(3s) cosh(z)

− 1
2 cosh(7s) cosh(z)− 35

2 cos(w) sinh(z) sinh(s)

+ 7 cos(w) sinh(z) sinh(3s)− 1
2 cos(w) sinh(z) sinh(7s) (5.6)
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whose only nontrivial stationary point is located at w = π, s = −z = 1
2 arccosh 2, with

remaining SO(7)+ × SO(7)+ invariance and completely broken supersymmetry [6]5. The
value of the cosmological constant at this vacuum is � = −50g2. Recalling that the central
charge of the associated conformal algebra on the boundary goes proportional in

√
1/�,

[41, 42], we find from (3.8) that

cSO(7)

cSO(8)
=

√
�SO(8)

�SO(7)
= 4

5
, (5.7)

i.e. a rational value for the ratio of central charges of the boundary theories associated with
the different vacua. The scalar masses at this extremum are computed with (2.12) and give

SO(7)+×SO(7)+ (1, 1) (8, 8) (7, 7)

m2L2 96
25 − 9

25 − 24
25

(5.8)

in units of the inverse AdS length L, together with 14 Goldstone scalars. The full mass
spectrum is collected in (B.1). In particular, this vacuum despite being nonsupersymmetric
and in contrast to its higher-dimensional analogue is stable in the sense that all scalar fields
satisfy the Breitenlohner–Freedman bound (3.13)6. Moreover, their associated conformal
dimensions computed from (3.12), (5.8) are all rational.

The corresponding potential on the manifold of SO(7)−diag singlets is obtained by replacing

the generator S by S̃CB = (
2δα̇8̇δβ̇8̇ − 1

4δ
α̇β̇

)
fα̇β̇BC and reads

−8g−2V = 33 + 7 cosh(4s) + 35
2 cosh(s) cosh(z) + 7 cosh(3s) cosh(z)

− 1
2 cosh(7s) cosh(z) + 35

2 sinh(z) sin(w) sinh(s)

− 7 sinh(z) sin(w) sinh(3s) + 1
2 sinh(z) sin(w) sinh(7s) (5.9)

which differs from the previous one only by a rotation in w. This means that in contrast to
N = 8,D = 4, the other SO(7) stationary point, here at w = −π/2, s = z = 1

2 arccosh 2,
with SO(7)− × SO(7)− symmetry, has the same value of the cosmological constant, and the
same mass spectrum.

Although (5.5) is too complicated for a detailed analytic treatment, it is nevertheless
possible to extract information about the location of further extrema either numerically7 or by
educated inspection. This allows us to identify a further stationary point at v = w = 1

4π, s =
z = 1

2 arccosh 7
3 which breaks SO(8) × SO(8) down to G2 × G2, preserving N = (1, 1)

supersymmetry. Again, the ratio of central charges associated with this vacuum and the origin
comes out to be rational,

cG2

cSO(8)
=

√
�SO(8)

�G2

= 3

4
. (5.10)

The scalar mass spectrum is given by

G2×G2 (1, 1) (1, 1) (7, 7) (7, 7)

m2L2 65
16

9
16 − 7

16 − 15
16

(5.11)

5 Whenever we give coordinates for stationary points, we list only one representative and do not consider trivial sign
flips.
6 Several nonsupersymmetric stable AdS vacua in the three-dimensional half-maximal (N = 8) gauged supergravities
have been found in [13].
7 Note that ∂vV = 0 can readily be solved for v in terms of w, z, s, thereby considerably reducing the complexity of
this problem.
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together with 28 Goldstone scalars. By further computation, one may verify that the physical
spectrum around this vacuum is organized in terms of N = (1, 1) supermultiplets and the
external G2 ×G2. More precisely, the original chiral multiplet (3.10) breaks into N = 1
multiplets according to

G2 1 7

�0
13
8 ,

9
8

5
8 ,

1
8

(5.12)

Tensoring a left and a right copy of (5.12) reproduces the full physical spectrum at this
vacuum given in (B.2), in particular the 14 massive spin- 3

2 fields and 28 massive vector fields
corresponding to broken super and gauge symmetries.

Although numerical evidence suggests that there is no further stationary point of (5.5)
which is not equivalent to one of those given here, a proof is still lacking. For completeness,
we include here the physical spectrum around the N = (2, 2) supersymmetric vacuum with
remaining SU(3)×SU(3)×U(1)×U(1) symmetry, found in [6]. This vacuum is located at

VCB = exp
(

1
8 arccosh(3)

(
fαβBC

(
�1234
αβ + �1256

αβ + �1278
αβ − δαβ

)
− fα̇β̇BC

(
�1357
α̇β̇

− �1467
α̇β̇

+ �1458
α̇β̇

+ �1368
α̇β̇

)))
. (5.13)

The spectrum is organized in terms of N = (2, 2) supermultiplets and the external
SU(3)×SU(3) (note that U(1) is the R-symmetry of the associated N = 2 superconformal
algebra). The original chiral multiplet (3.10) breaks into N = 2 multiplets according to

SU(3) 1 6

�0
10
6 ,

7
6 ,

7
6 ,

4
6

4
6 ,

1
6

(5.14)

from which one again reproduces the physical mass spectrum (B.3) via (3.12).

5.3. SO(7, 1)× SO(7, 1)

In four dimensions, there is no stationary point with G2 symmetry in the theory with
noncompact gauge group SO(7, 1). For comparison, we will again compute the potential
restricted to the four-dimensional manifold of (G2)diag singlets. Since our conventions are
just such that G2 leaves the last vector, spinor and co-spinor index invariant, this calculation
parallels the SO(8)× SO(8) case, only with a different embedding tensor �.

Here, the potential on the manifold of G2,diag singlets is

−8g−2V = 909
32 − 7

8 cosh(2s)− 49
32 cosh(4s) + 6461

512 cosh(s) cosh(z)

− 1001
512 cosh(3s) cosh(z)− 203

512 cosh(5s) cosh(z)− 137
512 cosh(7s) cosh(z)

+ 21
8 cos(2v) + 63

32 cos(4v) + 7
2 cos(2v) cosh(2s)

− 49
8 cos(2v) cosh(4s)− 21

8 cos(4v) cosh(2s) + 21
32 cos(4v) cosh(4s)

+ 5145
1024 cos(2v) cosh(s) cosh(z)− 5229

1024 cos(2v) cosh(3s) cosh(z)

+ 217
1024 cos(2v) cosh(5s) cosh(z)− 133

1024 cos(2v) cosh(7s) cosh(z)

− 21
512 cos(4v) cosh(s) cosh(z)− 63

512 cos(4v) cosh(3s) cosh(z)

+ 147
512 cos(4v) cosh(5s) cosh(z)− 63

512 cos(4v) cosh(7s) cosh(z)

− 105
1024 cos(6v) cosh(s) cosh(z) + 189

1024 cos(6v) cosh(3s) cosh(z)

− 105
1024 cos(6v) cosh(5s) cosh(z) + 21

1024 cos(6v) cosh(7s) cosh(z)

− 28 987
2048 cos(v −w) sinh(z) sinh(s)− 651

512 cos(v + w) sinh(z) sinh(s)
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− 2835
2048 cos(v −w) sinh(z) sinh(3s)− 3255

512 cos(v +w) sinh(z) sinh(3s)

− 623
2048 cos(v −w) sinh(z) sinh(5s) + 21

512 cos(v +w) sinh(z) sinh(5s)

− 343
2048 cos(v −w) sinh(z) sinh(7s)− 63

512 cos(v +w) sinh(z) sinh(7s)

+ 1323
1024 cos(3v −w) sinh(z) sinh(s)− 7875

2048 cos(3v +w) sinh(z) sinh(s)

− 385
1024 cos(3v −w) sinh(z) sinh(3s) + 2541

2048 cos(3v + w) sinh(z) sinh(3s)

+ 35
1024 cos(3v −w) sinh(z) sinh(5s) + 609

2048 cos(3v + w) sinh(z) sinh(5s)

− 49
1024 cos(3v −w) sinh(z) sinh(7s)− 399

2048 cos(3v +w) sinh(z) sinh(7s)

+ 35
2048 cos(5v −w) sinh(z) sinh(s) + 315

1024 cos(5v +w) sinh(z) sinh(s)

− 189
2048 cos(5v −w) sinh(z) sinh(3s) + 63

1024 cos(5v + w) sinh(z) sinh(3s)

+ 175
2048 cos(5v −w) sinh(z) sinh(5s)− 189

1024 cos(5v + w) sinh(z) sinh(5s)

− 49
2048 cos(5v −w) sinh(z) sinh(7s) + 63

1024 cos(5v + w) sinh(z) sinh(7s)

+ 315
2048 cos(7v +w) sinh(z) sinh(s)− 189

2048 cos(7v +w) sinh(z) sinh(3s)

+ 63
2048 cos(7v +w) sinh(z) sinh(5s)− 9

2048 cos(7v + w) sinh(z) sinh(7s)

(5.15)

which unfortunately is again too complicated for a detailed analytic treatment. Again, by
using numerical guidance we find a nontrivial AdS extremum located at v = w = −π

2 , s =
z = 1

2 arccosh 2, with a remaining symmetry of G2 × G2 and mass spectrum collected in
(B.4). The cosmological constant takes the value� = −211g2/8. Note that also this vacuum
is stable although it does not preserve any supersymmetry. Further stationary points of this
potential might exist. Upon restriction to SO(7)diag singlets, we obtain

−8g−2V = 33 − 7 cosh(4s) + 35
2 cosh(s) cosh(z)− 7 cosh(3s) cosh(z)

− 1
2 cosh(7s) cosh(z)− 35

2 cos(w) sinh(z) sinh(s)

− 7 cos(w) sinh(z) sinh(3s)− 1
2 cos(w) sinh(z) sinh(7s) (5.16)

which does not possess a nontrivial stationary point.

5.4. SO(6, 2)× SO(6, 2)

The four-dimensional theory with gauge group SO(6, 2) has no stationary point with remaining
SU(3) symmetry. In three dimensions, there are twelve SU(3)diag singlets among the 128
scalars, seven SO(6)diag singlets and five singlets under (SO(6)× SO(2))diag, so we consider
breaking the gauge group down to SO(6)diag here. The seven singlets come from the
noncompact directions of SL(3)×SL(2) commuting with SO(6)whose generatorsp1...8, q1...3

are given by

p1
CB = 1

2

(
δi1δ

j

7 + δi2δ
j

8 − δi3δ
j

6 + δi4δ
j

5

) (
δIi δ

J−8
j − δJ−8

i δIj + δI−8
i δJj − δJi δ

I−8
j

)
f[IJ ]BC

p2
CB = 1

2δ
ij

(
δI−8
i δJj − δIi δ

J−8
j

)
f[IJ ]BC

p3
CB = − 1

2

(
δi1δ

j

7 + δi2δ
j

8 − δi3δ
j

6 + δi4δ
j

5

) (
δIi δ

J
j − δJi δ

I
j − δI−8

i δJ−8
j + δJ−8

i δI−8
j

)
f[IJ ]BC

p4
CB = 1

2

(
δ
γ̇

1 δ
δ̇
2 − δ

γ̇

3 δ
δ̇
4 + δγ̇5 δ

δ̇
6 + δγ̇7 δ

δ̇
8

) (
δα̇γ̇ δ

β̇

δ̇
− δ

β̇
γ̇ δ

α̇
δ̇

)
fα̇β̇B

C

p5
CB = 1

2δ
α̇β̇fα̇β̇B

C
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p6
CB =

(
δα7 δ

β

8 − δα8 δ
β

7

)
fαβBC

p7
CB = 1

2δ
αβfαβBC

p8
CB = p7

CB − 2
(
δα7 δ

β

7 + δα8 δ
β

8

)
fαβBC

q1
CB = 1

4

(
δi1δ

j

7 + δi2δ
j

8 − δi3δ
j

6 + δi4δ
j

5

) (
δIi δ

J
j − δJi δ

I
j + δI−8

i δJ−8
j − δJ−8

i δI−8
j

)
f[IJ ]BC

q2
CB = 1

2

(
δα7 δ

β

7 − δα8 δ
β

8

)
fαβBC

q3
CB = 1

2

(
δα7 δ

β

8 + δα8 δ
β

7

)
fαβBC .

The p, respectively q, generators stand in one-to-one correspondence to the following matrices
that satisfy the same commutation relations:

p̃1 =
0 0 0

0 0 1
0 −1 0

 p̃2 =
 0 1 0

−1 0 0
0 0 0

 p̃3 =
0 0 −1

0 0 0
1 0 0


p̃4 =

0 0 0
0 0 1
0 1 0

 p̃5 =
0 1 0

1 0 0
0 0 0

 p̃6 =
 0 0 −1

0 0 0
−1 0 0


p̃7 =

−1 0 0
0 1 0
0 0 0

 p̃8 =
1 0 0

0 1 0
0 0 −2


q̃1 =

(
0 1/2

−1/2 0

)
q̃2 =

(
1/2 0
0 −1/2

)
q̃3 =

(
0 1/2

1/2 0

)
.

Since acting with SO(3) on traceless diagonal matrices gives all traceless symmetric
matrices, we parametrize SL(3)× SL(2) by

V = exp (r1p1) exp (r2p3) exp (r3p2) exp(zp8 − sp7) exp(−r3p2) exp(−r2p3) exp(−r1p1)

× exp(r5 q1) exp(v q2) exp(−r5 q1), (5.17)

and obtain the potential given in (C.3), which is independent of r5. Since the intersection of
the SL(3) algebra and the gauge group algebra is one dimensional, this potential does possess
one trivial flat direction, apart from which we were not able to find any further stationary
points numerically.

It is tempting to reuse the parametrization (5.17) to compute the potential of the
SO(8) × SO(8) and SO(7, 1) × SO(7, 1) gauged theories on the manifold of SO(6)diag

singlets, since one only has to repeat the calculation with a different embedding tensor.
The corresponding results are collected in the appendix. For SO(8)× SO(8), we obtain (C.1),
while for SO(7, 1)× SO(7, 1) the potential is given in (C.2).

5.5. SO(5, 3)× SO(5, 3)

We have seen that in four and five dimensions there is a de Sitter vacuum in the theories with
gauge groups SO(5, 3) and SO(3, 3), respectively, which completely breaks supersymmetry,
but preserves the maximally compact SO(5)×SO(3) and SO(3)×SO(3) subgroup of the gauge
group, respectively. Extrapolating these results, one may expect an analogue of this point in
the SO(5, 3)×SO(5, 3) gauged theory in three dimensions. We shall show now that this is
indeed the case.
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From (3.22), it follows that the spectrum contains no singlet underH0 = SO(5)×SO(3)×
SO(5) × SO(3), i.e. the only point preserving the full H0 is the AdS ground state described
above. Considering the diagonal SO(5, 3), the spectrum contains three singlets: the obvious
two from SL(2) as well as a further one

MCB =
(

3
4P

(5)
αβ − 5

4Q
(5)
αβ

)
fαβBC . (5.18)

Parametrizing this three-dimensional manifold via

V = exp(sM) exp(wW) exp(zZ) exp(−wW), (5.19)

whereW,Z are given in (5.4), we get the potential

−8g−2V = 25 − 15 cosh(4s)− 15 cosh(s) cosh(z) + 15
2 cosh(3s) cosh(z)

+ 3
2 cosh(5s) cosh(z) + 15 cos(w) sinh(z) sinh(s)

+ 15
2 cos(w) sinh(z) sinh(3s)− 3

2 cos(w) sinh(z) sinh(5s) (5.20)

which has a nontrivial stationary point at w = π, s = 1
4 arccosh 5, z = 3s. Since

the corresponding generator M̃ = M − 3Z according to (3.22) is precisely the only
H0 = SO(5) × SO(5) × SO(3)diag singlet, the symmetry is broken down to this group.
The cosmological constant takes the value� = 22g2 > 0. The mass spectrum at this point is
collected in (B.5). In particular, the scalar mass squares are given by

H0 (5, 5, 1) (4, 4, 3) (4, 4, 1) (1, 1, 5) (1, 1, 3) (1, 1, 1)

m2L2
dS

24
11

45
11 − 3

11
96
11 0 − 48

11
(5.21)

in units of the inverse dS length LdS, together with 33 Goldstone bosons. Hence, this de Sitter
vacuum is unstable like its counterparts in higher dimensions. In our case, this instability is
already implied by the fact that it is smoothly connected with the maximally supersymmetric
AdS vacuum at the origin (3.22).

5.6. SO(4, 4)× SO(4, 4)

For the gauge group SO(4, 4)× SO(4, 4), we may find stationary points breaking its compact
subgroup down to a diagonal SO(4) × SO(4). If we split SO(8)L,R via α → (α1, α2)

and accordingly label the SO(4) factors, the compact subgroup of our gauge group is
(SO(4)L1 × SO(4)R2) × (SO(4)R1 × SO(4)L2). In this particular case, there is more than
one obvious way to form a diagonal subgroup of the compact part of the gauge group, but
we will only consider the case corresponding to the constructions employed above. We hence
again have the two singlets W,Z from SL(2) as in (5.4) as well as two additional singlets
from another SL(2),

SC1 B = 1
4

(
P
(4)
αβ −Q

(4)
αβ

)
fαβBC, SC2 B = 1

4

(
P
(4)
α̇β̇

−Q
(4)
α̇β̇

)
fα̇β̇B

C. (5.22)

We parametrize this four-dimensional manifold as

V = exp(wW) exp(zZ) exp(−wW) exp(v[S1, S2]) exp(sS1) exp(−v[S1, S2]), (5.23)

and get the potential

−8g−2V = 24 − 16 cosh(z)− 16 cosh(s) + 8 cosh(s) cosh(z), (5.24)

which does not depend on w and v. Besides the origin, there is a second stationary
point at |s| = |z| = z0 := arccosh 2, at which the gauge group is broken down to
H0 = SO(4)L2 × SO(4)R2 × SO(4)L1,R1. Evaluating the potential, one verifies that this
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vacuum is de Sitter with � = 4g2. The mass spectrum is collected in (B.7). The scalar mass
squares are given by

# 49 32 8 1

m2L2
dS 12 9 0 −12

(5.25)

together with 38 Goldstone bosons. Note that there is just one unstable direction which is
required in order to run into the maximally supersymmetric Minkowski vacuum (3.23) at the
origin. Comparing this mass with (5.21), we find that there seems to be no universal value for
the highest tachyonic mass square, contrary to the situation in higher dimensions [40].

5.7. Exceptional gauge groups

Finally, we will compute some of the potentials of the exceptional gaugings discussed in
section 4. For the gauge group E7(+7) × SL(2) and using the tools we developed in previous
sections, it is natural to consider the scalar potential on the manifold of SO(6) ⊂ SO(8) singlets
by using the parametrization (5.17). Since the SL(2) parametrized by v, r5 is part of the gauge
group, and hence corresponds to flat directions in the potential, these two parameters drop out.
Furthermore, three of the five noncompact directions of the SO(6)-invariant SL(3) singlets lie
in the gauge group, and the smallest group containing the remaining two orthogonal directions
is SL(2), which we can parametrize by

S = 2δα[6δ
β

7]fαβB
C V = 1

2δ
ij̄ fij̄B

C V = exp(vV ) exp(sS) exp(−vV ), (5.26)

and obtain the potential

−8g−2V = 22 − 6 cosh(4s), (5.27)

which obviously does not have any nontrivial stationary points.
A richer structure is found for the exceptional gauge group G2 × F4(−20). The main

problem in this case is to find an appropriate invariance subgroup of the gauge group small
enough to show nontrivial structure, yet big enough to produce not too many singlets.
Since none of the parametrizations given so far work well here, we choose that particular
subgroup SU(3) × SU(3) of the group SO(8)L × SO(8)R which stabilizes the vectors
vi1 = δi7, vi2 = δi8, vī3 = δī7, vī4 = δī8 as well as the spinors ψαL = δαL8, ψαR = δαR8

(and which is also a subgroup of G2 × F4(−20)).
This group is stabilized by a subgroup SU(2, 1)×SU(2, 1) ofE8(8), hence we have to deal

with an eight-dimensional submanifold of the supergravity scalars here. The intersection of
this eight-dimensional manifold with the gauge group is four dimensional, but unfortunately,
unlike the parametrization considered in theE7(7)×SL(2) case, the smallest group containing
the four directions orthogonal to the gauge group is the full SU(2, 1) × SU(2, 1), hence we
parametrize the full eight-dimensional manifold8. Using the generatorsX(A,B) of both SO(3)
subalgebras as well as those of two noncompact directions Y(A,B),

Y C
(A)B = − 1

2

(
δα̇2 δ

β̇

8 − δα̇8 δ
β̇

2

)
fα̇β̇B

C

XC
(A)1B = 2

(
δi7δ

j̄

8 − δi8δ
j̄

7

)
f[ij̄ ]B

C

XC
(A)2B = 2

(
δi7δ

j̄

7 + δi8δ
j̄

8

)
f[ij̄ ]B

C

XC
(A)3B = 2

(
δi7δ

j

8f[ij ]BC − δī7δ
j̄

8f[ī j̄ ]B
C
)

8 Admittedly, motivation to do so comes in part from the urge to test the limits of our now improved symbolic algebra
tools. Calculation of this potential takes less than four hours on a decent modern x86-based Linux workstation.
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Y C
BB = − 1

2

(
δα̇2 δ

β̇

8 + δα̇8 δ
β̇

2

)
fα̇β̇B

C

XC
(B)1B = −2

(
δi7δ

j̄

8 + δi8δ
j̄

7

)
f[ij̄ ]B

C

XC
(B)2B = −2

(
δi7δ

j̄

7 − δi8δ
j̄

8

)
f[ij̄ ]B

C

XC
(B)3B = −2

(
δi7δ

j

8f[ij ]BC + δī7δ
j̄

8f[ī j̄ ]B
C
)
,

(5.28)

we parametrize the eight-dimensional singlet manifold as

V = exp(r1X(A)1) exp(r2X(A)2) exp(r3X(A)3) exp(r4X(B)1) exp(r5X(B)2) exp(r6X(B)3)

× exp(sY(A)) exp(zY(B)) exp(−r6X(B)3) exp(−r5X(B)2) exp(−r4X(B)1)
× exp(−r3X(A)3) exp(−r2X(A)2) exp(−r1X(A)1), (5.29)

and obtain for the potential the somewhat lengthy expression given in (C.4). A nontrivial
stationary point is located at ri = 0, z = −s = 1

2 arccosh 7, with remaining symmetry
SU(3)×SO(7)−. The value of the cosmological constant is� = −25g2/2, i.e. again the ratio
of associated central charges of this vacuum and the origin (4.6) comes out to be rational:

cSU(3)×SO(7)

cG2×SO(9)
=

√
�G2×SO(9)

�SU(3)×SO(7)
= 4

5
. (5.30)

The full mass spectrum is collected in (B.9). In particular, inspection of the gravitino masses
shows that this vacuum preservesN = (0, 1) supersymmetries.
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Appendix A. E8(+8) conventions

Since some of the results in the main text depend on our particular choice of conventions for
E8(8) structure constants (e.g. the fact that G2 can be embedded in such a way into SO(8)
that the stabilized vector, spinor and co-spinor all carry the index 8), we state them here for
reference.

Using the conventions of [43], we define

σ1 =
(

1 0
0 1

)
σx =

(
0 1
1 0

)
σz =

(
1 0
0 −1

)
σe =

(
0 1

−1 0

) (A.1)

from which we obtain SO(8) γ -matrices using the tensorGiλµρ implementing the 2×2×2 →
8 mapping9

G1111 = 1 G2112 = 1 G3121 = 1 G4122 = 1

G5211 = 1 G6212 = 1 G7221 = 1 G8222 = 1
(A.2)

9 Note that this convention, which seems to be more widespread, accidentally is just the opposite of that implicitly
used in [6].
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as well as the abbreviation

Z(σ(A); σ(B); σ(C)) = σ(A)α1 β̇1
σ(B)α2β̇2

σ(C)α3β̇3
Gαα1α2α3Gββ1β2β3 (A.3)

via
γ 1 = Z(σe; σe; σe) γ 2 = Z(σ1; σz; σe)
γ 3 = Z(σe; σ1; σz) γ 4 = Z(σz; σe; σ1)

γ 5 = Z(σ1; σx; σe) γ 6 = Z(σe; σ1; σx)
γ 7 = Z(σx; σe; σ1) γ 8 = Z(σ1; σ1; σ1)

(A.4)

from which we form SO(16) �-matrices using the splitting J → (j, k̄) of SO(16) vector and
A → (αβ, γ̇ δ̇), Ȧ → (αβ̇, γ̇ δ) of MW spinor and co-spinor indices by

�i
αβγ δ̇

= δαγ γ
i

βδ̇
�i
α̇β̇γ̇ δ

= δα̇γ̇ γ
i

δβ̇

�īαβγ̇ δ = δβδγ
ī
αγ̇ �ī

α̇β̇γ δ̇
= −δβ̇δ̇γ īγ α̇.

(A.5)

If we denote SO(16) adjoint indices by [IJ ], which naturally decompose into SO(16)
vector indices10 I, J and split E8(8) adjoint indices A → (A, [IJ ]), then E8(8) structure
constants are given by

f[IJ ][KL]
[MN ] = −8δ[I [K

δMN
L]J ] f[IJ ]A

B = 1
2�

IJ
AB

fB[IJ ]
A = 1

2�
IJ
AB fAB

[IJ ] = − 1
2�

IJ
AB .

(A.6)

Appendix B. Vacua and mass spectra

In this appendix, we collect the mass spectra computed around all the stationary points
identified in this paper. The tables give the eigenvalues of M,Mvec, A1 and A3, where the
multiplicity of each eigenvalue is given by the subscript in parentheses. For the AdS vacua,
the associated conformal dimensions may be obtained from (3.12). The Goldstone modes are
contained in the m2 = 0 eigenvalues of M. The Goldstino modes among the eigenvalues
of A3 are more difficult to disentangle as their identification requires projection with the A2

tensor, cf (2.21) and the subsequent discussion. They are marked with an asterisk and do not
appear in the effective physical spectrum.

• G0 = SO(8)× SO(8), remaining symmetry SO(7)± × SO(7)±:

�/2g2 −25

M/g2 96(×1), 0(×14),−9(×64),−24(×49)

Mvec/g 6(×7), 0(×114),−6(×7)

A1 7/2(×8),−7/2(×8)

A3 21/2(×8)∗, 3/2(×56),−3/2(×56),−21/2(×8)∗

(B.1)

• G0 = SO(8)× SO(8), remaining symmetryG2 ×G2, N = (1, 1):

�/2g2 −256/9

M/g2 1040/9(×1), 16(×1), 0(×28),−112/9(×49),−80/3(×49)

Mvec/g 20/3(×7), 4/3(×7), 0(×100),−4/3(×7),−20/3(×7)

A1 4(×7), 8/3(×1),−8/3(×1),−4(×7)

A3 12(×7)∗, 28/3(×1), 4(×7), 4/3(×49),

−4/3(×49),−4(×7),−28/3(×1),−12(×7)∗

(B.2)

10 Note that a sum over all adjoint indices has to include a double-counting correction factor 1
2 if it is performed as

a sum over antisymmetric vector indices. Whenever we implicitly sum over an adjoint index [IJ ], we include every
pair of indices I, J only once.
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• G0 = SO(8)×SO(8), remaining symmetry SU(3)×SU(3)×U(1)×U(1),N = (2, 2):

�/2g2 −36

M/g2 160(×1), 28(×4), 0(×38),−20(×36),−32(×49)

Mvec/g 8(×7), 2(×12), 0(×90),−2(×12),−8(×7)

A1 5(×6), 3(×2),−3(×2),−5(×6)

A3 15(×6)∗, 11(×2), 5(×14), 1(×42),−1(×42),−5(×14),−11(×2),−15(×6)∗

(B.3)

• G0 = SO(7, 1)× SO(7, 1), remaining symmetryG2 ×G2:

�/2g2 −211/16

M/g2 195/4(×1), 45/2(×1), 0(×28),−9/2(×49),−33/4(×49)

Mvec/g 9/2(×7), 3(×7), 0(×100),−3(×7),−9/2(×7)

A1 35/8(×1), 19/8(×7),−19/8(×7),−35/8(×1)

A3 105/8(×1)∗, 57/8(×7)∗, 33/8(×7), 15/8(×49),

−15/8(×49),−33/8(×7),−57/8(×7)∗,−105/8(×1)∗

(B.4)

• G0 = SO(5, 3)× SO(5, 3), remaining symmetry SO(5)× SO(5)× SO(3)diag:

�/2g2 11

M/g2 96(×5), 45(×48), 24(×25), 0(×33),−3(×16),−48(×1)

Mvec/g 6(×15), 0(×98),−6(×15)

A1 5/2(×8),−5/2(×8)

A3 15/2(×8∗,×16), 9/2(×40),−9/2(×40),−15/2(×8∗,×16)

(B.5)

• G0 = SO(4, 4)× SO(4, 4), remaining symmetry SO(4)4, N = 16:

�/2g2 0

M/g2 4(×96), 0(×32)

Mvec/g 2(×16), 0(×96),−2(×16)

A1 0(×16)

A3 2(×64),−2(×64)

(B.6)

• G0 = SO(4, 4)× SO(4, 4), remaining symmetry SO(4)× SO(4)× SO(4)diag:

�/2g2 2

M/g2 12(×49), 9(×32), 0(×46),−12(×1)

Mvec/g 3(×16), 0(×96),−3(×16)

A1 1(×8),−1(×8)

A3 3(×8∗,×56),−3(×8∗,×56)

(B.7)

• G0 = G2 × F4(−20), remaining symmetryG2 × SO(9),N = (7, 9):

�/2g2 −4

M/g2 0(×16),−3(×112)

Mvec/g 1(×16), 0(×112)

A1 1(×7),−1(×9)

A3 2(×16), 0(×112)

(B.8)
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• G0 = G2 × F4(−20), remaining symmetry SU(3)× SO(7)−, N = (0, 1):

�/2g2 −25/4

M/g2 24(×1), 0(×37),−9/4(×48),−6(×42)

Mvec/g 4(×1), 3(×6), 3/2(×8), 1(×7), 0(×91),−1/2(×8),−3(×7)

A1 11/4(×1), 7/4(×6),−5/4(×1),−7/4(×8)

A3 33/4(×1)∗, 21/4(×6)∗, 17/4(×1), 11/4(×8), 9/4(×7), 3/4(×48),

−3/4(×42),−7/4(×7),−21/4(×8)∗

(B.9)

Appendix C. Explicit scalar potentials

In this appendix, we collect some of the scalar potentials which are too lengthy to be given in
the main text. These are the potentials for gauge groups SO(8)×SO(8), SO(7, 1)×SO(7, 1)
and SO(6, 2)×SO(6, 2), restricted to the seven-dimensional manifold of SO(6)diag singlets, as
well as the potential for the exceptional gauge groupG2×F4(−20) restricted to the manifold of
SU(3)×SU(3) singlets.

• G0 = SO(8)× SO(8), potential restricted to singlets under SO(6)diag:

−8g−2V = 27 + 3 cosh(4z) + 3 cosh(4z) cos(2r2)− 3 cosh(4z) cos(2r1)

− 3 cosh(4z) cos(2r1) cos(2r2) + 1
4 cosh(4s) + 1

4 cosh(4s) cos(2r2)

− 1
4 cosh(4s) cos(2r1)− 1

4 cosh(4s) cos(2r1) cos(2r2)

+ 9 cosh(2s) cosh(2z) + 3
4 cosh(2s) cosh(6z)

− 3 cos(2r3) sinh(2z) sinh(2s) + 1
4 cos(2r3) sinh(6z) sinh(2s)

− 3 cosh(2s) cosh(2z) cos(2r2)− 1
4 cosh(2s) cosh(6z) cos(2r2)

− 3 cos(2r2) cos(2r3) sinh(2z) sinh(2s)

+ 1
4 cos(2r2) cos(2r3) sinh(6z) sinh(2s)

+ 3 cosh(2s) cosh(2z) cos(2r1) + 1
4 cosh(2s) cosh(6z) cos(2r1)

− 9 cos(2r1) cos(2r3) sinh(2z) sinh(2s)

+ 3
4 cos(2r1) cos(2r3) sinh(6z) sinh(2s)

+ 3 cosh(2s) cosh(2z) cos(2r1) cos(2r2)

+ 1
4 cosh(2s) cosh(6z) cos(2r1) cos(2r2)

− 12 sin(2r3) sin(r2) sin(2r1) sinh(2z) sinh(2s)

+ sin(2r3) sin(r2) sin(2r1) sinh(6z) sinh(2s)

+ 3 cos(2r1) cos(2r2) cos(2r3) sinh(2z) sinh(2s)

− 1
4 cos(2r1) cos(2r2) cos(2r3) sinh(6z) sinh(2s) + cosh(2v)

+ 9 cosh(v) cosh(4z)− 3 cosh(v) cosh(4z) cos(2r2)

+ 3 cosh(v) cosh(4z) cos(2r1) + 3 cosh(v) cosh(4z) cos(2r1) cos(2r2)

− 1
4 cosh(2v) cosh(4s)− 1

4 cosh(2v) cosh(4s) cos(2r2)

+ 1
4 cosh(2v) cosh(4s) cos(2r1) + 1

4 cosh(2v) cosh(4s) cos(2r1) cos(2r2)

+ 15 cosh(v) cosh(2s) cosh(2z)

− 3
4 cosh(2v) cosh(2s) cosh(6z) + 3 cosh(v) cos(2r3) sinh(2z) sinh(2s)

− 1
4 cosh(2v) cos(2r3) sinh(6z) sinh(2s)
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+ 3 cosh(v) cosh(2s) cosh(2z) cos(2r2)

+ 1
4 cosh(2v) cosh(2s) cosh(6z) cos(2r2)

+ 3 cosh(v) cos(2r2) cos(2r3) sinh(2z) sinh(2s)

− 1
4 cosh(2v) cos(2r2) cos(2r3) sinh(6z) sinh(2s)

− 3 cosh(v) cosh(2s) cosh(2z) cos(2r1)

− 1
4 cosh(2v) cosh(2s) cosh(6z) cos(2r1)

+ 9 cosh(v) cos(2r1) cos(2r3) sinh(2z) sinh(2s)

− 3
4 cosh(2v) cos(2r1) cos(2r3) sinh(6z) sinh(2s)

− 3 cosh(v) cosh(2s) cosh(2z) cos(2r1) cos(2r2)

− 1
4 cosh(2v) cosh(2s) cosh(6z) cos(2r1) cos(2r2)

+ 12 cosh(v) sin(2r3) sin(r2) sin(2r1) sinh(2z) sinh(2s)

− cosh(2v) sin(2r3) sin(r2) sin(2r1) sinh(6z) sinh(2s)

− 3 cosh(v) cos(2r1) cos(2r2) cos(2r3) sinh(2z) sinh(2s)

+ 1
4 cosh(2v) cos(2r1) cos(2r2) cos(2r3) sinh(6z) sinh(2s). (C.1)

• G0 = SO(7, 1)× SO(7, 1), potential restricted to singlets under SO(6)diag:

−8g−2V = 1663
64 + 43

64 cos(2r5) + 9
64 cos(4r3)

− 3
64 cos(4r3) cos(2r5)− 3

16 cos(2r2) + 21
64 cos(4r2)

+ 1
16 cos(2r2) cos(2r5)− 7

64 cos(4r2) cos(2r5)

+ 3
16 cos(2r2) cos(4r3) + 3

64 cos(4r2) cos(4r3)

− 1
16 cos(2r2) cos(4r3) cos(2r5)− 1

64 cos(4r2) cos(4r3) cos(2r5)

− 9
64 cos(2r1) + 3

64 cos(2r1) cos(2r5)− 15
64 cos(2r1) cos(4r3)

+ 5
64 cos(2r1) cos(4r3) cos(2r5) + 3

16 cos(2r1) cos(2r2)

+ 21
64 cos(2r1) cos(4r2)− 1

16 cos(2r1) cos(2r2) cos(2r5)

− 7
64 cos(2r1) cos(4r2) cos(2r5)− 3

16 sin(4r3) sin(r2) sin(2r1)

− 3
16 sin(4r3) sin(3r2) sin(2r1)− 3

16 cos(2r1) cos(2r2) cos(4r3)

+ 3
64 cos(2r1) cos(4r2) cos(4r3) + 1

16 cos(2r5) sin(4r3) sin(r2) sin(2r1)

+ 1
16 cos(2r5) sin(4r3) sin(3r2) sin(2r1)

+ 1
16 cos(2r1) cos(2r2) cos(4r3) cos(2r5)

− 1
64 cos(2r1) cos(4r2) cos(4r3) cos(2r5) + 3 cosh(4z)

+3cosh(4z)cos(2r2)− 3 cosh(4z)cos(2r1)− 3 cosh(4z)cos(2r1)cos(2r2)

− 15
64 cosh(4s) + 5

64 cosh(4s) cos(2r5)− 9
64 cosh(4s) cos(4r3)

+ 3
64 cosh(4s) cos(4r3) cos(2r5)− 3

16 cosh(4s) cos(2r2)

+ 3
64 cosh(4s) cos(4r2) + 1

16 cosh(4s) cos(2r2) cos(2r5)

− 1
64 cosh(4s) cos(4r2) cos(2r5)− 3

16 cosh(4s) cos(2r2) cos(4r3)

− 3
64 cosh(4s) cos(4r2) cos(4r3) + 1

16 cosh(4s) cos(2r2) cos(4r3) cos(2r5)

+ 1
64 cosh(4s) cos(4r2) cos(4r3) cos(2r5) + 9

64 cosh(4s) cos(2r1)

− 3
64 cosh(4s) cos(2r1) cos(2r5) + 15

64 cosh(4s) cos(2r1) cos(4r3)
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− 5
64 cosh(4s) cos(2r1) cos(4r3) cos(2r5) + 3

16 cosh(4s) cos(2r1) cos(2r2)

+ 3
64 cosh(4s) cos(2r1) cos(4r2)− 1

16 cosh(4s) cos(2r1) cos(2r2) cos(2r5)

− 1
64 cosh(4s) cos(2r1) cos(4r2) cos(2r5)

+ 3
16 cosh(4s) sin(4r3) sin(r2) sin(2r1)

+ 3
16 cosh(4s) sin(4r3) sin(3r2) sin(2r1)

+ 3
16 cosh(4s) cos(2r1) cos(2r2) cos(4r3)

− 3
64 cosh(4s) cos(2r1) cos(4r2) cos(4r3)

− 1
16 cosh(4s) cos(2r5) sin(4r3) sin(r2) sin(2r1)

− 1
16 cosh(4s) cos(2r5) sin(4r3) sin(3r2) sin(2r1)

− 1
16 cosh(4s) cos(2r1) cos(2r2) cos(4r3) cos(2r5)

+ 1
64 cosh(4s) cos(2r1) cos(4r2) cos(4r3) cos(2r5)

+ 9 cosh(2s) cosh(2z)− 3
4 cosh(2s) cosh(6z)

+ 1
4 cosh(2s) cosh(6z) cos(2r5)

− 3 cos(2r3) sinh(2z) sinh(2s)− 3 cosh(2s) cosh(2z) cos(2r2)

+ 3
8 cosh(2s) cosh(6z) cos(2r2)− 3

8 cosh(2s) cosh(6z) cos(4r2)

− 1
8 cosh(2s) cosh(6z) cos(2r2) cos(2r5)

+ 1
8 cosh(2s) cosh(6z) cos(4r2) cos(2r5)

−3 cos(2r2) cos(2r3) sinh(2z) sinh(2s)

− 3
8 cos(2r2) cos(2r3) sinh(6z) sinh(2s)

− 3
8 cos(4r2) cos(2r3) sinh(6z) sinh(2s)

+ 1
8 cos(2r2) cos(2r3) cos(2r5) sinh(6z) sinh(2s)

+ 1
8 cos(4r2) cos(2r3) cos(2r5) sinh(6z) sinh(2s)

+ 3 cosh(2s) cosh(2z) cos(2r1)− 9 cos(2r1) cos(2r3) sinh(2z) sinh(2s)

− 3
4 cos(2r1) cos(2r3) sinh(6z) sinh(2s)

+ 1
4 cos(2r1) cos(2r3) cos(2r5) sinh(6z) sinh(2s)

+ 3 cosh(2s) cosh(2z) cos(2r1) cos(2r2)

− 3
8 cosh(2s) cosh(6z) cos(2r1) cos(2r2)

− 3
8 cosh(2s) cosh(6z) cos(2r1) cos(4r2)

+ 1
8 cosh(2s) cosh(6z) cos(2r1) cos(2r2) cos(2r5)

+ 1
8 cosh(2s) cosh(6z) cos(2r1) cos(4r2) cos(2r5)

− 12 sin(2r3) sin(r2) sin(2r1) sinh(2z) sinh(2s)

− 3
4 sin(2r3) sin(r2) sin(2r1) sinh(6z) sinh(2s)

+ 3
4 sin(2r3) sin(3r2) sin(2r1) sinh(6z) sinh(2s)

+ 3 cos(2r1) cos(2r2) cos(2r3) sinh(2z) sinh(2s)

+ 3
8 cos(2r1) cos(2r2) cos(2r3) sinh(6z) sinh(2s)

− 3
8 cos(2r1) cos(4r2) cos(2r3) sinh(6z) sinh(2s)

+ 1
4 cos(2r5) sin(2r3) sin(r2) sin(2r1) sinh(6z) sinh(2s)
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− 1
4 cos(2r5) sin(2r3) sin(3r2) sin(2r1) sinh(6z) sinh(2s)

− 1
8 cos(2r1) cos(2r2) cos(2r3) cos(2r5) sinh(6z) sinh(2s)

+ 1
8 cos(2r1) cos(4r2) cos(2r3) cos(2r5) sinh(6z) sinh(2s)

− 43
64 cosh(2v)− 43

64 cosh(2v) cos(2r5) + 3
64 cosh(2v) cos(4r3)

+ 3
64 cosh(2v) cos(4r3) cos(2r5)− 1

16 cosh(2v) cos(2r2)

+ 7
64 cosh(2v) cos(4r2)− 1

16 cosh(2v) cos(2r2) cos(2r5)

+ 7
64 cosh(2v) cos(4r2) cos(2r5) + 1

16 cosh(2v) cos(2r2) cos(4r3)

+ 1
64 cosh(2v) cos(4r2) cos(4r3) + 1

16 cosh(2v) cos(2r2) cos(4r3) cos(2r5)

+ 1
64 cosh(2v) cos(4r2) cos(4r3) cos(2r5)− 3

64 cosh(2v) cos(2r1)

− 3
64 cosh(2v) cos(2r1) cos(2r5)− 5

64 cosh(2v) cos(2r1) cos(4r3)

− 5
64 cosh(2v) cos(2r1) cos(4r3) cos(2r5) + 1

16 cosh(2v) cos(2r1) cos(2r2)

+ 7
64 cosh(2v) cos(2r1) cos(4r2) + 1

16 cosh(2v) cos(2r1) cos(2r2) cos(2r5)

+ 7
64 cosh(2v) cos(2r1) cos(4r2) cos(2r5)

− 1
16 cosh(2v) sin(4r3) sin(r2) sin(2r1)

− 1
16 cosh(2v) sin(4r3) sin(3r2) sin(2r1)

− 1
16 cosh(2v) cos(2r1) cos(2r2) cos(4r3)

+ 1
64 cosh(2v) cos(2r1) cos(4r2) cos(4r3)

− 1
16 cosh(2v) cos(2r5) sin(4r3) sin(r2) sin(2r1)

− 1
16 cosh(2v) cos(2r5) sin(4r3) sin(3r2) sin(2r1)

− 1
16 cosh(2v) cos(2r1) cos(2r2) cos(4r3) cos(2r5)

+ 1
64 cosh(2v) cos(2r1) cos(4r2) cos(4r3) cos(2r5)

+ 3 cos(r5) sinh(4z) sinh(v)− 9 cos(2r2) cos(r5) sinh(4z) sinh(v)

− 3 cos(2r1) cos(r5) sinh(4z) sinh(v)

− 3 cos(2r1) cos(2r2) cos(r5) sinh(4z) sinh(v)

− 5
64 cosh(2v) cosh(4s)− 5

64 cosh(2v) cosh(4s) cos(2r5)

− 3
64 cosh(2v) cosh(4s) cos(4r3)− 3

64 cosh(2v) cosh(4s) cos(4r3) cos(2r5)

− 1
16 cosh(2v) cosh(4s) cos(2r2) + 1

64 cosh(2v) cosh(4s) cos(4r2)

− 1
16 cosh(2v) cosh(4s) cos(2r2) cos(2r5)

+ 1
64 cosh(2v) cosh(4s) cos(4r2) cos(2r5)

− 1
16 cosh(2v) cosh(4s) cos(2r2) cos(4r3)

− 1
64 cosh(2v) cosh(4s) cos(4r2) cos(4r3)

− 1
16 cosh(2v) cosh(4s) cos(2r2) cos(4r3) cos(2r5)

− 1
64 cosh(2v) cosh(4s) cos(4r2) cos(4r3) cos(2r5)

+ 3
64 cosh(2v) cosh(4s) cos(2r1) + 3

64 cosh(2v) cosh(4s) cos(2r1) cos(2r5)

+ 5
64 cosh(2v) cosh(4s) cos(2r1) cos(4r3)
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+ 5
64 cosh(2v) cosh(4s) cos(2r1) cos(4r3) cos(2r5)

+ 1
16 cosh(2v) cosh(4s) cos(2r1) cos(2r2)

+ 1
64 cosh(2v) cosh(4s) cos(2r1) cos(4r2)

+ 1
16 cosh(2v) cosh(4s) cos(2r1) cos(2r2) cos(2r5)

+ 1
64 cosh(2v) cosh(4s) cos(2r1) cos(4r2) cos(2r5)

+ 1
16 cosh(2v) cosh(4s) sin(4r3) sin(r2) sin(2r1)

+ 1
16 cosh(2v) cosh(4s) sin(4r3) sin(3r2) sin(2r1)

+ 1
16 cosh(2v) cosh(4s) cos(2r1) cos(2r2) cos(4r3)

− 1
64 cosh(2v) cosh(4s) cos(2r1) cos(4r2) cos(4r3)

+ 1
16 cosh(2v) cosh(4s) cos(2r5) sin(4r3) sin(r2) sin(2r1)

+ 1
16 cosh(2v) cosh(4s) cos(2r5) sin(4r3) sin(3r2) sin(2r1)

+ 1
16 cosh(2v) cosh(4s) cos(2r1) cos(2r2) cos(4r3) cos(2r5)

− 1
64 cosh(2v) cosh(4s) cos(2r1) cos(4r2) cos(4r3) cos(2r5)

− 1
4 cosh(2v)cosh(2s)cosh(6z)+ 3 cosh(2s)cos(r5) sinh(2z) sinh(v)

− 1
4 cosh(2v) cosh(2s) cosh(6z) cos(2r5)

− 9 cosh(2z) cos(2r3) cos(r5) sinh(2s) sinh(v)

+ 1
8 cosh(2v) cosh(2s) cosh(6z) cos(2r2)

− 1
8 cosh(2v) cosh(2s) cosh(6z) cos(4r2)

− 9 cosh(2s) cos(2r2) cos(r5) sinh(2z) sinh(v)

+ 1
8 cosh(2v) cosh(2s) cosh(6z) cos(2r2) cos(2r5)

− 1
8 cosh(2v) cosh(2s) cosh(6z) cos(4r2) cos(2r5)

− 1
8 cosh(2v) cos(2r2) cos(2r3) sinh(6z) sinh(2s)

− 1
8 cosh(2v) cos(4r2) cos(2r3) sinh(6z) sinh(2s)

− 9 cosh(2z) cos(2r2) cos(2r3) cos(r5) sinh(2s) sinh(v)

− 1
8 cosh(2v) cos(2r2) cos(2r3) cos(2r5) sinh(6z) sinh(2s)

− 1
8 cosh(2v) cos(4r2) cos(2r3) cos(2r5) sinh(6z) sinh(2s)

− 3 cosh(2s) cos(2r1) cos(r5) sinh(2z) sinh(v)

− 1
4 cosh(2v) cos(2r1) cos(2r3) sinh(6z) sinh(2s)

+ 9 cosh(2z) cos(2r1) cos(2r3) cos(r5) sinh(2s) sinh(v)

− 1
4 cosh(2v) cos(2r1) cos(2r3) cos(2r5) sinh(6z) sinh(2s)

− 1
8 cosh(2v) cosh(2s) cosh(6z) cos(2r1) cos(2r2)

− 1
8 cosh(2v) cosh(2s) cosh(6z) cos(2r1) cos(4r2)

− 3 cosh(2s) cos(2r1) cos(2r2) cos(r5) sinh(2z) sinh(v)

− 1
8 cosh(2v) cosh(2s) cosh(6z) cos(2r1) cos(2r2) cos(2r5)

− 1
8 cosh(2v) cosh(2s) cosh(6z) cos(2r1) cos(4r2) cos(2r5)

− 1
4 cosh(2v) sin(2r3) sin(r2) sin(2r1) sinh(6z) sinh(2s)

+ 1
4 cosh(2v) sin(2r3) sin(3r2) sin(2r1) sinh(6z) sinh(2s)
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+ 1
8 cosh(2v) cos(2r1) cos(2r2) cos(2r3) sinh(6z) sinh(2s)

− 1
8 cosh(2v) cos(2r1) cos(4r2) cos(2r3) sinh(6z) sinh(2s)

+ 12 cosh(2z) cos(r5) sin(2r3) sin(r2) sin(2r1) sinh(2s) sinh(v)

− 3 cosh(2z) cos(2r1) cos(2r2) cos(2r3) cos(r5) sinh(2s) sinh(v)

− 1
4 cosh(2v) cos(2r5) sin(2r3) sin(r2) sin(2r1) sinh(6z) sinh(2s)

+ 1
4 cosh(2v) cos(2r5) sin(2r3) sin(3r2) sin(2r1) sinh(6z) sinh(2s)

+ 1
8 cosh(2v) cos(2r1) cos(2r2) cos(2r3) cos(2r5) sinh(6z) sinh(2s)

− 1
8 cosh(2v) cos(2r1) cos(4r2) cos(2r3) cos(2r5) sinh(6z) sinh(2s).

(C.2)

• G0 = SO(6, 2)× SO(6, 2), potential restricted to singlets under SO(6)diag:

−8g−2V = 27 + 3 cosh(4z) + 3 cosh(4z) cos(2r2)− 3 cosh(4z) cos(2r1)

− 3 cosh(4z) cos(2r1) cos(2r2) + 1
4 cosh(4s)

+ 1
4 cosh(4s) cos(2r2)− 1

4 cosh(4s) cos(2r1)

− 1
4 cosh(4s) cos(2r1) cos(2r2) + 9 cosh(2s) cosh(2z)

+ 3
4 cosh(2s) cosh(6z)− 3 cos(2r3) sinh(2z) sinh(2s)

+ 1
4 cos(2r3) sinh(6z) sinh(2s)− 3 cosh(2s) cosh(2z) cos(2r2)

− 1
4 cosh(2s) cosh(6z) cos(2r2)− 3 cos(2r2) cos(2r3) sinh(2z) sinh(2s)

+ 1
4 cos(2r2) cos(2r3) sinh(6z) sinh(2s) + 3 cosh(2s) cosh(2z) cos(2r1)

+ 1
4 cosh(2s) cosh(6z) cos(2r1)− 9 cos(2r1) cos(2r3) sinh(2z) sinh(2s)

+ 3
4 cos(2r1) cos(2r3) sinh(6z) sinh(2s)

+ 3 cosh(2s) cosh(2z) cos(2r1) cos(2r2)

+ 1
4 cosh(2s) cosh(6z) cos(2r1) cos(2r2)

− 12 sin(2r3) sin(r2) sin(2r1) sinh(2z) sinh(2s)

+ sin(2r3) sin(r2) sin(2r1) sinh(6z) sinh(2s)

+ 3 cos(2r1) cos(2r2) cos(2r3) sinh(2z) sinh(2s)

− 1
4 cos(2r1) cos(2r2) cos(2r3) sinh(6z) sinh(2s)

+ cosh(2v)− 9 cosh(v) cosh(4z) + 3 cosh(v) cosh(4z) cos(2r2)

− 3 cosh(v) cosh(4z) cos(2r1)− 3 cosh(v) cosh(4z) cos(2r1) cos(2r2)

− 1
4 cosh(2v) cosh(4s)− 1

4 cosh(2v) cosh(4s) cos(2r2)

+ 1
4 cosh(2v) cosh(4s) cos(2r1)

+ 1
4 cosh(2v) cosh(4s) cos(2r1) cos(2r2)− 15 cosh(v) cosh(2s) cosh(2z)

− 3
4 cosh(2v) cosh(2s) cosh(6z)− 3 cosh(v) cos(2r3) sinh(2z) sinh(2s)

− 1
4 cosh(2v) cos(2r3) sinh(6z) sinh(2s)

− 3 cosh(v) cosh(2s) cosh(2z) cos(2r2)

+ 1
4 cosh(2v) cosh(2s) cosh(6z) cos(2r2)

− 3 cosh(v) cos(2r2) cos(2r3) sinh(2z) sinh(2s)

− 1
4 cosh(2v) cos(2r2) cos(2r3) sinh(6z) sinh(2s)
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+ 3 cosh(v) cosh(2s) cosh(2z) cos(2r1)

− 1
4 cosh(2v) cosh(2s) cosh(6z) cos(2r1)

− 9 cosh(v) cos(2r1) cos(2r3) sinh(2z) sinh(2s)

− 3
4 cosh(2v) cos(2r1) cos(2r3) sinh(6z) sinh(2s)

+ 3 cosh(v) cosh(2s) cosh(2z) cos(2r1) cos(2r2)

− 1
4 cosh(2v) cosh(2s) cosh(6z) cos(2r1) cos(2r2)

− 12 cosh(v) sin(2r3) sin(r2) sin(2r1) sinh(2z) sinh(2s)

− cosh(2v) sin(2r3) sin(r2) sin(2r1) sinh(6z) sinh(2s)

+ 3 cosh(v) cos(2r1) cos(2r2) cos(2r3) sinh(2z) sinh(2s)

+ 1
4 cosh(2v) cos(2r1) cos(2r2) cos(2r3) sinh(6z) sinh(2s). (C.3)

• G0 = G2 × F4(−20), potential restricted to singlets under SU(3)×SU(3):

−8g−2V = 24 125
2048 + 9

2048 cos(8r5) + 9
2048 cos(8r2)

+ 115
128 sin(4r5) sin(4r2)− 27

2048 cos(8r2) cos(8r5)

− 1
64 cos(4r2) cos(4r3 − 4r6) cos(4r5)− 9

2048 cos(8r1 − 8r4)

− 9
2048 cos(8r1 − 8r4) cos(8r5)− 1

64 cos(4r1 − 4r4) cos(4r3 − 4r6)

+ 1
64 sin(4r5) sin(4r3 − 4r6) sin(4r1 − 4r4)− 9

2048 cos(8r1 − 8r4) cos(8r2)

− 9
512 cos(4r1 − 4r4) sin(8r5) sin(8r2)

+ 115
128 cos(4r1 − 4r4) cos(4r2) cos(4r5)

− 9
2048 cos(8r1 − 8r4) cos(8r2) cos(8r5)

+ 1
64 sin(4r3 − 4r6) sin(4r2) sin(4r1 − 4r4)

− 1
64 cos(4r1 − 4r4) cos(4r3 − 4r6) sin(4r5) sin(4r2) + 449

512 cosh(z)

− 65
2048 cosh(2z)− 3

512 cosh(z) cos(8r5) + 3
2048 cosh(2z) cos(8r5)

− 3
512 cosh(z) cos(8r2) + 3

2048 cosh(2z) cos(8r2)

− 29
32 cosh(z) sin(4r5) sin(4r2) + 1

128 cosh(2z) sin(4r5) sin(4r2)

+ 9
512 cosh(z) cos(8r2) cos(8r5)− 9

2048 cosh(2z) cos(8r2) cos(8r5)

+ 1
64 cosh(2z)cos(4r2)cos(4r3 − 4r6)cos(4r5)+ 3

512 cosh(z)cos(8r1 − 8r4)

− 3
2048 cosh(2z) cos(8r1 − 8r4) + 3

512 cosh(z) cos(8r1 − 8r4) cos(8r5)

− 3
2048 cosh(2z) cos(8r1 − 8r4) cos(8r5)

+ 1
64 cosh(2z) cos(4r1 − 4r4) cos(4r3 − 4r6)

− 1
64 cosh(2z) sin(4r5) sin(4r3 − 4r6) sin(4r1 − 4r4)

+ 3
512 cosh(z) cos(8r1 − 8r4) cos(8r2)

− 3
2048 cosh(2z) cos(8r1 − 8r4) cos(8r2)

+ 3
128 cosh(z) cos(4r1 − 4r4) sin(8r5) sin(8r2)

− 3
512 cosh(2z) cos(4r1 − 4r4) sin(8r5) sin(8r2)

− 29
32 cosh(z) cos(4r1 − 4r4) cos(4r2) cos(4r5)

+ 3
512 cosh(z) cos(8r1 − 8r4) cos(8r2) cos(8r5)

+ 1
128 cosh(2z) cos(4r1 − 4r4) cos(4r2) cos(4r5)
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− 3
2048 cosh(2z) cos(8r1 − 8r4) cos(8r2) cos(8r5)

− 1
64 cosh(2z) sin(4r3 − 4r6) sin(4r2) sin(4r1 − 4r4)

+ 1
64 cosh(2z) cos(4r1 − 4r4) cos(4r3 − 4r6) sin(4r5) sin(4r2)

+ 449
512 cosh(s)− 65

2048 cosh(2s)− 3
512 cosh(s) cos(8r5)

+ 3
2048 cosh(2s) cos(8r5)− 3

512 cosh(s) cos(8r2)

+ 3
2048 cosh(2s) cos(8r2)− 29

32 cosh(s) sin(4r5) sin(4r2)

+ 1
128 cosh(2s) sin(4r5) sin(4r2) + 9

512 cosh(s) cos(8r2) cos(8r5)

− 9
2048 cosh(2s) cos(8r2) cos(8r5)

+ 1
64 cosh(2s) cos(4r2) cos(4r3 − 4r6) cos(4r5)

+ 3
512 cosh(s) cos(8r1 − 8r4)− 3

2048 cosh(2s) cos(8r1 − 8r4)

+ 3
512 cosh(s) cos(8r1 − 8r4) cos(8r5)

− 3
2048 cosh(2s) cos(8r1 − 8r4) cos(8r5)

+ 1
64 cosh(2s) cos(4r1 − 4r4) cos(4r3 − 4r6)

− 1
64 cosh(2s) sin(4r5) sin(4r3 − 4r6) sin(4r1 − 4r4)

+ 3
512 cosh(s) cos(8r1 − 8r4) cos(8r2)

− 3
2048 cosh(2s) cos(8r1 − 8r4) cos(8r2)

+ 3
128 cosh(s) cos(4r1 − 4r4) sin(8r5) sin(8r2)

− 3
512 cosh(2s) cos(4r1 − 4r4) sin(8r5) sin(8r2)

− 29
32 cosh(s) cos(4r1 − 4r4) cos(4r2) cos(4r5)

+ 3
512 cosh(s) cos(8r1 − 8r4) cos(8r2) cos(8r5)

+ 1
128 cosh(2s) cos(4r1 − 4r4) cos(4r2) cos(4r5)

− 3
2048 cosh(2s) cos(8r1 − 8r4) cos(8r2) cos(8r5)

− 1
64 cosh(2s) sin(4r3 − 4r6) sin(4r2) sin(4r1 − 4r4)

+ 1
64 cosh(2s) cos(4r1 − 4r4) cos(4r3 − 4r6) sin(4r5) sin(4r2)

+ 341
128 cosh(s) cosh(z)− 21

512 cosh(s) cosh(2z)

− 21
512 cosh(2s) cosh(z)− 107

2048 cosh(2s) cosh(2z)

+ 1
128 cosh(s) cosh(z) cos(8r5)− 1

512 cosh(s) cosh(2z) cos(8r5)

− 1
512 cosh(2s) cosh(z) cos(8r5) + 1

2048 cosh(2s) cosh(2z) cos(8r5)

+ 1
128 cosh(s) cosh(z) cos(8r2)− 1

512 cosh(s) cosh(2z) cos(8r2)

− 1
512 cosh(2s) cosh(z) cos(8r2) + 1

2048 cosh(2s) cosh(2z) cos(8r2)

+ 7
8 cosh(s) cosh(z) sin(4r5) sin(4r2)

+ 1
32 cosh(s) cosh(2z) sin(4r5) sin(4r2)

+ 1
32 cosh(2s) cosh(z) sin(4r5) sin(4r2)

− 5
128 cosh(2s) cosh(2z) sin(4r5) sin(4r2)

− 3
128 cosh(s) cosh(z) cos(8r2) cos(8r5)

+ 3
512 cosh(s) cosh(2z) cos(8r2) cos(8r5)
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+ 3
512 cosh(2s) cosh(z) cos(8r2) cos(8r5)

− 3
2048 cosh(2s) cosh(2z) cos(8r2) cos(8r5)

− 1
64 cosh(2s) cosh(2z) cos(4r2) cos(4r3 − 4r6) cos(4r5)

− 1
128 cosh(s) cosh(z) cos(8r1 − 8r4)

+ 1
512 cosh(s) cosh(2z) cos(8r1 − 8r4)

+ 1
512 cosh(2s) cosh(z) cos(8r1 − 8r4)

− 1
2048 cosh(2s) cosh(2z) cos(8r1 − 8r4)

− 1
128 cosh(s) cosh(z) cos(8r1 − 8r4) cos(8r5)

+ 1
512 cosh(s) cosh(2z) cos(8r1 − 8r4) cos(8r5)

+ 1
512 cosh(2s) cosh(z) cos(8r1 − 8r4) cos(8r5)

− 1
2048 cosh(2s) cosh(2z) cos(8r1 − 8r4) cos(8r5)

− 1
64 cosh(2s) cosh(2z) cos(4r1 − 4r4) cos(4r3 − 4r6)

+ 1
64 cosh(2s) cosh(2z) sin(4r5) sin(4r3 − 4r6) sin(4r1 − 4r4)

− 1
128 cosh(s) cosh(z) cos(8r1 − 8r4) cos(8r2)

+ 1
512 cosh(s) cosh(2z) cos(8r1 − 8r4) cos(8r2)

+ 1
512 cosh(2s) cosh(z) cos(8r1 − 8r4) cos(8r2)

− 1
2048 cosh(2s) cosh(2z) cos(8r1 − 8r4) cos(8r2)

− 1
32 cosh(s) cosh(z) cos(4r1 − 4r4) sin(8r5) sin(8r2)

+ 1
128 cosh(s) cosh(2z) cos(4r1 − 4r4) sin(8r5) sin(8r2)

+ 1
128 cosh(2s) cosh(z) cos(4r1 − 4r4) sin(8r5) sin(8r2)

− 1
512 cosh(2s) cosh(2z) cos(4r1 − 4r4) sin(8r5) sin(8r2)

+ 7
8 cosh(s) cosh(z) cos(4r1 − 4r4) cos(4r2) cos(4r5)

− 1
128 cosh(s) cosh(z) cos(8r1 − 8r4) cos(8r2) cos(8r5)

+ 1
32 cosh(s) cosh(2z) cos(4r1 − 4r4) cos(4r2) cos(4r5)

+ 1
512 cosh(s) cosh(2z) cos(8r1 − 8r4) cos(8r2) cos(8r5)

+ 1
32 cosh(2s) cosh(z) cos(4r1 − 4r4) cos(4r2) cos(4r5)

+ 1
512 cosh(2s) cosh(z) cos(8r1 − 8r4) cos(8r2) cos(8r5)

− 5
128 cosh(2s) cosh(2z) cos(4r1 − 4r4) cos(4r2) cos(4r5)

− 1
2048 cosh(2s) cosh(2z) cos(8r1 − 8r4) cos(8r2) cos(8r5)

+ 1
64 cosh(2s) cosh(2z) sin(4r3 − 4r6) sin(4r2) sin(4r1 − 4r4)

+ 1
64 sin(2r3 − 2r6) sin(2r2 − 6r5) sin(2r1 − 2r4) sinh(z) sinh(s)

+ 229
64 sin(2r3 − 2r6) sin(2r2 + 2r5) sin(2r1 − 2r4) sinh(z) sinh(s)

− 1
64 sin(2r3 − 2r6) sin(6r2 − 2r5) sin(2r1 − 2r4) sinh(z) sinh(s)

+ 3
64 sin(2r3 − 2r6) sin(6r2 + 6r5) sin(2r1 − 2r4) sinh(z) sinh(s)

+ 1
64 sin(2r3 − 2r6) sin(2r2 − 6r5) sin(6r1 − 6r4) sinh(z) sinh(s)

+ 1
64 sin(2r3 − 2r6) sin(2r2 + 2r5) sin(6r1 − 6r4) sinh(z) sinh(s)
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− 1
64 sin(2r3 − 2r6) sin(6r2 − 2r5) sin(6r1 − 6r4) sinh(z) sinh(s)

− 1
64 sin(2r3 − 2r6) sin(6r2 + 6r5) sin(6r1 − 6r4) sinh(z) sinh(s)

− 1
128 sin(2r3 − 2r6) sin(2r2 − 6r5) sin(2r1 − 2r4) sinh(2z) sinh(s)

− 5
128 sin(2r3 − 2r6) sin(2r2 + 2r5) sin(2r1 − 2r4) sinh(2z) sinh(s)

+ 1
128 sin(2r3 − 2r6) sin(6r2 − 2r5) sin(2r1 − 2r4) sinh(2z) sinh(s)

− 3
128 sin(2r3 − 2r6) sin(6r2 + 6r5) sin(2r1 − 2r4) sinh(2z) sinh(s)

− 1
128 sin(2r3 − 2r6) sin(2r2 − 6r5) sin(6r1 − 6r4) sinh(2z) sinh(s)

− 1
128 sin(2r3 − 2r6) sin(2r2 + 2r5) sin(6r1 − 6r4) sinh(2z) sinh(s)

+ 1
128 sin(2r3 − 2r6) sin(6r2 − 2r5) sin(6r1 − 6r4) sinh(2z) sinh(s)

+ 1
128 sin(2r3 − 2r6) sin(6r2 + 6r5) sin(6r1 − 6r4) sinh(2z) sinh(s)

− 1
128 sin(2r3 − 2r6) sin(2r2 − 6r5) sin(2r1 − 2r4) sinh(z) sinh(2s)

− 5
128 sin(2r3 − 2r6) sin(2r2 + 2r5) sin(2r1 − 2r4) sinh(z) sinh(2s)

+ 1
128 sin(2r3 − 2r6) sin(6r2 − 2r5) sin(2r1 − 2r4) sinh(z) sinh(2s)

− 3
128 sin(2r3 − 2r6) sin(6r2 + 6r5) sin(2r1 − 2r4) sinh(z) sinh(2s)

− 1
128 sin(2r3 − 2r6) sin(2r2 − 6r5) sin(6r1 − 6r4) sinh(z) sinh(2s)

− 1
128 sin(2r3 − 2r6) sin(2r2 + 2r5) sin(6r1 − 6r4) sinh(z) sinh(2s)

+ 1
128 sin(2r3 − 2r6) sin(6r2 − 2r5) sin(6r1 − 6r4) sinh(z) sinh(2s)

+ 1
128 sin(2r3 − 2r6) sin(6r2 + 6r5) sin(6r1 − 6r4) sinh(z) sinh(2s)

+ 1
256 sin(2r3 − 2r6) sin(2r2 − 6r5) sin(2r1 − 2r4) sinh(2z) sinh(2s)

− 27
256 sin(2r3 − 2r6) sin(2r2 + 2r5) sin(2r1 − 2r4) sinh(2z) sinh(2s)

− 1
256 sin(2r3 − 2r6) sin(6r2 − 2r5) sin(2r1 − 2r4) sinh(2z) sinh(2s)

+ 3
256 sin(2r3 − 2r6) sin(6r2 + 6r5) sin(2r1 − 2r4) sinh(2z) sinh(2s)

+ 1
256 sin(2r3 − 2r6) sin(2r2 − 6r5) sin(6r1 − 6r4) sinh(2z) sinh(2s)

+ 1
256 sin(2r3 − 2r6) sin(2r2 + 2r5) sin(6r1 − 6r4) sinh(2z) sinh(2s)

− 1
256 sin(2r3 − 2r6) sin(6r2 − 2r5) sin(6r1 − 6r4) sinh(2z) sinh(2s)

− 1
256 sin(2r3 − 2r6) sin(6r2 + 6r5) sin(6r1 − 6r4) sinh(2z) sinh(2s)

− 229
64 cos(2r1 − 2r4) cos(2r2 − 2r5) cos(2r3 − 2r6) sinh(z) sinh(s)

− 1
64 cos(2r1 − 2r4) cos(2r2 + 6r5) cos(2r3 − 2r6) sinh(z) sinh(s)

+ 3
64 cos(2r1 − 2r4) cos(6r2 − 6r5) cos(2r3 − 2r6) sinh(z) sinh(s)

− 1
64 cos(2r1 − 2r4) cos(6r2 + 2r5) cos(2r3 − 2r6) sinh(z) sinh(s)

+ 1
64 cos(6r1 − 6r4) cos(2r2 − 2r5) cos(2r3 − 2r6) sinh(z) sinh(s)

+ 1
64 cos(6r1 − 6r4) cos(2r2 + 6r5) cos(2r3 − 2r6) sinh(z) sinh(s)

+ 1
64 cos(6r1 − 6r4) cos(6r2 − 6r5) cos(2r3 − 2r6) sinh(z) sinh(s)

+ 1
64 cos(6r1 − 6r4) cos(6r2 + 2r5) cos(2r3 − 2r6) sinh(z) sinh(s)

+ 5
128 cos(2r1 − 2r4) cos(2r2 − 2r5) cos(2r3 − 2r6) sinh(2z) sinh(s)

+ 1
128 cos(2r1 − 2r4) cos(2r2 + 6r5) cos(2r3 − 2r6) sinh(2z) sinh(s)
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− 3
128 cos(2r1 − 2r4) cos(6r2 − 6r5) cos(2r3 − 2r6) sinh(2z) sinh(s)

+ 1
128 cos(2r1 − 2r4) cos(6r2 + 2r5) cos(2r3 − 2r6) sinh(2z) sinh(s)

− 1
128 cos(6r1 − 6r4) cos(2r2 − 2r5) cos(2r3 − 2r6) sinh(2z) sinh(s)

− 1
128 cos(6r1 − 6r4) cos(2r2 + 6r5) cos(2r3 − 2r6) sinh(2z) sinh(s)

− 1
128 cos(6r1 − 6r4) cos(6r2 − 6r5) cos(2r3 − 2r6) sinh(2z) sinh(s)

− 1
128 cos(6r1 − 6r4) cos(6r2 + 2r5) cos(2r3 − 2r6) sinh(2z) sinh(s)

+ 5
128 cos(2r1 − 2r4) cos(2r2 − 2r5) cos(2r3 − 2r6) sinh(z) sinh(2s)

+ 1
128 cos(2r1 − 2r4) cos(2r2 + 6r5) cos(2r3 − 2r6) sinh(z) sinh(2s)

− 3
128 cos(2r1 − 2r4) cos(6r2 − 6r5) cos(2r3 − 2r6) sinh(z) sinh(2s)

+ 1
128 cos(2r1 − 2r4) cos(6r2 + 2r5) cos(2r3 − 2r6) sinh(z) sinh(2s)

− 1
128 cos(6r1 − 6r4) cos(2r2 − 2r5) cos(2r3 − 2r6) sinh(z) sinh(2s)

− 1
128 cos(6r1 − 6r4) cos(2r2 + 6r5) cos(2r3 − 2r6) sinh(z) sinh(2s)

− 1
128 cos(6r1 − 6r4) cos(6r2 − 6r5) cos(2r3 − 2r6) sinh(z) sinh(2s)

− 1
128 cos(6r1 − 6r4) cos(6r2 + 2r5) cos(2r3 − 2r6) sinh(z) sinh(2s)

+ 27
256 cos(2r1 − 2r4) cos(2r2 − 2r5) cos(2r3 − 2r6) sinh(2z) sinh(2s)

− 1
256 cos(2r1 − 2r4) cos(2r2 + 6r5) cos(2r3 − 2r6) sinh(2z) sinh(2s)

+ 3
256 cos(2r1 − 2r4) cos(6r2 − 6r5) cos(2r3 − 2r6) sinh(2z) sinh(2s)

− 1
256 cos(2r1 − 2r4) cos(6r2 + 2r5) cos(2r3 − 2r6) sinh(2z) sinh(2s)

+ 1
256 cos(6r1 − 6r4) cos(2r2 − 2r5) cos(2r3 − 2r6) sinh(2z) sinh(2s)

+ 1
256 cos(6r1 − 6r4) cos(2r2 + 6r5) cos(2r3 − 2r6) sinh(2z) sinh(2s)

+ 1
256 cos(6r1 − 6r4) cos(6r2 − 6r5) cos(2r3 − 2r6) sinh(2z) sinh(2s)

+ 1
256 cos(6r1 − 6r4) cos(6r2 + 2r5) cos(2r3 − 2r6) sinh(2z) sinh(2s)

− 1
64 cosh(2s) cosh(2z) cos(4r1 − 4r4) cos(4r3 − 4r6) sin(4r5) sin(4r2).

(C.4)
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