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Abstract

We construct the boundary WZNW functional for symmetry breaking D-branes
on a group manifold which are localized along a product of a number of twisted
conjugacy classes and which preserve an action of an arbitrary continuous subgroup.
These branes provide a geometric interpretation for the algebraic formulation of
constructing D-branes developed recently in hep-th/0203161. We apply our results
to obtain new symmetry breaking and non-factorizing D-branes in the background
SL(2, R) × SU(2).

1 Introduction

The classification of D-branes in given string backgrounds is one of the most important

tasks in string theory. The interest is mainly based on the occurence of non-perturbative

dualities between different types of string theories and on the natural appearance of

(non-commutative) gauge theories in the low energy description of open strings. The

classification of D-branes relies on finding conformally invariant boundary conditions for

a given two-dimensional bulk conformal field theory (CFT). Presently one of the best

understood classes of CFT’s is provided by the Wess-Zumino-Novikov-Witten (WZNW)

theories [1, 2] which describe string theory on group manifolds [3]. Although for di-

mensional reasons most groups cannot be part of a consistent string background, they

constitute an important ingredient in model building via coset constructions [4].
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In the last few years we have made significant progress with the classification of D-

branes in a group manifold G. For a long time only two types have been known: untwisted

[5] and twisted D-branes [6, 7]. Both share the property of preserving the maximal possible

symmetry. By now we have an almost complete understanding of these D-branes. In

particular, their geometry was shown to be given by twisted conjugacy classes [8, 9]. This

observation was supported by a Lagrangian description [10] and by a Born-Infeld analysis

which also established the stability of these D-branes [11, 12]. Finally, the discovery of

the noncommutative geometry associated to these branes [13, 14] allowed the discussion

of their dynamics [15, 16, 14].

In contrast to these successes in the study of maximally symmetric D-branes only

recently methods have been developed to deal with D-branes which break part of the

symmetry [17, 18, 19, 20]. In the work of Maldacena, Moore and Seiberg this was achieved

by using a certain kind of T-duality related to U(1) subgroups [17, 18]. A conceptually

different and more general algebraic framework which also incorporates the usage of non-

abelian subgroups was developed in [20]. While the geometric interpretation in the first

case is obvious from T-duality, a geometric interpretation for more general symmetry

breaking D-branes was missing until now. In the present work we partly fill this gap

and show that the most natural symmetry breaking D-branes in group manifolds which

preserve a given continuous subgroup H →֒ G are localized along products of quantized

twisted conjugacy classes of subgroups Ul where H = U1 →֒ U2 · · · →֒ Un = G. We

will prove this fact by constructing the corresponding boundary WZNW functional. The

identification with D-branes obtained from the algebraic description [20] is established by

evaluating the closed string couplings to the branes. It is further supported by an analysis

of the spectrum of open strings arising from both approaches. This comparison relies on

the noncommutative geometry associated to twisted D-branes [13, 14]. For completeness

we should add that a Lagrangian description of symmetry breaking D-branes which are

accessible by T-duality has already been found in [21]. These, however, are based on the

inclusion U(1) →֒ G and thus constitute only a small subset of an enormous hierarchy

of symmetry breaking D-branes arising from embedding chains of non-abelian subgroups

[20].

We apply our geometric construction to the classification of D-branes in the back-

ground SL(2,R) × SU(2). A large number of symmetry breaking and non-factorizing

D-branes is revealed which preserve a continuous subgroup of the target space. All these

branes may easily be lifted to the string background AdS3 × S3 × T 4 by considering the

covering space AdS3 of SL(2,R) and using the equivalence SU(2) ∼= S3. D-branes in the

individual factors SL(2,R) and SU(2) have been described before in [22, 23, 17, 24, 21] for

instance. Our results confirm the geometric description of symmetry breaking D-branes

in these groups which has been obtained using T-duality.

This paper is organized as follows. In the next section we will construct the boundary

WZNW functional for symmetry breaking D-branes which are localized along the product
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of twisted conjugacy classes of subgroups Ul which are organized in an embedding chain

H = U1 →֒ U2 · · · →֒ Un = G. We will argue in section 2 that these D-branes correspond

to symmetry breaking boundary states which have been constructed in [20] using algebraic

methods. Our arguments are based on a target space reinterpretation. In the “new” target

space the D-branes factorize and the coupling to closed strings as well as the spectrum

of open strings can easily be determined. We find full agreement with the Lagrangian

approach. The general geometric description for symmetry breaking D-branes is applied

to the classification of D-branes in the group manifold SL(2,R) × SU(2) in section 4.

Finally, we conclude with open problems and further related topics to study.

2 The Lagrangian approach

In conformal field theory language, WZNW models are based on a chiral algebra A(G)

which is generated by an affine Kac-Moody algebra ĝk at level k. The algebra ĝk is the

affine extension of the Lie algebra g belonging to the group manifold G, the target space

under consideration. The bulk symmetry is given by two independent copies A(G)⊕A(G)

of the chiral algebra. On the boundary holomorphic and antiholomorphic degrees of

freedom are coupled, and at most one copy of A(G) can be preserved. It is natural to

consider D-branes which preserve only a given subsymmetry A(H) →֒ A(G). Here, A(H)

is the chiral algebra generated by an affine Kac-Moody subalgebra ĥk′ →֒ ĝk. All such

embeddings arise from continuous subgroups H of G.

The boundary theory immediately becomes non-rational if one tries to preserve only

the symmetry A(H) on the boundary. Following [20] it is thus natural to consider an

embedding chain of subgroups1

H = U1 →֒ U2 →֒ · · · →֒ Un−1 →֒ Un = G (2.1)

and to preserve instead the larger chiral algebra

A(U1) ⊕ A(U2/U1) ⊕ · · · ⊕ A(Un/Un−1) →֒ A(G) (2.2)

which is rational with respect to the original theory. In writing down this expression we

denoted by A(Ul+1/Ul) the coset chiral algebras which arise via GKO construction [4].

By a straightforward generalization of [20] we may construct D-branes which preserve the

chiral algebra (2.2) and calculate their spectrum of open strings. The geometric interpre-

tation of this kind of D-branes, however, remained obscure up to now. The decomposition

(2.2) only implies that the submanifolds of G in which these D-branes are localized should

admit an action of the subgroup H .

1We will use the phrase embedding map to denote a group homomorphism which descends to an
injective map on the level of the Lie algebras. This condition ensures that the embedding map preserves
the dimension, but allows for non-trivial wrapping numbers for instance.
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In this article we provide the missing link between algebra and geometry. The re-

maining part of this section will be devoted to the construction of a boundary WZNW

functional for D-branes which are localized along the product of a number of twisted

conjugacy classes, one for each subgroup Ul. These submanifolds of G admit an action

of H which is inherited from the embedding chain (2.1). The WZNW functional will be

shown to be invariant under this action. These D-branes thus provide natural candidates

for being geometric counterparts of those arising from the general algebraic framework

[20]. In the next section we will give additional arguments to support this claim. This

includes the calculation of closed string couplings to the branes and an analysis of the

spectrum of open strings.

Let us be a bit more precise about what we mean by “product of a number of twisted

conjugacy classes”. For an exact treatment we have to specify embeddings of the indi-

vidual subgroups Ul into G and an action of H on each of these subgroups. Assume that

we have given embeddings ǫUlUl+1 of Ul in Ul+1 which specify the embedding chain (2.1).

In addition we will assume the existence of – possibly trivial – automorphisms Ωl of Ul.

This information may be used to define embeddings

ǫHUl = ǫUl−1Ul ◦ · · · ◦ ǫU2U3 ◦ ǫU1U2

ǫUlG
Ω = Ωn ◦ ǫUn−1Un ◦ Ωn−1 ◦ · · · ◦ ǫ

Ul+1Ul+2 ◦ Ωl+1 ◦ ǫ
UlUl+1 .

(2.3)

The embedding ǫUlG
Ω contains the automorphisms Ωk at every stage of the embedding

chain except for the starting point Ul. The geometry of our D-branes is the following

product of images of twisted conjugacy classes,

D
{

Ul,Ωl, fl

}

= CUn

fn

(

Ωn

)

· ǫ
Un−1G
Ω

(

C
Un−1

fn−1

(

Ωn−1

)

)

· . . . · ǫU1G
Ω

(

CU1

f1

(

Ω1

)

)

. (2.4)

The labels fl ∈ Ul have to satisfy certain quantization conditions and constraints which

arise from branching selection rules associated to the embedding chain (2.1). A discussion

of these issues follows below. The exact definition of the twisted conjugacy classes is given

by

CUl

fl

(

Ωl

)

=
{

sl fl Ωl(s
−1
l )

∣

∣ sl ∈ Ul

}

.

Let us denote by cl elements of the image of twisted conjugacy classes in G, i.e. cl ∈

ǫUlG
Ω

(

CUl

fl

(

Ωl

))

. Each of these conjugacy classes admits an action of H which can be

formulated as follows,

sl 7→ ǫHUl(h) · sl ⇒ cl 7→ ǫUlG
Ω ◦ ǫHUl(h) · cl · ǫ

UlG
Ω ◦ Ωl ◦ ǫ

HUl(h−1) . (2.5)

Due to the recursion relations ǫ
Ul+1G
Ω ◦ Ωl+1 ◦ ǫ

UlUl+1 = ǫUlG
Ω also the product of twisted

conjugacy classes (2.4) admits a well-defined action of H . An arbitrary element x ∈

D
{

Ul,Ωl, fl

}

transforms as

x 7→ ǫHUn(h) · x · ǫU1G
Ω ◦ Ω1(h

−1) ∈ D
{

Ul,Ωl, fl

}

. (2.6)
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As conjectured above, the subset D
{

Ul,Ωl, fl

}

of G thus indeed provides a natural candi-

date for a geometric description of the symmetry breaking D-branes which arise from the

algebraic description via the decomposition (2.2). Notice that our results obviously reduce

to the usual description of maximally symmetric D-branes by taking Ωl = id and fl = e

for l < n. It is remarkable that the notion of twist becomes much richer for symmetry

breaking D-branes in comparison to maximally symmetric ones. We are indeed allowed

to take non-trivial twists for each of the subgroups Ul.

We are now prepared to substantiate our conjecture by constructing a boundary

WZNW functional for D-branes localized along the subset (2.4) which is invariant un-

der the action (2.5) of H . Geometrically, the theory is described by a non-linear σ-model

of fields g : Σ → G which live on a two-dimensional world sheet Σ and which take values

in the group manifold G. We will always assume that G is simple in what follows, but it

is straightforward to generalize our results to reductive groups, i.e. to those which are a

direct product of simple groups and U(1) factors. The action functional for this theory is

given by

SG
WZNW

(

g; k|D
)

= SG
kin(g; k) + SG

WZ(g; k) + SG
D(g; k) (2.7)

and consists of three parts, the usual kinetic term, the so-called Wess-Zumino term and

a boundary term. All of them contain a parameter k > 0 subject to certain consistency

conditions (see below). The kinetic term is given by

SG
kin(g; k) = −

k

4π

2

IR

∫

Σ

d2z trR

{

∂gg−1∂̄gg−1
}

.

The trace is evaluated in some non-trivial unitary representation R of the Lie algebra

g of G. This is indicated by the explicit appearance of the Dynkin index IR of the

representation. The symbol trR denotes the trace of dimR-dimensional matrices. The

combination 2/IR trR is a normalized trace which is independent of the representation R.

In our conventions the Killing form is obtained from IR κ
αβ = trR

{

R(T α)R(T β)
}

.

The Wess-Zumino term is defined in terms of its associated 3-form ωWZ. Its contribu-

tion to the boundary WZNW functional (2.7) is given by

SG
WZ(g; k) = −

k

4π

2

IR

∫

B

ωWZ with ωWZ(g) =
1

3
trR(g−1dg)3 .

This integral extends over a three-dimensional manifold B whose boundary is given by

∂B = Σ ∪D where D is a disjoint union of (topological) discs filling the holes of Σ such

that Σ ∪D has no boundaries. For notational simplicity we will assume that D consists

of exactly one disc.

If one only considers the first two terms of the action functional (2.7), it is invariant

under all transformations g 7→ gL(z) g g−1
R (z̄). This is the famous loop group symmetry

G(z)×G(z̄) of the WZNW theory. This symmetry is generated by two Lie algebra valued
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currents J(z) = −k∂gg−1 and J̄(z̄) = kg−1∂̄g which are chiral by the equations of motion.

They generate two commuting copies of the affine Kac-Moody algebra ĝk at level k as

mentioned already in the beginning of this section.

To complete the definition of the boundary WZNW functional (2.7) we finally have to

define the boundary term. This is given by the integral

SG
D(g; k) =

k

4π

2

IR

∫

D

ωD =
k

4π

2

IR

∫

D

n
∑

l=1

l
∑

k=1

ωD(ck, · · · , cl) (2.8)

over the auxiliary disc D. We assume that the boundary of Σ and the whole disc D are

mapped into the subset D
{

Ul,Ωl, fl

}

of G. The first condition justifies the use of the

word D-brane when referring to this submanifold. The boundary two-forms entering the

definition (2.8) are specified by

ωD(cl) = trR

{

ǫUlG
(

s−1
l dsl fl Ωl

(

s−1
l dsl

)

f−1
l

)}

ωD(ck, · · · , cl) = −trR

{

c−1
k · · · c−1

l dclcl−1 · · · ck+1dck
}

.
(2.9)

If D
{

Ul,Ωl, fl

}

is a single twisted conjugacy class, the expression (2.8) reduces to those

found for maximally symmetric D-branes [10]. For a product of two twisted conjugacy

classes we recover boundary terms which have been used to describe maximally symmetric

D-branes in coset spaces [25, 26]. Our expressions also contain as a special case the recent

results of [21] by taking the “embedding chain” U(1) →֒ G and a particular choice of

automorphisms. The exact correspondence will be subject of section 4.

After having provided the complete definition of the boundary WZNW functional a few

remarks are in order. The physics which is described by the action (2.7) should not depend

on the two auxiliary manifolds B and D. This leads to restrictions such as quantization

conditions for the level and allowed conjugacy classes as well as branching selection rules

[10, 25, 26]. Let us be a little bit more specific. For compact simply-connected simple Lie

groups topological considerations regarding the Wess-Zumino term force k to be a positive

integer. This may be different for non-simply-connected or non-compact groups. In the

case of G = SO(3) the level k has to be even for instance and for G = SL(2,R) we obtain

no additional constraints on the level. Invariance of the action functional (2.7) under

infinitesimal deformations of the disc is ensured by the relation dωD = ωWZ
∣

∣

D
which is

proven in the appendix. Taking global aspects of the embedding of the disc into account

one exactly recovers the quantization of twisted conjugacy classes and branching selection

rules which would be expected from the CFT description [10, 25, 26]. This concludes our

arguments that the action (2.7) is well-defined.

As was discussed in [25, 26] the boundary two-form ωD does not only depend on

the values of the field g on the boundary but also on the exact decomposition into a

product g = cn · · · c1 of elements of the individual twisted conjugacy classes. Under

certain circumstances the sets D
{

Ul,Ωl, fl

}

and D
{

U ′
l ,Ω

′
l, f

′
l

}

are identical. The algebraic
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analysis, however, suggests that they should describe different D-branes with different

spectrum and different mass density. This becomes particularly important for products

of twisted conjugacy classes which cover the whole group G. The solution to this puzzle

is presented in section 3.1 where it is shown that it is natural to adopt a different target

space interpretation when using the decomposition (2.2). In this larger target space the

shape of all our D-branes is distinct.

It remains to be shown that the boundary WZNW functional (2.7) is invariant under

the action (2.5, 2.6) of H on the boundary. To be specific, the symmetry G(z) ×G(z̄) of

the bulk theory has to be broken to a symmetry H(τ) →֒ G(τ) × G(τ) on the boundary

where the embedding is given by
(

ǫHUn , ǫU1G
Ω ◦Ω1

)

. With the same embedding map one can

define an action of H(z)×H(z̄) in the bulk theory which induces the decomposition (2.2)

of chiral algebras. This reduced action gives rise to chiral currents Jh(z) and J̄h(z̄) which

take values in the Lie algebra h. Demanding that this action reduces to the action of H(τ)

on the boundary is equivalent to enforcing trivial gluing conditions on the currents Jh(z)

and J̄h(z̄). Note that it is not relevant whether one demands twisted gluing conditions

or puts the twist in the definition of the current as the decomposition of the bulk Hilbert

space also has to reflect this choice. In our previous considerations we adopted the second

point of view.

Let us now determine the variation of the boundary WZNW functional under an

arbitrary infinitesimal action of h(τ) = 1 + iω(τ) ∈ H(τ). A lengthy but straightforward

calculation results in

δωD = −i
n
∑

l=1

tr
{

dω
(n)
L cn · · · cl+1dclc

−1
l · · · c−1

n + dω
(1)
R c−1

1 · · · c−1
l dclcl−1 · · · c1

}

,

where we introduced the abbreviations ω
(n)
L = ǫHUn(ω) and ω

(1)
R = ǫU1G

Ω ◦ Ω1(ω). The

variation of the Wess-Zumino term may be determined from

δωWZ = −i d tr
{

dω
(n)
L dgg−1 + dω

(1)
R g−1dg

}

. (2.10)

After integration it will give two contributions which arise from the boundary Σ ∪D of

B. The first one belonging to Σ is canceled by the variation of the kinetic term. If we

restrict the discussion to the disc which is mapped to the set D
{

Ul,Ωl, fl

}

, the variation

(2.10) further simplifies to

δωWZ
∣

∣

D
= −i

n
∑

l=1

d tr
{

dω
(n)
L cn · · · cl+1dclc

−1
l · · · c−1

n + dω
(1)
R c−1

1 · · · c−1
l dclcl−1 · · · c1

}

.

Obviously, the contributions from δωWZ and δωD cancel each other exactly. The details of

the calculation can be found in the appendix. This completes the proof of the symmetry

of the D-branes D
{

Ul,Ωl, fl

}

under the action of the subgroup H .
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The procedure described in this section provides a whole hierarchy of symmetry break-

ing D-branes. The classification of all these objects is greatly simplified by the following

observation which is well-known from maximally symmetric D-branes. Instead of allowing

all choices of automorphisms we may restrict to the case of outer automorphisms. The

appearance of an inner automorphism Ωl(ul) = blulb
−1
l in the product of twisted conju-

gacy classes (2.4) just corresponds to putting this automorphism to the identity in the

expressions (2.3) and (2.4), to replace fl by flbl and to multiply the resulting expression

for eq. (2.4) with the element ǫUlG
Ω (b−1

l ) from the right. Geometrically, this procedure

induces an overall shift. The same idea also enables us to choose specific representatives

for whole classes of outer automorphisms by separating their “inner part”.

One may ask whether arranging the twisted conjugacy classes in the definition (2.4)

in different order would lead to new results. It is easy to show that this is not the

case. Exchanging two conjugacy classes merely leads to a redefinition of embedding maps

and automorphisms. Under these circumstances it is natural to work with one standard

representative. In our case the latter is defined to be given by eq. (2.4).

We conclude with a few remarks. The first concerns the dimension of the D-branes

which correspond to the product of twisted conjugacy classes (2.4). For a naive evaluation

of the dimension one would simply add the dimensions of the twisted conjugacy classes

present in eq. (2.4). It is obvious that this procedure would rapidly exceed the dimension

of the group itself if one takes embedding chains (2.1) with a large number of subgroups.

Up to now we lack a general dimension formula for this kind of D-branes. Let us emphasize

at this point the remarkable fact that they tend to be more and more space-filling the more

of the symmetry we break. We believe that branes which cover the whole target space

can be constructed for every WZNW model. A natural candidate for such a space-filling

brane is obtained by taking the product of a non-degenerate ordinary conjugacy class of

G and a distinguished twisted conjugacy class of its maximal torus T = U(1)rank G. The

first is isomorphic to G/T [9], i.e. has dimension dimG−rankG, while the second is given

by T itself. In section 4 we will confirm our conjecture in a number of examples.

The second remark concerns the hierarchical structure of the symmetry breaking D-

branes which are described by the product of twisted conjugacy classes (2.4). Let us

consider a fixed embedding chain (2.1). By choosing an automorphism Ωl to act trivially

and the corresponding element fl to be given by the group unit we can achieve that the

conjugacy class CUl

fl

(

Ωl

)

may be omitted from the expression (2.4) for the geometry of

the D-brane. This means that we could have equally well omitted the group Ul from the

embedding chain (2.1) in order to describe the same D-brane. The same feature has also

been observed in the algebraic description [20]. To obtain a classification of D-branes in

the group manifold G which preserve an arbitrary continuous subgroup it is thus enough

to find all inequivalent chains of maximal embeddings.

8



3 The algebraic point of view

In the last section we used the Lagrangian approach to construct a large number of D-

branes on a group manifold G which preserve a given continuous subgroup H . We also

presented first indications that these provide the geometric interpretation for symmetry

breaking boundary states arising in the algebraic approach [20]. In the following we will

further illuminate this equivalence. Full agreement is found when calculating the coupling

of closed strings to the branes. Also the spectrum of open strings which is predicted by

geometry fits into the algebraic description. Before we dive into the discussion of branes

we present a natural target space reinterpretation which sheds new light on some open

issues which have been the cause of some confusion in the past. As no general tools are

available for an algebraic description of non-compact WZNW theories, we assume the

group G to be compact in what follows. To simplify notation the group is also considered

to be simply-connected and simple.

3.1 Target space reinterpretation

The usual interpretation of a WZNW theory relies on the group G itself as target space. In

the context of the decomposition (2.2) of the chiral algebra it is, however, more convenient

to work with the space

Gnew =
Un × Un−1 × Un−1 × · · · × U1 × U1

Un−1 × Un−1 × · · · × U1 × U1
=

G×X

X
. (3.1)

This statement is a generalization of a proposal which has been formulated in the context

of coset theories [27]. The specific form of the auxiliary space X has its origin in the

decomposition of chiral algebras (2.2). It is motivated by the deep relation between coset

CFT’s Ul+1/Ul and product CFT’s Ul+1 × Ul which itself is based on the similarity of

modular properties. The extension of G by X introduces additional degrees of freedom

which have to be removed by dividing through X. The exact action of X will be given

in eq. (3.2). We will argue below that the product of twisted conjugacy classes (2.4)

which has been defined on G possesses a natural interpretation as a direct product in the

numerator G × X of the new target space Gnew. In this picture each twisted conjugacy

class of a group Ul with l < n is diagonally embedded in the product Ul × Ul.

The equivalence of the spaces G and Gnew seems to be obvious at first sight. Neverthe-

less we have to be very careful as G carries additional structure which should be reflected

in Gnew. In particular, G admits an action of the group G×G, i.e. the regular action from

the left and from the right. The group G×G should be considered as the “constant” part

of the WZNW symmetry G(z)×G(z̄) which has been described in the last section. When

we consider symmetry breaking D-branes which arise from the embedding chain (2.1), the

action of G × G thus has to be broken to an action of the subgroup H × H where the

embedding of the latter is given by the map
(

ǫHUn , ǫU1G
Ω ◦ Ω1

)

. We will argue below that

9



the same action of H×H can be found on Gnew provided that one uses the correct action

of X on G×X in the definition (3.1). To be precise, the elements of Gnew should be given

by tupels (un, u
′
n−1, un−1, · · · , u

′
2, u2, u

′
1, u1) ∈ G×X subject to the identifications

(u′l, ul) ∼ (u′l · t
−1
l , tl · ul) and (ul+1, u

′
l) ∼ (ul+1 · Ωl+1 ◦ ǫ

UlUl+1(s−1
l ), sl · u

′
l) (3.2)

for tl, sl ∈ Ul. The action of H×H on the target space Gnew on the other hand should be

defined by (un, · · · , u1) 7→
(

ǫHUn(h1)un, · · · , u1Ω1(h
−1
2 )
)

. The identification (3.2) shows

that the new target space Gnew is a specific example of an asymmetric coset. A general

discussion of string theory in asymmetric coset spaces will follow in [28].

The connection of the new target space Gnew to the considerations in the previous

section may easily be illustrated by working out the natural representatives of elements

in Gnew. They are given by

(

un · ǫ
Un−1G
Ω (u′n−1 · un−1) · . . . · ǫ

U1G
Ω (u′1 · u1), e, . . . , e

)

. (3.3)

A comparison with eq. (2.4) indicates that the product of twisted conjugacy classes which

appeared in the last section has a natural interpretation in the new target space Gnew.

The relation (3.3) indeed shows that elements of Gnew may be represented naturally as

elements of G. Note however that one and the same element of G is represented by a

whole orbit of elements in G × X. This makes explicit the drastical increase of degrees

of freedom which are associated to the decomposition (2.2) of the chiral algebra. What

happened to be a cause of confusion in [25, 26] and in the previous section, has now found

its natural explanation. On the contrary, it seems to give us the possibility to describe

new interesting features such as superpositions of D-branes and multiple wrappings (see

also [17]).

The reader may wonder why we had to choose such a complicated identification (3.2)

to define the coset Gnew. A partial answer was given already by the striking relation

between the representative (3.3) and the form of the product of twisted conjugacy classes

(2.4). The deeper reason for this particular choice of identification comes, however, from

demanding the equality of G and Gnew including the given action of H×H on them. The

latter can be understood best if one does not work on the level of manifolds but descends

to the algebras of functions F(G) and F(Gnew) which inherit the given action ofH×H but

allow for a linear representation. According to a theorem of Gel’fand and Naimark also

the topology of a manifold is completely contained in its algebra of functions. Showing

the equality

F(G) ∼= F(Gnew) = InvX

(

F
(

G×X
)

)

(3.4)

as H ×H modules is thus enough to establish the equivalence of the target spaces G and

Gnew including the action of H ×H on them. The relation (3.4) may be proven by using

the Peter-Weyl theorem which gives the decomposition of the algebra of functions on a
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group into irreducible representations under left and right regular action of the group

itself. Restricting the action to H × H and taking all twists into account we exactly

recover the equality (3.4).

The considerations of the last paragraph have direct implications for the conformal

field theory description. Let us bring to mind that the interpretation of G as the target

space of a WZNW theory is supported by the deep relation between the spectrum of

closed strings and the algebra of functions on the group. According to the Peter-Weyl

theorem the algebra of functions F(G) is recovered from the ground state structure of

the charge conjugate partition function of the WZNW theory in the limit k → ∞ when

interpreted as a G × G module with respect to left and right regular action of G. As

already mentioned above, the group G× G should be considered as the “constant” part

of G(z)×G(z̄). After symmetry reduction, the decomposition (2.2) of the chiral algebras

has to be accompanied by an analogous decomposition of the closed string Hilbert space.

On the geometrical side this corresponds to the interpretation of the G×G module F(G)

as an H ×H module where the embedding is given by
(

ǫHUn , ǫU1G
Ω ◦ Ω1

)

.

3.2 The coupling of boundary states to closed strings

The main aim of this section is to understand the relation between the geometric results

of section 2 and the algebraic method of constructing symmetry breaking boundary states

[20]. It is thus necessary to recapitulate the main formulas of this approach. We will be

rather sketchy in what follows. In particular we will not be concerned with technical

difficulties such as field identification or related topics. We will tacitly assume that this

phenomenon does not appear for the cases under consideration. In the geometric regime

where the level k runs to infinity, this seems to be a valid approximation in most of the

cases. The interested reader is referred to [20] where he can find the missing details. The

general framework of boundary conformal field theory is subject of [29, 30, 31, 32, 7, 33]

for instance.

The decomposition of the chiral algebras (2.2) is accompanied by a decomposition

HG
µn

=
⊕

H
Un/Un−1

(µn,µn−1) ⊗ · · · ⊗ H
U2/U1

(µ2,µ1) ⊗HU1

µ1
(3.5)

of representation spaces HG
µn

of A(G). It is very important, however, that the decompo-

sition of the antiholomorphic part looks slightly different as it has to reflect the different

choices of H-actions which are used to define the currents Jh(z) and J̄h(z̄). To be precise

we obtain

H̄G
µn

=
⊕

H̄
Un/Un−1

(Ω−1
n (µn),νn−1)

⊗ · · · ⊗ H̄
U2/U1

(Ω−1

2
(ν2),ν1)

⊗ H̄U1

Ω−1

1
(ν1)

. (3.6)

We observe that the weights νl appear with a relative twist in the different representation

spaces. The last two relations induce an analogous decomposition of the full charge

conjugate closed string Hilbert space HG.
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Before we are able to construct the boundary states which contain all the relevant data

to perform the comparison with the geometric picture we need some further preparations.

Assume that we have given the algebraic solution corresponding to twisted gluing condi-

tions in the auxiliary algebras A(Ul). This means that we know structure constants ψUl

such that the matrices

(

nUl

νl

)ρ′
l

ρl

=
∑

Ωl(µl)=µl

(

ψ̄Ul)µl

ρ′
l

(

ψUl

)µl

ρl

SUl

µlνl

SUl

µl0

(3.7)

form a NIM-rep of the fusion algebra of the affine Kac-Moody algebra (ûl)kl
. In this

expression we denoted by SUl the modular S matrix of (ûl)kl
. The structure constants

(

ψUl

)µl

ρl

carry two labels. One of them refers to boundary conditions ρl while the other

refers to symmetric representations µl = Ωl(µl) of (ûl)kl
. The simplest example of a NIM-

rep may be obtained from Ωl = id by putting
(

ψUl

)µl

ρl

= SUl

µlρl
. In this case, Cardy’s case,

the matrices nUl

νl
are just the fusion matrices. Details of these constructions can be found

in [6, 31, 7] for instance.

Imposing trivial gluing conditions on all constituents of the reduced chiral algebra

(2.2) enforces the condition µl = νl = Ωl(νl) for the symmetric part of HG from which

we may construct Ishibashi states |µn, · · · , µ1〉〉 [20]. By comparison with the previous

paragraph we are thus able to define boundary states

|ρn, · · · , ρ1〉 =
∑

(

ψUn

)µn

ρn
√

SUn

0µn

(

ψUn−1

)µn−1

ρn−1

S
Un−1

0µn−1

· · ·

(

ψU2

)µ2

ρ2

SU2

0µ2

(

ψU1

)µ1

ρ1

SU1

0µ1

|µn, · · · , µ1〉〉 . (3.8)

Up to this point we merely reviewed the algebraic method of constructing symmetry

breaking boundary states [20]. We will now use this algebraic information to prove that

these boundary states describe D-branes which are localized along the product of twisted

conjugacy classes (2.4). The first argument is based on the coupling of closed strings to

the brane. In the section 3.3 we will then analyze the spectrum of open strings.

It is convenient to think about the boundary state (3.8) as describing D-branes in the

group manifold Un×Un−1×Un−1×· · ·×U1×U1 which is the basic constituent of Gnew. This

follows from the discussion in section 3.1 and the factorized structure of eq. (3.8). A similar

proposal in the context of coset theories has been made in [27] (see also [34]). According to

the general discussion of [9], the calculation of closed string couplings to the brane shows

that the Un-part of the boundary state (3.8) gives rise to a D-brane which is localized

along the twisted conjugacy class in CUn

fn

(

Ωn

)

in Un. The element fn is obtained from

exponentiation of the weight ρn to the (symmetric) Cartan torus in Un. This prescription

also makes explicit the quantization conditions which have to be imposed on twisted

conjugacy classes. The other parts in eq. (3.8) are more difficult to access as the coefficients

possess an additional factor of
(

SUl

0µl

)1/2
in the denominator. One may, however, easily

check that such coefficients appear when constructing D-branes in Ul ×Ul if one uses the
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gluing automorphism Ω′
l(ul, u

′
l) =

(

u′l,Ωl(ul)
)

[35]. This choice of automorphisms – in

particular the exchange of the group factors – reflects the fact that the target space Gnew

is defined as an asymmetric coset. Other choices of automorphisms would not lead to a

geometry which is consistent with the identification (3.2). The coupling of closed strings

to previously described branes shows that they are localized along the twisted conjugacy

classes CUl×Ul

f ′

l

(Ω′
l) =

{(

slf
′
l t

−1
l , tlf

′
lΩl(s

−1
l )
)}

with f ′
l determined by ρl as like before [9].

By taking the product of the two entries, this set projects down to a twisted conjugacy

class CUl

fl
(Ωl) in the group Ul where fl = f ′2

l .

Let us summarize these results. We have argued that the D-branes which are described

by the boundary state (3.8) are localized along a direct product of twisted conjugacy

classes in the space Un ×Un−1 ×Un−1 × · · · ×U1 ×U1. Due to their symmetry properties

they descend to the set Gnew which provides a valid target space reinterpretation. As all

elements of Gnew may be brought to the form (3.3), we just recover the expression (2.4)

for the geometry of twisted D-branes which entered the Lagrangian approach.

3.3 The spectrum of open strings

Our next task is to determine the spectrum of open strings which can end on a D-brane

which is described by the boundary state (3.8). The result has to be compared with

predictions which arise from geometric description afterwards. The calculation of closed

string propagation between two boundary states of the form (3.8) by world sheet duality

yields the open string Hilbert space

Hρρ =
⊕

(

nUn

νn

)ρn

ρn

[

n−1
∏

l=1

Nλl

νlσ
+

l

(

nUl

λl

)ρl

ρl

]

H
Un/Un−1

(νn,σn−1) ⊗ · · · ⊗ H
U2/U1

(ν2,σ1)
⊗HU1

ν1
, (3.9)

where we used the abbreviation ρ = (ρ1, · · · , ρn) to denote the boundary label. The

NIM-reps nUl have been defined in eq. (3.7) and the numbers N are fusion coefficients of

the affine Lie algebras ûkl
. The calculation proceeds in the same way as those in [20].

In the geometric picture only the ground state structure of the Hilbert space (3.9)

can be recovered. Let us denote by H
(0)
ρρ the set of all ground states which are present in

eq. (3.9). Our aim is to find an explicit expression for this space which solely contains

geometric information in the limit k → ∞. The ground states of affine representations

transform in a representation of the underlying simple Lie algebra which is usually denoted

by the same symbol. In contrast, it is more difficult to give a geometrical meaning to the

coset representations. All we can do is to determine the number of ground states they

contain. The latter is given by the branching coefficients which describe the embedding

of the associated horizontal subalgebras. These considerations provide a dictionary of

how to extract geometrical information out of eq. (3.9). We simply have to replace affine

representations HU1

ν1
by representation spaces V U1

ν1
of u1 and branching spaces H

Ul/Ul−1

(νl,σl−1)
by

branching coefficients of the embedding ul−1 →֒ ul. When represented as a H module we

13



end up with the following expression,

H(0)
ρρ =

⊕

(

nUn

νn

)ρn

ρn

[

n−1
∏

l=1

Nλl

νlσ
+

l

(

nUl

λl

)ρl

ρl

bνl+1

σl

]

V U1

ν1
, (3.10)

for the space of ground states. The geometric limit of a WZNW theory is obtained by

sending the level k of the affine Kac-Moody algebra ĝk to infinity. This automatically

forces the levels of the Kac-Moody subalgebras (ûl)kl
also to tend to infinity. In this limit

the fusion coefficients N entering eq. (3.9) reduce to tensor product coefficients and also

the NIM-reps nUl have a natural geometrical meaning [14].

Let us now turn our attention to the evaluation of D-brane spectra in the geometric

picture. As was shown in [13, 15] for ordinary conjugacy classes and then generalized

to the twisted case in [14] there is always a noncommutative geometry associated to

these objects. In some sense this reflects the geometric limit of the noncommutative

algebra of open string vertex operators. For the ground states this algebra indeed becomes

coordinate independent in the large volume limit k → ∞ as their conformal dimensions

tend to zero. For an arbitrary D-brane wrapped around the twisted conjugacy class

CUl

fl

(

Ωl

)

this noncommutative algebra admits an action of Ul under which it decomposes

into modules V Ul

νl
according to

A
(

CUl

fl

(

Ωl

)

)

=
⊕

(

nνl

)ρl

ρl

V Ul

νl
. (3.11)

The same expression would be obtained for InvUl
A
(

CUl×Ul

f ′

l

(

Ω′
l

))

where the invariance is

defined with respect to the identification (u′l, ul) ∼ (u′l · t
−1
l , tl ·ul) for tl ∈ Ul (cf. eq. (3.2)).

For our further discussion it is not necessary to know the detailed form of the matrices

nUl. It is only important to note that the numbers nUl entering eq. (3.10) coincide with

those in eq. (3.11) in the limit k → ∞ [14].

The module structure of the algebra for a (direct) product of twisted conjugacy classes

is given by the tensor product of the individual modules. We thus obtain the spectrum

of open string ground states

A
(

D
{

Ul,Ωl, fl

}

)

=
⊕

{νl}

[ n
∏

l=1

(

nνl

)ρl

ρl

]

V Un

νn
⊗ · · · ⊗ V U1

ν1
, (3.12)

interpreted as a module of the group Un × · · · × U1. In our approach of section 2, the

twisted conjugacy classes are not viewed as modules of the groups Ul but as modules of the

diagonally embedded H = U1. This means that we should fully decompose the module

(3.12) with respect to H in order to read off the spectrum of ground states belonging

to the D-brane described by D
{

Ul,Ωl, fl

}

. In this way we get a number of additional

branching and tensor product coefficients.

It is now straightforward to check the equality of the expressions on the right hand

side of eqs. (3.10) and (3.12) in the limit k → ∞, both considered as H modules. In
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other words we have just proven the relation A
(

D
{

Ul,Ωl, fl

})

∼= H
(0)
ρρ which expresses the

agreement of the open string spectra obtained both from an algebraic and a geometric

point of view, respectively. Let us emphasize that the geometric open string algebra

A
(

D
{

Ul,Ωl, fl

})

may not be identified with the algebra of functions on the D-brane

world volume D
{

Ul,Ωl, fl

}

⊂ G. Again this may be interpreted as an effect in favour of

working with the new target space Gnew. When considered as an object in G, the points

in the D-brane world volume can be covered more than once. Obviously it is not possible

to describe the new degrees of freedom which are associated to such multiple wrappings

and superpositions of D-branes by the usual algebra of functions on the world volume

D
{

Ul,Ωl, fl

}

⊂ G. Similar observations have been discussed in [17].

4 Applications

In this section we will apply our general results to advance the classification of D-branes

in the target space G = SL(2,R) × SU(2). When lifted to the covering space AdS3 of

SL(2,R) these provide us with non-factorizing and symmetry breaking D-branes in the

string backgrounds AdS3 × S3 × T 4 and AdS3 × S3 × S3 × S1. The CFT description of

WZNW models for noncompact groups is very intricate as their spectrum is continuous. In

particular their analysis is not covered by [20]. We have therefore nothing new to say about

the CFT side of constructing D-branes in these backgrounds. Nevertheless we conjecture

that at least qualitatively our geometric analysis reflects the correct picture. Parts of our

observations for factorizing D-branes in SL(2,R) × SU(2) are immediate consequences

of earlier results which have been obtained by different methods [22, 36, 23, 17, 24, 21].

For the sake of completeness and in order to illustrate the power of our new geometric

description we also review these cases. In particular we will show that our approach

confirms the T-duality prediction for the geometry of symmetry breaking D-branes in

SL(2,R) and SU(2) [17, 21].

According to the general scheme we have first to find out all inequivalent embeddings

of continuous subgroups into each of the constituents SL(2,R) and SU(2). In addition

we have to classify all the automorphisms of these subgroups. Common subgroups of

SL(2,R) and SU(2) can then be used to construct non-factorizing symmetry breaking

D-branes.

4.1 Preliminaries

The continuous subgroups of the product SL(2,R)×SU(2) are easily classified. There are

essentially two choices of embedding chains (2.1) which may be used for our construction.

The first one is given by the maximal embedding

H1 × H2 →֒ SL(2,R) × SU(2) , (4.1)

15



where H1 and H2 equal one of the groups U(1) or R. Without loss of generality we

assume that H1 is embedded into SL(2,R) and H2 is embedded into SU(2). In this case

the embedding map is given by ǫH1,SL × ǫH2,SU . To save space we used the abbreviations

SL and SU for SL(2,R) and SU(2), respectively. Before we dive into the discussion of

these maps, let us first write down the second choice for a chain of embeddings. It is

specified by

H →֒ H × H →֒ SL(2,R) × SU(2) . (4.2)

Again, the symbol H denotes a group of type U(1) or R. The embedding map can be

written as
[

ǫH,SL × ǫH,SU
]

◦ ǫH,H×H . The decomposition (2.2) of chiral algebras which

arises from (4.2) contains cosets of the form A(H/H) if H is completely embedded in one

of the factors H×H . As these are nasty to deal with on the algebraic level, we assume all

possible embeddings in relation (4.2) to have the diagonal form ǫH,H×H(h) = (h, h). The

remaining freedom is then contained in the embedding maps ǫH,SL × ǫH,SU from H ×H

to SL(2,R) × SU(2).

Our next task is to classify all embeddings and automorphisms of groups and subgroups

belonging to the relations (4.1) and (4.2). Readers familiar with these issues may directly

jump to section 4.2. The embeddings for the subgroup SO(2) ∼= U(1) are given by

ǫU,SL
n

(

eiφ
)

= ǫU,SU
n

(

eiφ
)

=

(

cos nφ sinnφ
− sinnφ cosnφ

)

for n ∈ Z\{0} .

In addition both groups admit an embedding of R. For SL(2,R) we have two inequiv-

alent choices one of which utilizes the covering of U(1) by R. The latter also allows an

embedding of R into SU(2). The explicit maps read

ǫR,SL
α (λ) =

(

eαλ 0
0 e−αλ

)

and ǫ̃R,SL
β (λ) = ǫ̃R,SU

β (λ) =

(

cos βλ sin βλ
− sin βλ cosβλ

)

.

(4.3)

Obviously, we have to demand that α and β are non-vanishing.

The automorphisms are also easily classified. The group SU(2) only admits inner

automorphisms. According to the remarks at the end of section 2, we may assume them

to act trivially without any restrictions. In contrast, there exist outer automorphisms of

the group SL(2,R) which are based on the representative

ΩSL
0

(

a b
c d

)

=

(

d c
b a

)

=

(

0 1
1 0

)(

a b
c d

)(

0 1
1 0

)

. (4.4)

Note that this automorphism allows a representation as conjugation with the matrix

M = ( 0 1
1 0 ) which is not an element of SL(2,R). For the subgroups U(1) and R we obtain

ΩU
±

(

eiφ
)

= e±iφ and ΩR

±(λ) = ±λ . (4.5)
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In fact, we could choose for R the multiplication with an arbitrary non-zero real number.

In our description we implicitly demanded, however, that the automorphisms should be

consistent with the scalar product in the Lie algebra, i.e. they should not change the

embedding index.2 This condition restricts our possibilities to the multiplication by ±1.

Finally, we have to discuss the automorphisms ofH×H . In this paper we restrict ourselves

to automorphisms of the form ΩH×H = Ω◦
[

ΩH
1 ×ΩH

2

]

, where Ω : H×H → H×H denotes

a possible exchange of the two group factors and ΩH
1 ,Ω

H
2 are two arbitrary automorphisms

of H . If H would have been semi-simple our choice of ΩH×H would have exhausted all

possibilities. For our abelian groups U(1) and R, there are more general choices but they

are generically plagued with some unwanted features.3

We are now almost prepared to address the question of D-brane geometry in SL(2,R)×

SU(2). All we still need is a better understanding of certain twisted conjugacy classes.

Let H be one of the subgroups U(1) or R. As both groups are abelian one immediatley

obtains

CH
f

(

ΩH
η

)

=

{

{f} , η = +

H , η = − .

The element f has to satisfy the symmetry property ΩH
η (f) = f . It is slightly more com-

plicated to find an expression for the twisted conjugacy classes CH×H
(

ΩH×H
)

. Considering

first the case with Ω = id we easily obtain

CH×H
(f1,f2)

(

ΩH×H
)

∣

∣

∣

Ω=id
=



















{f1} × {f2} , ΩH
1 = id, ΩH

2 = id

{f1} ×H , ΩH
1 = id, ΩH

2 6= id

H × {f2} , ΩH
1 6= id, ΩH

2 = id

H ×H , ΩH
1 6= id, ΩH

2 6= id .

(4.6)

In this case the element (f1, f2) has to satisfy ΩH
i (fi) = fi. With non-trivial twist, i.e.

with Ω 6= id, we have the restrictions f1 = ΩH
2 (f2) and f2 = ΩH

1 (f1). It thus suffices to

work with one label f = f1 which satisfies ΩH
2 ◦ ΩH

1 (f) = f . A straightforward analysis

yields

CH×H
f

(

ΩH×H
)

∣

∣

∣

Ω 6=id
=

{

H ×H , ΩH
1 6=

(

ΩH
2

)−1
and Ω 6= id

{(

sf,ΩH
1 (fs−1)

)
∣

∣s ∈ H
}

, ΩH
1 =

(

ΩH
2

)−1
and Ω 6= id .

(4.7)

This concludes our presentation of the necessary tools for the determination of symmetry

breaking D-branes in SL(2,R) × SU(2).

2This is automatically satisfied for all semi-simple groups where outer automorphisms arise from
Dynkin diagram symmetries.

3The scalar product in the corresponding Lie algebra would not be invariant.
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τ

θρ

Figure 1: Parametrization of SL(2,R).

4.2 Symmetry breaking D-branes in SL(2,R) and SU(2) – a re-

view

This subsection will be used to introduce some notation which is necessary to describe

the geometry of SL(2,R) and SU(2). In addition we will find that our approach is in

agreement with recent results for symmetry breaking D-branes in these groups which have

been obtained using T-duality [17, 24, 21].

4.2.1 Symmetry breaking D-branes in SL(2,R)

The group SL(2,R) may be described as a subspace of four dimensional flat space. In

this parametrization the connection to the matrix form is given by
(

X0 +X3 X1 +X2

X1 −X2 X0 −X3

)

subject to X2
0 −X2

1 +X2
2 −X2

3 = 1 . (4.8)

It is convenient to introduce cylindrical coordinates r, θ and a periodic time τ . These take

values in the domains r ∈ [0,∞[ and θ, τ ∈ [0, 2π[. The precise relation to the previous

parametrization is given by

X0 + iX2 = eiτ cosh r and X3 + iX1 = eiθ sinh r . (4.9)

In the cylindrical coordinates the manifold SL(2,R) may be depicted as in figure 1 with

top and bottom of the cylinder identified. The covering space AdS3 is obtained by re-

solving the periodicity of time, i.e. by extending its range to τ ∈ R. The region r → ∞

describes the boundary of AdS3.

Maximally symmetric D-branes belong to twisted conjugacy classes of SL(2,R). For

ordinary conjugacy classes all elements are mapped to the same number by taking the

trace. Fixing X0 to some value C ∈ R while putting no constraints on the other co-

ordinates therefore gives a first rough classification. The resulting submanifold may be

disconnected showing that only demanding X0 = C does not lead to a complete solution

of the classification problem. It is nevertheless useful to work with this description. The
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Figure 2: Representatives of maximally symmetric D-branes in SL(2,R). From left to
right we have the following types: point-like, dS2, H2 and AdS2 branes.

equation X0 = cos τ cosh r = C admits very different types of solutions depending on

whether |C| < 1 or |C| > 1. For |C| > 1 one recovers dS2 branes while for |C| < 1

branes are obtained which are localized on hyperbolic planes H2. In the limit |C| → 1

they degenerate to two instantonic point-like D-branes at τ = 0, π which are associated

to the center of SL(2,R) and others sitting on the light cone. Representatives of this zoo

of conjugacy classes are visualized in figure 2. These results have already been found in

[22, 23]. It was argued in [23] that all these D-branes are unphysical. The H2 and the

point-like branes are instantonic objects while the dS2 branes are spoiled by a supercritical

electrical field.

Twisted conjugacy classes coming from the automorphism (4.4) are classified by the

relation tr
(

Mg
)

= 2X2 = 2C. According to eq. (4.9) this translates into C = sin θ sinh r.

In this situation there is no need to distinguish different cases. All these twisted conjugacy

classes describe AdS2 branes which are invariant under time translations and extend to

the boundary of AdS3 at θ = 0, π [23]. They are illustrated in the right-most picture of

figure 2.

Let us now turn to the description of symmetry breaking D-branes. According to the

expression (2.4) we may multiply the twisted conjugacy classes of SL(2,R) by a twisted

conjugacy class CH
f

(

ΩH
)

of H = U(1) or H = R. For ΩH = id the latter are point-like.

This induces a shift of the original D-brane. The situation is more interesting if ΩH 6= id.

In this case the twisted conjugacy class reduces to H itself and one has to consider the

superposition of all shifted images.

This analysis is particularly simple for H = U(1). In this case the multiplication of

an element (r, θ, τ) of SL(2,R) with an element eiλ of U(1) just induces the simultaneous

rotation (θ, τ) 7→ (θ±nλ, τ±nλ) of angle and time coordinate. The sign and the wrapping

number n are fixed by the choice of twist ΩSL and embedding ǫU,SL. As the twisted

conjugacy class is given by the whole U(1), one may immediately evaluate the geometry

of the resulting D-branes. By rotation of the dS2 and the AdS2 branes one obtains D-
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Figure 3: Certain classes of symmetry breaking D-branes on SL(2,R). They are obtained
from those in figure 2 by a simultaneous (θ, τ)-rotation.

branes which fill all space outside a cylinder of radius r0 = arcosh|C| or r0 = arsinh|C|,

respectively. For degenerate cases they provide space-filling branes similar to those arising

from the rotation of H2 branes. If one rotates the 0-branes on the other hand these sweep

out the axis r = 0. To get some impression of these geometries we visualized all four of

them in figure 2. Let us emphasize that the generic point in the world volume of rotated

dS2 and AdS2 branes is covered twice.

For H = R we have to distinguish two embeddings (4.3). The usage of ǫ̃R,SL
β gives

essentially the same result as for U(1). For ǫR,SL
β , in contrast, the discussion becomes quite

involved as the shift acts in a very intricate way – at least in our coordinates (r, θ, τ).

To get an idea of what is going, on let us consider the case where the conjugacy class of

SL(2,R) reduces to a point. The D-brane is then parametrized by matrices of the form

diag(±eλ,±e−λ) with λ ∈ R. It turns out that these are instantonic D1-branes localized

at times τ = 0, π, respectively, and running all the way from r = 0 to r = ∞ in the

directions θ = 0, π. They do not seem to make sense physically and we will not discuss

them in more detail. Notice that most of the symmetry breaking D-branes which have

been described in this section already appeared in [17, 24, 21].

4.2.2 Symmetry breaking D-branes in SU(2)

The group manifold SU(2) may be realized as a subset of C2. In this parametrization

the elements are described by a matrix ( z1 z2

−z̄2 z̄1
) subject to the condition |z1|

2 + |z2|
2 = 1.

Maximally symmetric D-branes are localized along quantized conjugacy classes [8, 9].

For a WZNW theory at level k we have k + 1 spheres S2 which sit at the special values

Re(z1) = cos πµ
k

with µ = 0, · · · , k. For µ = 0, k they degenerate to points. An illustration

of these facts is given on the left hand side of figure 4.

To describe symmetry breaking D-branes we have to multiply these conjugacy classes

by twisted conjugacy classes of U(1) or R. Choosing a trivial automorphism amounts to a

shift like before. When considering a non-trivial automorphism we have to take the union
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Figure 4: Maximally symmetric and symmetry breaking D-branes on SU(2). The latter
arise from the rotation indicated in the central picture. They generically cover a 3-
dimensional subset of S3 but leave open a “window” of a certain size.

of all these shifted images. We will not write down the explicit expressions but only refer

to the illustration on the right hand side of figure 4. The symmetry breaking D-branes

are either 1- or 3-dimensional. While the first ones are circular, the latter cover most of

the group but generically leave some parts uncovered. Let us emphasize that we also find

a space-filling brane by considering the conjugacy classes of SU(2) with µ = k/2 for even

values of k. It is remarkable to note that a generic point of all these D-branes is covered

twice. This observation is related to the fact that the space-filling brane can be further

resolved into two single branes. These results are not new but have already been obtained

in [17, 21] with different methods.

4.3 On the hierarchy of D-branes in SL(2,R)× SU(2)

When constructing D-branes in the product geometry SL(2,R)× SU(2), it is convenient

to distinguish three cases which belong to qualitatively different classes of automorphisms

for the subgroups appearing in the two embedding chains (4.1) and (4.2). The discussion

of this classification will be the subject of the following three subsections.

4.3.1 Factorizing D-branes

Factorizing D-branes arise from the embedding chain (4.1). For H = H1 = H2 we further

have to assume that the automorphism of H ×H involved in the construction of the D-

branes does not contain the exchange of the group factors. Under these circumstances the

decomposition (2.2) reduces to a separate decomposition of A
(

SL(2,R)
)

and A
(

SU(2)
)

in both holomorphic and antiholomorphic degrees of freedom.

Let us discuss the geometry of these D-branes now. According to the general expression

(2.4) they are localized along the product

[

CSL
f1

(

ΩSL
)

· ΩSL ◦ ǫH1,SL
(

CH1

f2

(

ΩH1
)

)]

×
[

CSU
f3

(

id
)

· ǫH2,SU
(

CH2

f4

(

ΩH2
)

)]

.
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This factorized geometry is completely under control using the dictionary which has been

provided in section 4.2. The dimensions of these D-branes range from 0 to 6, the shape

from point-like to space-filling. We will not bother to discuss these D-branes any further

but focus our attention on the description of non-factorizing D-branes.

4.3.2 Non-factorizing D-branes from diagonal embedding

The first type of non-factorizing D-branes is obtained by using the embedding chain (4.2)

and choosing an automorphism ΩH×H which does not involve an exchange of the two

factors. In other words we demand Ω = id. The geometry associated to this kind of

symmetry breaking D-brane is described by the product

[

CSL
f1

(

ΩSL
)

× CSU
f2

(

id
)

]

· ǫ1

(

CH×H
(f3,f4)

(

ΩH×H
)

)

· ǫ2

(

CH
f5

(

ΩH
)

)

, (4.10)

where the embeddings have been abbreviated by ǫ1 =
(

ΩSL ◦ ǫH,SL
)

× ǫH,SU and ǫ2 =
[

ΩSL ◦ ǫH,SL× ǫH,SU
]

◦ΩH×H ◦ ǫH,H×H . Let us start our discussion with a given product of

conjugacy classes of SL(2,R) and SU(2). As can be seen from eq. (4.6) the effect of the

multiplication with CH×H
(f3,f4)

(

ΩH×H
)

is a combination of a factorized smearing as described

in section 4.2 and a translation. The effect of the multiplication with CH
f5

(

ΩH
)

is more

interesting as it can provide the reason for non-factorizability. If this conjugacy class is

0-dimensional it shifts the whole D-brane by a constant amount leaving factorizability

unaffected. On the other hand it may reduce to H itself. Under these circumstances one

obtains a continuous superposition of shifted D-branes. Due to the diagonal embedding

of H into H×H , the shift acts on both factors SL(2,R) and SU(2) simultaneously. This

feature is responsible for non-factorizability.

The discussion of the geometry of these D-branes becomes rather involved in the

general case. We prefer to illustrate our considerations in two simple examples. Assume

first that H = R, ǫH,SL = ǫ̃R,SL
α and that we set f1 = f2 = f3 = f4 = e, ΩSL = id and

ΩH
1 = ΩH

2 = id. This implies that the twisted conjugacy classes of SL(2,R), SU(2) and

H ×H entering (4.10) reduce to unit elements. In order to obtain a non-trivial result we

choose ΩH 6= id such that the remaining twisted conjugacy class in eq. (4.10) is given by

H . After its embedding into SL(2,R) × SU(2) one recovers the curve

(

(

cosαλ sinαλ
− sinαλ cosαλ

)

,

(

cosβλ sin βλ
− sin βλ cosβλ

)

)

with λ ∈ R .

The numbers α, β specifiy the individual embeddings of R into the group factors. A closer

comparison of this expression with eqs. (4.8, 4.9) shows that αλ may be identified with

time τ . This configuration thus describes a number of D-particles each having a circular

trajectory in the group factor SU(2) while sitting on the axis r = 0 of SL(2,R). The

number of D-particles is determined by the relative values of α and β. If the ratio is

irrational one obtains an infinite number of particles which form a dense set in SU(2) at
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each instance of time. The appearance of multiple D-particles is due to the periodicity

of time in SL(2,R). This artefact disappears on the covering space AdS3 which has a

non-compact time-coordinate. Obviously, it is straightforward to generalize the previous

idea to 2-spheres which are rotating in the SU(2) factor in the evolution of time.

In our second example we choose ΩSL = ΩSL
0 , but still fix H = R, ǫH,SL = ǫ̃R,SL

α ,

f3 = f4 = e, ΩH
1 = ΩH

2 = id and ΩH 6= id. The set (4.10) is obtained from the product

AdS2 × S2 by performing simultaneous shifts in both factors. If we focus only on the

AdS2-part for a moment we already know the resulting geometry from section 4.2.1. It is

given by all points (r, θ, τ) which satisfy r ≥ r0 = arsinh|C| for some constant C. These

points are generically not located on the twisted conjugacy class of SL(2,R) we have

started from. We thus have to decompose them into an element (r, θ′, τ ′) and a shift λ

such that (θ, τ) = (θ′+λ, τ ′+λ) and sin θ′ sinh r = C, i.e. such that (r, θ′, τ ′) is an element

of the twisted conjugacy class. With every solution θ′1 we have another one θ′2 = π − θ′1.

In the exceptional case r = r0 we have only one solution θ′1 = θ′2 = π/2. For r = r0 = 0

the angle can be chosen arbitrary. For simplicity we shall assume r0 > 0 in what follows.

The two shifts λ1/2 associated to the angles θ′1/2 have to come from the embedding

ǫ̃R,SL
α of ξ ∈ R in SL(2,R). As αξ1/2 is only defined modulo 2π there are several choices

ξ
(l)
1/2 = (λ1/2 + 2παl)/α of elements in R which may be used to recover these shifts. These

elements have to be used to implement the shift on the SU(2)-part. Using the embedding

ǫ̃R,SU
β as before, these shifts are determined by the angles β(λ1/2+2παl)/α. For α = β = 1

we arrive at the following picture. The D-brane in SL(2,R) × SU(2) is parametrized by

points (r, θ, τ) in SU(2,R) with r ≥ r0. Over each of these points one has two spheres S2

which are generated out of the conjugacy class of SU(2) by the action of the shifts λ1/2(r).

In the limiting regimes r → r0 and r → ∞ the two-spheres move closer and closer. For

more general choices of α and β the number of two-spheres over each point in SL(2,R)

may be larger.

4.3.3 Non-factorizing D-branes from group interchanging twists

One can also consider the embedding chain (4.2) having a twist Ω 6= id of the H × H

subgroup which interchanges the two factors. From the geometric point of view there

are no difficulties in doing so. But at this point we have to remember that geometric

automorphisms should be related to gluing automorphisms of currents on the level of

chiral algebras. These chiral algebras are generated by affine Kac-Moody algebras and

thus have the additional notion of a level. Consequently, the chiral algebras A(H) may

differ depending on whether they come from an embedding of H in SL(2,R) or SU(2).

The geometric twist of H×H can only be lifted to an automorphism of ASL(H)⊕ASU(H)

if these two algebras agree. This enforces some constraints on the relative size – the levels

– of SL(2,R) and SU(2) and the embeddings one uses.

After these remarks we can proceed as in the previous section. The geometry which
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belongs to our present choice of embedding chain may be read off from the product

[

CSL
f1

(

ΩSL
)

× CSU
f2

(

id
)

]

· ǫ1

(

CH×H
f3

(

ΩH×H
)

)

· ǫ2

(

CH
f4

(

ΩH
)

)

, (4.11)

where we used the abbreviations ǫ1 =
(

ΩSL ◦ ǫH,SL
)

× ǫH,SU and ǫ2 =
[

ΩSL ◦ ǫH,SL ×

ǫH,SU
]

◦ ΩH×H ◦ ǫH,H×H . The discussion of the conjugacy class CH
f4

(

ΩH
)

gives no new

insights compared to the previous section. Despite of this fact there is still a significant

qualitative difference, as we are now allowed to work with the expressions (4.7) for the

conjugacy classes CH×H
f3

(

ΩH×H
)

. While the first possibility implies the usual factorized

smearing, the second induces a superposition of simultaneous shifts in the two group

factors similar to those arising possibly from CH
f4

(

ΩH
)

. It is an interesting question to see

whether the joint action of two independent simultaneous shifts will lead to new features.

To illustrate these considerations we choose a setup where H = R, ǫH,SL = ǫ̃R,SL
α ,

f1 = f2 = e, ΩSL = id and ΩH
1 = ΩH

2 = ΩH
η for η = ±1 as well as ΩH 6= id. The product

of the embedding of the two twisted conjugacy classes (4.11) is parametrized by two real

numbers λ, λ′ and reads

(

(

cosψ sinψ
− sinψ cosψ

)

,

(

cosψ′ sinψ′

− sinψ′ cosψ′

)

)

with ψ = α(ηλ+ λ′ + f3) and ψ′ = βη(λ− λ′ + f3). We recognize that the joint action of

simultaneous shifts for η = 1 leads to a factorized structure again as both ψ and ψ′ are

independent. For η = −1 they become dependent and one recovers a shifted version of

the already familiar non-factorizing D-brane instead.

5 Conclusions

In the present work we constructed the boundary WZNW functional for D-branes which

are localized along products of generalized twisted conjugacy classes of subgroups Ul of G

which are organized in an embedding chain of the form (2.1). The action functional was

shown to be invariant under the action of a continuous subgroup. The D-branes have been

identified as geometric counterparts of symmetry breaking boundary states constructed

algebraically in [20]. Our results yield a huge hierarchy of D-branes in group manifolds

which are under complete control both from an algebraic and a geometric point of view.

We focused on the example of SL(2,R) × SU(2) to expedite the classification of D-

branes in this background. Although the groups SL(2,R) and SU(2) only possess a

small number of subgroups which in addition are abelian, we perceived a glimpse of the

possibilities which open up for more complicated backgrounds. In particular we are now

able to work out the geometry of D-branes in product groups which do not necessarily

factorize [20] and which do not originate from a twist of two group factors with equal
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size [36, 35]. The same ideas allow us to investigate defect lines in 1 + 1-dimensional

quantum field theories [20]. Such defects are for example induced on the holographic

dual of AdS3 by D-branes in its interior which extend to the boundary [37, 38, 39, 40].

It would be interesting to see whether our observations for D-branes in the non-compact

group SL(2,R)×SU(2) can be confirmed by an algebraic construction of boundary states.

Our algebraic analysis implied the necessity of target space reinterpretation in order to

resolve certain ambiguities in the geometric description of symmetry breaking D-branes.

In this way we revealed a striking connection between string theory on group manifolds and

asymmetrically gauged coset spaces [41, 42]. Although there has been some work recently

on D-branes in asymmetrically gauged coset theories [43], this subject is still not well-

developed. Nevertheless there exist several important examples where such backgrounds

play a prominent role. Let us only mention at this place the Nappi-Witten background

[44, 45] and the T pq spaces [46]. The first of them provides an interesting example of

a cosmological background with big-bang and big-crunch singularity while the second is

related to the base of a conifold for p = q = 1 [47, 48].

The relation between string theory on group manifolds and asymmetrically gauged

coset spaces may be extended beyond the simple observation of target space reinterpre-

tation. Our results indeed admit an immediate generalization to symmetry breaking

D-branes in asymmetric coset models by simply gauging a subgroup of the H symmetry

which was preserved by the symmetry breaking D-branes in the group manifold. This is

completely obvious from the geometric and the Lagrangian point of view. Gauging a sub-

group of G makes necessary the introduction of a gauge field interaction term [49, 50, 42].

The boundary contribution, however, remains unaffected by this extra term. A first step

towards a general and comprehensive description of asymmetrically gauged coset models

in terms of an algebraic and geometric analysis including D-branes will follow in [28].

To summarize, our results along with those of [20] provide a powerful tool to push

forward the programme of classifying D-branes in a given background. It would be very

interesting to apply these methods to examples which possess a richer structure of non-

abelian subgroups. Let us emphasize the general feature that the dimension of the D-

branes increases with the amount of symmetry breaking we enforce. In particular we have

argued that one should generically be able to recover space-filling D-branes. To obtain a

complete picture of D-branes in group manifolds and coset models it remains to analyze

the stability and the dynamics of symmetry breaking D-branes along the lines of [11, 12]

and [15, 27, 51, 14]. In this context one would also like to address the question of D-brane

charges and K-theory [16, 18]. This would require an extension of our results to include

supersymmetry.
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A Computational details

In this appendix we will provide the computational details which have been omitted in

section 2. It is convenient to choose a more general framework and to generalize the

notion of twisted conjugacy class. We will then be able to include recent proposals of [43]

in our description.

In the general approach we start with a family Ul (l = 1, . . . , n) of continuous sub-

groups H →֒ Ul →֒ G which do not necessarily satisfy the embedding chain property

(2.1). To each of these subgroups we associate three embeddings ǫHUl : H → Ul and

ǫUlG
L/R : Ul → G. The indices L/R stand for left and right, respectively. We then define

generalized twisted conjugacy classes of Ul in G by

CUl,G

f̃l

(

ǫUlG
L , ǫUlG

R

)

=
{

cl = ǫUlG
L

(

sl

)

· f̃l · ǫ
UlG
R

(

s−1
l

)

∣

∣

∣
sl ∈ Ul

}

.

These generalized twisted conjugacy classes admit an action of H under which they trans-

form as

sl 7→ ǫHUl(h) · sl ⇒ cl 7→ ǫUlG
L ◦ ǫHUl

(

h
)

· cl · ǫ
UlG
R ◦ ǫHUl

(

h−1
)

. (A.1)

By putting ǫUlG
L = ǫUlG, ǫUlG

R = ǫUlG
Ω ◦ Ωl and f̃l = ǫUlG(fl) we could recover ordinary

twisted conjugacy classes in this more general framework, i.e. the setup of section 2. One

easily verifies that the set D
{

Ul, ǫ
UlG
L/R, f̃l

}

which is generated by the following product of

generalized twisted conjugacy classes,

D
{

Ul, ǫ
UlG
L/R, f̃l

}

= CUn,G

f̃n

(

ǫUnG
L , ǫUnG

R

)

· . . . · CU1,G

f̃1

(

ǫU1G
L , ǫU1G

R

)

⊂ G , (A.2)

is invariant under the action of H provided that the embedding maps satisfy the relations

ǫ
Ul+1G
R ◦ ǫHUl+1 = ǫUlG

L ◦ ǫHUl . (A.3)

For later purposes we also have to demand that the embedding indices of the left and right

embeddings ǫUlG
L/R are identical for fixed subgroup Ul. Both conditions are automatically

satisfied if we restrict to the original setup of section 2. The elements x ∈ D
{

Ul, ǫ
UlG
L/R, f̃l

}

transform under these conditions according to

x 7→ ǫUnG
L ◦ ǫHUn

(

h
)

· x · ǫU1G
R ◦ ǫHU1

(

h−1
)

. (A.4)

To write down the boundary WZNW functional for D-branes candidates which are local-

ized along D
{

Ul, ǫ
UlG
L/R, f̃l

}

we have to generalize the definition (2.9) to

ωD(cl) = trR

{

ǫUlG
L

(

s−1
l dsl

)

f̃l ǫ
UlG
R

(

s−1
l dsl

)

f̃−1
l

}

.
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In this appendix we will present the computational details that a) the boundary

WZNW functional (2.7) is invariant under the infinitesimal action (A.1,A.4) of h =

1 + iω ∈ H on the boundary and b) that it is well-defined with respect to infinitesimal

deformations of the disc D. We will, however, not be concerned with global issues which

give rise to quantization of generalized twisted conjugacy classes and branching selection

rules. These global topological properties may possibly lead to severe restrictions which

prohibit certain subsets of the form (A.2). For example we would not know how to model

maximally symmetric D-branes which are localized along the product of two conjugacy

classes CG
f1
· CG

f2
in the algebraic description. This example suggests that there also might

be problems with the conformal invariance of our boundary WZNW functional (2.7) on

the quantum level as there is no algebraic description corresponding to this more general

setting. These questions have to be addressed in future work.

Let us start with item a), i.e. the invariance of the action functional (2.7) under

transformations of the form (A.1,A.4) on the boundary. Referring to the discussion in

section 2 this amounts to a proof of the relation δωWZ
∣

∣

D
= dδωD. The elements of the

twisted conjugacy classes transform according to

δcl = i ω
(l)
L cl − i cl ω

(l)
R ,

where we introduced the short hand notations ω
(l)
L/R = ǫUlG

L/R ◦ ǫHUl(ω). The condition

(A.3) of mutual consistency of the embedding maps obviously translates into the relation

ω
(l+1)
R = ω

(l)
L . Supplied with this information it is now very easy to calculate all variations

δ(clcl−1 · · · ck+1ck) = i ω
(l)
L clcl−1 · · · ck+1ck + i clcl−1 · · · ck+1ck ω

(k)
R .

Similar relations hold for the inverse δc−1
l = iω

(l)
R c−1

l − ic−1
l ω

(l)
L and for chains of the form

c−1
k c−1

k+1 · · · c
−1
l−1c

−1
l . Finally, we also need to know the variation

δdcl = d
(

i ω
(l)
L cl − i cl ω

(l)
R

)

= i dω
(l)
L cl − i cl dω

(l)
R + i ω

(l)
L dcl − i dcl ω

(l)
R .

Due to these relations the transformation properties of ωD(ck, · · · , cl) may easily be calcu-

lated. It turns out that all terms involving ω cancel each other. Only four terms involving

dω survive. We summarize this result in

δωD(ck, · · · , cl) = −i tr
{

c−1
k · · · c−1

l dω
(l)
L cl · · · ck+1dck

}

+i tr
{

c−1
k · · · c−1

l−1 dω
(l−1)
L cl−1 · · · ck+1dck

}

−i tr
{

c−1
k+1 · · · c

−1
l dclcl−1 · · · ck+1 dω

(k+1)
R

}

+i tr
{

c−1
k · · · c−1

l dclcl−1 · · · ck dω
(k)
R

}

.

When evaluating this expression special care has to be taken if l = k + 1. In this case no

factors cl−1 · · · ck+1 appear between the differentials in lines two and three.
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Due to its different structure the variation of ωD(cl) has to be treated separately. In

this case we obtain

δωD(cl) = −i tr
{

dω
(l)
L dclc

−1
l + dω

(l)
R c

−1
l dcl

}

.

During the calculation we made use of

c−1
l dcl = ǫUlG

R

(

sl

)

f̃−1
l ǫUlG

L

(

s−1
l dsl

)

f̃l ǫ
UlG
R

(

s−1
l

)

− ǫUlG
R

(

dsls
−1
l

)

dclc
−1
l = ǫUlG

L

(

dsls
−1
l

)

− ǫUlG
L

(

sl

)

f̃l ǫ
UlG
R

(

s−1
l dsl

)

f̃−1
l ǫUlG

L

(

s−1
l

)

.

Indeed, these two relations imply

i tr
{

dω
(l)
L dclc

−1
l + dω

(l)
R c

−1
l dcl

}

= −δωD(cl) + i tr
{

dω
(l)
L ǫ

UlG
L

(

dsls
−1
l

)

− dω
(l)
R ǫ

UlG
R

(

dsls
−1
l

)

}

.

If we rewrite the last term according to

tr
{

ǫUlG
L

(

ǫHUl(dω)dsls
−1
l

)

− ǫUlG
R

(

ǫHUl(dω)dsls
−1
l

)

}

we see that it vanishes provided the two embeddings ǫUlG
L/R have the same embedding index.

Summing up all contributions and remembering that the variation of ωD(ck, ck+1)

shows some subtleties we obtain

δωD = −i

n
∑

l=1

tr
{

dω
(n)
L cn · · · cl+1dclc

−1
l · · · c−1

n + dω
(1)
R c−1

1 · · · c−1
l dclcl−1 · · · c1

}

.

During the calculation we made use of several cancellations. Finally, we have to compare

this expression with the variation of the Wess-Zumino term. A careful calculation gives

δωWZ = −i d tr
{

dω
(n)
L dgg−1 + dω

(1)
R g−1dg

}

.

This may easily be evaluated using the relations

g−1dg =
n
∑

l=1

c−1
1 · · · c−1

l dclcl−1 · · · c1 , dgg−1 =
n
∑

l=1

cn · · · cl+1dclc
−1
l · · · c−1

n .

The variation then reads

δωWZ = −i

n
∑

l=1

d tr
{

dω
(n)
L cn · · · cl+1dclc

−1
l · · · c−1

n + dω
(1)
R c−1

1 · · · c−1
l dclcl−1 · · · c1

}

.

28



Obviously, the contributions from δωWZ and δωD cancel each other exactly. This proves

that the product of generalized twisted conjugacy classes is indeed a valid candidate for

the geometry of D-branes which preserve an action of the group H .

Now we are able to address item b), i.e. the invariance of the action functional (2.7)

under infinitesimal deformations of the disc D. It is sufficient to proof the relation dωD =

ωWZ
∣

∣

D
. The calculation turns out to be very involved if one tries to perform it directly.

It is convenient to use an induction argument instead, i.e. we supply the boundary two-

form with an additional label n and write ωD(n). The number n ist just the number

of generalized twisted conjugacy classes appearing in eq. (A.2). For n = 1 we have

ωD(1) = ωD(c1). Let us thus first determine

dωD(cl) = −tr
{

ǫUlG
L

(

s−1
l dsls

−1
l dsl

)

f̃l ǫ
UlG
R

(

s−1
l dsl

)

f̃−1
l

}

+ tr
{

ǫUlG
L

(

s−1
l dsl

)

f̃l ǫ
UlG
R

(

s−1
l dsls

−1
l dsl

)

f̃−1
l

}

.

On the other hand we have

ωWZ(cl) =
1

3
tr
{(

ǫUlG
R

(

sl

)

f̃−1
l ǫUlG

L

(

s−1
l dsl

)

f̃l ǫ
UlG
R

(

s−1
l

)

− ǫUlG
R

(

dsls
−1
l

)

)3}

=
1

3
tr
{

ǫUlG
L

(

(s−1
l dsl)

3
)

− ǫUlG
R

(

(dsls
−1
l )3

)

}

− tr
{

f̃−1
l ǫUlG

L

(

s−1
l dsls

−1
l dsl

)

f̃l ǫ
UlG
R

(

s−1
l dsl

)

}

+ tr
{

f̃−1
l ǫUlG

L

(

s−1
l dsl

)

f̃l ǫ
UlG
R

(

s−1
l dsls

−1
l dsl

)

}

.

The first two terms vanish as the two embeddings by assumption have the same embedding

index. By specializing to l = 1 we have proven dωD(n) = ωWZ
∣

∣

D
for n = 1.

Let us now turn to the case n > 1. It is convenient to introduce the notation gn =

cn · · · c1 = cn gn−1. In addition we also need the recursion property ωD(n) = ωD(n −

1) +
∑n

l=1 ωD(cl, · · · , cn). Using the representation above we easily obtain g−1
n dgn =

g−1
n−1c

−1
n dcngn−1 + g−1

n−1dgn−1. We are thus able to calculate

ωWZ(gn) = ωWZ(gn−1) + ωWZ(cl)

+ tr
{

c−1
n dcnc

−1
n dcndgn−1g

−1
n−1 + c−1

n dcndgn−1g
−1
n−1dgn−1g

−1
n−1

}

.

By induction we have dωD(n − 1) = ωWZ(gn−1). We also proved already that dω(cn) =

ωWZ(cn). It thus remains to check whether

n−1
∑

l=1

dωD(cl, · · · , cn) = tr
{

c−1
n dcnc

−1
n dcndgn−1g

−1
n−1 + c−1

n dcndgn−1g
−1
n−1dgn−1g

−1
n−1

}

.

(A.5)
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Indeed, for the left hand side we have

n−1
∑

l=1

dωD(cl, · · · , cn) =
n−1
∑

l=1

n−1
∑

k=l

tr
{

c−1
l · · · c−1

k dckc
−1
k · · · c−1

n dcncn−1 · · · cl+1dcl
}

+
n−1
∑

l=1

tr
{

c−1
l · · · c−1

n dcnc
−1
n dcncn−1 · · · cl+1dcl

}

+
n−1
∑

l=1

n−1
∑

k=l+1

tr
{

c−1
l · · · c−1

n dcncn−1 · · · ck+1dckck−1 · · · cl+1dcl
}

.

(A.6)

To evaluate the right hand side of eq. (A.5) we use the explicit form of gn−1 as a product

of c’s and write

g−1
n−1dgn−1 =

n−1
∑

l=1

c−1
1 · · · c−1

l dclcl−1 · · · c1

dgn−1g
−1
n−1 =

n−1
∑

l=1

cn−1 · · · cl+1dclc
−1
l · · · c−1

n−1 .

Taking the square of the last expression we arrive at

dgn−1g
−1
n−1dgn−1g

−1
n−1 =

n−1
∑

l=1

n−1
∑

k=1

cn−1 · · · cl+1dclc
−1
l · · · c−1

n−1cn−1 · · · ck+1dckc
−1
k · · · c−1

n−1

=

n−1
∑

l=1

n−1
∑

k=l

cn−1 · · · cl+1dclc
−1
l · · · c−1

k dckc
−1
k · · · c−1

n−1

+

n−1
∑

l=1

n−1
∑

k=l+1

cn−1 · · · ck+1dckck−1 · · · cl+1dclc
−1
l · · · c−1

n−1 .

Plugging all this into the right hand side of eq. (A.5) we finally arrive at

tr
{

c−1
n dcnc

−1
n dcndgn−1g

−1
n−1 + c−1

n dcndgn−1g
−1
n−1dgn−1g

−1
n−1

}

=
n−1
∑

l=1

tr
{

c−1
n dcnc

−1
n dcncn−1 · · · cl+1dclc

−1
l · · · c−1

n−1

}

+
n−1
∑

l=1

n−1
∑

k=l

tr
{

c−1
n dcncn−1 · · · cl+1dclc

−1
l · · · c−1

k dckc
−1
k · · · c−1

n−1

}

+
n−1
∑

l=1

n−1
∑

k=l+1

tr
{

c−1
n dcncn−1 · · · ck+1dckck−1 · · · cl+1dclc

−1
l · · · c−1

n−1

}

.

This expression coincides with the expression (A.6). We have thus completed our induc-

tion argument.
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