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The total energy of an isolated gravitating system in General Relativity is desc!‘ibed
by a geometric invariant of asymptotically flat Riemannian 3-manifolds. On€”
parameter families of two-dimensional hypersurfaces foliating such a manifold an
obeying natural curvature conditions can be used to encode and study geometrical
and physical properties of the 3-manifold such as mass, quasi-local mass, the center
of mass and energy inequalities. The article describes recent results on Penros€
inequalities, inverse mean curvature flow, constant mean curvature surfaces and
their interconnections.

1 The mass of asymptotically flat 3—manifolds

The classical description of an isolated gravitating system such as a star,
black hole or galaxy is given by a Lorentzian 4-manifold (L?, §) of signature
(— + ++) satisfying Einsteins equations

1
2

and approaching flat Minkowski space near infinity in an appropriate sense.
We denote by {R%3}, 0 < a,8 < 3, and R* the Ricci tensor and the scalar
curvature of the Lorentzian metric g respectively. The energy momentum
tensor {T,3} is often assumed to satisfy a physically motivated positivity
condition such as the weak energy condition

Rls — zR'Gap = 87T (1

TosX°XP >0  fortimelike X. (2)

The standard approach to the study of (L*,§) is a decomposition of L
into a family of spacelike 3-dimensional hypersurfaces, see York3®!' and
Christodoulou-Klainerman®. The 3-dimensional spacelike slices have the

structure of asymptotically flat complete Riemannian 3-manifolds (M3, g, K)
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carrying an induced metric ¢ = {gag}, 1 < A,B < 3, and a second funda-
mental form K = {Kap}. Rewriting the Einstein equations as a Hamiltonian
system for g and K it is well known that the energy condition (2) implies a
lower bound for the scalar curvature of the induced metric g of the hypersur-
face in view of the constraint equations.

It was shown by Bartnik® that under very general assumptions on L the
hypersurfaces (M3, g, K) can be chosen to be maximal, ie with vanishing trace
f’f the second fundamental form K. In this gauge the energy condition (2)
implies that the scalar curvature R® of the induced metric g is nonnegative,
R >0 1f the second fundamental K vanishes completely, the hypersurface
(M3, g) is called time-symmetric and all geometric information is encoded in
the metric g. In this special case the horizon of a black hole is modelled by a
two dimensional minimal surface in (M3, g).

) Having this motivation in mind we will now concentrate on one space-
like slice and try to understand how much geometric information is already
encoded in complete Riemannian 3-manifolds (M3, g) of nonnegative scalar
curvature approaching the geometry of Euclidean IR® near infinity. We use
the following notions of asymptotically flat manifolds and exterior region.

Definition 1.1 i) A 3-dimensional asymptotically flat end is a 3-manifold
(M3, 9) with Riemannian metric g, which is diffeomorphic to IR}\ K for some
compact set K, such that in Euclidean coordinates {x*} the metric approaches
the flat metric 6 = {5ap} for r = |z| = oo:

C C . C
lgaB — daB| < TO, |0agBc| < T—;, Ric > —-1%- 3)

i) A complete 3-manifold (M3,g) is called asymptotically flat if it can be
decomposed as a disjoint union of a compact set K and finitely many asymp-
totically flat ends (M3,g), 1 <1 <gq:

M¥*=KuM}u---uM. (4)

iti) An exterior region is a complete, connected asymptotically flat 3-manifold
(M3, g) with one end having non-negative scalar curvature R(g) > 0, such that
the boundary of (M3,g) is compact and smooth, consisting of finitely many
minimal surfaces, with no other minimal surfaces contained in (M3, g).

Apart from empty space IR® the most important example of an asymptotically
flat 3—manifold is the spatial Schwarzschild manifold given by (SM3,¢%) =
(R® — {0}, ¢5) with

9ap =0aB(1 + %n;)“, 0 < m = const. (5)
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It arises as the {t = O}-slice of the Schwarzschild space-time modelling a
spherically symmetric, static vacuum black hole of mass m. It has two asymp-
totically flat ends for r — oo and 7 — 0, which are isometric under reflection
in the totally geodesic 2-sphere {r =m/2}. The two regions {r > m/2} and
{r < m/2} are both exterior regions in the sense of the definition above.

For a general asymptotically flat end (M 3 g) as in definition 1.1 the total
energy or ADM-mass in each end is defined according to Arnowitt, Deser and
Misner! by a flux integral at infinity,

1 )
m M3 = lim — i Y
ADM( 7g) Rh 167 5Ba(0) (gu,J gun)n du, (6)

in agreement with the spatial Schwarzschild manifold above:
mapm(M3,¢5) = m. Due to work of Bartnik® and Chrusciel’® it is
known that mapas is a geometric invariant of the manifold (M 3.g9). Itis
finite precisely when the scalar curvature R3 is bounded in L!'. Physically
the mass defined in this way is a total energy and measures both the matter
content of the system and the gravitational energy.

The “Positive Mass Theorem“ by Schoen and Yau?® is a crucial result
showing that the local energy condition (2) is consistent with this concept of
global energy, a basic version states:

Theorem 1.2 (Schoen-Yau 1979) If (M3,g) is an asymptotically flat 3-
manifold with non-negative scalar curvature such that the mean curvature of
its boundary is nonnegative with respect to the outward normal, then the mass
of each end is nonnegative. If the mass is zero in one end, then (M?3,g) is
isometric to flat space (R3, ).

The proof of Schoen and Yau is based on the fundamental insight that the
stability of two-dimesional minimal surfaces in a 3-manifold can be controlled
by the? scalar curvature of the ambient space. The results discussed in the
following sections also exploit this deep relation between the second variation
of area for a two dimensional hypersurface and the scalar curvature of the
surroupding 3-manifold. Asymptotically flat 3-manifolds and the question
f’f positivity for the mass were also studied by many other authors includ-
ing Geroch, Jang, Kijowski, Jezierski, Chrusciel, Witten, Choquet-Bruhat,
Parker-Taubes, Reula, Tod, Bray, Herzlich and Lohkamp. See!® and the sur-

vey a.rFicle of Lee-Parker®® for additional references to asymptotically flat
3-manifolds and the concept of total energy.
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2 Hawking mass and hypersurfaces of constant mean curvature

Consider a smooth embedding of a sphere F : S% - (M3, g) into an asymp-
totically flat 3-manifold (M3,g). From the physical information present in
(M3, g) we will try to capture as much as possible in terms of the geometry
of suitable hypersurface embeddings F'.

If v is a choice of unit normal for the hypersurface N2 = F(S?), let
A = {hy;},1 < i,j < 2, be the second fundamental form and H = trgA be
the mean curvature of N2 such that —Hv is the mean curvature vector. In
an exterior region we choose v to be the exterior normal, such that the mean
curvature of a sphere in Euclidean space is positive.

The definition of the ADM-mass (6) shows how 2-dimensional hypersur-
faces can be used to define the total energy in terms of an asymptotic flux
integral. Hawking!? introduced a geometric quantity for 2-dimensional sur-
faces N2 now called the Hawking-mass with the aim of capturing the energy
content of the region bounded by N?:

mp(N?) = |7 16r - | H%*d (7
T mpre v )

Let us collect some of the properties of this geometric quantity: A simple

computation shows that

mu(@B5(0) =m, >0, B.(0)C ("M%, (8)

i.e. my yields the desired result for the contained energy of all centered coordi-
nate spheres in the spatial Schwarzschild metric. In general it can be shown!®
that asymptotically my yields the total mass in general asymptotically flat
ends when evaluated on large coordinate spheres:

rli)ngomH(aB,-(O)) =MADM - (9)

On the other hand my is rarely positive, for hypersurfaces in Euclidean space
we have

N?cR3: H?dp > 16m, (10
N2

with equality only on round spheres. In fact, by introducing ”wrinkles” in a
given surface, one can make the Hawking mass as much negative as one likes.
The geometric quantity mpy therefore can only be related to ”energy” if the
surface N2 is chosen well. As was first observed by Christodoulou and Yau®,
stable surfaces of constant mean curvature are a good class of surfaces: Here
a surface of constant mean curvature is called stable, if the second variation
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of area with respect to all volume preserving variations is non-neagtive, i.e. if
it is a stable critical point of the isoperimetric problem in (M 3,9). It can be
seen that a constant mean curvature surface is stable for the area functional
with respect to volume preserving variations exactly when the inequality

[ Gap+ Rictw ) Paus [ 1ostan (ay
N2 N2

holds for all functions f satisfying [ f du = 0. Strict stability means that the
first eigenvalue of the Jacobi operator

Lu = —Au—u(|A]* + Ric(v,v)) (12)

when restricted to functions f with [ fdp = 0 is strictly positive.

Theorem 2.1 (Christodoulou-Yau 1986) If F : S? — (M3,g) is a smooth,
stable immersion of constant mean curvature in o Riemannian 3-manifold
(M3, g) of non-negative scalar curvature, then my(N?) > 0.

This result fits nicely with the reverse inequality in Euclidean space (10),
since the only stable constant mean curvature surfaces in Euclidean space
are round spheres. Notice that the centered coordinate spheres of the spatial
Schwarzschild manifold (S M3, g°) are strictly stable constant mean curvature
surfaces, with smallest eigenvalue of the stability operator (12) on 8B, (0) of
order 6m/r® as r — 00?!.

The existence of constant mean curvature surfaces in an asymptotically
flat end of a Riemannian 3-manifold has first been adressed by Huisken and
Yau ?! assuming that the end is strongly asymptotically flat, i.e. assuming
that for large r the metric g has the form

948 = 8ap(1+ g)“ + Pag, (13)
Co ; cC, .
|PABlS‘13, |3’PAB|ST2—J:J.,J=1,-~,4. (14)

It was shown that there is a smooth foliation by unique stable constant mean
curyafture spheres outside some compact set, provided the mass m is strictly
positive:

Theorem 2.2 (Huisken-Yau 1996) Let (M3, g) be a strongly asymptotically
flat end of a Riemannian 3-manifold with strictly positive mass m > 0. Then
there are constants Rg > 0, 75 > 0 depending only on the mass m and the
constants in (14) together with a family of 2-spheres 2,0 < 7 < 79, Of
cmazstant mean curvature T providing a regular foliation of the exterior region
M \B.R°(0)' Furthermore, for each 1/2 < q < 1 there is a constant 1, > 0
depending only on q,m and the constants in (14) such that for each0 <7< 7
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the surface £2 is the only stable constant mean curvature surface contained
in Al3 \ BT—q(O).

The proof of the existence result uses the L2-gradient flow of the area func-
tional subject to a volume constraint to deform an initial coordinate sphere to
the desired constant mean curvature surface. The uniqueness result exploits
that the stability inequality (11) yields a priori estimates for the difference
of the two principal curvatures on a constant mean curvature surface. Notice
that Ye3° has an alternative approach to the existence part of the theorem.

The existence and uniqueness result above extends the notion of “center
of mass“ from Newtonian mechanics to the relativistic setting: The family of
2-spheres I, provides an asymptotic center of mass for the infinitely far ob-
server. Such a family of unique 2-spheres seems to be the most natural concept
of a "center”, since no distinguished Euclidean structure can be refered to on
(M3, g) in a natural way and since already the spatial Schwarzschild manifold
illustrates that a “center“ cannot be provided by a point of the manifold. The
family X, thus breaks the translation invariance in the asymptotically flat re-
gion and provides a natural geometric radial coordinate there. It can easily be
employed to define a canonical coordinate system near spatial infinity using
a harmonic gauge in angular direction.

The relation of constant mean curvature surfaces to the Hawking-mass
has been further clarified by Bray ¢, who studies the isoperimetric problem in
(M3, g) from the variational point of view and observes in particular that the
Hawking-mass is monotone along a foliation of stable constant mean curvature
surfaces.

Theorem 2.3 (Bray 1997) Let (M?3,g) be a Riemannian 3-manifold of non-
negative scalar curvature. Then the Hawking mass is monotonically increas-
ing along a foliation of ezpanding stable constant mean curvature spheres in
(M3, 9).

In the special case where (M3, g) is an exterior region admitting a foliation
by stable constant mean curvature spheres between a single boundary compo-
nent and spatial infinity, the monotonicity above and (9) yield an inequality
between the ADM-mass and the area of the boundary known as the Penrose
inequality. In general such a foliation of constant mean curvature spheres
will not exist in (M3, g). The next section shows how a different family of 2-
spheres with monotone Hawking-mass can be constructed for general exterior
regions.
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3 Inverse mean curvature flow and the Penrose inequality

Let (M?,g) be an exterior region as in definition 1.1. In theorem 1.2 Schoen
and Yau show that the total energy of an isolated system given by the ADM.
mass is non-negative and that in some sense Minkowski space is the absolute
ground state of minimum energy. It was already conjectured earlier by penrose
28 i 1973 that a stronger result holds, namely there should be a positive lower
bound for the total energy in terms of the size of the outermost black . ‘Ole
present in the system, with the Schwarzschild metric as the sharp limiting
ground state for such an inequality.

In recent work by the authors!?,'® such a lower bound for the ADM-Mass
is proved in general exterior regions:
Theorem 3.1 (Huisken-Iimanen 1997) Let (M3, g) be an asymptotically flat
exterior region. Then the total mass m of (M3, g) is non-negative and

167m? > |52,

where |£2| is the area of any connected component of OM3. Equality holgs if
and only if M3 is one-half of the spatial Schwarzschild manifold (SM>, 9 ).
Notice that the exclusion of other compact minimal surfaces in the definition of
an exterior region is necessary to account for the possibility of large black holes
being hidden behind small ones. Also, the theorem provides an alternative
proof of the positive mass theorem 1.2 as a special case. An approaCh to
this result based on 2-dimensional surfaces flowing along the inverse of the
mean curvature was originally suggested by Geroch!!, see also?2,23. Other
approaches are due to Gibbons!2,'®, Herzlich!®, Bartnik?, Jezierski2?,?”> and
Bray® as mentioned in the previous section. See!7,!® for additional references
and a more detailed account. Recently Bray” has used a method of conformal
deformations and area-minimizing boundaries in conjunction with the positive
mass theorem to estimate the ADM-mass from below by the sum of the areas
of the boundary components, improving the estimate above.

The approach suggested by Geroch employs smooth solutions F : S 2 x
[0,T) — (M3, g) of the inverse mean curvature flow

d 1 0
7FP ) =zv(pt), peSt telT), (15)

which is a parabolic system for the evolving surfaces N? = F(-,t)(S?) if the
mean curvature H is strictly positive. Geroch observes that the flow acts
monotone on the Hawking-mass (7) if the scalar curvature of the ambient
manifold is non-negative:

d
amH(NE) > 0. (16)
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Near an inijtiz] minimal surface the Hawking-mass yields the appropriate area
term and for large coordinate spheres it approaches the ADM-mass as in (9),
such that the desired inequality is proven provided the existence of a solution
to (15) is established.
ithout extra assumptions on the ambient manifold and the initial data
it is Clear that singularities will occur in general. For example, the solution
eVOlVing from a thin symmetric torus cannot exist forever and similar exam-
ples can be constructed in the class of 2-spheres, showing that the flow usually
has no smooth solutions in general exterior regions.
In'® the problem of singularities is overcome by using a level-set formula-
tion of the flow where the surfaces N} solving (15) are replaced by level-sets

N2 = 8{x € M’|u(z) < t}

of a scalar function v : M3 — IR. Intuitively u(z) is the time where the
expanding surface passes through z € M 3. In the smooth case the function u
satisfies a degenerate elliptic boundary value problem

Du
div(i=) = Dul, u| =0 17
Bop) = 1Duk an
replacing the parabolic equation (15), note that the LHS is the mean curvature
of a level-set and the RHS is the inverse speed. To obtain a concept of weak
solution suitable for our purposes, we introduce a global variational principle
for u requiring that u minimizes an energy depending on u itself,

Ju() = JK(v) = /K |V} + v|Vul dz, (18)

amongst all competing functions v € C*! with the same initial data N§ and
agreeing with u outside some compact set K. This concept of weak solution
implies (17) in an integral form as Euler-Lagrange equation, it allows spatial
jumps of the surfaces N2 where the mean curvature H = |Du| becomes zero
and the level-sets of u "fatten”, and it ensures that the surfaces N7 have
continuously varying area while allways enclosing the maximal possible volume
for the area available at time ¢. Using elliptic regularisation

div( ) = V@D’ (19)
Ve + |Dul?

it is possible to construct for ¢ = 0 a unique weak solution of (17) with
these properties that still possesses the crucial monotonicity property for the
Hawking-mass (16), leading to the proof of theorem 3.1. The proof of the
monotonicity of the mass employs geometric measure theory and is one of the
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main analytic difficulties in this approach, see!® for the theory of invers€ r;ez:n
curvature flow. The regularised equation (19) has been used by Pasch™ %
compute weak solutions of the flow numerically.

In !8 we show that the unique weak solution u of inverse mean cur
flow is of class C®! with level-sets NZ in C'*,0 < a < 1, of non-ne
bounded mean curvature. Heidusch!® has recently shown that the leve€
N? of the weak solution are allways at least of class C*1, which is the€
possible regularity result for the flow. In new work?® we show that solut
of inverse mean curvature flow in all dimensions are smooth as long as the
mean curvature is strictly positive and then go on to show that such a Strl‘:ﬂ?"
positive lower bound for the mean curvature is allways true on v starshaped
surfaces in Euclidean space. In a forthcoming paper we show that solutions
of inverse mean curvature flow in asymptotically flat ends are smooth out-
side some compact set. If the end is strongly asymptotically flat, the ﬁ.OW
approaches the center of mass given by the constant mean curvature foliation
in theorem 2.2 at an exponential rate.

yature
gative
] sets

est,
ions

4 Quasi-local mass and the Bartnik capacity

Given an open 3-manifold (€, g) with compact boundary and non-negative
scalar curvature, it is important to have a rigoros mathematical notion of
quasi-local mass motivated by the energy content attributable to a subset
(R,9) C (M3,9) of an asymptotically flat 3-manifold modelling a Spacelike
slice of an isolated gravitating system.

One of the first suggestions for a quasi-local mass was the Hawking-1mass
of the boundary, my{(8Q). But as we have seen in the previous sections
the Hawking-mass, despite having very desirable properties on certain special
two-spheres such as stable constant mean curvature surfaces or solutions of
the inverse mean curvature flow, is negative on generic boundaries 82 and is
therefore not suitable as a general measure of energy content. A good concept
of quasi-local mass @ should have the following properties®:

(i) (Monotonicity) If 2 C ©, then Q() < Q(Q).

(i) (Positivity) @Q(2) > 0, and Q(f2) > O unless €2 is locally isometric to IR®.

(iii) (Exhaustion) If ©); is a sequence of bounded subsets of an exterior region

M?3 such that xq, = xum locally uniformly, then lim Q(£;) = mADM(Ma)-
The following definition is inspired by Bartnik® and also used in this form

in!®:

Definition 4.1 Let (£2,g) be an open Riemannian 3-manifold with compact

boundary and non-negative scalar curvature. We say that an exterior region



m

(M3, 9 is an admissible extension of (2, g) if there is an isometric embedding
(2, g) > (M3, g). If Q has an admissible extension the Bartnik gravitational
capacity of ) is defined as

cB(N) := inf{mapru (M3, g)| (M>, g)is an admissible extension of }.

Notice that with this definition the extension (M 3,9) (and hence (9, g)) can
have horizons on an inner boundary, which is less restrictive than Bartniks
original definition, making our definition less than or equal to Bartniks. The
monotonicity property (i) above is satisfied trivially and the weak positivity in
(i) is a consequence of the positive mass theorem 1.2. Using the inverse mean
Curvature flow and the precise form of the monotonicity for the Hawking-mass
(16) we can show!® that all the properties (i)-(iii) listed above are satisfied
for the Bartnik capacity:

Theorem 4.2 (Huisken-Ilmanen 1997) The Bartnik capacity cp satisfies the
Posttivity property (ii) and the ezhaustion property (iii).

From the proof it can be seen that in specific models, eg for stars having
Certain density profiles, the presence of the scalar curvature in the mono-
tonicity formula for the Hawking-mass allows the computation of concrete
lower bounds for the Bartnik capacity. It is an open problem whether an
admissible domain (£, g) with cp() = 0 is actually isometric to a subset of
IR®. Other interesting questions concern the limiting behaviour of sequences
of extensions realizing the infimum in the definition of cp.
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