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Abstract. This paper demonstrates the power of the functional-calculus definition of linear fractional (pseudo-)
differential operators via generalised Fourier transforms.

Firstly, we describe in detail how to get global causal solutions of linear fractional differential equations
via this calculus. The solutions are represented as convolutions of the input functions with the related impulse
responses. The suggested method via residue calculus separates an impulse response automatically into an expo-
nentially damped (possibly oscillatory) part and a ‘slow’ relaxation. If an impulse response is stable it becomes
automatically causal, otherwise one has to add a homogeneous solution to get causality.

Secondly, we present examples and, moreover, verify the approach along experiments on viscolelastic rods.
The quality of the method as an effective few-parameter model is impressively demonstrated: the chosen reference
example PTFE (Teflon) shows that in contrast to standard classical models our model describes the behaviour in a
wide frequency range within the accuracy of the measurement. Even dispersion effects are included.

Thirdly, we conclude the paper with a survey of the required theory. There the attention is directed to the
extension from the L2-approach on the space of distributions D ′.
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1. Introduction

Fractional derivatives have become an often used tool in hereditary physics. In particular
the damping behaviour of viscoelastic media can be modelled with only few parameters by
replacing integer differential orders of damping terms by fractional orders. Since fractional
operators are global ones, they are predestinated to describe moreover memory effects.

The nearly exclusively used technique is to start from an a priori definition of fractional
derivatives like Riemann–Liouville or Caputo integrals [1–4]. But the mainly used fractional
calculus via Laplace transforms together with initial conditions runs into difficulties concern-
ing the physical interpretation of such conditions. Additionally, it can only take into account
memory effects within the scope of the Laplace transforms.

We have shown in [5] that any change in the past of the input function of a fractional
order system changes the future of the solution. Hence the past of such systems cannot be
represented by a finite set of local initial conditions.

From an analytical point of view, such an approach has moreover many disadvantages,
e.g., the loss of the important semigroup property of integer ordered derivatives, the loss of the
translation invariance in time (see [6]) and last but not least it does not specify an admissible
function space for the solutions.
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Thus there were reasons enough for introducing another, functional analytic based ap-
proach. We did this in [7] with the intension to get criteria for the existence and the behaviour
of solutions and particularly, to get a priori criteria for causality. In that paper we developed
a L2-theory together with representations and properties of the solutions along a fractional
model of a single-mass-oscillator:

(D2 + aDν + b) x(t) = f (t), 0 < ν < 2. (1)

A more general theory was given in [8]. Further investigations were done on 2- and 3-term
operators in [9] as well as comparisons with other approaches in [5, 6]. Apart from the
mathematical stringency we attain the main justification for our method from accompany-
ing experiments (see [5, 10–12]). There the comparison of measurement with the calculated
solutions of impulse and frequency responses in viscoelastic rods have shown good agreement.

Due to the fact that in contrast to the theory its realisation is very simple, we firstly describe
the handling of our approach. Then we proceed with applications. The quality of the method
becomes evident by comparing the numerical results with measurement.

Finally, the handling and applications are backed up with a description of the required
theory.

2. Handling

2.1. TOOLS

2.1.1. The Fourier Transformation
We remind of the formula for the Fourier transform f̂ (ω) of some function f (t)

f̂ (ω) := F {f (t)} := 1√
2π

∞∫
−∞

f (t) e−iωt dt, (2)

which is valid for all f with
∫

R
|f (t)| dt < ∞. If we demand further (

∫
R

|f (t)|2 dt)1/2 < ∞
and name this quantity the L2-norm ‖f ‖2, then the Parseval formula holds:

‖f̂ ‖2 = ‖f ‖2. (3)

We remark that there is already a wide field of applications for the deduced L2-approach. For
example, stable damped causal systems are completely covered and we have concentrated our
former investigations on the related theory. Truly, the scope of the approach is much larger.
We will see later on that by functional analytic embeddings the scope of Fourier transforms
can be extremely extended to functions of exponential increasement, distributions, etc. Thus
we have not to take care about restrictions for the rest of this section.

2.1.2. Residue Calculus
For the purpose of this paper it is sufficient to give the needed formulas without any proof.
For more details see any book about complex analysis, e.g. [13, 14].

Let z0 ∈ C be a pole of n-th order of f : C → C. Put g(z) = (z − z0)
nf (z). Then the

residuum of f in z0 is

Resz0(f (z)) = 1

(n− 1)! g
(n−1)(z0). (4)
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Mostly, there are single poles and (4) can be reduced to:
Let f (z) = ϕ(z)/ψ(z) and z0 be a single zero of ψ , but ϕ(z0) �= 0. Then

Resz0(f (z)) = ϕ(z0)

ψ ′(z0)
. (5)

Now the following version of the main theorem holds:

RESIDUE THEOREM. Let G ⊂ C be a simply connected region and � ⊂ G a simply closed
(positive orientated) path. Let {zk | k = 1, . . . , n} be the set of isolated singularities inside �
such that f is holomorphic on G\{zk}. Then∫

�

f (z) dz = 2πi
n∑
k=1

Reszk (f (z)).

2.2. STARTING POINT

We consider the formal linear differential expression

A := Dνn + an−1D
νn−1 + · · · + a1D

ν1 + a0,

(ak ∈ R, 0 < ν1 < . . . < νn =: deg A). (6)

It is called ‘fractional’, if at least one νk is non-integer, otherwise it is called ‘integer’. We
look for solutions of an associated differential equation

A x(t) = f (t), t ∈ R. (7)

As a reference example we may take model (1). Generally, A may be interpreted as model of
some physical system, e.g., a composition of one-dimensional viscoelastic oscillators. Then
f (t) acts as noise, external force etc. The fractionality of the model is appropriate, if the
system shows memory. Thus f is defined on the whole time-axis and initial conditions would
moreover contradict the physics of the system. Consequently, we expect a unique solution of
Equation (7).

We introduce now two versions of the so called symbol which is associated to A. The first
one is the Fourier type representation:

a(ω) := (iω)νn + an−1(iω)
νn−1 + · · · + a1(iω)

ν1 + a0. (8)

For applications the Laplace type is more convenient:

A(s) := sνn + an−1s
νn−1 + · · · + a1s

ν1 + a0. (9)

2.3. STRATEGY

To characterise the behaviour of the system A and to describe its interplay with the input f (t)
we rewrite f as (Fourier-) convolution (δ ∗ f )(t) with the Dirac δ-impact. IfK(t) denotes the
impulse response of the system A, i.e., the solution of

AK(t) = δ(t), (10)
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then the solution of Equation (7) is given by

x(t) = (K ∗ f )(t) =
∞∫

−∞
K(τ)f (t − τ) dτ. (11)

If we look for physically consistent solutions to Equation (7), then we think of causal solu-
tions, i.e.,

(f (t) = 0 for t < t0)⇒ (x(t) = 0 for t < t0). (12)

We firstly conclude from (11) that causality of the solutions to Equation (7) is equivalent to
the causality of the impulse response, i.e., K(t) = 0 for t < 0. Secondly, if (12) holds, the
range of the integral is actually the intervall [t0, t] and (11) reads as

x(t) =
t∫

t0

K(τ − t0)f (t + t0 − τ) dτ. (13)

We see moreover from this representation that we have not really to take care on global
function spaces for f . Only the existence of the integral in the relevant interval is required.

Thus we can concentrate our attention on impulse responses.
We will clarify in the theoretical part that the following handling is not only admissible

but is based on a mathematically strong definition of the operator (6). The reader may verify
further that the method includes the cases with only integer derivatives.

2.4. THE IMPULSE RESPONSE

For hurried readers we give the gross formula for the causal impulse response.

2.4.1. The Causal Impulse Response
Let the sn denote the different zeros of A(s). Then

Kcausal(t) = Ks(t)+Ku(t). (14)

The ‘stable’ component Ks is calculated for t ≥ 0 via

Ks(t) = Krel(t)+
∑

�(sn)<0

Ressn

(
est

A(s)

)
. (15)

For Krel take the below formula (20).
The ‘unstable’ component Ku results for t ≥ 0 as

Ku(t) = −
∑

�(sn)≥0

Ressn

(
est

A(s)

)
. (16)

In detail we proceed in the following steps:

2.4.2. The Integral Representation
Fourier transforms of Equation (10) yields formally

a(ω) K̂(ω) = 1,



Fractional Calculus via Functional Calculus 103

Figure 1. Integration paths.

where a(ω) is the symbol (8).
Clearly, a(ω) has to be well defined. We have shown in [7] that physically consistent solu-

tions require all non-integer powers of iω to be defined as their principal branches. But this
is what computer programs like Mathematica, Maple, etc., do automatically. For the further
handling it is advisible to locate the associated branch cut on the positive imaginary axis.

Now, a solution of (10) is obtained by inverse Fourier transforms:

K(t) = lim
R→∞

1

2π

R∫
−R

eiωt

a(ω)
dω.

It is convenient to substitute further ω �→ −is such that the branch cut turns to the negative
real axis and the symbol becomes A(s) (Equation (9)). We arrive at

K(t) = lim
R→∞

1

2πi

iR∫
−iR

est

A(s)
ds. (17)

We emphasise that this formula may be used as black box and starting point for the explicit
evaluation.

To evaluate (17) we suggest the residue theorem method sketched in Section 2.1.2. Thus
we look for the principal-branch-roots sk of A(s) (i.e., −π < arg(sk) ≤ π ). This can easily
be done by computer-algebra systems. It has been shown in [8, prop. 3.1], that there is always
only a finite number of such zeros. We choose the integration paths of Figure 1, due to the
vanishing integrals along the arcs for R → ∞.

Respectively, let K(t) = K−(t) + K+(t), where K−(t) = 0 for t ≥ 0 and vice versa
K+(t) = 0 for t < 0. Thus the left-hand side of Figure 1 provides K−, the right-hand side
provides K+.

If and only if there is no sk with �(sk) ≥ 0 then we get K− ≡ 0 and K(t) becomes
causal, otherwise it becomes non-causal. We describe in Section 2.4.4 how to transfer such
a K− to the unstable component Ku of the causal impulse response Kcausal. K+(t) is ex. def.
always causal and turns now out to be the stable component Ks. To get this result let us for the
moment ‘forget’ roots in the right halfplane and consider the stable case.
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2.4.3. The Stable Case
Assume no roots sk with �(sk) ≥ 0. Then K(t) = 0 for t < 0 (causality). For t ≥ 0 the
residue method separates automatically the impulse response into an exponentially damped
part Kexp and a slow relaxation Krel of power-law order, i.e.,

K(t) = Ks(t) =
{

0, t < 0,

Kexp(t)+Krel(t), t ≥ 0.
(18)

If there is no zero then Kexp(t) ≡ 0. Otherwise, in case of some non-integer derivatives, there
are always pairs of conjugate complex zeros sk, s̄k = −ρk ± iσk(ρk, σk > 0) and possibly
some on the branch cut (sk = −ρk, (ρk > 0), i.e. arg(sk) = π).We get from (4) for t ≥ 0

Kexp(t) =
∑

�(sk<0)

Ressk (
est

A(s)
) =

∑
�(sk<0)

pk(t) e−ρkt sin(σkt + θk), (19)

where pk is a polynomial factor if the zero sk is multiple. The θk are resulting phaseshifts (see,
e.g., Equation (26) below).

The fractional parts of the symbol (9) cause that the integrals along the branch cut (negative
real axis) do not cancel. If we split the symbol along the branch cut into A(r) =: C(r)+ iS(r)
(−∞ < r ≤ 0), C(r), S(r) ∈ R then we get for t ≥ 0

Krel(t) = 1

π

∞∫
0

S(r) e−rt dr

C2(r)+ S2(r)
. (20)

Apart from possible representations of Krel via Mittag–Leffler functions we suggest a nu-
merical treatment of this integral. We will characterise Krel later (Equation (23)) more pre-
cisely. Obviously, Krel(t) → 0 for t → ∞. Thus the heading of this subsection is correct:
Equation (18) becomes asymptotically stable.

Remark 1. Truly, the ‘integer’ case, i.e. only integer derivatives, is included. Firstly, Kexp

keeps his form. In case of only negative zeros all σk vanish such that no oscillations occur.
Secondly, Krel(t) ≡ 0, because S(r) ≡ 0 along the real negative axis. This is of course
consistent to the trivial fact that no branch cut is needed in this case.

2.4.4. The Unstable Case
Assume that there are roots sm with �(sm) ≥ 0. Firstly, Ks := K+ is calculated via Sec-
tion 2.4.3 (from the roots with negative real part, if there are some. The relaxational part
exists always, if there is at least one fractional derivative). For t < 0 we proceed analogously:
we have simply to summarise all residues of all zeros sm = ρm ± iσm (rhom, σm ≥ 0). Thus
K−(t) = 0 for t ≥ 0 and analogous to (19) for t < 0

K−(t) =
∑

�(sm)≥0

Ressm

(
est

A(s)

)
=

∑
�(sm)≥0

qm(t) eρmt sin(σmt + θm). (21)

Thus we get a stable but non-causal ‘impulse response’. Apart from the mathematical
justification in the theoretical part we conclude from the causality and the instability of the
physical system that K− is the superposition of a homogeneous solution of equation (7) and
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the unstable component Ku of the causal impulse response. Obviously, because of Ku(t) = 0
for t < 0, this homogeneous solution must be K−|t<0 extended to C∞. Substracting it from
K−we get

Ku(t) =


0, t < 0,

−
∑

�(sm)≥0

qm(t) eρmt sin(σmt + θm), t ≥ 0. (22)

We have now arrived at the above given result (14) for the causal impulse response. We
emphasise once more that it includes the well-known results from the ‘integer’ theory. But we
have essentially one more detail because of the decomposition of the stable component (see
equation (18)).

Remark 2. It must be emphasised that other approaches, e.g. Riemann–Liouville, yield the
same integral (17), if the initial conditions are all chosen zero. Thus we could have followed
now the commonly used representation via special functions, mostly of Mittag–Leffler-type
[2, 4, 15–17]. From a mathematical point of view this is satisfactory. But from those formulas
nobody can see any significant properties of the impulse responses (as pointed out in the
following) nor is it (until now) easy to calculate them. Thus we advise emphatically [7, 8] the
described method.

3. Illustration

In consequence to the last section, the ‘fractional’ causal system shows all ‘integer’ effects as
there are oscillations in case of non-real zeros of A(s), exponential behaviour in case of zeros
with non-zero real parts, etc. But there is an additional relaxation in the stable component
which needs some more attention. Thus let us firstly consider the stable component.

3.1. THE STABLE COMPONENT

In contrast to the ‘integer’ case there is always a stable component in case of a fractional
operator, even if there are no zeros with negative real parts. Due to the necessary branch cut we
get at least a relaxation Krel. From its representation (20) we are able to quantify its asymptotic
behaviour. It is easily seen that Krel decays for large t totally monotonic and becomes totally
dominant over Kexp: all derivatives of Krel decrease with powers of t whereas the derivatives
of Kexp decay exponentially (if Kexp �≡ 0 ). More precisely, Watson’s lemma [8] yields for
t → ∞

K
(n)
rel � (−1)n

aq sin(νqπ)

a2
0π

�(νq + n+ 1) t−(νq+n+1) , (23)

where νq denotes the lowest fractional (i.e. non-integer) derivative in the operator (6). We
emphasise that Krel cannot be modelled by ‘integer’ linear differential operators with con-
stant coefficients. If Kexp �≡ 0, we get an exponentially damped oscillation round Krel. Con-
sequently the stable impulse response has only a finite number of zeros and decays in the end
monotonically to the t-axis.
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Figure 2. Impulse response and relaxation.

Figure 3. Non-causal stable impulse response.

To display this typical behaviour we consider the 3-term-operator D2 + 3D0.6 + 1 , which
belongs to a stable system (the zeros ofA(s) are −1.19794±1.97672 i). In Figure 2 we depict
its impulse response K(t) and its relaxation Krel (dashed line).

3.2. THE UNSTABLE CASE

Consider the operator 5D2 − D0.1 + 1. Since the symbol A(s) has exactly one pair of zeros
0.057687±0.18663 i in the right halfplane, we get from Section 2.4.3 that the stable compon-
ent consists of only Krel, whereas K−(t) is for t < 0 an exponentially increasing oscillation.
Figure 3 shows the resulting non-causal but stable ‘impulse response’. In agreement with the
integral representation it is continuous.

Following the in Section 2.4.4 described further procedure, i.e. the superposition with a
homogeneous solution, we get the causal unstable impulse response which is depicted in
Figure 4.
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Figure 4. Causal unstable impulse response.

4. Applications

4.1. VISCOELASTIC RODS

Firstly, the frequency responses of viscoelastic rods of materials like PTFE (Teflon = Poly-
TetraFluorEthylen), PA (PolyAmid), PU (PolyUrethan), PVC (PolyVinylChlorid), PE (Poly-
Ethylen), etc., were measured. To demonstrate the power of the just described method the
results are compared to the calculated frequency responses from the fractional model as well
as from two classical damping models.

4.1.1. The Models
We start from the well-known Kelvin–Voigt model for the longitudinal displacement u(x, t)
of a one-dimensional rod

ρu,tt (x, t) = Eu,xx(x, t) + ηu,xxt(x, t). (KV)

The fractional model is now concluded by substituting the order of the time derivative in the
damping term by a fractional one

ρu,tt (x, t) = Eu,xx(x, t) + ηu,xxtα(x, t). (FR)

The third considered model is the one with constant complex Young modulus

ρu,tt (x, t) = (E� + iE�)u,xx(x, t). (CY)

In these equations we have used the following notations:

ρ: mass density, E: real Young modulus,

η: viscosity, α: order of fractional derivative,

E� + iE�: constant complex Young modulus.

The boundary conditions BC are

x = 0

⇒ F(0, t) = 0 = EAu,x(0, t)+ ηAu,xtα(0, t)
x = l (cosinus exciting force)

⇒ F(l, t) = F̃ cos(0t) = EAu,x(l, t)+ Aηu,xtα (l, t). (BC)
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Figure 5. Experimental setup.

A more detailed and illustrative description of the above damping models is given in [11].

4.1.2. Calculated Solutions
The models KV and CY can be interpreted as special cases of model FR (a = 1 or η = 0, E ∈
C, resp.). To calculate the solution of FR (with BC) we shall take the Fourier transform with
respect to time t . The solution of the resulting ordinary differential equation for x is, in the
frequency domain

û(x, ω) =
F̃ π(δ(ω −0)+ δ(ω +0)) cosh

(
x

√
−ρω2

E+η(iω)α
)

Aiω
√
ρ(E + η(iω)α) sinh

(
l

√
−ρω2

E+η(iω)α
) .

In the time domain this is a phase shifted stationary oscillation of the form

u(x, t) = U(x,0) cos(0t + ϕ(x,0)). (24)

4.1.3. Measurement
We took rods of length 1 m. A force transducer, linked with a shaker was placed at one end.
At the other (free) end an acceleration transducer was placed (Figure 5).

The measured frequency response of our ‘reference’ material PTFE (Teflon) with bronce
(ρ = 3850 kg/m3, E = 0.12 · 1010 N/m2) is shown in Figure 6.

4.1.4. Comparison
To compare the measured data with the calculated solutions of the models KV, CY and FR
we fitted the parameters α = 0.086, ηFR = 0.44 · 109 Nsα/m2, ηKV = 2 · 103 Ns/m2, E� =
0.8 · 108 N/m2. The upper hull-curves of the corresponding frequency responses are depicted
in Figure 7. The very good agreement of the fractional model is obvious. Whereas CY may
be used with some restrictions the model KV appears as not admissible.

Another important effect is the so called dispersion of the eigenfrequencies which is caused
by the non-constant phase-velocity

cl =
(

�
(√

ρ

E + η(i0)α
))−1

.

Figure 8 shows the resonance frequencies divided by their order. Whereas the models
KV, CY yield a constant for all values and thus do not show any dispersion, FR models the
increasing quotient in surprisingly good agreement with the measurement.

We emphasise that the results for other materials (including elastic ones) are as good as
in this example. In [12] the reader may found more details. Finally we have to remark with
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Figure 6. Frequency response of PTFE.

Figure 7. Comparison of the considered models.
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Figure 8. Dispersion.

Figure 9. Experimental setup.

respect to other fractional calculi that due to the stationarity of the solutions all approaches
with one-sided Laplace transforms are not admissible (apart from the problem of setting initial
conditions).

4.2. THE ONE-MASS OSCILLATOR

The aim is to check further the model of a viscoelastic one-mass oscillator (see [7])

mD2y(t)+ d Dνy(t)+ c y(t) = −f (t) . (25)

For the realisation we use as spring/damper a piece of the just described rods. It is fixed at the
top whereas the oscillator mass m is attached at the bottom and moved vertically by the force
f (t) (Figure 9).

The main problem is to get a priori the values of d, c, ν.
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We start from the related model (FR) where all constants are known. Since this model has
shown its validity, it is advisable to extract model (25) from it. This will be sketched now
briefly.

Firstly, we neglect the mass of the rod, i.e. ρ = 0. We can do this, since the mass m of the
oscillator is big compared with the mass of the damper. The appropriate boundary conditions
are now

u(0, t) = 0,

mu,tt (l, t) = −EAu,x(l, t)− ηAu,xtα (l, t)− f (t),
with damper-length l = 0.12 m and cross-section A = 7.85 · 10−5 m2.

Integration of (FR) along the rod yields finally

mu,tt (l, t)+ Aη

l
u,tα (l, t)+ AE

l
u(l, t) = −f (t).

Thus we have arrived at (25) and can identify the constants as

d = Aη

l
, c = AE

l
, ν = α.

Beating the oscillator from below simply with a hammer (i.e. f (t) = c0 δ(t)) we have realised
impulse responses for several masses m. In [7] the impulse response of (25) has been solved
(as also sketched in Section 2.4.3). We cite the result for the normalised equation (i.e. m =
c0 = 1).

Due to α �= 1 and d, c > 0 the symbol A(s) = s2 + d sα + c has exactly one pair of
conjugate complex zeros s1,2 = −σ ± iω (σ, ω > 0) if A(s) is defined by the principal branch
of sα . Thus

Kcausal(t) = c1 e−σ t sin(ωt + ϕ1)+Krel(t), (26)

with c1 = 2/
√
u2 + v2, ϕ1 = arctan(u/v), where u± iv = a′(s1,2).

The relaxation function (20) is given by

Krel(t) = 1

π

∞∫
0

d sin(απ) rα e−rt dr

(r2 + rαd cos(απ)+ c)2 + (rαd sin(απ))2
.

It turns out that due to the parameters of our materials the relaxation Krel(t) is such small
that – although it is domininant later on – it can be neglected together with the phaseshift ϕ1.
Taking into account that the equation has been normalised the solution of (25) becomes

y(t) ≈ c2 e−σ t sin(ωt). (27)

We will show later on that measurement and calculation of σ and ω match very good for
a large range of oscillator masses. To get an idea of the quality of the fractional approach we
compare the results with those from the classical damped oscillator:

m ẍ(t)+ d̃ ẋ(t)+ c̃ x(t) = −c0 δ(t). (28)

Here we have c̃ = c whereas d̃ can be fitted and optimised during the measurement. The
zeros of the accompanying characteristic equation are: s̃1,2 := −σ̃ ± iω̃ with σ̃ = d̃/2m and
ω̃ = √

σ̃ 2 − c̃/m. Hence Equation (28) has the solution
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Table 1. Comparison with measurement.

Measured Calculated

m [kg] σ ω σ ω σ̃ ω̃

0.975 30 880 29.3 845 92.0 660

2.475 18 527 17.6 525 36.3 414

5.475 13 351 11.4 350 16.4 278

8.475 10 289 9.0 280 10.6 224

9.975 9 263 8.2 258 9.0 206

x(t) = c3 e−σ̃ t sin(ω̃t).

To compare both models the measured and calculated damping and frequency values are
listed in Table 1.

We have to make some comments. The constant d̃ has been optimised for the mass 9.975 kg
to d̃ = 179.22 Ns/m. Hence the last row shows the exact damping constant σ̃ = 9.0 for the
classical model. Truly, this is the only admissible value of all σ̃ , ω̃. An optimation for another
mass would only move but not change the bad coincidence of the classical model with the
measurement. The fractional model however covers the whole shown range of masses very
good (σ and ω) with one constant d. In contrast the classical model would at last need for
every mass a new parameter d̃ to match the correct damping behaviour. But it fails totally
matching the frequency. We emphasise further that the constants of the fractional model are
only dependent on the material and have not been optimised for this experiment. Consistent
to the above results for the viscoelastic rod 4.1 the model (25) of the one-mass oscillator has
shown similar good results for other materials too (see [18]).

5. Theory

We remind on the starting point in Section 2.2. There we considered differential equations

A x(t) = f (t), t ∈ R, (29)

where A denotes a differential expression

A := Dνn + an−1D
νn−1 + · · · + a1D

ν1 + a0,

ak ∈ R, 0 < ν1 < . . . < νn =: deg A. (30)

We remark that the now following theory can be easily extended to n dimensions (x maps
from Rn to C), if the νk are interpreted as multiindices. Only some normalising factors have
to be generalised [19, 20].

5.1. L2-THEORY

5.1.1. The Functional Calculus Definition
In order to make the formal expression (30) a well-defined operator A and to get global and
global causal solutions of the associated differential equation (29) we start from a L2-theory.
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We consider A as a pseudo-differential operator in the sense of the usual functional calculus
(see, e.g., [21, 22]). If a(ω) denotes the associated symbol (Equation (8)) and F denotes the
extension of the Fourier transformation (2) to a unitary isomorphism on L2 (see, e.g., [20, 22])
we get

A := F −1a(ω)F . (31)

A is well defined, if the symbol a(ω) or A(s) (equation (9)), respectively, is measurable. Thus
there are as many well-defined operators as there are well-defined symbols. To be precise:
the domain of the analytic continuation of A(s) is a Riemann (logarithmic) surface. If one
changes its sheets along s ∈ R countably often, A remains measurable and A becomes
densely defined, linear and closed. Thus there are infinitely many ways to fix A. This is the
purely mathematical aspect. We have shown in [7] that physically consistent solutions of (29)
require that all non-integer powers of the symbol must be defined by their principal branches.
‘Physically consistent’ means at least that in case of a continuous input f the solution should
be continuous too.

5.1.2. L2-solutions
To solve Equation (29) it is necessary that A is injective. This is true if 1/A(s) ∈ L2. (For
continuous A(s): if and only if deg A > 1/2 and A(s) has no zeros along the imaginary axis.)

If additionally 1/A(s) ∈ L1 (i.e. deg A > 1) and f ∈ L∞ then x(t) results to a continuous
L2-function (see [8]).

Since the product at the right-hand side of (31) is associative A−1 is given by

A−1 := F −1 (
1

a(ω)
)F . (32)

5.1.3. Causal L2-Impulse Responses
Since the Dirac impact δ(t) is no L2-function we cannot define the impulse response K(t)
from AK = δ. But the functional calculus approach provides from Ax = f via Fourier
transform

a(ω)̂x(ω) = f̂ (ω). (33)

Now we rewrite f̂ (ω) = 1·f̂ (ω) such that the Fourier transform K̂(ω) of the impulse response
K(t) appears as solution of

a(ω)K̂(ω) = 1

and the convolution theorem yields again

x(t) = (K ∗ f )(t).
Conditions for causal L2-impulse responses K(t) we obtained from [7, 8] from a well-

known Paley–Wiener theorem (see, e.g., [23, VI.4, theorem 2]). The result is the following
theorem:

THEOREM 1. Let deg A > 1/2 and let A(s) be defined by the principal branches of all
non-integer powers. If A(s) has no zeros sk with �(sk) ≥ 0, then the impulse response is a
causal L2-function given by

K(t) := A−11 = lim
R→∞

1

2πi

iR∫
−iR

est

A(s)
ds (t ∈ R). (34)
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K is continuous on R (i.e., K(0) = 0), if deg A > 1. For 1/2 < deg A ≤ 1 it is continuous
on R+ ∪ {0} (i.e., a finite jump at t = 0).

5.1.4. A First Extension
From the integral representation we conclude that the integral (34) still exists (and vanishes for
t < 0), if in Theorem 1 the condition deg A > 1/2 is weakened to deg A > 0. Consequently
we get still causal and stable impulse responses which are moreover continuous for t > 0
(see, e.g., [8]). Truly, for 0 < deg A < 1/2 the global L2-property is weakened to L2(R+),
because we run into a right-sided pole at t = 0.

5.1.5. A Priori Criteria for Causality
First we state that in case of L2-solutions causality and (asymptotic) stability are exactly the
same. For both it is sufficient and necessary that the symbol A(s) must not have any zeros sk
with �(sk) ≥ 0.

Since the fractional symbol A(s) looks similar to a polynomial, it might be expected that
(at least necessary) conditions on the coefficients are similar. It turns out that this is true only
for the operator D2 + aDν + b treated in [7].

But, for instance, the symbol s2/3 − s1/2 + 1/2 has the principal-branch-roots s1,2 ≈
−1.0798 ± 0.4087 i. This shows that neither the well-known necessary condition of positive
coefficients is valid nor that the number of zeros is simply determined by the degree of the
operator.

This problem was attacked in [9] by geometrical methods and totally solved for the 2- and
3-term operators Dµ+ aDν + b, b �= 0. The results are also given in [10]. Since our operators
can be composed and decomposed multiplicatively (see next subsection), we cover in fact a
broad range of applications.

5.1.6. Properties
In contrast to all other fractional calculi our operators inherit the algebraic properties from the
class of symbols. In fact our operators form a (commutative) R-algebra. Particularly we get
from the associativity of the operator product

COROLLARY 2. Let a1, a2 denote the symbols of A1,A2. Let further a12 = a1a2 such that
A12 is the associated differential operator. Then

A12 = A1A2 = A2A1.

Thus we have neither problems to include operators with only integer derivatives nor do we
have problems to compose or decompose such operators. Moreover, the inversion formula
(32) is consistent to this corollary.

A great disadvantage of approaches via one-sided Laplace transform is, from a phys-
ical point of view, their missing translation invariance in time (see [6]). But obviously our
operators have this property, namely

LEMMA 3. Let xτ (t) := x(t − τ) denote a shifted function (fixed τ ). Then

Axτ (t) = Ax(t − τ) for all t ∈ R.
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5.1.7. Fractional Derivatives
We may now briefly answer the always asked question about explicit formulas for a fractional
derivative. From (31) we get two slightly different possibilities to get Dqf, q > 0. Firstly, if
the relevant Fourier transforms are easily obtainable,

Dqf (t) = F −1(iω)qf̂ (ω). (35)

Secondly for f ∈ L2, the integral representation

Dqf (t) = 1

2π

∞∫
−∞

∞∫
−∞

(iω)q eiω(t−τ ) f (τ) dτ dω. (36)

Some elementary manipulations lead to the well-known Riemann–Liouville integral

Dqf (t) = −∞D
q
t f (t) = 1

�(k − q)
dk

dtk

t∫
−∞

f (τ) dτ

(t − τ)q+1−k , (37)

where k − 1 ≤ q < k, k ∈ {1, 2, 3, . . .}.
But it must be emphasised that our approach remains a qualitative different one than start-

ing from this formula. This will become evident by the now following extensions to a much
larger class for f than the possible scope of (37).

5.2. EXTENSION TO TEMPERED DISTRIBUTIONS

It is not the intent of this paper to give a detailed theory on this topic. But we try to emphasise
the main points and refer the interested reader (in particular for proofs) to the rich literature,
e.g., [19, 20, 23, 24].

5.2.1. The Idea
We look for a larger function space such that the Fourier transformation acts as an isomorph-
ism on it. The idea is, to look firstly for a dense subspace (S) of L2 ∩ C∞ with this property.
This S is provided with a metric which makes it a topological vector space. The Fourier
transform can now be easily embedded in the dual space (S′) which is provided with the
weak*-topology from S. This way F will be established as an isomorphism on S′. We sketch
the steps.

5.2.2. The Testing Space S

DEFINITION 1 (Schwartz space). (1) The testing space (Schwartz space) S of ‘rapidly
decreasing functions’ consists of all complex valued ϕ(x) ∈ C∞, such that

sup
x∈R

|xaϕ(b)(x)| < ∞ for all a, b ∈ {0, 1, 2, 3, . . .}.

(2) S becomes a topological vector space, if we introduce a metric d as follows

(a) Define a countable family of seminorms

ρab(ϕ) := sup
x∈R

|xaϕ(b)(x)|, ϕ ∈ S.

The induced metrics d ′
ab(ϕ,ψ) := ρab(ϕ − ψ) may be ordered to a sequence (d ′

n)n∈N.
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(b) As this sequence is generally not bounded, we define the equivalent metrics

dn := d ′
n

1 + d ′
n

< 1,

(c) which, with the weight factor 2−n, sum up to the metric d on S:

d :=
∞∑
n=0

2−ndn.

(3) From now we always consider S under the topology induced by d.

Remark 3. (1) This topology can briefly be characterised by characterising convergence in
S:

ϕk → 0 → |ϕ(b)k (x)| → 0 uniformly in x for all b ∈ N.

(2) S is separable and a dense subset of all Lp-spaces:

S � Lp, 1 ≤ p ≤ ∞.
Remark 4. We use ‘�’ to denote embeddings of topological spaces. Thus A � B means

that A is a dense subset of B with respect to the B-topology.

The basis for the further theory is (see, e.g., [20, 3.2])

THEOREM 4. The Fourier transformation F acts as a unitary isomorphism on S. Briefly:

F (S) = F −1(S) = S and ‖ϕ̂‖2 = ‖ϕ‖2 for all ϕ ∈ S.

5.2.3. The Space S′ of Tempered Distributions

DEFINITION 2. The dual space S′ of S is defined as the space of all continuous linear
functionals S → C:

S′ = {〈f | ϕ〉 ∈ C | ϕ ∈ S}.
We name it the space of ‘tempered distributions’.

We remind of the scope of S′, which consists of

1. Regular tempered distributions, given by

〈f | ϕ〉 :=
∫
R

f (x)ϕ(x) dx, (38)

which can simply be identified with the ‘normal’ functions f (x). Particularly, all functions g
are included which fulfil

g(x)

(1 + |x|2)a ∈ Lp for some

{
a ∈ {0, 1, 2, . . .},
1 ≤ p ≤ ∞. (39)
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They are called ‘tempered’ or ‘slowly increasing’ functions.

2. Singular tempered distributions, which cannot be represented via (38). The most famous
one is the Dirac-impact δ:

〈δ | ϕ〉 := ϕ(0). (40)

A big class of singular distributions are defined via

〈µ | ϕ〉 =
∫
R

ϕ(x) dµ(x), (41)

with some finite Borel-measure µ. These distributions are simply called ‘measures’. Thus (40)
can be interpreted as point measure with total mass 1 in the origin.

Remark 5. We end this subsection with the remark that S′ contains all Lp-spaces as dense
subsets, i.e.,

Lp � S′, 1 ≤ p ≤ ∞.

5.2.4. Topological Remarks
To get well-defined calculation rules as well as to extend the Fourier transformation on S′ we
may establish the weak*-topology, induced by the topology of S. This way, convergence in S′
is simply given via

DEFINITION 3. Let fk ∈ S′ for all k ∈ N.

fk → f ⇔ 〈fk | ϕ〉 → 〈f | ϕ〉 for all ϕ ∈ S.

Very important for applications and numerics is

LEMMA 5. Every singular distribution g can be approximated by a sequence {gk} of regular
distributions

〈gk | ϕ〉 → 〈g | ϕ〉 for all ϕ ∈ S.

The continuity of linear functionals causes a characterisation of S′:

LEMMA 6. A linear functional 〈f | ϕ〉 belongs to S′ if and only if

ϕk → 0 in S ⇒ 〈f | ϕk〉 → 0( in C).

It becomes immediately clear how to get now proper calculation rules on S′ from the ones on
S.

5.2.5. Calculation Rules

1. Multiplication. gf is defined for all f ∈ S′ via

〈gf | ϕ〉 := 〈f | gϕ〉,
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if gϕ ∈ S for all ϕ ∈ S and gϕk → 0 if ϕk → 0.
Functions that will do are tempered functions, see (39).

2. Differentiation

〈Dkf | ϕ〉 := (−1)k〈f | ϕ(k)〉, k ∈ N.

3. Convolution (1). Let f ∈ S′, ψ ∈ S. Then

〈f ∗ ψ | ϕ〉 := 〈f | −ψ ∗ ϕ〉.
This convolution has smoothing properties. The following lemma holds:

LEMMA 7. The just defined convolution f ∗ ψ is regular and a slowly increasing C∞-
function.

4. Convolution (2). Let f, g ∈ S′. Then

〈f ∗ g | ϕ〉 := 〈f | −g ∗ ϕ〉
is well defined, if either g has bounded support, or the supports of f and g are one-sided
bounded to the same side.

5. Differentiation of convolutions. Let f, g such that f ∗ g ∈ S′. Then

Dk(f ∗ g) = (Dkf ) ∗ g = f ∗ (Dkg), k ∈ {1, 2, 3, . . .}.

5.2.6. Fourier Transforms on S′

DEFINITION 4. Let f ∈ S′. Then f̂ and F −1f are defined via

〈f̂ | ϕ〉 := 〈f | ϕ̂〉, for all ϕ ∈ S,

〈F −1f | ϕ〉 := 〈f | F −1ϕ〉, for all ϕ ∈ S.

This way F is an isomorphism on S′. Truly, it is not unitary, because we have no inner product.
But, since we can approximate all S′-elements by L2-functions (or better S-functions provided
with L2-topology), the Parseval formula (3) is useful also in the generalised sense.

5.2.7. The Functional Calculus Definition on S′
From F (S′) = S′ we can now extend the scope of the functional calculus from L2 on S′.

LEMMA 8. Let A be the formal differential expression (30) with symbol a(ω) as above. Then

A := F −1a(ω)F

is a well-defined (pseudo-)differential operator on S′. It fulfills moreover all algebraic prop-
erties of Section 5.1.6.

Before we start the final extension we give a short illustration of the achieved state.

5.2.8. Examples
The Heaviside step function is denoted as θ(t).
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1. δ̂ = (2π)−1/2 and F −11 = √
2π δ,

2. Dqθ(t) = θ(t)

�(1 − q) t
−q (0 ≤ q < 1),

3. Dqδ(t) = δ(t)

�(1 − q) t
−q + θ(t)

�(−q) t
−q−1 (0 ≤ q < 1),

4. Dq(θ(t) tp) = θ(t)�(p + 1)

�(p + 1 − q) t
p−q (0 ≤ q ≤ p),

5. 〈Dkδ | ϕ〉 = (−1)kϕ(k)(0) for all k ∈ N,

6. Dq1 = 0 for all q > 0,

7. Dq sin(at + b) = aq sin
(
at + b + aπ

2

)
for a > 0,

8. Dq(f ∗ g) = (Dqf ) ∗ g = f ∗ (Dqg) for all q > 0.

5.3. EXTENSION TO D ′

Although a wide field of applications (including all stable systems) is already covered by the
S′-approach, there are reasons to look for a further extension. The first one is the apparently
non-causal impulse response from the integral representation (17) in the unstable case (Sec-
tion 2.4.4). We can only get rid of this problem by adding homogeneous solutions of obviously
exponential increasement (which are not in S′). A second reason is of theoretical nature: our
approach includes inside S′ linear operators with solely integer derivatives. But the integer
theory provides global solutions of exponential behaviour, too. Again, the extension to a func-
tion space is required which includes at least all homogeneous solutions of ‘integer’ operators.
Such a space can be constructed by some modifications of the procedure that established S′.

5.3.1. The Testing Space D

DEFINITION 5. The testing space D consists of all C∞-functions with compact support.

Obviously, we cannot simply use the topology of Sor an equivalent one (e.g. starting from
ρn(φ) := sup

R
{|Dnφ(x)|}, n ∈ N), because it is not complete. (One can easily construct

Cauchy sequences which converge to a S-element with unbounded support, i.e. /∈ D .) We
despense with a detailed description of the little bit sophisticated procedure how to get a com-
plete topology (which is truly not metrisable) (see, e.g., [19, 6.3]). Anyway, such a topology
can be reconstructed from the following definition of convergence in D (see, e.g., [24, 2.vi]).
A small addition to the S-convergence in Remark 3(1) is sufficient.

DEFINITION 6. Let φk ∈ D with supports Rk.

φk → 0 in D if and only if

1. |Dbφk(x)| → 0 uniformly for all b ∈ {0, 1, 2, . . .}.
2. There is a bounded region R ⊂ R such that Rk ⊂ R for all k.
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We get immediately the important property

D � S. (42)

Remark 6. Convergence in D causes convergence in S. Thus the D-topology can be em-
bedded in the above S-topology.

We proceed now totally analogous (Sections 5.2.3–5.2.5).

5.3.2. The Space of Distributions D ′

DEFINITION 7. The dual space D ′ of D is defined as space of all continuous linear
functionals on D :

D ′ = {〈f | φ〉 ∈ C | φ ∈ D}.
We name it the space of distributions. It becomes a topological vector space via the weak*-
topology induced by the D-topology.

Consistent with this is the following definition of convergence:

DEFINITION 8. Let fk ∈ D ′ for all k ∈ {1, 2, 3, . . .}.
fk → f in D ′ ⇔ 〈fk | φ〉 → 〈f | φ〉 for all φ ∈ D .

Since D is a dense subspace of S, it becomes evident that

S′ � D ′.

But different from the bounded increasement of regular S′-elements (‘functions’) regular
D ′-elements only need to be locally integrable. Thus we get from Lemma 5

LEMMA 9. Let Lloc denote the space of locally integrable functions. Then

Lloc � D ′.

Thus D ′ is sufficiently large for our purposes. In particular exponentially increasing functions
are included as well as, e.g., point measures.

5.3.3. Properties
We can now keep it very short: all statements about S′ in Sections 5.2.3–5.2.5. remain valid,
if we simply replace S by D .

But to establish now a functional calculus on D ′, we can not use the same procedure as in
case of S′. It is easily seen that Fourier transforms do not preserve the compact-support prop-
erty. Consequently, F (D) �= D . To overcome this problem we introduce now the Fourier–
Laplace transformation.

5.3.4. The Fourier–Laplace Transformation

DEFINITION 9.

f̃ (ζ ) := FC[f ](ζ ) := (2π)−1/2
∫
R

f (t) e−i ζ t dt, ζ ∈ C.
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Remark 7. Firstly, we see that f̂ = f̃ |R. Secondly and vice versa, we conclude from the
Riemann–Lebesgue lemma for L1-functions f that f̂ has an analytic continuation in C. Thus
f̃ is well defined at least in some neighbourhood of R.

There are several Paley–Wiener theorems which describe exactly scope and properties of FC-
transforms from scope and properties of f . One we have already used to establish Theorem 1
[7, 8]. The second one we need is (see, e.g., [19, 7.22])

THEOREM 10 (Paley–Wiener). Let

Br := {|t| ≤ r | r > 0}.
For every φ ∈ D with support in Br it holds

1. φ̃(ζ ), ζ = ξ + iη (ξ, η ∈ R)is entire.
2. There are constants 0 < ck <∞ such that

|φ̃(ζ ) |≤ ck(1 + |ζ |)−k er |η|, k ∈ {0, 1, 2, . . .}.
3. Conversely, if an entire function ψ(ζ ) satisfies item (2), then there exists φ ∈ D , with

support in Br , such that item (1) holds, i.e.,

ψ(ζ ) = φ̃(ζ ), ζ ∈ C.

DEFINITION 10. As commonly done, we denote by Z the space of all entire functions
ψ : C → C which satisfy, for some r > 0

|ψ(ζ )| ≤ ck(1 + |ζ |)−k er |�(ζ )|, k ∈ {0, 1, 2, . . .}
with constants 0 < ck <∞.

5.3.5. Properties of Z

1. The FC-transformation provides a 1-1-mapping between D and Z.
2. Z = F C(D) is the unique analytic continuation of F (D) on C, i.e.,

ψ(t) ∈ F (D), t ∈ R ⇒ ψ(ζ ) ∈ Z, ζ ∈ C.

3. Vice versa, briefly

F (D) = Z|R.
4. Wheras inverse Fourier transforms are Fourier transforms themselves, this not true for

Fourier–Laplace transforms. We get

F −1
C

[ψ] := F −1[ψ |R], for all ψ ∈ Z.

5. Because of Remark 6 and the continuity of F , the topology of D induces a complete
topology on F (D) which can be extended directly on Z via item (2): a subset ; in Z
is open, if and only if ;|R is open. This is consistent with the following definition of
Z-convergence.
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DEFINITION 11.

ψk → 0 in Z ⇔ ψk|R → 0 in Z|R.
Thus, in connection with the D-topology

φk → 0 in D ⇔ φ̂k → 0 in F (D)⇔ φ̃k → 0 in Z.

6. D � F (D) � S.
7. For all ψ(ζ ) ∈ Z the well-known power series expansion for entire functions leads to

ψ(ζ + ζ0) =
∞∑
n=0

ζ n0

n! D
nψ(ζ ) for all ζ0 ∈ C.

Trivially, this sum converges also in the Z-topology.
8. Finally, the convolution can be extended on Z:

(ψ ∗ φ)(ζ ) :=
∫
R

ψ(τ)φ(ζ − τ) dτ = (φ ∗ ψ)(ζ ).

5.3.6. The Space Z′
We define the dual space Z′ again as the space of continuous linear functionals on Z

Z′ = {〈f | ψ〉 ∈ C | ψ ∈ Z}, (43)

provided with the weak*-topology induced by the Z-topology from Section 5.3.5 (5). Thus
convergence in Z′ means

fk → 0 in Z′ ⇔ |〈fk | ψ〉| → 0 for all ψ ∈ Z. (44)

We omit the proof that all rules in Section 5.2.5 hold in Z′ but emphasise as an important
feature of Z′.

LEMMA 11. All elements of Z′ are entire. Particularly,

f (ζ + ζ0) =
∞∑
n=0

ζ n0

n! D
nf (ζ ) for all f ∈ Z′, ζ0 ∈ C.

Proof.

〈f (ζ + ζ0) | ψ〉 =
〈 ∞∑
n=0

ζ n0

n! D
nf

∣∣∣ψ〉
is equivalent to

〈f | ψ(ζ − ζ0)〉 =
〈
f

∣∣∣ ∞∑
n=0

(−ζ0)
n

n! ψ(n)(ζ )

〉
.



Fractional Calculus via Functional Calculus 123

The last functional is well defined in Section 5.3.5. Thus f ∈ Z′ inherits the ‘entire’-property
from Z. �

5.3.7. Examples

1. 〈δ(ζ − ζ0) | ψ〉 =
∞∑
n=0

(−ζ0)
n

n! Dnψ(0) = ψ(ζ0).

2. From Section 5.2.5, items (1) and (2), it follows:

PROPOSITION 12. f Dkδ, k ∈ N is well defined in Z:

〈f Dkδ | ψ〉 = (−1)k
k∑

m=0

(
k

m

)
f (m)(0)ψ(k−m)(0).

Remark 8. We stress the fact that the sometimes introduced ‘analytic functionals’ 〈f | ψ〉 =∫
�
f (ζ )ψ(ζ ) dζ with some contour � ⊂ C, � � R (see, e.g., [25, II., 1.4 (2)]) are not

included, due to the different topologies of Z′ and C. Those functionals would contradict the
little later established Fourier transformation, because integrals along such contours do not
equal generally the according integrals along the real axis.

Since we have the same topological conditions as by the above embeddings, we briefly state
the final chain

D � Z|R � S � S′ � Z′|R � D ′. (45)

5.3.8. The Fourier Transformation in Z′ and D ′
We are now ready to extend the isomorphism between D and Z via FC and F on their dual
spaces.

DEFINITION 12.

1. FC : D ′ → Z′ : f �→ f̃ . For f ∈ D ′ define f̃ ∈ Z′:

〈f̃ | φ〉 := 〈f | φ̃〉 for all φ ∈ D .

2. F : D ′ → Z′|R : f �→ f̂

f̂ = f̃ |R for all f ∈ D ′.

3. F : Z′|R → D ′ : g �→ ĝ. For g ∈ Z′|Rdefine ĝ ∈ D ′:

〈̂g | ϕ〉 := 〈g | ϕ̂〉 for all ϕ ∈ Z|R.

Remark 9. Obviously, (3) is well defined: ϕ̂ ∈ D and the completeness of D ′ cause the
right-hand side to be a well-defined D ′-element.

To see that the right-hand side in (1) is a well-defined Z′-element, one needs a further
Paley–Wiener theorem (see, e.g., [19, 7.23]). This, briefly, yields 〈f | φ̃〉 ∈ Z′ for all f ∈ D ′
with compact support. The embedding in Z′ follows again from the completeness of D ′ and
Z′, respectively.
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5.3.9. Examples
The reader may easily verify the following FC-transforms:

1. Let δτ (t) := δ(t − τ) and ζ = ξ + iη. Then

δ̃τ (ζ ) = (2π)−1/2 e−i τ ζ = e−τ ηδ̂τ (ξ ),

consistent with δ̃τ (ζ )|R = δ̂τ (ξ ), as well as with the F -translation rule.

2. From f̃ (k)(ζ ) = (−i)k(tkf )̃ and f ≡ 1 we get

(tk)̃ = √
2π ik Dkδ(ζ ).

3. Important is

(eat )̃ = √
2π δ(ζ + ia), a ∈ C.

This result follows from Lemma 11 and the FC-transform of the power series of eat :

(eat )̃ = √
2π

∞∑
k=0

(ia)k

k! Dkδ(ζ ).

4. Consequently,

(a) (sin(at))̃ = iπ [δ(ζ + a)− δ(ζ − a)],
(b) (cos(at))̃ = π [δ(ζ + a)+ δ(ζ − a)],
(c) (sinh(at))̃ = π [δ(ζ + ia)− δ(ζ − ia)],
(d) (cosh(at))̃ = π [δ(ζ + ia)+ δ(ζ − ia)].

5.4. FUNCTIONAL CALCULUS ON D ′

We have now got a sufficiently large space for the extension of A. We conclude firstly

f ∈ D ′ ⇒ a(ω)f̂ (ω) ∈ Z′|R.
Since F −1(Z′|R) = F (Z′|R) = D ′, we have finally established

A := F −1a(ω)F

as a well-defined (pseudo-)differential operator on D ′.

5.4.1. Examples
We may now add the most required D ′-examples to the short list of fractional derivatives in
S′, given in Section 5.2.8. From the Fourier transforms in Section 5.3.9 the reader may easily
conclude

1. Dq eat+b = aq eat+b.

2. Dq(t eat+b) = eat+b(aq t + qaq−1) (a �= 0).
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3. Dq(tm eat+b) = eat+b
m∑
k=0

(
m

k

)
�(q + 1)

�(q + 1 − k)a
q−ktm−k

(
m ∈ N

a �= 0

)
.

4. Dq(eat sin(σ t)) = eat rq sin(σ t + qϑ) (σ > 0),
where r = √

a2 + σ 2; tan(ϑ) = |a|/σ .

We end the theoretical part by looking for the kernel of A.

5.5. THE KERNEL OF A

The handling (Section 2) can now totally be justified, if we verify the unstable case (Sec-
tion 2.4.4). This is to calculate the homogeneous D ′-solutions of the considered differential
equation (29). We start from the basic proposition:

PROPOSITION 13. Let f ∈ Z′ and f (ζ ) �= 0 in some neighbourhood Ω of a ∈ C. Then,
for k ∈ N

f (ζ )(ζ − a)k ≡ 0 inΩ ⇔ f |Ω(ζ ) =
k−1∑
m=0

cm D
mδ|Ω(ζ − a),

where cm are arbitrary complex constants.
Proof. From Section 5.2.8, item (4) and Proposition 12 ‘⇐’ becomes clear as well as higher

orders of differentiation than k − 1 will not do (a fractional one is ruled out by Section 5.2.8,
(2)). ‘⇒’ requires moreover finite point measures in a which in Z′|Ω are represented by con-
vergent series of integer-ordered derivatives of δ|Ω (note that g(ζ )δ(ζ − a) = g(a)δ(ζ − a)).�
Note that the only possible L2-solution f (ζ ) ≡ 0 is included.

Thus we may now easily answer the above question and represent the homogeneous solu-
tions of Equation (29).

THEOREM 14. Let A(s) denote the symbol of A. Let the principal branch zeros of A(s) be
sk = σk ± iνk with multiplicity mk. Then the real solutions of

Ax(t) = 0

are given by all x(t):

x(t) =
∑
k

eσkt (pmk (t) sin(νkt)+ qmk (t) cos(νkt)),

where pmk , qmk are arbitrary real polynomials of degree ≤ mk − 1.
Proof. We have to solve a(ω)̂x(ω) = 0 or A(s)̂x(−is) = 0. Let C =⋃

k Ωk, such that Ωk
are disjunct neighbourhoods of the sk . Proposition 13 holds in all Ωk. Thus C can be covered
by all those x̂|Ωk . If we interpret Dmδ as analytic continuation of Dmδ|Ωk on C we arrive at

x̂(−is) =
∑
k

mk−1∑
m=1

ck,mD
mδ(s − sk).
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Inverse Fourier transform yields

xC(t) =
∑
k

rmk (t) eiskt ,

where rmk are C-polynomials of degree ≤ mk − 1. Thus the theorem is valid. �
Remark 10. Note that the trivial (L2-)solution is included as well as all non-oscillatory ones.

Note further that the shape of the kernel is the same as in the integer case. Thus the examples
in Section 5.4.1, items (1)–(4) are consistent with this theorem.

6. Conclusion

The applications (Section 4) demonstrate the applicability of the described handling (Sec-
tion 2) which is later on justified in the theory (Section 5). If fractional derivatives occur only
with respect to one variable (mostly the time t), the method can be applied directly to linear
partial differential equations with constant coefficients. We have clarified why we suggest to
solve the resulting integrals via residue calculus. The efforts to get the solutions this way is
not much higher than the suggested methods in classical models. Only the integral for the
relaxation Krel is additional. (For stationary oscillations it can even be dropped.) Structures
and properties are easily obtainable and become much clearer than from representations by
special functions.

An important feature of the presented functional calculus approach is its mathematical
stringency. The frequently used fractional calculus seems – particularly concerning some
confusions about initial value problems together with memory effects (see [5]) – less transpar-
ent. So some authors use different definitions of fractional derivatives for different problems,
even if the mathematical model is the same. Since the functional calculus approach includes
the whole past, no such adaptions are necessary. Together with its simplicity (including the
‘integer’ case) it provides a powerful tool in hereditary physics.
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