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1. Introduction

Liouville theory seems to be a universal building block thatappears in various contexts such as
noncritical string theory, two-dimensional gravity or D-brane physics. It is also closely related
to theSL(2) or SL(2)/U(1) WZNW models which are interesting as solvable models for
string theory on noncompact curved backgrounds. From a moregeneral point of view one may
regard Liouville theory as a prototype for an interacting conformal field with noncompact target
space. It should therefore serve as a natural starting pointfor the development of techniques
for the exact solution of such conformal field theories.

In the case of Liouville theory with periodic boundary conditions we now have a relatively
complete characterization [14]: Knowledge of the spectrumof the theory and three point func-
tions of primary fields allow one to consistently reconstruct arbitrary expectation values of
local fields on the sphere or cylinder.

Our understanding is less satisfactory in the case of Liouville theory on two-dimensional
domains with boundary such as the infinite strip, the upper half plane or the disk: One would
again expect the theory to be fully characterized in terms ofa finite set of structure functions
together with the knowledge of the spectrum of the theory on the strip. Consistency of the
reconstruction of the theory from these fundamental data requires them to satisfy consistency
conditions very similar to those formulated by Cardy and Lewellen [3] in the case of rational
conformal field theories. A part of these data has been determined and some of the basic
consistency conditions have been verified [9] [15] [10]. What is missing are the determination
of the three point function of boundary operators and the verification that these data satisfy
the full set of conditions ensuring consistency of the reconstruction of the theory. The aim of
the present paper is to propose an explicit expression for the three point function of boundary
operators as the solution to one of the most important consistency conditions expressing the
associativity of the product of boundary operators.

The structure of this paper is as follows: The following section gathers those results on
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Liouville theory that we will use in the present paper. The third section then contains our
proposal for the three point function of boundary operators. It is based on the observation [13]
that an ansatz for that three point function in terms of the fusion coefficients naturally leads
to a solution of the consistency condition that expresses the associativity of the product of
boundary operators. It remains to fix the remaining freedom by imposing certain normalization
conditions.

Some concluding remarks are made in section 4, and the appendices contain some technical
points used in the main text.

2. Requisites

(i) Liouville theory on the sphere

Let us begin by recalling some results on Liouville theory that will be relevant for the subse-
quent discussion, see [14] for more details and references:

LFT on the sphere is semiclassically defined by the followingaction

AL =

∫
(

1

4π
(∂aφ)2 + µe2bφ

)

d2x, (1)

with the following boundary condition on the Liouville fieldφ

φ(z, z̄) = −Q log(zz̄) + O(1) at |z| → ∞. (2)

The parameterb is related to Planck’s constant~ via b2 = ~, the scale parameterµ is often
called the cosmological constant, andQ is the background charge

Q = b + 1/b.

It was first proposed in [4] that Liouville theory can be quantized as a conformal field the-
ory with a space of states that decomposes as follows into irreducible unitary highest weight
representationsVα of the Virasoro algebra:

H =

∫

S

dα Vα ⊗ Vα, S =
Q

2
+ iR+. (3)

The highest weight∆α of the representationVα was parametrized as∆α = α(Q − α). The
action of the Virasoro algebra onH is generated by the modes of the energy momentum tensor:

T (z) = −(∂φ)2 + Q∂2φ,

T̄ (z̄) = −(∂̄φ)2 + Q∂̄2φ.

The central charge of the Virasoro algebra is then given in terms ofb via

cL = 1 + 6Q2.
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The local observables can be generated from the fieldsVα(z, z̄) which semiclassically
(b → 0) correspond to exponential functionse2αφ(z,z̄) of the Liouville field. The fields
Vα(z, z̄) transform as primary fields under conformal transformations with conformal weight
∆α. Thanks to conformal symmetry, the fieldsVα(z, z̄) are fully characterized by the three
point functions

C(α3, α2, α1) = lim
z3→∞

|z3|4∆α3 〈0|Vα3
(z3, z̄3)Vα2

(1, 1)Vα1
(0, 0)|0〉.

An explicit formula for the three point function was proposed in [5,16]1

C(α3,α2, α1) =
[

πµγ(b2)b2−2b2
]

1

b
(Q−

∑

3

i=1
αi)

Υ0Υb(2α1)Υb(2α2)Υb(2α3)

Υb(α1 + α2 + α3 − Q)Υb(α1 + α2 − α3)Υb(α1 + α3 − α2)Υb(α2 + α3 − α1)
,

(4)
whereγ(x) = Γ(x)

Γ(1−x) , Υ0 = resx=0
dΥb(x)

dx .
These pieces of information indeed amount to a full characterization of Liouville theory on the
sphere or cylinder: Multipoint correlation functions can be factorized into three point functions
by summing over intermediate states. Let us consider as prototypical example the four point
function〈0|∏4

i=1 Vαi
(zi, z̄i)|0〉. Such four point functions may be represented by summing

over intermediate states from the spectrum (3) iff the variablesα4, . . . , α1 are restricted to the
range2

2|Re(α1 + α2 − Q)| < Q, 2|Re(α1 − α2)| < Q,

2|Re(α3 + α4 − Q)| < Q, 2|Re(α3 − α4)| < Q.
(5)

Inserting a complete set of intermediate states between〈0|Vα4
Vα3

andVα2
Vα1

|0〉 would lead
to an expression of the following form:

〈0|Vα4
(z4, z̄4)Vα3

(z3, z̄3)Vα2
(z2, z̄2)Vα1

(z1, z̄1)|0〉 =

=

∫ ∞

0

dP C(α4, α3, Q/2 − iP )C(Q/2 + iP, α2, α1)|Fs(∆αi
, ∆, zi)|2

(6)

Fs(∆αi
, ∆, zi) is the s-channel conformal block which is completly determined by the con-

formal symmetry (although no closed formula is known for it in general).

Fs(∆αi
, ∆, zi) = (z4 − z2)

−2∆2(z4 − z1)
∆2+∆3−∆1−∆4(z4 − z3)

∆1+∆2−∆3−∆4

× (z3 − z1)
∆4−∆1−∆2−∆3FP

[

α3

α4

α2

α1

]

(η)

whereη = (z1−z2)(z3−z4)
(z2−z4)(z1−z3)

and∆αi
= α(Q − α), ∆ = Q2

4 + P 2. Locality of the fieldsVα or
associativity of the operator product expansion would leadto an alternative representation for

1see the Appendix A for some definitions and properties of the special functions used in this article
2It turns out [14] that the four-point function defined in the range (5) permits a meromorphic continuation to generic

values ofα4, . . . , α1.
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〈0|∏4
i=1 Vαi

(zi, z̄i)|0〉 as sum overt-channelconformal blocksF t:

〈0|Vα4
(z4, z̄4)Vα3

(z3, z̄3)Vα2
(z2, z̄2)Vα1

(z1, z̄1)|0〉 =

=

∫ ∞

0

dP C(α4, Q/2 − iP, α1)C(Q/2 + iP, α3, α2)|F t(∆αi
, ∆, zi)|2

(7)

For the equivalence of the two representations (6) and (7) itis crucial that there exist [14] in-
vertible fusion transformations between s- and t-channel conformal blocks, defining the fusion
coefficients:

Fs(∆αi
, ∆α21

, zi) =

∫

S

dα32 Fα21α32

[

α3

α4

α2

α1

]

F t(∆αi
, ∆α32

, zi). (8)

In [11], an explicit formula for the fusion coefficients was proposed in terms of the Racah-
Wigner coefficients for an appropriate continuous series ofrepresentations of the quantum
groupUq(sl(2, R)) with deformation parameterq = eiπb2 . This formula was subsequently [14]
confirmed by direct calculation. The resulting expression for the fusion coefficients is the
following:

Fσ2β3

[

β2

σ3

β1

σ1

]

=

Γb(2Q − β1 − β2 − β3)Γb(β2 + β3 − β1)Γb(Q + β2 − β1 − β3)Γb(Q + β3 − β2 − β1)

Γb(2Q − σ1 − β1 − σ2)Γb(σ1 + σ2 − β1)Γb(Q − β1 − σ2 + σ1)Γb(Q − β1 − σ1 + σ2)

× Γb(Q − β3 − σ1 + σ3)Γb(β3 + σ1 + σ3 − Q)Γb(σ1 + σ3 − β3)Γb(σ3 + β3 − σ1)

Γb(Q − β2 − σ2 + σ3)Γb(β2 + σ2 + σ3 − Q)Γb(σ2 + σ3 − β2)Γb(σ3 + β2 − σ2)

× Γb(2Q − 2σ2)Γb(2σ2)

Γb(Q − 2β3)Γb(2β3 − Q)

1

i

i∞
∫

−i∞

ds
Sb(U1 + s)Sb(U2 + s)Sb(U3 + s)Sb(U4 + s)

Sb(V1 + s)Sb(V2 + s)Sb(V3 + s)Sb(Q + s)
,

where:
U1 = σ2 + σ1 − β1, V1 = Q + σ2 − β3 − β1 + σ3,

U2 = Q + σ2 − β1 − σ1, V2 = σ2 + β3 + σ3 − β1,

U3 = σ2 + β2 + σ3 − Q, V3 = 2σ2,

U4 = σ2 − β2 + σ3.

An important identity satisfied by the fusion coefficients isthe so-called pentagon equation,
which follows from a similar identity satisfied by the Racah-Wigner coefficients mentioned
previously [12].

∫

S

dδ1 Fβ1δ1

[

α3

β2

α2

α1

]

Fβ2γ2

[

α4

α5

δ1

α1

]

Fδ1γ1

[

α4

γ2

α3

α2

]

= Fβ2γ1

[

α4

α5

α3

β1

]

Fβ1γ2

[

γ1

α5

α2

α1

]

.

(9)

(ii) Liouville theory on domains with boundary

One is also interested in understanding Liouville theory ona simply connected domainΓ with
a nontrivial boundary∂Γ. For definiteness, we will only consider the conformally equivalent
cases whereΓ is either the unit disk, the upper half plane or the infinite strip.
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Semiclassically, one may define the theory by means of the action

Abound =

∫

Γ

(

1

4π
(∂aφ)2 + µe2bφ

)

d2x +

∫

∂Γ

(

Qk

2π
+ µBebφ

)

dx, (10)

wherek is the curvature of the boundary∂Γ andµB is the so-called boundary cosmological
constant. For the description of exact results in the quantum theory it was found to be useful [9]
to parametrizeµB by means of a variableσ that is related toµB via

cos2πb
(

σ − Q
2

)

=
µB√

µ

√

sin(πb2). (11)

RequiringµB to be real one finds the two following regimes for the parameter σ:

(a) if µB√
µ

√

sin(πb2) > 1, thenσ is of the formσ = Q/2 + iP

(b) if µB√
µ

√

sin(πb2) < 1, thenσ is real.

Anticipating that all relevant objects will be found to possess meromorphic continuations w.r.t.
the boundary parametersσ, we shall discuss only the first regime explicitly in the following.

The Hamiltonian interpretation of the theory [15] is simplest in the case thatΓ is the infi-
nite strip. The associated Hilbert spaceHB was found in [15] to decompose as follows into
irreducible representations of the Virasoro algebra:

HB =

∫ ⊕

S

dβ Vβ. (12)

The highest weight states generating the subrepresentation Vβ in HB will be denoted
|β; σ2, σ1〉, whereσ2 (σ1) are the parameters of the boundary conditions associated to the
left (right) boundaries of the strip. It was proposed in [9] [15] that the states|β; σ2, σ1〉 satisfy
a reflection relation of the form

|β; σ2, σ1〉 = S(β; σ2, σ1)|Q − β; σ2, σ1〉. (13)

which expresses the totally reflecting nature of the Liouville potential in (10). The following
formula was given in [9] for the reflection coefficientS(β; σ2, σ1):

S(β3, σ3, σ1) =(πµγ(b2)b2−2b2)
1

2b
(Q−2β)×

× Γb(2β3 − Q)

Γb(Q − 2β3)

Sb(σ3 + σ1 − β3)Sb(2Q − β3 − σ1 − σ3)

Sb(β3 + σ3 − σ1)Sb(β3 + σ1 − σ3)
.

(14)

In addition to the fieldsVα(z, z̄) localized in the interior ofΓ, one may now also consider
operatorsΨσ2σ1

β (x) that are localized at the boundary∂Γ. The insertion pointx may separate
segments of the boundary with different boundary conditionsσ2 andσ1. The boundary fields



6

Ψσ2σ1

β (x) are required to be primary fields with conformal weight∆β = β(Q − β). They are
therefore expected to create states|β; σ2, σ1〉 and〈β; σ2, σ1| via

lim
x→0

Ψσ2σ1

β (x)|0〉 = |β; σ2, σ1〉, lim
x→∞

〈0|Ψσ1σ2

β (x)|x|2∆β = 〈Q − β; σ2, σ1|. (15)

To fully characterize LFT on the upper half plane, one needs to determine some additional
structure functions beside the bulk three point functionC(α3, α2, α1):

(a) Bulk one point function [9]:

〈0|Vα(z, z̄)|0〉 =
U(α|σ)

|z − z̄|2∆α
. (16)

(b) Boundary two point function [9]:

〈0|Ψσ1σ2

β1
(x)Ψσ2σ1

β2
(0)|0〉 =

δ(β2 + β1 − Q) + S(β1, σ2, σ1)δ(β2 − β1)

|x|2∆β1

. (17)

Let us remark that requiring the prefactor of the first delta-distribution on the right hand
side of (17) to be unity partially fixes the normalization of boundary operators. The
appearance of the second term in (17) is a consequence of the reflection property (13).

(c) bulk-boundary two point function [10]:3

〈0|Vα(z, z̄)Ψσσ
β (x)|0〉 =

R(α, β|σ)

|z − z̄|2∆α−∆β |z − x|2∆β
(18)

(d) Boundary three point function:

〈0|Ψσ1σ3

β3
(x3)Ψ

σ3σ2

β2
(x2)Ψ

σ2σ1

β1
(x1)|0〉 =

=
Cσ3σ2σ1

β3β2β1

|x21|∆1+∆2−∆3 |x32|∆2+∆3−∆1 |x31|∆3+∆1−∆2

.
(19)

Taking advantage of the reflection property (13), we shall consider instead ofCσ3σ2σ1

β3β2β1
the

related quantity

Cσ3σ2σ1

β3|β2β1

≡ Cσ3σ2σ1

Q−β3,β2,β1
≡ S−1(β3; σ1, σ3)C

σ3σ2σ1

β3β2β1
. (20)

The present note will be devoted to the determination of thislast structure function.

3the bulk one point function is a special case of the bulk-boundary coefficient withβ = 0.
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3. Boundary three point function

(i) Associativity condition

The basic consistency condition that the three-point function of boundary operators has to
satisfy expresses the associativity of the product of boundary fields. Let us consider the 4 point
function of boundary operators. Inserting a complete set ofintermediate states between the
first two and the last two fields leads to an expansion into conformal blocks of the following
form: 4

〈

Ψσ1σ4

Q−β4
(x4)Ψ

σ4σ3

β3
(x3)Ψ

σ3σ2

β2
(x2)Ψ

σ2σ1

β1
(x1)

〉

=

=

∫

S

dβ21 Cσ4σ3σ1

β4|β3β21
Cσ3σ2σ1

β21|β2β1
Fs(∆βi

, ∆β21
, xi).

By using either cyclicity of correlation functions or associativity of the operator product ex-
pansion one would get a second expansion (t-channel):

〈

Ψσ1σ4

Q−β4
(x4)Ψ

σ4σ3

β3
(x3)Ψ

σ3σ2

β2
(x2)Ψ

σ2σ1

β1
(x1)

〉

=

=

∫

S

dβ32 Cσ4σ2σ1

β4|β32β1
Cσ4σ3σ2

β32|β3β2
F t(∆βi

, ∆β32
, xi).

Using the fusion transformations (8), the equivalence of the factorisation in the two channels
can be rewritten:

∫

S

dβ21 Cσ4σ3σ1

β4|β3,β21
Cσ3σ2σ1

β21|β2β1
Fβ21β32

[ β3

β4

β2

β1

]

= Cσ4σ2σ1

β4|β32,β1
Cσ4σ3σ2

β32|β3β2
. (21)

By means of the pentagon equation (9) it easy to verify that the following ansatz

Cσ3σ2σ1

β3|β2β1
=

gσ3σ1

β3

gσ3σ2

β2
gσ2σ1

β1

Fσ2β3

[

β2

σ3

β1

σ1

]

(22)

yields a solution to (21), as was noticed in [13]. The coefficientsgσ2σ1

β appearing are unre-
stricted by (21). Additional information is needed to determine them.

(ii) Determination of the function g

The boundary three point functionCσ3σ2σ1

β3β2β1
should be meromorphic w.r.t. the variables

β3, β2, β1. This far-reaching assumption can be motivated in various ways: One may e.g.
use arguments like those reviewed in section 3 of [14] concering the path integral for Liouville
theory. These arguments exhibit the analytic properties ofcorrelation functions as a reflection

4As in the discussion of the four point function of bulk fields,we shall restrict ourselves to the case whereRe(βi),
i = 1 . . . 4 are close enough to Q/2. In this case,β21 is of the formQ/2+ iP . It turns out a posteriori that the general
case can be treated by meromorphic continuation.
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of the asymptotic behavior of the Liouville path integral measure in the regionφ → −∞ where
the interaction terms vanish.5

Such considerations lead in particular to the identification of the residues for the poles of
Cσ3σ2σ1

β3β2β1
with certain correlation functions in free field theory, which generalize the so-called

screening-charge constructions of [6]. The resulting prescription for the calculation of these
residues was formulated in [9]. Most relevant for our purposes will be the observation that
Cσ3σ2σ1

β3β2β1
has a pole with residue 1 ifβ1 + β2 + β3 = Q: The relevant correlation functions in

free field theory do not contain any screening charges.
On the other hand, it seems worth observing that the fusion coefficients themselves are

meromorphic functions of all six variables they depend on, see [12, Lemma 21]. This means
that the functionCσ3σ2σ1

β3β2β1
that is given by the expression (22) will be meromorphic iff the

functiongσ2σ1

β is meromophic w.r.t.β.
In the following, we shall consider the special boundary field Ψσσ

−b(x), which corresponds to
a degenerate representation of the Virasoro algebra. As pointed out in [9], it is in general not
a trivial issue to decide when a boundary field that corresponds to a degenerate representation
will satisfy the corresponding differential equations expressing null vector decoupling. Here,
however, one may observe that one may create the boundary field Ψσσ

−b(x) by sending the
bulk field V−b/2 to the boundary: It follows from the fact thatV−b/2 satisfies a second order
differential equation that the asymptotic behavior whenV−b/2 approaches the boundary is
described by a boundary fieldΨσσ

−b(x) that satisfies a third order differential equation. This
last fact also implies that the operator product expansion of Ψσσ

−b(x) with a generic boundary
operator can only contain three types of contributions:

Ψσ2σ1

β (x′)Ψσ1σ1

−b (x) =

=
1

∑

s=−1

cs(β; σ2; σ1)|x′ − x|∆β−sb−∆β−∆−bΨσ2σ1

β−sb(x) + (descendants).
(23)

One may then consider the vacuum expectation values of the product of operators that is ob-
tained by multiplying (23) with the boundary fieldsΨσ1σ3

Q−β+sb, s ∈ {−, 0, +}. Taking into
account (17), one is led to identify the structure functionscs(β; σ2; σ1) (s = +, 0,−) with
residues of the general three point function. As mentioned previously, the relevant residues
can be represented as correlation functions in free field theory. The structure functionc+ is
nothing but a special case of the above-mentioned residue atβ1 + β2 + β3 = Q, which is 1.

This should be compared to what would follow from our ansatz (22). Let us note that
it follows from appendix B(iii) that the fusion coefficientsindeed have a pole in the presently
considered case. The corresponding residue is most easily calculated by means of the recursion

5An equivalent discussion can be carried out in the frameworkof canonical quantization by considering the asymp-
totic behavior of the Hamiltonian and its generalized eigenfunctions, see [14, Section 11] for such a discussion in the
case of Liouville theory without boundary, and [15] for the basics of the corresponding treatment in the case of bound-
ary conditions like (10).
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relations that follow from (9), see appendix B(iii) for somedetails. We find

Fσ1,β2−b

[

β2

σ3

−b
σ1

]

=
Γ(1 + b2)

Γ(1 + 2b2)

Γ(2bσ1)Γ(2b(Q − σ1))

Γ(b(Q − β2 + σ3 − σ1))Γ(b(Q − β2 + σ1 − σ3))
×

× Γ(b(Q − 2β2))Γ(b(Q − 2β2 + b))

Γ(b(σ3 + σ1 − β2))Γ(b(2Q − β2 − σ3 − σ1))
.

(24)

Our ansatz (22) together withc+ ≡ 1 therefore implies the following first order difference
equation forgσ3σ1

β2
:

1 =
gσ3σ1

β2−b

gσ3σ1

β2
gσ1σ1

−b

Fσ1,β2−b

[

β2

σ3

−b
σ1

]

. (25)

This functional equation is solved by the following expression:

gσ3σ1

β =

(

πµγ(b2)b2−2b2
)β/2b

Γb(2Q − β − σ1 − σ3)

× Γb(Q)Γb(Q − 2β)Γb(2σ1)Γb(2Q − 2σ3)

Γb(σ1 + σ3 − β)Γb(Q − β + σ1 − σ3)Γb(Q − β + σ3 − σ1)
.

(26)

In order to discuss the uniqueness of our solution (26) let usnote that one may derive a second
finite difference equation that is related to (25) by substitutingb → b−1 if one considersΨσ1σ1

−b−1

instead ofΨσ1σ1

−b . Taken together, these two functional equations allow one to conclude that
our solution (26) is unique up to multiplication by a factor of the form(f(σ1, σ3))

β/2b, at least
for irrational values ofb.

To fix the remaining freedom it is useful to note that we now have two possible ways to
calculate the structure functionc−(β; σ2, σ1): On the one hand one may use our ansatz (22)
together with (26) and the following residue of the fusion coefficients:

Fσ1,β2+b

[

β2

σ3

−b
σ1

]

=
Γ(1 + b2)

Γ(1 + 2b2)
.

· Γ(2bσ1)Γ(2b(Q − σ1))Γ(2bβ2 − 2bQ)Γ(2bβ2 − 1)

Γ(b(β2 + σ3 − σ1))Γ(b(β2 + σ1 − σ3))Γ(b(σ3 + σ1 + β2 − Q))Γ(b(β2 − σ3 − σ1 + Q))

On the other hand,c−(β; σ2, σ1) is one of the cases where a representation in terms of free
field correlation functions is available [9]:

c−(β; σ2, σ1) = −4µ

π

Γ(1 + b2)

Γ(−b2)

× Γ(b(2β2 − Q))Γ(2bβ2 − 1)Γ(1 − 2bβ2)Γ(1 − b(2β2 + b))

× sinπb(Q + β2 − σ3 − σ1) sin πb(β2 + σ3 + σ1 − Q)

× sinπb(β2 + σ3 − σ1) sin πb(β2 + σ1 − σ3).

(27)

One finds a precisce coincidence of the expressions which oneobtains by following these two
ways if and only if the prefactor in the expression forgσ3σ1

β is the one chosen in (26).
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By collecting the pieces, one finally arrives at the following expression for the three point
function of boundary operators:

Cσ3σ2σ1

β3|β2β1

=
(

πµγ(b2)b2−2b2
)

1

2b
(β3−β2−β1)

Γb(2Q − β1 − β2 − β3)

× Γb(β2 + β3 − β1)Γb(Q + β2 − β1 − β3)Γb(Q + β3 − β1 − β2)

Γb(2β3 − Q)Γb(Q − 2β2)Γb(Q − 2β1)Γb(Q)

× Sb(β3 + σ1 − σ3)Sb(Q + β3 − σ3 − σ1)

Sb(β2 + σ2 − σ3)Sb(Q + β2 − σ3 − σ2)

∞
∫

−∞

ds

4
∏

k=1

Sb(Uk + is)

Sb(Vk + is)
,

(28)

where the coefficientsUi, Vi andi = 1, . . . , 4 are defined as

U1 = σ1 + σ2 − β1, V1 = Q + σ2 − σ3 − β1 + β3,

U2 = Q − σ1 + σ2 − β1, V2 = 2Q + σ2 − σ3 − β1 − β3,

U3 = β2 + σ2 − σ3, V3 = 2σ2,

U4 = Q − β2 + σ2 − σ3. V4 = Q

(iii) Further consistency checks

(a) One recovers the expression for the boundary reflection amplitude (14) from the bound-
ary three point function the same way the bulk reflection amplitude was recovered from
the bulk three point function in [16]: Using the fact that thefusion matrix depends on
conformal weights only, and is thus invariant whenβi → Q − βi, one finds:

Cσ3σ2σ1

Q−β3|β2β1

=
gσ3σ1

Q−β3

gσ3σ1

β3

Cσ3σ2σ1

β3|β2β1

(29)

From the expression (26) for the functiong, one indeed finds formula (14) for
S(β; σ2, σ1).

(b) One may explicitly check that the two-point function (17) is recovered by taking e.g. the
limit β1 → 0 if the three-point function:

lim
β1→0

Cσ3σ2σ1

β3|β2β1
= δ(β3 − β2) + S(β2; σ3 σ1)δ(β3 + β2 − Q).

This is an easy consequence of the identity (52) proven in Appendix B(i)

(c) With the help of symmetry properties of the fusion coefficients (see Appendix B(ii)),
it is possible to check that the boundary three point function is invariant w.r.t. cyclic
permutations.

(iv) Uniqueness

We are finally going to sketch an argument in favor of the uniqueness of our expression for
the boundary three point function: Let us consider the associativity condition in the case that
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σ1 = σ2 and that the boundary fieldΨσ1σ1

β1
(x1) is replaced by the degenerate fieldΨσ1σ1

−b (x1).
Due to (23), one finds that the associativity condition (21) gets replaced by

∑

β21=β2−sb
s∈{−,0,+}

cs(β2; σ3, σ1)Fβ21β32

[ β3

β4

β2

−b

]

Cσ4σ3σ1

β4|β3β21

= ct(β32; σ4, σ1) Cσ4σ3σ1

β32|β3β2

, (30)

whereβ32 takes the valuesβ4 + tb, t ∈ {−, 0, +}. This can be read as a system of finite
difference equations for the general boundary three point functionCσ3σ2σ1

β3|β2β1
. By specializing

to the case thatβ32 = β4, one finds in particular a linear relation between theCσ4σ3σ1

β4|β3β2−sb,
s ∈ {−, 0, +}. Replacing the degenerate fieldΨσ1σ1

−b (x1) by Ψσ1σ1

−b−1(x1) leads to a similar
second order finite difference equation which is related to the first by replacingb → b−1 in the
coefficients, as well as replacingβ2 − sb by β2 − sb−1.

It can be shown (see appendix C) that such self-dual systems of finite difference equations
can for irrationalb only have at most two linearly independent solutions. The relevant linear
combination of these two solutions can be fixed e.g. by imposing the correct behavior w.r.t.
the reflectionβ2 → Q − β2 as given by (13). In this way one arrives at the conclusion that
the finite difference equations following from the associativity condition together with the
reflection property (13) suffice to uniquely determine the dependence ofCσ3σ2σ1

β3|β2β1
w.r.t. the

variableβ1.
But one may of course repeat that line of arguments by replacing any of the four operators in

the four point function of boundary fields by the degenerate fieldsΨσσ
−b(x) or Ψσσ

−b−1(x), which
would lead to finite difference equations that constrain thedependence ofCσ3σ2σ1

β3|β2β1

w.r.t. β3

andβ2. This leads to the conclusion that indeed the associativitycondition in the presence of
degenerate fields together with the reflection property (13)uniquely determine the dependence
of Cσ3σ2σ1

β3|β2β1
w.r.t. all three variablesβ3, β2, β1.

The remaining freedom consists of multiplication with an arbitrary function of the boundary
parametersσ3, σ2, σ1. This freedom is eliminated by requiring that the residue ofthe pole of
Cσ3σ2σ1

β3|β2β1
atβ1 + β2 + β3 = Q should indeed be unity, as discussed in subsection 3(ii).

4. Concluding remarks

We now have determined the last of the structure functions that one needs to completely charac-
terize Liouville theory on domains with boundary. What remains to be done is the verification
that the expressions that have been put forward indeed satisfy the full set of Cardy-Lewellen
type [3] consistency conditions. Although some particularly important conditions have been
verified (an analog of the Cardy condition [15], as well as theassociativity condition studied in
the present paper), it remains in particular to verify the conditions that link the boundary three
point function with the bulk-boundary two-point function proposed in [10].

A beautiful characterization of the structure constants ofcertain classes of rational conformal
field theories with boundaries has been given in [7], see also[2] for closely related results. It
can be read as the statement that upon choosing a suitable normalization of the three point
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conformal blocks or chiral vertex operators, it becomes possible to recover all of the structure
constants from the defining data of an associated modular tensor category. Validity of the
Cardy-Lewellen conditions is automatic in this formalism.What is not directly furnished by
that formalism, though, is the explicit characterization for the necessary normalization of the
three point conformal blocks.

It would certainly be nice to have at hand a similarly powerful formalism for non-rational
conformal field theories such as Liouville theory. This should allow one in particular to carry
out the missing proof that the structure functions satisfy the full set of Cardy-Lewellen type [3]
consistency conditions. We will therefore try to verify whether our expression for the boundary
three point function can be written in a form that one would expect to find in an extension of
the formalism of [7] to non-rational CFT.

This turns out to be the case: Let us write the three point function in terms of the b-Racah-
Wigner coefficients:

Cσ3σ2σ1

β3|β2β1
=

gσ3σ1

β3

gσ3σ2

β2
gσ2σ1

β1

N(σ3, β2, σ2)N(σ2, β1, σ1)

N(σ3, β3, σ1)N(β3, β2, β1)

{

σ1

β2

β1

σ3
| σ2

β3

}

b
(31)

where [11]

N(β3, β2, β1) =

Γb(2β1)Γb(2β2)Γb(2Q − 2β3)

Γb(2Q − β1 − β2 − β3)Γb(Q − β1 − β2 + β3)Γb(β1 + β3 − β2)Γb(β2 + β3 − β1)

(32)

It is easy to see that this can be rewritten as

Cσ3σ2σ1

β3|β2β1

=
(

gβ2β1

β3

)−1{ σ1

β2

β1

σ3
| σ2

β3

}′
b
, (33)

where the b-Racah-Wigner coefficients that appear on the right hand side have been modified
w.r.t. to those considered in [12] according to

{

σ1

β2

β1

σ3
| σ2

β3

}′
b
≡ Sb(σ3 + β3 − σ1)Sb(β3 + β2 − β1)

Sb(σ3 + β2 − σ2)Sb(σ2 + β1 − σ1)

{

σ1

β2

β1

σ3
| σ2

β3

}

b
. (34)

By using the the counterpart of (58) for the b-Racah-Wigner coefficients one may write (33)
as

Cσ3σ2σ1

β3|β2β1
=

1

g(β3; β2, β1)

{

β̄2

σ1

β̄1

σ3
| β̄3

σ2

}′
b
. (35)

We consider (35) as an encouraging hint that a verification ofthe Cardy-Lewellen conditions
should be possible along similar lines as followed in [7] forthe case of rational CFT.
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A. Special functions

(i) The function Γb(x)

The functionΓb(x) is a close relative of the double Gamma function studied in [17,18]. It can
be defined by means of the integral representation

log Γb(x) =

∞
∫

0

dt

t

(

e−xt − e−Qt/2

(1 − e−bt)(1 − e−t/b)
− (Q − 2x)2

8et
− Q − 2x

t

)

. (36)

Important properties ofΓb(x) are

(i) Functional equation: Γb(x + b) =
√

2πbbx− 1

2 Γ−1(bx)Γb(x). (37)

(ii) Analyticity: Γb(x) is meromorphic,

poles: x = −nb − mb−1, n, m ∈ Z
≥0. (38)

(iii) Self-duality: Γb(x) = Γ1/b(x). (39)

(ii) The function Sb(x)

The functionSb(x) may be defined in terms ofΓb(x) as follows

Sb(x) = Γb(x) / Γb

(

Q − x) . (40)

An integral that representslog Sb(x) is

log Sb(x) =

∞
∫

0

dt

t

(

sinh t(Q − 2x)

2 sinh bt sinh b−1t
− Q − 2x

2t

)

. (41)

The most important properties for our purposes are

(i) Functional equation: Sb(x + b) = 2 sinπbx Sb(x). (42)

(ii) Analyticity: Sb(x) is meromorphic,

poles: x = −(nb + mb−1), n, m ∈ Z
≥0. (43)

zeros:x = Q + (nb + mb−1), n, m ∈ Z
≥0.

(iii) Self-duality: Sb(x) = S1/b(x). (44)

(iv) Inversion relation: Sb(x)Sb(Q − x) = 1. (45)

(v) Asymptotics: Sb(x) ∼ e∓
πi
2

x(x−Q) for Im(x) → ±∞ (46)

(vi) Residue: resx=cb
Sb(x) = (2π)−1. (47)
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(iii) Υb function

TheΥb may be defined in terms ofΓb as follows

Υb(x)−1 ≡ Γb(x)Γb(Q − x) . (48)

An integral representation convergent in the strip0 < Re(x) < Q is

logΥb(x) =

∫ ∞

0

dt

t

[

(

Q

2
− x

)2

e−t − sinh2(Q
2 − x) t

2

sinhbt
2 sinh t

2b

]

.

Properties:

(i) Functional equation: Υb(x + b) =
Γb(bx)

Γb(1 − bx)
b1−2bx Υb(x). (49)

(ii) Analyticity: Υb(x) is entire analytic,

zeros:x = −(nb + mb−1), n, m ∈ Z
≥0. (50)

x = Q + (nb + mb−1), n, m ∈ Z
≥0.

(iii) Self-duality: Υb(x) = Υ1/b(x). (51)

B. Useful properties of the fusion coefficients

(i) Some limiting cases of the fusion coefficients

In this appendix we shall consider two important limiting cases of the fusion coefficients. We
are going to show:

i) If α3 = Q
2 + iP3, αt = Q

2 + iPt then

lim
α2→0

Fα1αt

[

α3

α4

α2

α1

]

= δ(Pt − P3). (52)

ii) IntroduceC̃(α3, α2, α1) ≡ (πµγ(b2)b2−2b2)
1

b
(
∑

3

i=1
αi−Q)Υ−1

0 C(α3, α2, α1). Then:

lim
αs→0

Fαsαt

[

α2

α2

α1

α1

]

=
Γb(2Q)

Γb(Q)

Sb(2αt)

Sb(2αt − Q)
C̃(α3, α2, α1). (53)

To prove i), we will study the distribution onS′(R × R) defined as

Iσ3,σ1
(p3, p2) ≡

≡ lim
β1→0

1

i

i∞
∫

−i∞

ds
Sb(U1 + s)Sb(U2 + s)Sb(U3 + s)Sb(U4 + s)

Sb(V1 + s)Sb(V2 + s)Sb(V3 + s)Sb(Q + s)

∣

∣

∣

∣

∣

σ1=σ2

βj=
Q
2

+ipj ; j=2,3.

It should be remarked that in sendingβ1 → 0 some of the poles atV1 + s = Q + nb and
V2+s = Q+nb will cross the imaginary axis so that one has to deform the contour accordingly.
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If one first considersIσ3,σ1
(p3, p1) for p1 6= p3 one finds by changing the integration variable

to t = σ1 − σ3 + β3 + s that the integral simplifies to a special value of theb-hypergeometric
function:

i∞
∫

−i∞

dt
Sb(β2 − β3 + t)Sb(Q − β2 − β3 + t)

Sb(2Q − 2β3 + t)Sb(Q + t)
=

=
Sb(β2 − β3)Sb(Q − β2 − β3)

Sb(2Q − 2β3)
Fb(β2 − β3, Q − β2 − β3; 2Q − 2β3; 0).

This particular value of theb-hypergeometric function vanishes, as follows from the identity
[12]

Fb(α, β; γ;
1

2
(γ − β − α − Q)) = e−2πiαβ Gb(γ)Gb(γ − α − β)

Gb(γ − α)Gb(γ − β)

and the fact thatGb(γ − α − β) has a zero forγ − α − β = Q. One has thereby found that
Iσ3,σ1

(p3, p2) has support only forβ3 = β2. In order to analyze the singular behavior near
β3 = β2 it will be useful to split off the residue contributions of the first poles that have crossed
the real axis:

Iσ3,σ1
(p3, p2) = I ′σ3,σ1

(p3, p2)

− lim
ǫ→0

(

Sb(β3 + β2 − Q)Sb(β3 − β2 − ǫ)

Sb(2β3)
+

Sb(β2 − β3 − ǫ)Sb(Q − β2 − β3)

Sb(2Q − 2β3)

)

,

whereI ′σ3,σ1
(p3, p2) is defined by a contour that passes to the right of the poles atV1 + s = Q

and V2 + s = Q. One observes thatI ′σ3,σ1
(p3, p2) is nonsingular atβ3 = β2, and that

Sb(x) ∼ 1
2πx nearx = 0. The singular behavior nearβ3 = β2 is therefore given by

− 1

2π
lim
ǫ→0

( 1

i(p3 − p2) − ǫ
+

1

i(p2 − p3) − ǫ

)

=
1

2π
lim
ǫ→0

2ǫ

(p3 − p2)2 + ǫ2
= δ(p3 − p2)

We have therefore found thatIσ3,σ2
(p3, p2) = |Sb(2β3)|−2δ(p3 − p2). Our claim i) is an easy

consequence of this fact.
In order to verify ii), one should observe that the prefactorof the integral in the expression

for the fusion coefficients vanishes. However, the contour of integration gets pinched between
the poles from the factorsSb(s + αs) andS−1

b (s + Q) of the integrand in taking the limit. To
isolate the singular contribution of the integral, one may deform the contouriR into a contour
that goes around the pole ats = 0 in the right half plane plus a small circle arounds = 0.
Due to the vanishing prefactor, only the residue contribution survives in the limit. The rest is
straightforward.

(ii) Symmetries of the fusion coefficients

The fusion cofficients satisfy two types of symmetry relations: First, one may permute pairs of
the variablesα1, . . . , α4:

Fαsαt

[

α3

α4

α2

α1

]

= Fαsαt

[

α2

α1

α3

α4

]

= Fαsαt

[

α1

α2

α4

α3

]

. (54)
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These identities follow from similar identities for the b-Racah Wigner symbols:

{

α1

α3

α2

α4
| αs
αt

}

b
=

{

α3

α1

Q−α4

Q−α2
|Q−αs

Q−αt

}

b

=
{ α2

Q−α4

α1

Q−α3
| αs

Q−αt

}

b
,

(55)

which are easily derived from the definition of the b-Racah Wigner symbols given in [12]
taking into account the following properties of the b-Clebsch-Gordan coefficients:

([

α3

x3

α2

x2

α1

x1

]

b

)∗
=e−πiα∗

2
(Q−α∗

2
)
[

Q−α∗

1
α∗

2
Q−α∗

3

x1−cb x2 x3−cb

]

=e+πi(α∗

3
(Q−α∗

3
)−α∗

2
(Q−α∗

2
)−α∗

1
(Q−α∗

1
))

[ α∗

3

x3

α∗

1

x1

α∗

2

x2

]

b
,

(56)

where we have used the notationcb = iQ
2 . Second, there are identities that exchange the two

“internal indices” with a pair of “external indices”

Fαsαt

[

α3

α4

α2

α1

]

F0α4

[

α3

α3

αs
αs

]

= Fα2α4

[

α3

αt

αs
α1

]

F0αt

[

α3

α3

α2

α2

]

,

Fαsαt

[

α3

α4

α2

α1

]

Fα40

[

αt
α1

αt
α1

]

= Fα4α2

[

α3

αs

αt
α1

]

Fαs0

[

α2

α1

α2

α1

]

.
(57)

The first of these identities is obtained from the pentagon (9) by settingβ1 = α3 and taking
the limit β2 → 0 with the help of (52). The second can be obtained from the firstby taking
into account

C(α4, α3, αs)C(Q − αs, α2, α1)Fαsαt

[

α3

α4

α2

α1

]

=

=C(α4, αt, α1)C(Q − αt, α3, α2)Fαtαs

[

α1

α4

α2

α3

]

.
(58)

This identity in turn follows via standard Moore-Seiberg type arguments [8] from the fun-
damental identity that assures crossing symmetry [11] [12], together with (α = Q

2 + iP ,
α′ = Q

2 + iP ′)
∫

S

dβ Fαβ

[

α3

α4

α2

α1

]

Fβα′

[

α1

α4

α2

α3

]

= δ(P − P ′). (59)

(iii) Some residues of the fusion coefficients

If one considers the special cases where one ofα1, . . . , α4, sayαi equals−n
2 b − m

2 b−1 and
where a triple(∆α4

, ∆α3
, ∆α21

), (∆α21
, ∆α2

, ∆α1
) which contains∆αi

satisfies the fusion
rules of [FF], one will find that the right hand side of the fusion relation (8) reduces to a finite
sum of terms selected by the fusion rules of [FF]. The fusion coefficients that multiply the con-
formal blocks are residues of the general fusion coefficients, as can be seen by a generalization
of our calculation leading to (52). In order to derive explicit expressions for these residues, it
is useful to observe that the pentagon equation (9) leads to recursion relations that determines
the above-mentioned residues in terms of the following special case:

Fs,s′(β|σ1, σ2) ≡ Fσ1− sb
2

,β− s′b
2

[

β − b
2

σ2 σ1

]

,
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wheres, s′ = ±. The explicit expressions for these coefficients are:

F++ =
Γ(b(2σ1 − b))Γ(b(b − 2β) + 1)

Γ(b(σ1 − β − σ2 + b/2) + 1)Γ(b(σ1 − β + σ2 − b/2))

F+− =
Γ(b(2σ1 − b))Γ(b(2β − b) − 1)

Γ(b(σ1 + β + σ2 − 3b/2)− 1)Γ(b(σ1 + β − σ2 − b/2))

F−+ =
Γ(2 − b(2σ1 − b))Γ(b(b − 2β) + 1)

Γ(2 − b(σ1 + β + σ2 − 3b/2))Γ(1 − b(σ1 + β − σ2 − b/2))

F−− =
Γ(2 − b(2σ1 − b))Γ(b(2β − b) − 1)

Γ(b(−σ1 + β + σ2 − b/2))Γ(b(−σ1 + β − σ2 + b/2) + 1)

In subsection 3(ii) we need the following fusion coefficients:

Fσ1,β2±b

[

β2 −b
σ3 σ1

]

= Fσ1,β2±b

[ −b β2

σ1 σ3

]

. (60)

The pentagon identity (9) then yields the formula that was used to calculate the expressions
used in subsection 3(ii):

Fσ2,β+sb

[

β −b
σ2 σ1

]

=
∑

t=±

Ft+

(

− b
2 |β, β + s

)

F++

(

− b
2 |σ2, σ2

) F−t

(

β|σ2 − b
2 , σ1

)

F+,s−t

(

β − tb
2 |σ2, σ1

)

.

(61)

C. Uniqueness of solutions of finite difference equations ofthe second or-
der

Let us indicate how one may obtain statements on the uniqueness of such equations: We will
consider functionsf(x) that are analytic in some domainD that includesi[0, 2b−1] and satisfy

(

Ab(x)T 2b + Ψb(x)T b + Cb(x)
)

f(x) = 0, (62)

whereT b is the operator defined byT bf(x) = f(x + b), as well as the difference equation
obtained by replacingb → b−1. We would like to show that there exist at most two linearly
independent solutions. Assume having three solutionsf1, f2, g of whichf1 andf2 are linearly
independent. One may consider

det

∣

∣

∣

∣

∣

∣

g f1 f2

T bg T bf1 T bf2

T 2bg T 2bf1 T 2bf2

∣

∣

∣

∣

∣

∣

. (63)

The determinant vanishes due to the fact that each row is a linear combination of the two
other by means of the difference equation (62). But this implies that also the columns must be
linearly dependent, in particular

g = c1(x)f1 + c2(x)f2, (64)
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with coefficientsc1, c2 that might a priori depend onx. These coefficients are found as

c1 =
W(g, f2)

W(f1, f2)
, c2 =

W(g, f1)

W(f2, f1)
, W(f, g) ≡ fT bg − gT bf. (65)

W(f, g) can be seen as a q-analogue of the Wronskian relevant for second order it differential
equations. By a direct calculation using (62) one finds that

T b W(f, g) =
Cb(x)

Ab(x)
W(f, g) and T b ci = ci, i = 1, 2. (66)

In a similar way one obtainsT 1/bci = ci, i = 1, 2. It then follows for irrationalb that the
ci, i = 1, 2 must be constant: FromT bci = ci one finds periodicity ofdi(x) ≡ ci(−ix) in
the interval[0, 2b], so thatci can be represented by a Fourier-series. One may then use the
equationT 1/bci = ci to show vanishing of all Fourier-coefficients but the one of the constant
mode.
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