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Abstract

Centre manifold theory is applied to some dynamical systems arising

from spatially homogeneous cosmological models. Detailed information is

obtained concerning the late-time behaviour of solutions of the Einstein

equations of Bianchi type III with collisionless matter. In addition some

statements in the literature on solutions of the Einstein equations coupled

to a massive scalar field are proved rigorously.

1 Introduction

Over the years a great deal of effort has been put into the study of homogeneous
solutions of the Einstein equations coupled to various matter sources. This class
of solutions has the advantage that the evolution equations reduce to ordinary
differential equations. This allows a mathematically rigorous treatment of many
issues for which corresponding results seem out of reach at present when partial
differential equations are involved. The area of mathematics which is relevant
for the study of the time evolution of homogeneous cosmological models is the
theory of dynamical systems. An excellent source of background information
on the application of dynamical systems to cosmology is the book edited by
Wainwright and Ellis [13].

When a dynamical system (i.e. a system of ordinary differential equations)
constituting a model of an aspect of the real world has been derived a natural
task is to understand the qualitative behaviour of general solutions of the equa-
tions. Doing this may involve combining many techniques. In the following we
concentrate on one particular type of technique. In understanding a dynami-
cal system it is useful to determine the stationary solutions. Once these have
been found it is desirable to know the behaviour of solutions which remain in a
neighbourhood of one of these stationary solutions. If the system is linearized
about the stationary point then there is often a relationship between solutions
of the linearized system and solutions of the original system which remain near
the stationary point. In the case of hyperbolic stationary points (defined below)
this works very well. When a stationary point is not hyperbolic things are not
so easy. In the latter case an important role is played by centre manifold theory.
This theory will be illustrated by various cosmological examples in what follows.
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One example of an application of centre manifold theory to homogeneous
cosmological models in the literature can be found in [6]. There it was used to
determine the asymptotic behaviour of spacetimes of Bianchi type VII0 with a
radiation fluid. A feature of this example which is typical is that it represents a
degenerate or borderline case. The case of a perfect fluid with equation of state
p = (γ − 1)ρ and γ 6= 4/3 can be analysed without centre manifold theory [14]
and it is found that the behaviour changes qualitatively when passing through
the case of the radiation fluid (γ = 4/3).

In this paper two different applications of centre manifold theory are con-
sidered. The first is to homogeneous spacetimes with collisionless matter. More
specifically, it concerns locally rotationally symmetric (LRS) models of Bianchi
type III. These play the role of a degenerate case within more general classes
of Bianchi models with collisionless matter studied in [9] and [10]. The centre
manifold analyses of the present paper extend and complete the results of [9]
and [10]. The other application is to homogeneous and isotropic spacetimes
with a massive scalar field. The centre manifold analysis provides a rigorous
confirmation of heuristic conclusions on inflation in this class of spacetimes due
to Belinskii et. al. [2].

The results on models with collisionless matter obtained in the following
address a question raised in [10]. Suppose we have an expanding cosmological
model with collisionless matter described by the Vlasov equation. The particles
composing the matter have a certain non-zero velocity dispersion. It might be
expected that if these particles are massive the velocity dispersion will decay
with time as a consequence of the cosmological expansion so that the spacetime
will look more and more like a dust model in the phase of unlimited expansion.
It was shown in [10] that this is indeed the case for LRS models of Bianchi types
I and II. For Bianchi type III, however, despite the amount of information on
the dynamics obtained in [10], this issue was not settled. The reason for the
difficulty is that in Bianchi type III one of the scale factors has an anomalously
slow rate of expansion. In fact the results of [10] did not even suffice to show
that this scale factor is unbounded. It is shown below that dust-like asymptotics
also occurs in the case of Bianchi type III and that the problematic scale factor
does increase without limit. An analogous result for massless particles is also
obtained, thus completing the results of [9]. It is to be hoped that these results
will also open the way to further progress in understanding inhomogeneous
models with collisionless matter such as those discussed in [1].

The second section contains some general information about centre manifold
theory. Some equations for spacetimes of Bianchi type III with kinetic matter
are recalled in Section 3. Centre manifold theory is applied to Bianchi III
spacetimes with collisionless matter in the case of massive particles in Section
4 and in the case of massless particles in Section 5. Section 6 contains results
on homogeneous and isotropic solutions with a massive scalar field. The final
section presents some insights which can be obtained from the results in the
body of the paper.
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2 Centre manifold theory

Let ẋ = f(x) be a system of ordinary differential equations, where x is a point
of R

n and the function f is smooth (C∞). Consider a point x0 with f(x0) = 0.
Then x(t) = x0 is a time-independent solution of the system. In other words,
x0 is a stationary point of the given dynamical system. The linearization of
the system about x0 is the system ẏ = Ay where the matrix A has entries
Aj

i = ∂f j/∂xi. If each eigenvalue λ of A has the property that the real part
of λ is non-zero then the stationary point is called hyperbolic. In that case
the theorem of Hartman and Grobman ([7], p. 120) shows that the linearized
system is topologically equivalent to the original system in a neighbourhood
of x0. In other words, there is a homeomorphism of a neighbourhood of x0

onto a neighbourhood of the origin in R
n such that solutions of the non-linear

system are mapped onto solutions of the linearized system. Note that this
homeomorphism cannot in general be improved to a C2 diffeomorphism. (See
[7], p. 127.)

When the matrix A has eigenvalues which are purely imaginary and, in par-
ticular, when it has zero as an eigenvalue things are more complicated than for
hyperbolic stationary points. Recall that the generalized eigenspace associated
to an eigenvalue λ of A consists of all complex vectors x such that (A−λI)kx = 0
for some positive integer k. The centre subspace Ec of the dynamical system
at x0 is defined as follows. Take the direct sum of the generalized eigenspaces
corresponding to all purely imaginary eigenvalues and then restrict to the real
subspace. Then Ec is an invariant subspace of A and the restriction of A to Ec

has purely imaginary eigenvalues. Ec is the maximal subspace having this prop-
erty. The centre manifold theorem [3] says that there is a manifold Mc passing
through x0 which is invariant under the flow of differential equation and whose
tangent space at x0 is Ec. The manifold Mc is called a centre manifold. It can
be chosen to be Ck for any positive integer k but not necessarily to be C∞.
(See the example on p. 29 of [3].) It is also in general not unique. However any
two centre manifolds of class Ck are tangent to order k at x0 and in fact the
coefficients in the Taylor expansion of this submanifold at x0 can be calculated
recursively. Examples of this procedure will be seen later on.

There is a generalization of the Hartman-Grobman theorem to non-hyperbolic
stationary points called the reduction theorem [5] which reduces the study of
the qualitative behaviour of solutions of a system near a stationary point to the
study of solutions on the centre manifold. In favourable cases the qualitative
behaviour of solutions on the centre manifold near the origin can be determined
once a finite number of expansion coefficients of the centre manifold are known.
This will be illustrated by the examples of cosmological models treated later.

The reduction theorem by itself can provide useful information about the
qualitative behaviour of solutions of a system of ordinary differential equations.
For example this was done for the Mixmaster solution in [8]. (Note, however,
that since then a much deeper analysis of this system has been carried out
in [11] and [12].) This kind of straightforward application of the reduction
theorem is not what is meant by ‘centre manifold theory’ in the present paper.
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The latter should rather be reserved for the procedure where the existence of
a centre manifold is used as a basis for doing calculations which give concrete
information on the nature of solutions. It is calculations of this type which are
the main tool of this paper.

Centre manifold theory has the advantage of reducing the dimension of the
dynamical system whose qualitative behaviour has to be determined. The di-
mension of the centre manifold is of course just equal to the number of purely
imaginary eigenvalues of the linearization, counting multiplicity. When the cen-
tre manifold is one-dimensional things become particularly easy. Determining
the stability of the origin in the centre manifold reduces to algebra. This hap-
pens in the example studied in Section 6. When the centre manifold is two-
dimensional things are a lot more complicated but there is still a far-reaching
theory available (see [7], section 2.11) and in particular cases such as those stud-
ied in Sections 4 and 5 of this paper, direct approaches may lead to the desired
result.

3 The Bianchi III equations with massive parti-

cles

The results of this section extend the theorems of [10] and the fundamental
equations will be taken directly from that source. Here it will be assumed from
the start that the Bianchi type is III. The spacetime metric is of the form

ds2 = −dt2 + a2(t)(θ1)2 + b2(t)((θ2)2 + (θ3)2) , (1)

where the θi are one-forms whose exterior derivatives satisfy the relations re-
quired to ensure that the metric defines a spacetime of Bianchi type III. For
instance we can assume the relations dθ1 = dθ2 = 0 and dθ3 = θ2 ∧ θ3. This
metric is locally rotationally symmetric (LRS). The matter content of space-
time is described by the spatially homogeneous phase space density of particles
f(t, vi). It is assumed that f is invariant under rotations in the (v2, v3)-plane
and the reflection v1 7→ −v1. The energy-momentum tensor Tij for the Einstein-
Vlasov system with particles of mass m ≥ 0 is diagonal and is described by

ρ =

∫

f0(vi)(m
2 + a−2(v1)

2 + b−2((v2)
2 + (v3)

2))1/2(ab2)−1dv1dv2dv3 ,

pi =

∫

f0(vi)g
ii(vi)

2(m2 + a−2(v1)
2 + b−2((v2)

2 + (v3)
2))−1/2(ab2)−1dv1dv2dv3 ,(2)

where ρ is the energy density and pi = T i
i the pressure components of the

energy-momentum tensor. The function f0 is determined at some fixed time
t0 by f0(vi) = f(t0, vi) where f is the phase space density of particles. Some
further technical conditions will be imposed on f0. It is assumed to be non-
negative and have compact support. It is also assumed that the support does
not intersect the coordinate planes vi = 0. A function f0 with this property
will be said to have split support. This assumption ensures that the dynamical
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system which describes the evolution of the spacetimes of interest has smooth
coefficients.

The momentum constraints are automatically satisfied for these models.
Only the Hamiltonian constraint and the evolution equations are left. Instead
of considering a set of second order equations in terms of a and b, we will refor-
mulate these equations as a first order system of ODEs by introducing a new
set of variables. The mean curvature trk (where kij is the second fundamental
form) is given by

trk = −(a−1da/dt+ 2b−1db/dt) . (3)

A new dimensionless time coordinate τ is defined by − 1

3

∫ t

t0
trk(t)dt for some

arbitrary fixed time t0. In the following a dot over a quantity denotes its deriva-
tive with respect to τ . The Hubble variable H is given by H = −trk/3. This
section and the next are concerned with the case of massive particles (m > 0).
Define the following dimensionless variables:

z = m2/(a−2 + 2b−2 +m2) ,

s = b2/(b2 + 2a2) ,

M3 = 3b−2(trk)−2 ,

Σ+ = −3(b−1db/dt)(trk)−1 − 1 , (4)

These variables lead to a decoupling of the equation for the only remaining
dimensional variable H (or equivalently trk)

Ḣ = −(1 + q)H , (5)

where the deceleration parameter q is given by

q = 2Σ2
+ + 1

2
Ω(1 +R) . (6)

The quantity R is defined by

R = (p1 + 2p2)/ρ , (7)

where

p1/ρ = (1 − z)sg1/h ,

p2/ρ = 1

2
(1 − z)(1 − s)g2/h ,

g1,2 =

∫

f0(vi)(v1,2)
2[z + (1 − z)(s(v1)

2 + 1

2
(1 − s)((v2)

2 + (v3)
2))]−1/2dv1dv2dv3 ,

h =

∫

f0(vi)[z + (1 − z)(s(v1)
2 + 1

2
(1 − s)((v2)

2 + (v3)
2))]1/2dv1dv2dv3 . (8)

The assumption of split support ensures that the function R(s, z) is a smooth
(C∞) function of its arguments. The related quantity R+ defined by

R+ = (p2 − p1)/ρ (9)
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is a smooth function of s and z for the same reason.
The normalized energy density Ω = ρ/(3H2) is determined by the Hamilto-

nian constraint and, in units where G = 1/8π, is given by

Ω = 1 − Σ2
+ −M3 . (10)

The assumption of a distribution of massive particles with non-negative mass
leads to inequalities for R, R+ and Ω. Firstly, 0 ≤ R ≤ 1 with R = 0 only when
z = 1 and R = 1 only when z = 0. Secondly, −R ≤ R+ ≤ 1

2
R with R+ = 1

2
R

for s = 0 and R+ = −R for s = 1. Thirdly Ω ≥ 0. Using these inequalities in
equation (6) in turn results in 0 ≤ q ≤ 2 (i.e., the same inequality as for causal
perfect fluids, see [13]).

The remaining dimensionless coupled system is:

Σ̇+ = −(2 − q)Σ+ +M3 + ΩR+ ,

ṡ = 6s(1 − s)Σ+ ,

ż = 2z(1 − z)(1 + Σ+ − 3Σ+s) ,

Ṁ3 = 2(q − Σ+)M3 , (11)

In the following this is referred to for short as the Bianchi III system. It is of
interest to note that the metric functions a, b are expressible in terms of s, z in
the massive case. The relations are

a2 = z(m2s(1 − z))−1, b2 = 2z(m2(1 − s)(1 − z))−1 . (12)

There are a number of boundary submanifolds:

z = 0, 1 ,

s = 0, 1 ,

Ω = 0 . (13)

The submanifold z = 0 corresponds to the massless case. The submanifold
z = 1 leads to a decoupling of the s-equation, leaving a system identical to
the corresponding dust equations. The submanifolds s = 0, s = 1 correspond
to problems with f0 being a distribution while Ω = 0 constitutes the vacuum
submanifold with test matter.

Including these boundaries yields a compact state space. In order to apply
the standard theory of dynamical systems the coefficients must be C1 on the
entire compact state space G of a given model. This is necessary even for
uniqueness. In the present case it suffices to show that R and R+ are C1 on
G, i.e, that they are C1 for s, z when 0 ≤ s ≤ 1 , 0 ≤ z ≤ 1. As has already
been pointed out, this follows from the assumption of split support, which even
implies the analogous statement with C1 replaced by C∞. It would be possible
to get C1 regularity under the weaker assumption that f0 vanishes as fast as
a sufficiently high power of the distance to the coordinate planes but this is of
little relevance to the main concerns of this paper.
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Of key importance is the existence of a monotone function in the ‘massive’
interior part of the state space:

M = (s(1 − s)2)−1/3z(1 − z)−1 ,

Ṁ = 2M . (14)

Note that the volume ab2 is proportional to M3/2. This monotone function rules
out any interior ω- and α-limit sets and forces these sets to lie on the s = 0,
s = 1, z = 0 or z = 1 parts of the boundary.

The physical state space, G, of the LRS type III models is given by the
region in R

4 defined by the inequalities M3 ≥ 0, 0 ≤ s ≤ 1, 0 ≤ z ≤ 1, and
1 − Σ2

+ −M3 ≥ 0. A solution of the Bianchi III system (11) will be said to lie
in the physical region if it lies in the interior of G. In the following we will be
interested in the behaviour in the limit τ → ∞ of the solutions of the Bianchi III
equations which lie in the physical region . This corresponds to the asymptotics
of the underlying cosmological model in a phase of unlimited expansion. It
was shown in [10] that as τ tends to infinity a solution in the physical region
converges to a point of the line of stationary points L3 which consists of all
points of the form (1

2
, 1, z0,

3

4
). The point to which the solution converges must

satisfy z0 > 0. It was left open in [10] whether that point must satisfy z0 = 1
or whether values less than one are also possible. In the next section it will be
shown that in fact z → 1 as τ → ∞.

4 Centre manifold analysis for the Bianchi III

equations with massive particles

It follows from Theorem 5.1 of [10] that any solution of the Bianchi III system in
the physical region converges to a limit of the form (1

2
, 1, z0,

3

4
) with 0 < z0 ≤ 1

as τ → ∞ and that no solution in the physical region converges to a limit of
this form as τ → −∞. In order to decide which values of z0 can occur as
limiting values of solutions in the physical region in the forward time direction
it is necessary to study the behaviour of solutions close to the stationary points
on the line L3 in detail. If the system is linearized about one of these points
then it is seen that the linearization has two negative eigenvalues and two zero
eigenvalues. The fact that there is a whole line of stationary points implies that
there is automatically one zero eigenvalue. However the second zero eigenvalue
means that there is an extra degeneracy. For z0 = 1 the matrix defining the
linearized system is diagonalizable while for 0 < z0 < 1 it is not. For this reason
there are two significantly different cases to be considered.

Consider first the case z0 = 1. New coordinates will be introduced in order
to simplify the analysis. First the stationary point with z0 = 1 will be translated
to the origin. Define x = Σ+ − 1

2
, y = 1 − s, w = M3 − 3

4
, z̃ = z − 1. Then the

transformed system is

ẋ = − 1

4
+ q(1

2
+ x) − 2x+ w + ΩR+ (15)
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ẏ = −6y(1 − y)(1

2
+ x) (16)

˙̃z = −2(1 + z̃)z̃(−2x+ 3

2
y + 3xy) (17)

ẇ = 2(q − x− 1

2
)(w + 3

4
) (18)

q = 1

2
+ 2x+ 2x2 + 1

2
Ω(1 +R) (19)

Ω = −x− w − x2 (20)

Next set Z = −z̃, u = x + w and v = x − w. In order to determine the
behaviour of solutions of the resulting system near the origin we attempt to
use the linearization at that point. The linearization has zero as an eigenvalue
with a corresponding two-dimensional eigenspace. This eigenspace is the centre
subspace. Centre manifold theory [3] tells us that there is an invariant manifold
through the origin whose tangent space is the centre subspace. This manifold
is a centre manifold. A centre manifold does not in general need to be unique.
However approximations to it can be derived and these often suffice to determine
the qualitative behaviour of solutions on the centre manifold. The qualitative
behaviour of solutions near the stationary point is determined by the qualitative
behaviour of solutions on any centre manifold. A general property of centre
manifolds is that a stationary point has an open neighbourhood such that any
other stationary point in that neighourhood lies on any centre manifold of the
original point. It follows that in a neighbourhood of the stationary point of the
system under consideration the part of the line L3 close to that point lies on
any centre manifold. In the case of present interest the centre manifold can be
defined by the equations y = φ(u, Z) and v = ψ(u, Z) where φ and ψ vanish at
least quadratically at the origin. The invariance of the centre manifold implies
that

ẏ = (∂φ/∂u)u̇+ (∂φ/∂Z)Ż (21)

v̇ = (∂ψ/∂u)u̇+ (∂ψ/∂Z)Ż (22)

on the centre manifold. The right hand sides of these equations vanish to at
least third order at the origin. On the centre manifold

ẏ = −3φ− 3φ(u+ ψ) + 3φ2(1 + u+ ψ) (23)

Substituting (23) into (21) shows that φ vanishes at quadratic order. Putting
this information back into the equation (21) shows that φ vanishes at third
order. This can be repeated indefinitely, with the result that φ vanishes to all
orders. On the centre manifold

v̇ = − 3

2
ψ − 3

8
u2 + 1

4
uψ + 5

8
ψ2 − 1

4
u3 + 1

4
u2ψ + uψ2 + 3

4
ψ3

+Ω(R+ − 1

2
R) + 1

4
Ω(1 +R)(3ψ − u) (24)

Note that (R+R+)(y, Z) = O(y) since R+R+ is smooth and vanishes when y =
0. Since φ vanishes to all orders it follows that R+ and −R are equal to all orders
on the centre manifold. Hence to quadratic order ψ(u, Z) = − 1

12
u2− r2uZ+ . . .

8



where r2 is the derivative of R with respect to z, evaluated at the stationary
point of interest. Next the dynamics on the centre manifold will be examined.

u̇ = u2 + 11

4
uψ + 3

4
ψ2 + 9

16
u3 + 15

16
u2ψ + 3

16
uψ2 − 3

16
ψ3

+Ω[(R+R+) + 1

4
R(3u− ψ)] (25)

while
Ż = 2uZ − 2uZ2 + 2Zψ − 2Z2ψ − 3Z(1 − Z)φ(1 + u+ ψ) (26)

Discarding terms of order greater than two gives the truncated system

u̇ = u2 (27)

Ż = 2uZ (28)

For this system u−2Z is a conserved quantity and so the qualitative behaviour
of the solutions is easily determined. Is the qualitative behaviour of solutions
of the full system on the centre manifold similar? The terms on the right hand
side of the restriction of the evolution equations to the centre manifold written
out explicitly above contain a factor of u. This is not an accident and in fact
the full equations are of the form

u̇ = uf(u, Z) (29)

Ż = ug(u, Z) (30)

for some functions f and g of any arbitrary finite degree of differentiability. This
is because of the fact, already mentioned above, that the line L3 of stationary
points is locally contained in the centre manifold. Thus the restriction of the
system to the centre manifold has a line of stationary points with u = 0. This
means that the vector field defining the dynamical system vanishes for u = 0.
The existence of the functions f and g then follows from Taylor’s theorem. The
fact that L3 lies on the centre manifold also implies that ψ(u, Z) = uh(u, Z) for
a function h of arbitrary finite differentiability.

It is possible to get more precise information about the function f as follows.
Recall that R + R+ vanishes modulo the function φ. Since φ vanishes to all
orders it follows that expressions containing a factor R+R+ can be ignored in
all perturbative calculations. We have

Ω = −u− 1

4
u2 − 1

2
uψ − 1

4
ψ2 (31)

It follows that every term in the evolution equation for u on the centre manifold
contains a factor of u2, either directly or via the fact that ψ = uh. Hence
f(0, Z) = 0.

For the purpose of qualitative analysis we can replace the above system by
the system

u′ = f(u, Z) + . . . (32)

Z ′ = g(u, Z) + . . . (33)
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which has the same integral curves away from the Z-axis. Only solutions with
Z ≥ 0 are physical. The Z-axis is an invariant manifold of the rescaled dynam-
ical system. This new system has a hyperbolic stationary point at the origin
which is a source. This makes it easy to determine the phase portrait for the
system near the endpoint of L3 at z = 1. What we see is that there is an open
set of initial data in the physical region such that the corresponding solutions
approach the stationary point with z = 1 as τ → ∞ and there is a neighbour-
hood of the endpoint of L3 at z = 1 such that in that neighbourhood no solution
in the physical region approaches a point of L3 with z < 1.

Consider now the case 0 < z0 < 1. The analysis is similar to that in the
case already considered, although the calculations are somewhat heavier. For
z0 < 1 the linearization has a non-diagonal Jordan form. Define x = Σ+ − 1

2
,

y = 1 − s, w = M3 − 3

4
, z̃ = z − z0. Then the transformed system is

ẋ = − 1

4
+ q(1

2
+ x) − 2x+ w + ΩR+ (34)

ẏ = −6y(1 − y)(1

2
+ x) (35)

˙̃z = 2(z0 + z̃)(1 − z0 − z̃)(−2x+ 3

2
y + 3xy) (36)

ẇ = 2(q − x− 1

2
)(w + 3

4
) (37)

q = 1

2
+ 2x+ 2x2 + 1

2
Ω(1 +R) (38)

Ω = −x− w − x2 (39)

The linearization has zero as an eigenvalue with a corresponding two-dimensional
generalized eigenspace.

For calculational purposes it is convenient to choose coordinates which re-
duce the linearization to a simple form. For this reason the following variables
will be defined. They almost reduce the linearized operator to Jordan form.

U = −2z0(1 − z0)(x+ w) (40)

V = − 1

2
[(R̄− 1)x+ (R̄+ 1)w] (41)

Y = y (42)

Z = z̃ + z0(1 − z0)y + 4

3
[(R̄− 1)x+ (R̄ + 1)w]z0(1 − z0) (43)

Here R̄ is the value of R when s = 1 and z = z0. Note that the value of R+

when s = 1 and z = z0 is −R̄. Up to linear order the equations in the new
coordinates are

U̇ = 0 + . . . (44)

V̇ = − 3

2
V + . . . (45)

Ẏ = −3Y + . . . (46)

Ż = (R̄+ 1)U + . . . (47)

In the new coordinates the centre subspace is defined by V = 0 and Y = 0.
The centre manifold is defined by equations of the form Y = φ(U,Z) and
V = ψ(U,Z), where φ and ψ are functions of any desired finite degree of dif-
ferentiability which vanish at least quadratically at the origin. (These are not
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the same functions φ and ψ introduced in the centre manifold calculation for
z0 = 1.) Now apply the equations

Ẏ = (∂φ/∂U)U̇ + (∂φ/∂Z)Ż (48)

V̇ = (∂ψ/∂U)U̇ + (∂ψ/∂Z)Ż (49)

which must hold on the centre manifold. The linear contribution to Ż is pro-
portional to U and hence the quadratic contribution to the right hand side of
the first equation contains only terms proportional to U2 and UZ and no term
proportional to Z2. The quadratic part of the left hand side is proportional to
the quadratic part of φ. Suppose that the latter is given by AU2 +BUZ+CZ2

for constants A, B and C. Comparing the coefficients of Z2 shows that C = 0.
Then comparing coefficients of UZ shows that B = 0. At this point it has been
shown that the right hand side of the equation vanishes to quadratic order and
it follows that A = 0. Hence φ vanishes to quadratic order. As in the case
z0 = 1 this information can be used repeatedly to show that φ vanishes to all
orders at the origin.

Next the equation for V̇ on the centre manifold will be examined. It turns
out that the quadratic contribution to V̇ is a linear combination of U2 and UZ.
It can be concluded that up to quadratic order ψ = αU2 + βUZ + . . . for some
constants α and β. These constants depend on the value of z0 at the point
where the linearization is carried out and on the initial data f0.

Substituting the information about the centre manifold into the original
system shows that the restriction of the dynamical system to the centre manifold
has the following form up to quadratic order:

U̇ = γU2 + . . . (50)

Ż = (R̄+ 1)U + δU2 + ǫUZ + . . . (51)

for some constants γ, δ and ǫ.
All the terms on the right hand side of the restriction of the evolution equa-

tions to the centre manifold written out explicitly above contain a factor of U
and for the same reason as in the case z0 = 1 the full equations are of the form

U̇ = Uf(U,Z) (52)

Ż = Ug(U,Z) (53)

for some functions f and g of arbitrary finite differentiability. Thus the restric-
tion of the system to the centre manifold has a line of stationary points with
U = 0.

Consider now the dynamical system defined by

U ′ = f(U,Z) (54)

Z ′ = g(U,Z) (55)

where the prime denotes d/dσ for a time coordinate σ. This has the same
integral curves as the system we want to analyse in the complement of the Z-
axis. It will be referred to in the following as the rescaled system. At the origin
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f vanishes while g has the non-vanishing value R̄+1. In fact f(0, Z) = 0 for all
Z, the argument being just as in the case z0 = 1. As a consequence the integral
curve of the rescaled system passing through the origin lies on the Z-axis. Since
the vector field defining this system is non-vanishing at the origin it is clear that
no solution can approach the origin from the physical region.

Putting together the results of the two centre manifold analyses with Theo-
rem 5.1 of [10] yields the following theorem:
Theorem 1 If a smooth non-vacuum reflection-symmetric LRS solution of
Bianchi type III of the Einstein-Vlasov equations for massive particles is rep-
resented as a solution of (11) then for τ → ∞ it converges to the point with
coordinates (1

2
, 1, 1, 3

4
). The quantities p1/ρ and p2/ρ converge to zero as t→ ∞.

Next some information will be obtained on the detailed asymptotic behaviour
of the spacetime as t → ∞. Consider first the behaviour of a solution of the
rescaled dynamical system for z0 = 1 as σ → −∞. At the origin the rescaled
system has a stationary point which is a hyperbolic source. By a theorem of
Hartman (see [7], p. 127) the system can be linearized by a C1 mapping. As
a consequence u = u0e

σ + o(eσ) for some constant u0 and Z = o(eσ). Along a
solution of the equations dτ/dσ = u−1(σ). Hence for large negative values of σ
we have τ = −u−1

0 e−σ+o(e−σ). Hence on the centre manifold u = −τ−1+o(τ−1)
and Z = o(τ−1).

General results on centre manifolds [3] show that the general solution satisfies

u(τ) = −τ−1 + o(τ−1) (56)

z(τ) = 1 + o(τ−1) (57)

y(τ) = o(τ−k) (58)

v(τ) = − 1

12
τ−2 + o(τ−2) (59)

where k is any positive integer. As τ → ∞ we have q = 1

2
+ o(1). Now

dH/dt = −(1+ q)H2. It follows that H = 2

3
t−1(1+o(1)). Thus in leading order

τ = 2

3
log t+ . . .. Putting this information in the asymptotic expressions above

gives the leading order behaviour of u, z, y and v as functions of t. This in turn
gives the asymptotic behaviour of the variables Σ+, s, M3 and z. The result is

Σ+(t) = 1

2
− 3

4
(log t)−1 + . . . (60)

s = 1 + o((log t)−k) (61)

M3 = 3

4
− 3

4
(log t)−1 + . . . (62)

z = 1 + o((log t)−1) (63)

From this it can be concluded using (12) that a/(log t)1/2 goes to infinity as
t → ∞. It follows directly from the fundamental equations that a goes to
infinity slower than any power of t. To see this note that since Σ+ tends to
1

2
, the quantity (b−1db/dt)(trk)−1 tends to − 1

2
. Hence b−1db/dt = t−1 + . . .

and a−1da/dt = o(t−1). This gives the desired conclusion concerning the upper
bound for the rate of growth of a. The leading order behaviour of b can be read
off from the defining equation for M3, with the result that b = t+ . . ..
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5 Centre manifold analysis for the Bianchi III

equations with massless particles

The analysis of LRS Bianchi spacetimes with massless particles in [9] included
the case of Bianchi type III. In this section the results obtained in [9] will be
sharpened. As previously indicated, the dynamical system for LRS Bianchi type
III spacetimes with massless particles is equivalent to the boundary component
z = 0 of the region G on which the system for massive particles is defined.
Here we adopt the notation of [10] rather than that of [9]. Then the dynamical
system required in this section can be obtained by specializing a system we had
in the last section. The result is

ẋ = − 1

4
+ q(1

2
+ x) − 2x+ w + ΩR+ (64)

ẏ = −6y(1 − y)(1

2
+ x) (65)

ẇ = 2(q − x− 1

2
)(w + 3

4
) (66)

q = 1

2
+ 2x+ 2x2 + Ω (67)

Ω = −x− w − x2 (68)

The only modifications are that the equation for z has been dropped and that the
relation R = 1 has been used. This is a three-dimensional dynamical system. Its
linearization at the origin has eigenvalues 0, − 3

2
and −3 and its kernel is spanned

by (1, 0, 0). It follows that this point has a one-dimensional centre manifold.
It was already shown in [9] that all solutions of this system corresponding to
solutions of the Einstein-Vlasov equations with massless particles converge to
the origin as τ → ∞. The purpose of the centre manifold analysis here is to
obtain more detailed information about how this point is approached and hence
how the scale factors behave in the phase of unlimited expansion. It is useful to
substitute in the expressions for Ω and q, thus obtaining the following dynamical
system:

ẋ = 3

2
w + 5

2
x2 − xw + x3 − (x + w + x2)(1 +R+) (69)

ẏ = −6y(1 − y)(1

2
+ x) (70)

ẇ = 2(−w + x2)(w + 3

4
) (71)

The centre manifold is defined by the equations y = φ(x) and w = ψ(x). Us-
ing the same procedure as in the last section the functions φ and ψ can be
determined up to quadratic order. In this case it turns out that φ vanishes to
quadratic order while to that order ψ = x2 + . . .. Substituting this information
into the evolution equation for x shows that ẋ = 4x2 + O(|x|3) on the centre
manifold. Since physical solutions converge to the origin as τ → ∞ they must
be approximated by solutions on the centre manifold with x negative. It can be
concluded that for these solutions Σ+ is eventually less than one half.

With the information already obtained, various features of the dynamics
of the spacetime can be reconstructed. To leading order x = −(1/4τ) + . . .,
y = o(τ−2) and w = 1/16τ2 + o(τ−2). The quantity q tends to 1

2
and so some
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of the calculations for the massive case can be taken over here. As in that case
b = t + . . .. It is not possible to determine the asymptotic behaviour of the
scale factor a in the same way as in the massive case; a different approach is
necessary. It may be computed that a−1da/dt = 2

3
(trk)x. Hence in leading

order a−1da/dt = 1

2
(t log t)−1 + . . .. It follows that a→ ∞ as t→ ∞.

6 Inflation with a massive scalar field

This section presents a rigorous derivation of some heuristic results of [2] for
spatially flat homogeneous and isotropic spacetimes with a massive scalar field
as source. The starting point is the following system of equations from [2].

xη = y (72)

yη = −x− 3y(x2 + y2)1/2 (73)

This is a dynamical system on the plane whose coefficients are smooth every-
where except at the origin, where they are C1. Transforming to polar coordi-
nates (r, θ) and introducing ρ = r/(1 + r) gives the system

ρη = −3ρ2 sin2 θ (74)

θη = −1 − 3ρ(1 − ρ)−1 sin θ cos θ (75)

Introducing a new time coordinate τ and setting u = 1 − ρ gives

uτ = 3u(1 − u)2 sin2 θ (76)

θτ = −u− 3(1 − u) sin θ cos θ (77)

So far this is nothing new compared to what is done in [2]. Now the stationary
point at the origin will be investigated. The eigenvalues of the linearization
are −3 and zero. Evidently the θ-axis is invariant and in fact it is the stable
manifold of the origin. The centre subspace is given by u+ 3θ = 0 and thus we
introduce v = u + 3θ in order to study the centre manifold. This leads to the
transformed system

uτ = 3u(1 − u)2 sin2(1

3
(v − u)) (78)

vτ = −3u cos2(1

3
(v − u)) − 6u2 sin2(1

3
(v − u)) + 3u3 sin2(1

3
(v − u))

−9 sin(1

3
(v − u)) cos(1

3
(v − u)) + 9u sin(1

3
(v − u)) cos(1

3
(v − u)) (79)

The centre manifold is of the form v = φ(u). To quadratic order φ(u) = −u2 +
. . .. On the centre manifold uτ = 1

3
u3 + O(u4) and hence there is a unique

solution which enters the physical region.
The asymptotic form of the solution as τ → −∞ is u =

√

3/2(−τ)−1/2 + . . ..
It follows that v = 3

2
τ−1 + . . .. Hence

ρ = 1 −
√

3/2(−τ)−1/2 + . . . (80)
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and
θ = −

√

1/6(−τ)−1/2 + . . . (81)

The next step is to convert back to the original variables. In leading order
η = −

√
6(−τ)1/2 + . . . and so ρ = 1 + 3/η + . . . and θ = 1/6η + . . .. It follows

that x = η/3 + . . . and y = 1

18
+ . . .. The combination z =

√

x2 + y2 occurring
in [2] is asymptotic to η/3. The linear dependence of x and z with respect to η
is what was found in [2]. The interpretation of these variables is that η, x and
z are proportional to proper time, the scalar field φ and the mean curvature of
the hypersurfaces of constant time respectively. Thus in the limit t→ −∞ both
φ and the mean curvature are proportional to t. The leading order behaviour
of the scale factor for large negative times is, up to inessential constants, et2 .
This gives a rigorous confirmation of the conclusions of [2]. Note that the
relevance of centre manifolds in this context has been pointed out by Foster
[4] but that he did not carry out a full centre manifold analysis; his paper was
mainly concerned with other applications of dynamical systems to homogeneous
and isotropic solutions of the Einstein equations coupled to a scalar field with
potential.

7 Further comments

This section contains some further comments on the results of Sections 4 and 5.
In terms of the dimensionless variables which are the unknowns in the dynami-
cal system studied in those sections, solutions of the equations with collisionless
matter (with both massless and massive particles) converge at late times to a
point corresponding to a vacuum solution of Bianchi type III. The corresponding
statement holds for LRS Bianchi type III solutions with dust. (Cf. the discus-
sion in section 6 of [9].) In particular, the dimensionless density parameter Ω
tends to zero in the expanding direction. Furthermore, in the case of massive
particles, the ratios T i

i /ρ of the spatial eigenvalues of the energy-momentum
tensor (i.e. the principal pressures) to the energy density tend to zero. Thus
in a certain sense both solutions with collisionless matter and dust solutions
are approximated by vacuum solutions, while solutions with collisionless matter
and massive particles are approximated better by dust solutions than either of
these are approximated by vacuum solutions. This is one of the main results of
this paper.

One of the scale factors, a, grows much more slowly than the other scale
factor b. An important conclusion is that a tends to infinity at all in the case
of collisionless matter, both in the massive and massless cases. Centre mani-
fold theory was the essential tool which allowed us to prove this and thus to
go beyond what was achieved in [9] and [10]. In this sense both types of colli-
sionless matter resemble each other and differ from the vacuum case, where a
is asymptotically constant. These results lend further support to the following
two suggestions made in [9] and [10]. The first is that any spatially homoge-
neous solution of the Einstein equations with collisionless matter and massive
particles behaves asymptotically in a phase of unlimited expansion like a dust
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model. The second is that in any non-vacuum spatially homogeneous model
with perfect fluid or collisionless matter eventually every scale factor increases
in the time direction in which the volume increases. It would be interesting to
investigate the truth of these statements in solutions of the Einstein equations
with collisionless matter which are LRS Bianchi type VIII or type II but not
LRS.
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