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1 Introduction

The supersymmetric N = 4 Yang-Mills theory in four dimensions (SYM4) has recently attracted a lot

of attention, primarily as the prototype example of the AdS/CFT correspondence [1]-[3]. Additionally,

it has been gradually realized that SYM4 by itself constitutes an interesting quantum field theoretic

model where some unexpected properties emerge.

Perhaps the most interesting local operators in the theory are the chiral or analytic operators forming

short multiplets of the superconformal group SU(2, 2|4) (see the classification in [4]). An important

class of these [5, 6] can be written in terms of the N = 4 on-shell superfieldsW i (i is an index of the irrep

6 of the R-symmetry group SU(4) ∼ SO(6)) as tr(W {i1 ...W ik}). The conformal dimensions of short

operators as well as their two- and three-point correlation functions are protected from perturbative

corrections [7]–[11], therefore they are well-suited quantities for tests of the AdS/CFT correspondence.

Other classes of operators in N = 4 SYM4 include operators dual to massive string modes that decouple

at strong coupling (e.g. the Konishi multiplet) [2] and operators dual to multi-particle supergravity

states whose strong coupling anomalous dimensions are non-zero.

The renormalization properties of gauge invariant operators in N = 4 SYM4 are to a large extent

determined by superconformal invariance and unitarity [6]. A powerful test for the various predictions

regarding the operator algebra is the study of 4-point functions, which encode all the relevant dynamical

information through vacuum operator product expansions (OPEs). Recently the 4-point function of

the chiral primary operators (CPOs), which are the lowest scalar components of the short superfield

tr(W {iW j}) comprising the Yang-Mills stress-energy tensor multiplet, were computed in perturbation

theory up to two loops (to order λ2) [12]-[16].

On the gravity side the calculation of the 4-point function of CPOs via the AdS/CFT correspondence

is highly complicated because one first has to establish the relevant part of the supergravity action for

scalar fields corresponding to these CPOs. For the massless dilaton and axion fields the action is already

known [17] and with the development of the powerful integration technique over the AdS space [18] the

complete results for the 4-point functions became available [19]. However, the dilaton and axion fields

correspond to descendants of CPOs, which rather complicates the corresponding CFT analysis [20, 21].

With the evaluation of the quartic supergravity couplings for scalar fields corresponding to CPOs [22]

the computation of the 4-point functions of the lowest-weight CPOs in the supergravity approximation

has been recently completed in [23].

The CPOs do not form a ring structure with respect to the OPE, i.e. in general their OPE contains
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fields acquiring non-zero anomalous dimensions. A partial OPE analysis of the 4-point functions of CPOs

was performed in [15, 16, 24, 25] and the anomalous dimensions of certain operators were found both at

weak and strong coupling. The results of these papers show agreement with the general considerations

of [6] based on superconformal invariance and unitarity. However, the careful analysis of [24, 25] led to

a surprise: the OPE of two lowest-weight CPOs contains operators whose anomalous dimensions vanish

both at weak and at strong coupling, although they are apparently not protected by unitarity. Such

an unexpected result indicates the existence of new non-renormalization theorems in N = 4 SYM that

may be a consequence of the dynamics of the gauge theory rather than its kinematics.

The superconformal properties of the N = 4 SYM are accounted for very clearly by formulating

the theory in N = 2 harmonic superspace [26]. In this formulation the analogues of the N = 1

chiral matter superfields obey the constraint of G-analyticity while their equations of motion take the

form of H-analyticity. In a recent paper [27] it was shown that superconformal covariance and the

requirements of G- and H-analyticity combined with Intriligator’s insertion formula [28], constrain the

4-point correlation functions of the lowest-weight CPOs (a priory given by two arbitrary functions of

conformal variables) to depend on a single function F , which in addition obeys constraints from crossing

symmetry. This function comprises all possible quantum corrections (perturbative and instanton) to

the free-field result.

In the present paper we show that non-renormalization of some operators, that are not in general

protected by unitarity restrictions [24, 25], follows from the partial non-renormalization theorem of [27].

A typical example which we study in some detail is a scalar operator O20 of conformal dimension 4

transforming in the irrep 20 of SO(6). In free-field theory it can be represented by a “double trace”

operator : tr(φiφj)tr(φkφl) :, where φi are the six scalars of N=4 Yang-Mills and the SO(6)-indices are

projected onto the 20. In free-field theory this operator saturates the unitarity bound of the A’) series

of UIRs in the classification of [6] but in an interacting theory it can in principle acquire an anomalous

dimension.

To find implications of the partial non-renormalization for the OPE of short operators we use

Conformal Partial Wave Amplitude (CPWA) analysis, a subject well developed in the past [29]-[33] and

recently revitalized in the context of the AdS/CFT duality [34, 20, 35, 24, 25, 36, 37]. In a conformally

invariant theory the OPE of two scalar fields is decomposed in terms of conformal blocks of traceless

symmetric tensors. Each of them realizes an irreducible representation of the conformal group. The

CPWA can be viewed as the contribution of the conformal block of a tensor field to the conformally
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covariant 4-point function. For the 4-point functions considered here, due to the universality of the

quantum correction function F , the projections onto different irreps of the R-symmetry group are

related to each other. Matching these relations against the CPWA expansion of the various projections

we are able to demonstrate the absence of quantum corrections to some operators in the 20 and the

105.

Apart from the non-renormalized operators just discussed, there exist other operators that do not

receive quantum corrections [24]. However, their non-renormalization properties are encoded in the

explicit form of the function F whose non-perturbative expression is currently unavailable. The function

F contains information about both protected and unprotected operators, but the latter are mixed in

perturbation theory. To solve for the operator mixing one has two possibilities. Firstly, one may compute

the weak coupling 4-point functions of other fields appearing in the OPE of CPOs and then find and

diagonalize the corresponding mixing matrix. Secondly, one may exploit the partial knowledge of F in

different regimes. Here we employ the second possibility to trace new non-renormalized operators.

Since the two-loop (O(λ2)) 4-point function is known [14, 16], we can use it to extract the cor-

responding OPE expansion. In view of comparison with a sum of CPWAs of different tensors it is

therefore desirable to represent this function as a certain series expansion valid in the asymptotic region

of conformal variables where we study the OPE. We solve this problem by using an analytic regulariza-

tion that allows one to reduce the two-loop function to the function related with a one-loop diagram.

Our approach is different from the one in [16]. Using the CPWA analysis of the one-loop, two-loop

and strong coupling 4-point functions of CPOs we then demonstrate the vanishing of the anomalous

dimension for the scalar of naive dimension 6 transforming in the 20 of SO(6).

The paper is organized as follows. In Section 2 we start by recalling the structure of the 4-point

functions of the lowest-weight CPOs and describe the partial non-renormalization theorem of [27].

Employing CPWA analysis we show that the absence of quantum corrections to O20 and to the rank-2k

tensors of dimension 4 + 2k is a direct consequence of the partial non-renormalization of the 4-point

functions of CPOs. In Section 3 we derive a series representation (with logs) for the two-loop 4-point

function of CPOs suitable for the study of the OPE. Some results of the CPWA analysis relevant for

further non-renormalization issues are presented in Section 4. The technical details are relegated to two

Appendices.
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2 Partial non-renormalization of the 4-point function of CPOs

In the notation of [24, 25], the 4-point function of the lowest dimension canonically normalized CPOs is

〈OI1(x1)O
I2(x2)O

I3(x3)O
I4(x4)〉 = a1(x) δ

I1I2δI3I4 + a2(x) δ
I1I3δI2I4

+a3(x) δ
I1I4δI2I3 + b2(x)C

I1I2I3I4 + b1(x)C
I1I3I2I4 + b3(x)C

I1I3I4I2 , (2.1)

where I1, . . . , I4 = 1, 2, .., 20 are indices of the irrep 20 of SO(6) and the various C-tensors in (2.1)

were defined in [24]. Here ai and bi are given by simple propagator factors times functions of the two

biharmonic ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

12x
2
34

x2
14x

2
23

. (2.2)

In the sequel we will also use the variable Y = 1 − v
u .

The Bose symmetry (equivalently crossing symmetry) of the 4-point function (2.1) implies that

only one of the ai’s and one of the bi’s are independent. A further restriction on the structure of the

4-point function is imposed by the partial non-renormalization theorem of [27] which states that all

six coefficient functions in (2.1) are expressed in terms of one and only one arbitrary function of two

variables F (v, Y ):

a1 =
1

x4
12x

4
34

[1 + uF (v, Y )] (2.3)

a2 =
1

x4
12x

4
34

[

u2 + u2 F (v, Y )
]

(2.4)

a3 =
1

x4
12x

4
34

[

v2 + vuF (v, Y )
]

(2.5)

b1 =
1

x4
12x

4
34

[

4

N2
vu+ (vu2 − u2 − vu)F (v, Y )

]

(2.6)

b2 =
1

x4
12x

4
34

[

4

N2
v + (v − vu− u)F (v, Y )

]

(2.7)

b3 =
1

x4
12x

4
34

[

4

N2
u+ (

u2

v
− u2 − u)F (v, Y )

]

. (2.8)

Here the F -independent terms correspond to the disconnected (ai) and connected (bi) parts in the free

amplitude (Born approximation). The function F (v, Y ) ≡ F(u, u/v) encodes all quantum corrections

and obeys the crossing symmetry relations [27]:

F(u, u/v) = F(u/v, u) =
v

u
F(v, v/u) . (2.9)
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Our prime interest will be to understand the implications of this partial non-renormalization theorem

for the OPE of chiral operators. To this end we will discuss the OPE for x2
12 , x

2
34 → 0, or equivalently

u , v , Y → 0.

The product of two CPOs OI1(x1)O
I2(x2) decomposes under the R-symmetry group SU(4) as

20× 20 = 1 + 20 + 105 + 84 + 15 + 175 . (2.10)

To label the different operators appearing in the operator product expansion we use the notation Oirrep
∆,l ,

where ∆ describes the free-field conformal dimension of the operator, l is its Lorentz spin and irrep

denotes the corresponding representation of SU(4).

By analyzing the 4-point function of chiral operators at strong coupling [23] it was found in [24] that

there exist an operator O20
4,0 and a tower of rank-2k tensors O105

4+2k,2k which do not acquire anomalous

dimension. In [25] the same phenomenon was observed at the one-loop (O(λ)) level. These operators

do not belong to short superconformal representations and thus the standard protection mechanism [6]

does not apply to them. The absence of quantum corrections should be interpreted as a dynamical

rather then a kinematical effect.

In this section we demonstrate these new non-renormalization properties without making use of

perturbative arguments. They are, in fact, a simple consequence of the general non-perturbative form

(2.3)-(2.8) of the amplitude. The method we use to extract information about the content of the

operator algebra is Conformal Partial Wave Amplitude (CPWA) analysis [29]-[33].

The correlator (2.1) (or any of its projections on the irreps (2.10)) can be written as an expansion

of the type

〈O(1)O(2)O(3)O(4)〉 =
∑

∆,l

a∆,lH∆,l(x1,2,3,4) . (2.11)

Here H∆,l(x1,2,3,4) denotes the CPWA for the exchange of a symmetric traceless tensor of rank l and of

(possibly anomalous) dimension ∆. The coefficients a∆,l are to be found by matching the explicit form

of the left-hand side of eq. (2.11) to that of the CPWAs. The latter were obtained in [35] and are given

in Appendix A, equation (4.1), in terms of the variables v, Y suitable for the study of the OPE in the

direct channel. Here we only list some basic facts about these CPWAs needed for our argument.

Let us split the dimension of the exchanged operator ∆ = ∆0 + h, where ∆0 is an integer and

−1 ≤ h < 1. Then the CPWA is a double series of the type

H∆,l =
1

x4
12 x

4
34

v
h
2

∞
∑

n,m=0

c∆,l
nmv

nY m . (2.12)
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Note that the factor v
h
2 is a fractional power of v, which will allow us to treat CPWAs with different h

as functionally independent. As we show in Appendix A all monomials in this expansion obey

T ≡ 2n+m ≥ ∆0 . (2.13)

The “ordering parameter” T proves very helpful when comparing power expansions of the type (2.12).

The terms in the series (2.12) with Tmin = ∆0 are of the form (see Appendix A, (4.1)) v
1

2
(∆0−l)Y l,

v
1

2
(∆0−(l−2))Y (l−2), . . . down to v

1

2
(∆0−1)Y or v

1

2
∆0 depending on whether l is even or odd. This means

that we can choose ∆0 even(odd) for even(odd) spins. Further, from the unitarity bound ∆ ≥ 1 (if

l = 0) we deduce that the entire range of scalar dimensions can be covered choosing ∆0 = 2, 4, 6, . . .

and −1 ≤ h < 1. If l > 0 the unitarity bound becomes ∆ ≥ 2 + l, so we start at ∆0 = 2 + l (restricting

0 ≤ h < 1) and further ∆0 = 4 + l, 6 + l, . . . with −1 ≤ h < 1.

The main question we are addressing here concerns the exchange operator O20
4,0 for which ∆0 = 4.

According to eq. (2.13), the corresponding CPWA has Tmin = 4. In order to find out whether such

a CPWA can appear in a given projection of the amplitude, we have to consider all the CPWAs with

Tmin ≤ 4. Within a class of equal fractional power v(h/2) these CPWAs are6

• ∆0 = 2 scalar: v + . . .

• ∆0 = 3 vector: vY + . . .

• ∆0 = 4 scalar: v2 + . . . rank 2 tensor: v2 − vY 2 + . . .

where only the terms with Tmin are shown.

Let us now try to match a sum of such CPWAs with the 4-point amplitude in the form (2.1),

(2.3)-(2.8) predicted by the partial non-renormalization theorem of [27]. Since we are only interested in

anomalous dimensions which come from the quantum (F ) terms in (2.3)-(2.8), we can drop the Born

terms. Accordingly, when expanding the quantum terms we can neglect CPWAs with integer dimension.

We begin by projecting the amplitude (2.1) onto the various SU(4) irreps (2.10):

• Projection on the 1:

−
1

x4
12 x

4
34

(20 − 20Y −
16

3
v +

10

3
Y 2 +

8

3
vY +

1

3
v2)Φ(v, Y ) (2.14)

6We do not specify the normalization factors of the CPWAs, it is just assumed that they are non-singular for the range

of dimensions and spins under consideration.
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• Projection on the 15:

−
1

x4
12 x

4
34

(−4Y + 2Y 2 + vY )Φ(v, Y ) (2.15)

• Projection on the 20:

1

x4
12 x

4
34

(−
5

3
v +

5

3
Y 2 +

5

6
vY +

1

6
v2)Φ(v, Y ) (2.16)

• Projection on the 84:

−
1

x4
12 x

4
34

(−3v +
3

2
vY +

1

2
v2)Φ(v, Y ) (2.17)

• Projection on the 105:

1

x4
12 x

4
34

v2 Φ(v, Y ) (2.18)

• Projection on the 175:

1

x4
12 x

4
34

vY Φ(v, Y ) (2.19)

where we have set

Φ(v, Y ) =
v F (v, Y )

(1 − Y )2
.

Note that the polynomial prefactors have been T -ordered.

Consider the projections on the singlet and on the 20. Both of them are supposed to have CPWA

expansions of the type (2.11):

−
1

x4
12 x

4
34

(20 − 20Y −
16

3
v +

10

3
Y 2 +

8

3
vY +

1

3
v2)Φ(v, Y ) =

∑

∆,l

a1∆,lH∆,l (2.20)

and

1

x4
12 x

4
34

(−
5

3
v +

5

3
Y 2 +

5

6
vY +

1

6
v2)Φ(v, Y ) =

∑

∆,l

a20
∆,lH∆,l (2.21)

Since the function Φ(v, Y ) is the same in both of these equations, we can eliminate it and obtain the

consistency condition

(
5

3
v −

5

3
Y 2 −

5

6
vY −

1

6
v2)

∑

∆,l

a1∆,lH∆,l = (20 − 20Y −
16

3
v +

10

3
Y 2 +

8

3
vY +

1

3
v2)

∑

∆,l

a20
∆,lH∆,l

(2.22)
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Recall the form (2.12) of the CPWA, which contains a term vh/2. Different fractional powers of v

are functionally independent, hence the last equation splits into classes of different h. It is enough to

investigate the problem for a given h.

We want to know whether the CPWA H4+h,0, corresponding to an anomalous dimension (h 6= 0)

for the operator O20
4,0 can appear in the right-hand side of (2.22). Let us first assume that h > 0. This

CPWA has Tmin = 4, therefore we can keep only terms with T ≤ 4 on both sides of (2.22). In the left-

hand side we have a polynomial with T ≥ 2, so we need only keep the lowest CPWA H2+h,0 ∼ v + . . .

(T ≥ 2). In the right-hand side the polynomial has T ≥ 0, so we should include several CPWAs:

(
5

3
v −

5

3
Y 2 + . . . ) [a12+h,0(v + . . . ) + . . . ] = (2.23)

(20 + . . . )
[

a20
2+h,0(v + . . . ) + a20

3+h,1(vY + . . . ) + a20
4+h,0(v

2 + . . . ) + a20
4+h,2(v

2 − vY 2 + . . . ) + . . .
]

.

Clearly, the left-hand side has T ≥ 4, so the first two terms in the right-hand side with T < 4 have no

match. The crucial point now is that the polynomial v2 − vY 2 in the left-hand side exactly matches the

tensor term in the right-hand side. Therefore we conclude that

a20
2+h,0 = a20

3+h,1 = a20
4+h,0 = 0 . (2.24)

It remains to consider the case when h < 0. In this case the unitarity bound prevents the CPWAs

H3+h,1 and H4+h,2 from occurring in the right-hand side of eq. (2.23). Thus, up to order T = 4 there

is no possible match and this case has to be ruled out.

The vanishing of a coefficient for a CPWA means that there is no operator with anomalous part

of the dimension h, for any given value of h. In other words, the scalars of dimension 2,4 and the

vector at dimension 3 remain non-renormalized. The operator O20
2,0 is itself a CPO belonging to a short

multiplet of SU(4) and its non-renormalization is well-known. The absence of a vector in this channel

can be explained by parity. As to O20
4,0, we now see that its non-renormalization is a consequence of the

particular structure of the 4-point function dictated by the superconformal invariance and the dynamics

of N = 4 SYM4.

The tensor of approximate dimension 4 can be interpreted as the operator K4,2 from the Konishi

multiplet.

Let us briefly comment on the irrep 105. Here the polynomial factor is v3. We have pointed out

above, that the lowest order of the CPWA of an operator of free-field dimension ∆0 and spin l contains a

term v(∆0−l)/2Y l. It follows that any operator in the 105 receiving quantum corrections has ∆0− l ≥ 6,

yielding a tower of non-renormalized operators O4+2k,2k.
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Obviously, there should exist other operators which do not receive quantum corrections; for example

descendants of the operators discussed above. However, at present we do not see an easy way of

unraveling their non-renormalization properties on the general grounds of the representation (2.3)-

(2.8). In the next section we show that some other non-renormalized operators exist and they can be

traced by using the knowledge of the function F (v, Y ) in different regimes.

3 Series representation of the conformal 4-point functions

In perturbation theory the function F (v, Y ) assumes the form of a series as

F (v, Y ) =
1

N2
(λ̃F (1)(v, Y ) + λ̃2F (2)(v, Y ) + . . . ) + O

(

1

N4

)

, (3.1)

where λ̃ =
g2

Y M
N

(2π)2
is the t’Hooft coupling. In the following we study only the leading terms in 1/N2.

The first two terms in the expansion (3.1) were computed in [12]-[14] by using the N = 2 harmonic

superspace technique and in [15], [16] by means of the N = 1 superspace formalism. They are given by

F (1)(v, Y ) = −2
v

u
Φ(1)

(

v,
v

u

)

. (3.2)

and

F (2)(v, Y ) =
1

u
Φ(2)

(

1

v
,
1

u

)

+ Φ(2)
(u

v
, u
)

+
v

u
Φ(2)

(v

u
, v
)

(3.3)

+
v

4u2
(u+ v + uv)

(

Φ(1)
(

v,
v

u

))2
.

Here the functions Φ(1,2) admit representations in terms of the one- and two-loop box integrals respec-

tively, and they are the first two elements of an infinite series of conformally covariant “multi-ladder”

functions introduced in [38, 39].

The symmetry properties of the function Φ(1) are

Φ(1)
(

u,
u

v

)

=
v

u
Φ(1)

(

v,
v

u

)

, Φ(1)
(

v,
v

u

)

=
1

v
Φ(1)

(

1

v
,
1

u

)

. (3.4)

One can easily see that by virtue of (3.4) the functions (3.2) and (3.3) obey the symmetry relations

(2.9).

Since the two-loop correlation function admits a representation in terms of the two integrals Φ(1)

and Φ(2), each of them being covariant under conformal mappings, it is tempting to suggest that higher

loop correlation functions can be as well represented as certain polynomials of all possible multi-ladder

integrals that can be composed from field propagators at this level. To study then the OPE we require
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the behavior of the correlation functions in the asymptotic region, where, say, x2
12 ∼ 0 and x2

34 ∼ 0.

Furthermore, to develop an efficient technique for constructing the field algebra at higher loops we

face the difficult problem of finding an asymptotic expansion of these integrals in terms of conformally

invariant variables valid in the relevant asymptotic region. Here we demonstrate that this problem may

be overcome by using the method of analytic regularization [38] of the L-loop ladder diagram Φ(L) that

allows one to find the latter in terms of the sum of diagrams related to Φ(L−1). Applying this procedure

recurrently one will be subsequently left with a function related to a one-loop diagram.

For the sake of clarity we consider here only the case of the function Φ(2) for which we obtain a

series representation (with logs) in terms of conformal variables v and Y . In the next section this

representation will be used to verify some predictions about the structure of the field algebra of chiral

operators at two loops. Below we often use notation y = 1 − Y = v/u.

Following [38] we introduce a function

Φ(v, y|δ) =

∫

dλds

(2πi)2
Γ(−λ)Γ(−s)Γ(−λ− δ)Γ(−s − δ)Γ2(1 + λ+ s+ δ)vλys . (3.5)

The integration contours run sufficiently close to the imaginary axis to separate the ascendant and

descendent sets of poles. The s-integral is convergent for |y| < 1 and |arg y| < π. Using this integral

representation one notices that the function Φ(v, y|δ) is a particular example of a general family of

D∆1∆2∆3∆4
-functions (see A1)7 which describe contribution of the scalar AdS graphs to the 4-point

function [24] of chiral operators computed in AdS5 supergravity. Precisely one has the following relation:

Φ
(

v,
v

u
|δ
)

= D1−δ,1,1,1+δ(v, Y ). (3.6)

Representation of this type is rather useful since it allows one to establish a relation between Φ considered

as a function of the conformal variables in the crossed channels and D-functions as functions of v, Y

which parametrize the direct channel. In the Appendix B we show that the following formulae are valid:

Φ
(

u,
u

v
|δ
)

=
(v

u

)1+δ
D1−δ,1,1+δ,1(v, Y ) , Φ

(

1

v
,
1

u
|δ

)

= v1+δD1−δ,1+δ,1,1(v, Y ) . (3.7)

It is worth pointing out that the sum of parameters ∆i of the D-functions we meet here is equal to four,

which is the dimension of a space-time. This merely reflects the fact that in our situation D-functions

coincide with the well-known star-integrals (the “box” diagram in momentum space). Evaluating the

7The D-functions we use here coincide with the D̄-functions (without normalization factor) introduced in [24].

10



integral (3.5) one gets the following formula in terms double series in v, Y variables:

Φ(v, Y |δ) =

∞
∑

m,n=0

Y m

m!

vn

(n!)2

[

Γ(1 + δ)Γ(−δ)

Γ(1 + n+ δ)

Γ2(1 + n)Γ2(1 + n+m+ δ)

Γ(2 + 2n +m+ δ)

+ v−δ Γ(1 − δ)Γ(δ)

Γ(1 + n− δ)

Γ2(1 + n− δ)Γ2(1 + n+m)

Γ(2 + 2n+m− δ)

]

, (3.8)

which converges in a neighborhood of v = 0, Y = 0. In the limiting case δ = 0 one recovers from (3.5)

the Mellin-Barnes integral for Φ(1)(v, Y ) = Φ(v, Y |0). Taking the limit δ → 0 in (3.8) produces the

following asymptotic expansion for Φ(1)(v, Y ):

Φ(1)(v, Y ) =

∞
∑

n,m=0

vnY m

(n!)2m!

Γ2(1 + n)Γ2(1 + n+m)

Γ(2 + 2n+m)

× [− ln v + 2ψ(2 + 2n +m) − 2ψ(1 + n+m)] . (3.9)

This representation was extensively used in [25] to study the OPE of chiral operators at one loop.

1 + δ31 + δ3

1 + δ1

1 + δ2

1 + δ1

1 + δ2

Figure 1: Regularized ladder diagram related to the function Φ(2)(v, y).

The idea of [38] to compute the integral Φ(2)(v, y) is to introduce a special analytic regularization of

the corresponding two-loop ladder diagram and use the “uniqueness” method to reduce it to the function

Φ(v, y|δ) naturally related to a one-loop ladder diagram. The analytic regularization in question consists

in replacing the powers in denominators by 1 + δi obeying a condition δ1 + δ2 + δ3 = 0. After the

computation a limit δi = 0 is applied. In this way one finds the following formula 8

Φ(2)(v, y) =
1

2

[

3∂2
δ Φ(v, y|δ) − (ln2 v + ln v ln y + ln2 y + π2)Φ(1)(v, y)

]

, (3.10)

8The appearance of an additional π2 term in comparison with [38] is related to the particular series representation for

Φ(x, y|δ) that we use.
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where the derivative is evaluated at δ = 0.

With the help of formulae (3.7) we can also find representations for function Φ(2) depending this

time on the variables describing the crossed channels:

Φ(2)
(

u,
u

v

)

=
y

2

[

3∂2
δ (yδD1−δ,1,1+δ,1) − (ln2 v − 3 ln v ln y + 3 ln2 y + π2)Φ(1)(v, y)

]

(3.11)

and

Φ(2)

(

1

v
,
1

u

)

=
v

2

[

3∂2
δ (vδD1−δ,1+δ,1,1) − (3 ln2 v − 3 ln v ln y + ln2 y + π2)Φ(1)(v, y)

]

. (3.12)

One may further simplify the latter expressions by using the fact that the first derivative of the function

Φ(v, y|δ) computed at δ = 0 is not independent but can be rather expressed via Φ(1)(v, y). To compute

the derivatives it is convenient to use the Mellin-Barnes representation for Φ(v, y|δ). Indeed, from (3.5),

one can see that under the following shift of integration variables λ → λ − δ/2 and s → s − δ/2 the

function Φ(v, y|δ) acquires a form

Φ(v, y|δ) = (vy)−δ/2

∫

dλds

(2πi)2
Γ(−λ+ δ/2)Γ(−s + δ/2)Γ(−λ − δ/2)Γ(−s − δ/2)

× Γ2(1 + λ+ s)vλys . (3.13)

Clearly, viewed as a series in the δ-variable, the integrand does not have a linear term. This fact allows

one to derive an identity [38]:

∂δΦ
(1)(v, y) = −

1

2
ln vy Φ(1)(v, y) . (3.14)

Similarly, by using the corresponding Mellin-Barnes representations for the remaining D-functions in

(3.7) (see Appendix B) we obtain the formulae

∂δD1−δ,1,1+δ,1 = −
1

2
ln vΦ(1) , ∂δD1−δ,1+δ,1,1 = −

1

2
ln yΦ(1), (3.15)

where the derivatives are taken at δ = 0 and we omit the arguments.

Now performing the differentiation in (3.11), (3.12) and using expressions (3.15) we arrive at

Φ(2)
(

u,
u

v

)

=
y

2

[

3∂2
δD1−δ,1,1+δ,1 − (ln2 v + π2) Φ(1)(v, y)

]

, (3.16)

Φ(2)

(

1

v
,
1

u

)

=
v

2

[

3∂2
δD1−δ,1+δ,1,1 − (ln2 y + π2) Φ(1)(v, y)

]

. (3.17)
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Since our main interest is the function F (2)(v, Y ) describing the 4-point function of chiral operators

at two loops, we combine the formulae above to get a quantity

S =
1

u
Φ(2)

(

1

v
,
1

u

)

+ Φ(2)
(u

v
, u
)

+
v

u
Φ(2)

(v

u
, v
)

=
y

2

[

3∂2
δ (D1−δ,1,1,1+δ +D1−δ,1,1+δ,1 +D1−δ,1+δ,1,1) (3.18)

−(2 ln2 v + ln v ln y + 2 ln2 y + 3π2)Φ(1)(v, y)

]

.

The remaining step consists in evaluating the Mellin-Barnes integrals for other D-functions involved in

(3.18) with subsequent differentiation of the resulting series. In this way we arrive at a formula suitable

for the study of the OPE of chiral operators in the direct channel.

It is worth emphasizing that ln3 v terms cancel in the final expression for S. This should not come

as a surprise, otherwise one could see the presence of ln3 v-terms in the 4-point function. Such terms

would contradict the general OPE expansion in this order of perturbation theory. Below we present

explicit expressions for the ln2 v and ln v terms of the function S:

Sln2(v, Y ) = (1 − Y )
∞
∑

n,m=0

Y m

m!

vn

(n!)2
Γ2(1 + n)Γ2(1 + n+m)

Γ(2 + 2n+m)
× (3.19)

×

(

−
1

4
ln(1 − Y ) − ψ(1 + n+m) + ψ(2 + 2n+m)

)

ln2 v

and

Sln(v, Y ) =
1 − Y

2

∞
∑

n,m=0

Y m

m!

vn

(n!)2
Γ2(1 + n)Γ2(1 + n+m)

Γ(2 + 2n +m)

[

2 ln2(1 − Y )

+ ln(1 − Y )(6ψ(1 + n) + 5ψ(1 + n+m) − 5ψ(2 + 2n+m)) + π2

−18ψ2(1 + n) − 6ψ2(2 + 2n+m) + 12ψ(1 + n)(ψ(1 + n+m) + ψ(2 + 2n +m))

−9ψ′(1 + n) − 3ψ′(1 + n+m) + 6ψ′(2 + 2n+m)

]

ln v (3.20)

The non-logarithmic terms are more involved and not essential for our further study. Substituting

(3.19), (3.20) into (3.3) and using representation (3.9) for Φ(1) we obtain a series representation for F (2)

suitable for the further OPE analysis.

4 OPE analysis at two loops

In this section we employ the expansion of the functions F (2) found in the previous section to study

the operator algebra of chiral operators at two loops. Our prime interest will be to confirm the non-

13



renormalization properties of certain lower-dimensional operators occurring in the operator algebra of

chiral operators as well as to compute the two-loop anomalous dimensions of some other multiplets.

As was discussed above the non-renormalization property of O20
4,0 does not rely on a specific form

of the function F . However, non-renormalization of higher-dimensional operators, in particular of

descendants of this operator, can not be unravel without involving an explicit form of F . If we restrict

our attention, say, to F (1) or F (2), then due to the problem of the operator mixing, an information

we get from the OPE analysis is in general not enough to deduce the individual properties of mixed

operators. However, combining F (1,2) with the knowledge of the F str-function at strong coupling we

will be able to trace the perturbative behavior of some of these operators. This happens due to the fact

that the Yang-Mills multiplets dual to string states become infinitely massive at strong coupling and

do not show up in the corresponding OPE, whose content is then given by non-renormalized operators

and operators dual to multi-particle gravity states.

According to (2.12) a CPWA of any tensor contains a multiplier vh/2, where h is treated as an

anomalous dimension. It is then can be decomposed as

h = h(1) + h(2) + . . . , (4.1)

where h(1), h(2) are anomalous dimensions at order λ̃, λ̃2 and so on. Thus, in perturbation theory a

term v
1

2
h is a origin of logarithmic terms of the form

v
1

2
h = 1 +

1

2
h(1) ln v +

(

1

2
h(2) ln v +

1

8
(h(1))2 ln2 v

)

+ ... (4.2)

Here the terms in the brackets occur at order λ̃2 and should be matched with logarithmic terms in the

4-point function originating from F (2). In particular, the coefficients of the ln v-terms encode a new

information about two-loop anomalous dimensions, while the ones of ln2 v-terms depend on one-loop

anomalous dimensions having been already found from F (1). Keeping track of the latter terms is an

important consistency a check that perturbative expansion of the 4-point function fits the corresponding

expansion of a sum of CPWAs.

In order not to overload the discussion with formulae, we consider only the lower-dimensional struc-

ture of the OPE for irreps 1, 20 and 105. We also do not write down explicitly the non-logarithmic

terms in the 4-point function but simply present the relevant results where appropriate. In the following

we also assume that for any operator T the ratio COOT/CT of the normalization constants occurring

in the corresponding three- and two-point functions with CPOs is kept equal to its free-field value. A
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correction to a coupling dependent constant COOT (λ̃) is introduced in the following way

COOT (λ̃) = COOT (1 + C(1) + C(2) + ...),

where COOT stands for the free-field value and C(i) describes an i-loop correction. Below we use the

CPWAs normalized as in Section 2 with an exception of the CPWA of T4,2, which we multiply by −1/4

to have an agreement with [25].

Singlet

The operators of approximate dimension up to 4 emerging in the singlet projection have been

already discussed in [25]. These are the Konishi scalar K2,0, the Konishi tensor K4,2, the conserved

stress-energy tensor Tµν , a tensor Ξ4,2 being a lowest component of a new supersymmetry multiplet and

scalar operators of dimension 4. In particular, with the chosen normalization of chiral operators the

free-field normalization constants are found to be

C2
OOK

CK
=

4

3N2
,

C2
OOK4,2

CK4,2

=
16

63N2
,

C2
OOΞ4,2

CΞ4,2

=
16

35N2
. (4.3)

Projecting the two-loop 4-point function on the singlet we find for the leading terms the following

result

−
1

N2 x4
12x

4
34

[

8v +
5

2
vY +

53

18
vY 2 + ...

]

λ̃2 ln v .

Here the term proportional v receives a contribution only from K2,0, for which we have C(1) = −3λ̃,

h(1) = 3λ̃. Thus, comparison with the corresponding term in the CPWA allows one to find the two-loop

anomalous dimension of the Konishi field

h
(2)
K = −3λ̃2 . (4.4)

The two-loop anomalous dimension of the Konishi field has been previously calculated in [16] by a

different method and the result obtained there agrees with ours.

The term vY occurs only due to the Konishi field and does not provide us any new information.

We therefore consider next the term vY 2, which receives contribution from the Konishi field as well as

the tensors K4,2 and Ξ4,2. By matching the coefficient of vY 2 with contributions of the corresponding

CPWA’s we find the anomalous dimension of Ξ at two loops:

h
(2)
Ξ = −

25

6
λ̃2. (4.5)
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Similarly to the dimension of the Konishi field, the anomalous dimension of Ξ is negative.

In addition to the above discussed operators, the terms v2 and v2Y not indicated in (4.4) receive

contributions from the scalar operators of dimension 4. In [25] we assumed that the free-field double

trace operator O1 undergoes a splitting into a sum of operators Oi. However, despite having at our

disposal the result for the two-loop 4-point function, the relatively big number of mixed operators (≥ 3)

does not suffice to find their individual anomalous dimensions and free-field normalization constants.

Finally, analyzing the leading non-logarithmic terms in the 4-point function one obtains the following

results for the two-loop corrections to the ratio of the normalization constants for K:

C
(2)
K =

3

2
(7 + 3ζ(3))

λ̃2

N2
. (4.6)

Irrep 20

Here we show that the content of the operator algebra formed by operators up to approximate

dimension 6 and transforming in the irrep 20 of SO(6) can be depicted as follows:

∆ spin

2 O2,0

4 O4,0 K4,2

6 O6,0,K6,0,Ξ6,0 T6,2 Ξ6,4

The operator O2,0 is the CPO and O4,0 is an operator whose non-renormalization property was

discussed in Section 2. Below we demonstrate that in addition to these operators there exist a scalar O6,0

with vanishing anomalous dimension. We will also see that a free-field scalar T6,0 splits in perturbation

theory into the sum of three operators belonging to different representations of supersymmetry.

As was already shown in [25] (c.f. Section 2) the lowest-dimensional operator in irrep 20 that

receives anomalous dimension is the second rank tensor Konishi tensor K4,2 with the free-field ratio

C2
OOK4,2

/CK4,2
= 80

9N2 . Extending the free-field and the one-loop analysis of [25] to dimension 6 opera-

tors, it is not difficult to show that a tensor T6,4 has the one-loop anomalous dimension h(1) = 25
6 λ̃, i.e.

it is the same as for the tensor Ξ4,2 occurring in the singlet projection. Thus, T6,4 ≡ Ξ6,4 belongs to the

Ξ-multiplet. With our convention for normalization of CPWAs its free-field ratio of the normalization

constants is

C2
OOΞ6,4

CΞ6,4

=
4

21N2
. (4.7)
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To proceed it is useful to recall the strong coupling result [24] for the 4-point function of chiral

operators projected onto 20. For the first few leading terms we get

1

N2 x4
12x

4
34

[

40

3
vF1(Y ) + v2

(

26

9
+

26

9
Y +

119

45
Y 2

)

+
2

15
v3 −

4

3
v2 ln v

(

Y 2 − v −
3

2
vY

)

]

, (4.8)

where we have written out explicitly both logarithmic and non-logarithmic terms. Here a function

F1(Y ) = −Y −1 ln(1 − Y ) provides a complete Y -contribution of the CPWA of a dimension 2 scalar

that is the chiral operator O20
2,0 itself. Such a structure of the v-term allows one to conclude that all

“single-trace” rank-l operators of dimension 2 + l decouple at strong coupling, Ξ6,4 among them [24].

From (4.8) one may see that the coefficient of the ln v-term matches exactly the leading terms of the

CPWA of a tensor T6,2, in particular, this coefficient does not receive contribution from the CPWA of

a scalar T6,0. Thus, we have two options: either T6,0 is non-renormalized or it is absent in the strong

coupling OPE. Let us show that the first option is realized. To this end we study the non-logarithmic

terms in (4.8).

We represent the 1/N2 corrections to a normalization constant in the usual way as e.g. C∆ ,l =

C∆ ,l

(

1 + C
(1)
∆ ,l

)

, where C∆ ,l on the r.h.s. is a leading term in 1/N2 and C
(1)
∆ ,l is a next 1/N2-correction.

In particular, the v2Y 2-term contains the contribution from CPWAs of O2,0, O4,2, and of T6,2. The

contribution of the CPWA of T6,0 is absent since it starts from v3. Thus, matching the v2Y 2-terms we

find

C2
OOT6,2

C6,2
C

(1)
6,2 =

2

45N2
. (4.9)

In a similar way studying the contribution of CPWA’s to the v3-term in (4.8) and taking into account

(4.9) we find

C2
OOT6,0

C6,0
C

(1)
6,0 = −

4

9N2
. (4.10)

Thus, we clearly see that scalar T6,0 is present in the strong coupling OPE but does not receive any

anomalous dimension.

To get more insight we consider the projection of the free-field 4-point function onto irrep. 20:

1

x4
12x

4
34

[

40

3N2
vF1(Y ) + v2

(

2 +
2

3N2
+

(

2 +
2

3N2

)

Y +

(

3 +
2

3N2

)

Y 2 + ...

)

]

. (4.11)

Note that the higher v-terms are absent. The terms v2Y 2 and v3 get contributions from the CPWAs of

the CPO, K4,2, T6,2, O4,2 and Ξ6,4 and this allows us to find the free-field values of the normalization
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constants

C2
OOT6,2

C6,2
=

6

5
+

1

15N2
,

C2
OOT6,0

C6,0
=

2

3
−

1

9N2
. (4.12)

Thus, we see that 1/N2 strong coupling corrections to the constants of T6,0 and T6,2 do not coincide

with their free-field counterparts. This means that operators T6,0 and T6,2 undergo a splitting at weak

coupling into a sum of operators with different perturbative behavior of anomalous dimensions. In

particular the operator T6,0 should contain in the split a non-renormalized operator.

Extension of the one-loop analysis performed in [25] to the operators of dimension 6 allows us to

establish the following relations

∑

i

C2
OOT i

6,0

Ci
6,0

(hi
6,0)

(1) =
11

9

λ̃

N2
,

∑

i

C2
OOT i

6,2

Ci
6,2

(hi
6,2)

(1) =
5

9

λ̃

N2
, (4.13)

where we have taken into account that above discussed operators split at one-loop.

Finally we can use the whole power of our formulae to extract the one-loop anomalous dimensions

by looking at the ln2 v terms in the two-loop 4-point function projected on the irrep 20. For the first

few leading terms we find

1

N2

[

5

2
v(Y 2 − v − vY ) − v2

(

5

2
+

5

2
Y +

205

108
Y 2

)

−
73

108
v3

]

λ̃2 ln2 v , (4.14)

where the first term is distinguished to emphasize the contribution of the CPWA of the tensor K4,2.

The essence of our analysis are the following equations:

∑

i

C2
OOT i

6,0

Ci
6,0

[(hi
6,0)

(1)]2 =
124

27

λ̃2

N2
,

∑

i

C2
OOT i

6,2

Ci
6,2

[(hi
6,2)

(1)]2 =
205

27

λ̃2

N2
. (4.15)

Consider now T6,0 and make an assumption that in perturbation theory this operator splits into

three operators, one O6,0 is non-renormalized, the second, K6,0, is from the Konishi multiplet and the

third one, Ξ6,0, is an operator whose anomalous dimension that we are going to find9. The free-field

normalization constant corresponding to O6,0 should be the same as we have found from the strong

coupling result, i.e.

C2
OOO6,0

CO6,0

=
2

3
−

4

9N2
. (4.16)

Subtracting it from the free-field result (4.12) we are left with the sum of the constants of the operators

K6,0 and Ξ6,0:

C2
OOK6,0

CK6,0

+
C2

OOΞ6,0

CΞ6,0

=
1

3N2
. (4.17)

9We denote this operator by Ξ since as will become clear in a moment it belongs to the Ξ-multiplet.
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This equation together with (4.13) and (4.15) provides a system of three equations for three unknown

variables that are normalization constants and the anomalous dimension of Ξ6,0. Solving the system we

obtain

C2
OOK6,0

CK6,0

=
1

7N2
,

C2
OOΞ6,0

CΞ6,0

=
4

21N2
, h

(1)
Ξ6,0

=
25

6
λ̃ (4.18)

which clearly shows that Ξ6,0 belongs to the Ξ-multiplet. As to T6,2, the corresponding analysis is

complicated by the fact that this operator(s) is present at strong coupling with a finite anomalous

dimension and the information we can extract from the weak/strong 4-point functions is not enough to

establish its split components.

Irrep 105

As was shown in [24] the rank-2k tensors O4+2k,2k and O6+2k,2k transforming in the irrep 105 are

non-renormalized in the strong coupling limit. As we have seen in Section 2 the non-renormalization

property of O4+2k,2k is a (non-perturbative) consequence of the non-renormalization theorem of [27].

The strong coupling behavior of the normalization constant of O6+2k,2k indicates however that a free-field

theory operator T6+2k,2k splits is perturbation theory into a sum of operators, therefore the unraveling

of its non-renormalized component O6+2k,2k requires the explicit knowledge of the function F (v, Y ).

Here, restricting our attention to the dimension 6 operators and assuming that there exist O6,0

and O6,2 that are non-renormalized, we reveal the corresponding weak coupling content of the operator

algebra. The subsequent treatment does not involve the knowledge of the two-loop 4-point function and

it relies only on the free-field, the one loop and the strong coupling considerations.

Analyzing the free-field 4-point function we find the free-field couplings

C2
OOO4,0

C4,0
= 2 +

4

N2
,

C2
OOT6,2

C6,2
=

6

5
+

2

5N2
,

∑

i

C2
OOT i

6,0

Ci
6,0

=
2

3
−

2

3N2
. (4.19)

Here O4,0 is an operator belonging to the short multiplet whose non-renormalization property is well-

known. For T6,0 we assume a perturbative splitting.

At strong coupling we find however a non-renormalized operator O6,0 with the 1/N2 correction to

the normalization constants: −2/N2. Thus, C2
OOO6,0

/CO6,0
= 2

3 − 2
N2 , i.e. it is different from (4.19).

We assume that this difference is due to the fact that T6,0 splits in perturbation theory into a sum of

two operators: O6,0 and another operator K6,0 with a free-field value of the ratio C2
OOK6,0

/CK6,0
= 4

3N2 .

With this assumption we can now analyze the one-loop 4-point function and determine the one-loop
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anomalous dimension of K6,0 that turns out to be h
(1)
K6,0

= 3λ̃. Thus, K6,0 belongs to the Konishi

multiplet.
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Appendix A

Truncation property of the CPWA

The CPWA for the exchange of a tensor arbitrary non-integer dimension ∆ and spin l between two pairs

of scalar fields was calculated in [35]. We state their result for the special case of space-time dimension

d = 4 and dimension of the outer scalar operators ∆̃ = 2. The overall normalization factor β∆̃;∆,l is

omitted since the Γ-functions in it cancel in this case.

H∆,l =
1

(x2
12 x

2
34)

2

∞
∑

n,m=0

vn Y m

n!m!

l
∑

M=0

c
(M)
l

2M c
(l)
l

M
∑

ni=0

(−1)n1+n3
M !

n1!n2!n3!n4!
(1 − Y )n2 ×

v
1

2
(∆−M) α(δ2)α(δ4)α(∆)

(δ1)n (2 − δ2)n (δ3)n+m (2 − δ4)n+m

(∆)2n+m (∆ − 1
2d+ 1)n

(4.1)

Here

α(x) =
Γ(2 − x)

Γ(x)
, (4.2)

δ1 = 1
2 (∆ −M) + n4 + n1, δ2 = 2 −

1

2
(∆ +M) + n1 + n2,

δ3 = 1
2 (∆ −M) + n2 + n3, δ4 = 2 −

1

2
(∆ +M) + n3 + n4 (4.3)

and the summation over the ni is such that
∑

ni = M .

We split the dimension of the exchanged operator as ∆ = ∆0 − h, where ∆0 is an integer and

−1 ≤ h < 1 is the anomalous part of the dimension. The overall factor vh/2 may be pulled out and is

ignored in the following.

We set out to show that the lowest terms in the v, Y expansion of (4.1) are of the form v
1

2
(∆0−k) Y k,

where k = l, l − 2, l − 4, . . . , but k ≥ 0 . This requires proving the cancellation of some powers of Y
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arising from (1−Y )n2 . It suffices to consider each value of n,m,M separately, hence we can restrict our

attention to the sum over ni. There are three summations because
∑

ni = M . Define N4 = n3 + n4.

A substantial simplification is obtained by rewriting

M
∑

ni=0

=

M
∑

N4=0

M−N4
∑

n1=0

N4
∑

n4=0

(4.4)

since then δ2, δ4 depend only on M,N4 but not on the remaining two counters n1, n4.

The proof can in fact be established for fixed N4. Consider

S =

M−N4
∑

n1=0

N4
∑

n4=0

(−1)n1+n3
M !

n1!n2!n3!n4!
(1 − Y )n2(δ1)n (δ3)n+m , (4.5)

the other terms being constant for fixed n,m,M,N4. Rearrange as

S = (−1)N4

(

M

M −N4

)

M−N4
∑

n1=0

(−1)n1

(

M −N4

n1

)

N4
∑

n4=0

(−1)n4

(

N4

n4

)

× (1 − Y )M−N4−n1(δ1)n (δ3)n+m (4.6)

= (−1)N4

(

M

M −N4

)

M−N4
∑

k=0

(−Y )k
M−N4−k
∑

n1=0

(−1)n1

(

M −N4

n1

) (

M −N4 − n1

k

)

×
N4
∑

n4=0

(−1)n4

(

N4

n4

)

(δ1)n (δ3)n+m (4.7)

= (−1)N4

(

M

M −N4

)

M−N4
∑

k=0

(−Y )k

(

M −N4

k

)

×

[

M−N4−k
∑

n1=0

(−1)n1

(

M −N4 − k

n1

)

N4
∑

n4=0

(−1)n4

(

N4

n4

)

(δ1)n (δ3)n+m

]

. (4.8)

All terms in the last line apart from the Binomial coefficients depend only on the sum N1 = n4 + n1.

Using

∑

n+m=p

(

N

n

) (

M

m

)

=

(

M +N

p

)

(4.9)

we replace the double sum in the square bracket by

M−k
∑

p=0

(−1)p

(

M − k

p

)

(

1

2
(∆ −M) + p

)

n

(

[
1

2
(∆ −M) + k] + [(M − k) − p]

)

n+m

. (4.10)

It will be demonstrated below that this sum vanishes ifM−k > 2n+m and that is equals (−1)n (2n+m)!

if M − k = 2n+m. The lowest power of Y occurring in S is therefore Y (M−2n−m) if M ≥ 2n+m and

Y 0 if M < 2n +m.
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Recall that the complete expression for the CPWA (4.1) includes

v(h
2
) v( 1

2
(∆0−M)+n)Y m (4.11)

the product of which with Y (M−2n−m) + . . . yields

v(h
2
) v( 1

2
(∆0−(M−2n))(Y (M−2n) + . . . ) (4.12)

so that the lowest term is in fact of the type postulated above, since the Gegenbauer coefficients c
(M)
l

are non-vanishing only if M, l are both odd or both even.

Referring to the “total power” T (v(h
2
)vnY m) ≡ 2n +m introduced above we find only terms with

T ≥ ∆0.

Last, if M < 2n+m we find

v(h
2
) v( 1

2
(∆0−M)+n)Y m(Y 0 + . . . ) . (4.13)

The lowest of these terms comes with T = ∆0 −M + 2n +m > ∆0; they are never leading.

It remains to prove the vanishing of (4.10) for M−k > 2n+m. One may check by explicit calculation

that

(X + p)a (Y + P − p)b − (X + (p+ 1))a (Y + P − (p+ 1))b = (4.14)

b (X + p)a ((Y + 1) + (P − 1) − p)b−1 − a ((X + 1) + p)a−1 (Y + (P − 1) − p)b

Using Pascal’s triangle:

P
∑

p=0

(−1)p

(

P

p

)

(X + p)a(Y + P − p)b =

P−1
∑

p=0

(−1)p

(

P − 1

p

)

(4.15)

×

(

b (X + p)a ((Y + 1) + (P − 1) − p)b−1 − a ((X + 1) + p)a−1 (Y + (P − 1) − p)b

)

.

On iterating this step the sum vanishes if P > a+ b and is equal to (−1)aP ! if P = a+ b.

Appendix B

Analytic continuation of Φ(v, y|δ)

Here we discuss the problem of the analytic continuation of the function Φ(v, y|δ) to the conformal

variables describing the crossed channels.
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Recall the Mellin-Barnes representation for the D∆1∆2∆3∆4
-functions [24]:

D∆1∆2∆3∆4
(v, y) =

∫

dλds

(2πi)2

[

Γ(−λ)Γ(−s)Γ(
∆1 + ∆2 − ∆3 − ∆4

2
− λ) (4.1)

×Γ(
∆1 + ∆3 − ∆2 − ∆4

2
− s)Γ(

∆2 + ∆3 + ∆4 − ∆1

2
+ s+ λ)Γ(∆4 + s+ λ)vλ

(v

u

)s
]

.

Comparing this formula with (3.5) one obtains (3.6). On the other hand, the D-function has an integral

representation in terms of Schwinger parameters (see e.g. [24]), so that for the case under consideration

one gets

Φ
(

v,
v

u
|δ
)

= 2

∫

dt1dt2dt3dt4 t
−δ
1 tδ4exp

[

−t1t2 − t1t3 − t1t4 − t2t3 −
v

u
t2t4 − vt3t4

]

.

From here we immediately read off a representation for Φ in a crossed channel, e.g.,

Φ
(

u,
u

v
|δ
)

= 2

∫

dt1dt2dt3dt4 t
−δ
1 tδ4exp

[

−t1t2 − t1t3 − t1t4 − t2t3 − ut2t4 −
u

v
t3t4

]

.

Note that under the following rescaling of integration variables

t1 → λt1, t2 →
1

λ
t2, t3 →

1

λ
t3, t4 →

1

λ
t4 (4.2)

the integral takes the form

Φ
(

u,
u

v
|δ
)

=
2

(λ2)1+δ

∫

dt1dt2dt3dt4 t
−δ
1 tδ4

× exp

[

−t1t2 − t1t3 − t1t4 −
1

λ2
t2t3 −

u

λ2
t2t4 −

u

λ2v
t3t4

]

.

Now we may choose λ2 = u
v and perform the change of variables t2 ↔ t3 and then t3 ↔ t4. Finally,

by using the Mellin-Barnes representation for the integral on the r.h.s., we arrive at the first formula in

(3.7). The second formula in (3.7) is proved in an analogous manner.

The functions D1−δ,1,1+δ,1 and D1−δ,1+δ,1,1 have the following Mellin-Barnes representation

D1−δ,1,1+δ,1(v, Y ) = v−δ/2

∫

dλds

(2πi)2
Γ2(−s)Γ(−λ+ δ/2)Γ(−λ − δ/2)Γ(1 + λ+ s+ δ/2)

× Γ(1 + λ+ s− δ/2)vλys (4.3)

D1−δ,1+δ,1,1(v, Y ) = y−δ/2

∫

dλds

(2πi)2
Γ2(−λ)Γ(−s + δ/2)Γ(−s − δ/2)Γ(1 + λ+ s+ δ/2)

× Γ(1 + λ+ s− δ/2)vλys (4.4)
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