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Editor’s Note

Relativistic Hydrodynamics

Jürgen Ehlers

(Received 16 February, 1937.—Read 18 February, 1937.)
(Proceedings of the London Mathematical Societyser. 2,43, 376–416 (1937)).

If you were to ask me what I have contributed to the theory of relativity, I believe
that I could claim to have emphasized its geometrical aspects.

J. L. Synge, 1972

The general theory of relativity may be viewed as the completion of classical
macroscopic field physics. Since this theory identifies gravitation with some as-
pects of the metric of spacetime, and because the metric and its connection enter
all parts of physics as basic prerequisites, the task arose to adapt all branches
of classical physics to the generalized spacetime structure, and to investigate
whether the modifications lead to new, possibly observable consequences. This
holds, in particular, for hydrodynamics, the significance of which in this con-
text is enhanced by the following facts. Due to an elementary argument by Max
von Laue [1], relativistic causality implies that any extended body has infinitely
many degrees of freedom, and the results of Karl Schwarzschild [2] and of sub-
sequent authors show that Einstein’s gravitational field equation is incompatible
with the representation of bodies as points endowed with a positive mass. There-
fore, in general relativity bodies such as stars and planets have to be modelled, at
least in principle, in terms of hydro- or elastomechanics. In addition, the devel-
opment of high-energy astrophysics shows that large-scale flows of matter with
relativistic speeds in relativistic gravitational fields do occur in nature. Prime ex-
amples are supernovae, jets associated with active galactic nuclei, accretion flows
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around and into black holes, and exotic fluid-like media such as quintessence.
Relativistic hydrodynamics is also needed to study the structure and stability
of stars.

Synge’s paper reprinted below represents the first “systematic attempt to
develop a hydrodynamical theory in general relativity,” apart from an early inves-
tigation by L. P. Eisenhart [3] whose main results are included in Synge’s work.
Synge does not take into account the gravitational field equation; he uses only the
covariant conservation law for the energy tensor of matter in a given, generally
curved spacetime (test fluid approximation).

The paper begins (chapters I, II) with kinematical definitions and some imme-
diate consequences, related to a congruence of timelike world lines interpreted as
streamlines of a fluid. Two remarks may be picked out: The (by now well-known)
geometrical characterization of irrotational motion (theorem II) and the Frenet–
Serret formulas for a timelike curve, (2.4), which are applied in several places
of the paper and which also have been used by Synge in his delightful book on
general relativity [4] to translate simple kinematical facts into the language of gen-
eral relativity. (Strangely enough, the term 4-acceleration is never used though the
concept appears frequently, of course. Also, the rates of strain and shear needed,
e.g. to discuss Born-type rigid motions [5], have been introduced by Synge only
in [4].)

In chapter III Synge introduces the energy tensor. An answer to the question he
raises there—to find conditions ensuring that the eigenvalues of a symmetric tensor
with respect to a Lorentz-metric are all real—was given by Synge himself1 in [6]:
If Ti j λ

iλ j > 0 for all causal vectorsλi , then the eigenvalues (−ρ, p1, p2, p3) of
Ti

j are real. (Synge’s assumption is slightly stronger than Stephen Hawking’s weak
energy condition [7], but it implies neither the strong nor the dominant condition.)
Synge then specializes to the usual perfect fluid energy tensor, he writes down the
“Euler” equations implied byTi

j,i = 0, and deduces some consequences without
assuming a pressure-density relation. His theorem XV shows, e.g., that streamlines
contained in a hypersurface of constant pressure are geodesics of that hypersurface
with respect to its induced metric, a fact which applies in particular to a free
boundary of a fluid body.

The longest and in my view most interesting part of the paper, chapter IV,
deals with barotropic motions of perfect fluids in which the energy-densityρ de-
pends on the pressurep, ρ = f (p). Following Eisenhart, Synge introduces in
(9.1) what he calls the index functionF(p), the basic tool for the subsequent
work. He characterizes the streamlines as the geodesics of the “fluid metric”
ds2 = F2ds2, and continues to deduce relativistic generalizations of classical the-
orems by Kelvin and Helmholtz on vortices. He does this in his characteristic

1In this note I use Synge’s notation explained in his paper; so that a comma denotescovariant
differentiation.
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style, using spacetime diagrams to illustrate the contents of the theorems as well
as the proofs. The chapter ends with setting up a simple metric (16.8) for irro-
tational flows. It is a pleasure to read this exposition, it does not need further
comments.

In the last chapter, Synge specializes the metric to a flat one, perhaps because at
that time he was not familiar with Killing vectors and Lie derivatives. He first deals
with hydrostatics, deriving a generalization of Bernoulli’s theorem for stationary
fluid motions, and then treats the propagation of disturbances in a fluid. In this
chapter the assumptions are unnecessarily restrictive and the formulations are
somewhat awkward. The rather straightforward, but from the point of view of
physics important generalization of stationary hydrodynamics to curved spacetime
was provided by A. Lichnerowicz in [8].

Synge’s “most remarkable result,” the equation (21.11) on the speed of propa-
gation of small disturbances in an irrotational fluid at rest, has also been generalized
to General Relativity by Lichnerowicz [8].

The conclusion on the sound velocity (21.12), drawn by both authors, and
their remarks on incompressibility (here and in sec. 8 and footnote) suffer from
the fact that thermodynamics is not taken into account. As has been shown later
[9], the result (21.11) is valid under more general assumptions, provided the
derivativedp/dρ is taken at fixed specific entropy, whether or not the flow is
barotropic.

Some information about later developments related to relativistic hydrody-
namics is contained in references [9–16].
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Short Biography

John Lighton Synge, F.R.S. was born in Dublin on 23rd March, 1897. He was
educated in St. Andrew’s College and entered Trinity College, Dublin University
in 1915. He graduated B.A. (1919), M.A. (1922) and Sc.D. (1926).

He was Assistant Professor of Mathematics in the University of Toronto
(1920–25) and returned to Trinity College as Professor of Natural Philosophy
(1925–30). It was at this time that he published a paper “On the Geometry of
Dynamics” [Phil. Trans. R. Soc.A226 (1926), 31–106] in which he obtained the
equation of geodesic deviation on a Riemannian manifold and simultaneously this
important equation was derived by Levi–Civita on a pseudo–Riemannian manifold.
He also edited, with A. W. Conway, F.R.S. of University College Dublin, the
first volume of the collected works of Hamilton on geometrical optics. This was
an enterprise which had a strong influence subsequently on his own research in
mechanics and optics.

He returned to the University of Toronto as Professor of Applied Mathematics
(1930–43). He subsequently became chairman of the Mathematics Department in
Ohio State University (1943–46) and Head, Mathematics Department at Carnegie
Institute of Technology, Pittsburgh (1946–48) before coming back to Dublin to
establish his “school of relativity” in the Dublin Institute for Advanced Studies
(1948–72).

This was a golden age for relativity generally and in particular in Dublin. Many
notable figures in the subject came to study with or consult Synge, influenced
by his emphasis on the geometry of space–time and his impressive insight and
mastery of this most fundamental point of view. He created around him a wonderful
spirit of enquiry accompanied by intellectual discipline (“as far as I am concerned,
you cannot beat a good equation”). Out of this emerged, some profound results most
notably perhaps, Felix Pirani’s study of the physical significance of the Riemann
tensor and Werner Israel’s proof of the uniqueness of the static black hole. These
researches carry the imprint of Synge’s point of view par excellence.

He himself was prolific, publishing over 250 papers and 11 books cover-
ing Differential Geometry, Applied Mathematics and Relativity Theory. After
officially retiring at 75 he continued his research with amazing vigour for another
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twenty years. He died on 30th March, 1995 in Dublin having bequeathed his body
to the Medical School in Trinity College.

By Peter Hogan
Department of Mathematical Physics
University College Dublin
Belfield, Dublin 4, Ireland

The most outstanding characteristic of J. L. Synge’s approach to mathematical
physics was his extraordinary geometrical insight. “I asked myself why some things
bored me while others excited me intellectually, and I came to the conclusion that
the exciting problems must contain two ingredients – geometryandphysics,” Synge
said in his Boyle Medal Lecture. His taste is clearly visible in his four books (one
non-technical) on relativity and over 70 papers on that subject, about one third of
his impressive and widely varied output which covers, besides relativity, classical
mechanics, elasticity, geometrical optics, gas dynamics, differential geometry and
several other subjects including a few papers on the stresses in the periodontal
membranes in human teeth.

The community of relativists owes to Synge the use of spacetime diagrams, the
clarification of many concepts in relativity, in generality and in terms of illustrative,
often amusing examples. In particular, he showed how to use, in differential geom-
etry and in relativity, the equation of geodesic deviation. An outstanding achieve-
ment of Synge’s was the first complete analytic extension of the Schwarzschild
field. Remembering my own study of relativity and the change of style brought
about in the fifties and sixties under the influence of Synge, I can testify that he suc-
ceeded “to make spacetime a real workshop for physicists, not a museum visited
occasionally with a feeling of awe.”
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