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We analyze a bifurcation phenomenon associated with crit-
ical gravitational collapse in a family of self-gravitating SU(2)
σ-models. As the dimensionless coupling constant decreases,
the critical solution changes from discretely self-similar (DSS)
to continuously self-similar (CSS). Numerical results provide
evidence for a bifurcation which is analogous to a heteroclinic
loop bifurcation in dynamical systems, where two fixed points
(CSS) collide with a limit cycle (DSS) in phase space as the
coupling constant tends to a critical value.

Gravitational collapse at the threshold of black hole
formation ties together many of the fundamental issues of
general relativity, such as the global aspects of solutions,
the structure of singularities arising from regular initial
data and the cosmic censorship hypothesis [1]. By fine-
tuning initial data for a gravitating massless scalar field
to the boundary between eventual dispersal and complete
collapse, Choptuik [2] found phenomena reminiscent of
criticality associated with phase transitions in statistical
physics, such as universality and scaling (e.g. of the black
hole mass). Considerable qualitative understanding has
been gained by explaining critical collapse in terms of
a single unstable mode of the universal critical solution.
This solution is understood as an intermediate attractor
located in a codimension-one stable hypersurface in phase
space, separating data which do or do not form black
holes. Critical collapse has by now been studied in a
number of matter models – in all of these the physics
of the threshold of black hole formation was found to
be governed by symmetry: the critical solution exhibits
either continuous or discrete self-similarity, or staticity
or periodicity in time [3].

In this paper, we study numerically a simple model
with a single scalar field in spherical symmetry which ex-
hibits CSS critical behavior at small coupling constants,
and DSS critical behavior at large ones. At intermedi-
ate coupling constants we observe a competition between
CSS and DSS solutions giving rise to a new phenomenon:
within an approximately-DSS critical evolution we find
several episodes of approximate CSS. Our main focus
here is on the interpretation of this observation in terms
of an analogy to a heteroclinic loop bifurcation in finite

dimensional dynamical systems, at which the limit cycle
(DSS) merges with two fixed points (the CSS solution
and its negative). Apart from the bifurcation itself, the
model also shows other interesting features, such as the
existence of a stable (with respect to linear spherical per-
turbations) self-similar solution for some finite range of
the coupling, and a “suppression” effect for the CSS solu-
tion in critical searches which we interpret as “shielding”
by an apparent horizon.

Our results are based on the direct numerical construc-
tion of the CSS and DSS solutions, a linear perturbation
analysis of the CSS solutions, and comparison with crit-
ical evolutions. The latter are defined by considering a
1-parameter family of initial data φ = φp(u0, r), such
that (say) for small values of p the field eventually dis-
perses (as determined by a numerical evolution [4]), while
for large values of p it eventually forms a black hole
(diagnosed by the appearance of an apparent horizon).
We use a binary search in p to numerically approximate
the critical solution at the threshold of black hole forma-
tion. We refer to such fine-tuned numerical solutions as
near-critical evolutions, and our results are taken from
initial data which are fine-tuned to the same tolerance
δp/p < 10−14.

The self-gravitating SU(2) σ-model [5] under investiga-
tion is a wave map from spacetime to the target manifold
S3 with the standard metric. The so called Hedgehog
ansatz of spherical symmetry leaves a single matter field
φ(u, r) coupled to gravity:

�φ =
sin(2φ)

r2
, (1)

where � is the spacetime wave operator. Our geomet-
ric setup, numerical evolution scheme, and convergence
tests are described in a previous paper [4]. In particular,
we use retarded Bondi-like coordinates (u, r) with metric
functions β(u, r) and V (u, r). Suitable combinations of
Einstein’s equations lead to

β′ =
η

2
r(φ′)2, V ′ = e2β(1 − 2η sin2 φ) , (2)

where prime denotes the derivatives with respect to r,
and η the dimensionless coupling constant. The hyper-
surface equations (2) and the matter field equation (1)
suffice to evolve all the dynamical fields V , β, and φ.
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For vanishing coupling (η = 0), the theory describes a
σ-model on a fixed background. Taking this background
as Minkowski space, Bizoń et al. [6] and Liebling et al. [7]
find a CSS critical solution at the threshold of singularity
formation. Bizoń [8] and Bizoń and Wasserman [9] have
shown that for each 0 ≤ η < 0.5, a countably infinite
family of CSS solutions exists, indexed by the number of
nodes in φ(u = constant, r) − π/2. In the limit η → ∞

Liebling [10] finds DSS critical collapse at the threshold of
black-hole formation. In Ref. [4] we find that for η & 0.2
the system shows “exact” DSS critical collapse, but for
0.18 ≤ η . 0.2 we see only approximate DSS behavior;
furthermore the period ∆ exhibits a sharp rise as the
coupling decreases from 0.5 to 0.18 (Fig. 1). These results
suggest a transition from CSS to DSS critical collapse
somewhere in the range 0 < η . 0.18, which we identify
and discuss in the present paper.
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FIG. 1. The DSS echoing period ∆ is shown as a function
of the coupling constant η, computed from dynamical evolu-
tions (dots) and from direct construction (line). Our dynam-
ical evolution is only approximately DSS at its lowest η value
(η = 0.18), so we can only determine ∆ approximately there.

For 0 ≤ η < 0.5 we have numerically constructed
the CSS solutions discussed in [9] as an ODE-eigenvalue
problem. We have also performed a linear stability anal-
ysis of the CSS solutions; we find that the first exci-
tation (one node), which we refer to below as “the”
CSS solution, has precisely one unstable mode. This
CSS solution takes the form φ = ±φCSS(z; u∗

CSS), where
z = r/(u∗

CSS − u), with a single free parameter u∗

CSS giv-
ing the retarded time of the accumulation point. The
sign ambiguity is a consequence of Einstein’s equations
and the field equation (1) being invariant under φ → −φ.

For η ≥ 0.1726 we have also explicitly constructed the
“Choptuon” DSS solution via a pseudospectral method
following the lines of Gundlach [11] (see [12]). The DSS
solution takes the form φ = φDSS(τ, z; u∗) = φDSS(τ +
n∆, z; u∗), where n is any integer, ∆ is the DSS period,
z is again given by r/(u∗ − u), and τ = − ln(u∗ − u).
As η decreases ∆ rises sharply (Fig. 1). Also, a rapidly
increasing number of Fourier components is required to
accurately represent the Choptuon, and the construction
algorithm becomes increasingly ill-conditioned. Below
we will give further arguments suggesting that the DSS

Choptuon ceases to exist somewhat below the lower limit
of our numerical construction.

For very small couplings η . 0.1 the stable CSS ground
state causes a generic class of initial data to collapse to
naked singularities. Here we focus on the transition from
CSS to DSS in critical collapse at the threshold of black

hole formation: We therefore restrict our attention to
η ≥ 0.1, where we find only dispersal and black hole
(apparent horizon) formation as generic end-states.

For 0.1 ≤ η . 0.14 we find CSS critical collapse, while
for large couplings η & 0.2 we have previously found DSS
critical collapse [4]. In both ranges we observe scaling of
the black hole mass for supercritical initial data and of
the maximum central Ricci scalar for subcritical initial
data. In the CSS regime 0.1 ≤ η . 0.14 and in the DSS
regime for η & 0.2 the critical exponents are approxi-
mately constant (within a few percent): γCSS ≈ 0.18 and
γDSS ≈ 0.11.

In the transition regime 0.14 . η . 0.2, we find that
critical solutions show a new phenomenon which we call
“episodic self-similarity”: The field configuration closely
approximates CSS behavior on large parts of the slice
for a finite time, then departs and returns to CSS again.
This cycle repeats several times before the evolution ei-
ther leads to black hole formation or dispersal. We find
that φ ≈ +φCSS and φ ≈ −φCSS episodes always alter-
nate. The accumulation times u∗

CSS increase from one
CSS episode to the next.
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FIG. 2. This figure shows the distance (r2-weighted RMS
difference in φ, taken between the origin and the self-similarity
horizon, within each near-critical-evolution slice) between the
CSS solution and the critical solution, for η = 0.16, 0.1726,
0.1806, and 0.2003. (The choice of u∗, and thus the horizontal
coordinate, is somewhat arbitrary for η = 0.16.)

In order to study episodic self-similarity quantita-
tively, we have fitted numerical near-critical evolutions
against our explicitly-constructed CSS solutions (fitting
the CSS parameter u∗

CSS independently at each near-
critical-evolution slice). Figure 2 shows these fits for
a range of coupling constants. The repeated close ap-
proaches of the near-critical evolutions to the CSS solu-
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tions are clearly visible; the approaches become closer
and closer and the time spent in the neighborhood
(i.e. within a given distance) of the CSS solution increases
as η is decreased.

In the range where episodic CSS occurs we also observe
approximate DSS behavior. It is therefore interesting
to compare the near-critical evolution to the explicitly
constructed DSS solution.
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FIG. 3. Best fits between the DSS Choptuon and the
critical solution are shown for η = 0.1726, 0.1806, and 0.2003.
The lower subplot shows the distance (same definition as in
figure 2) between the DSS Choptuon and the corresponding
best-fitting slices of the near-critical evolution, as a function
of τ . The upper subplot shows the maximum of 2m/r within
the same slices of the critical evolution. τ is only defined up to
an arbitrary integer multiple of ∆ at each coupling constant.

Figure 3 shows fits of numerical near-critical evolutions
against the explicitly-constructed DSS solutions (finding
best-fitting pairs of slices between the near-critical evo-
lutions and the DSS solutions) for several coupling con-
stants where DSS exists. Notice that as η decreases,
the near-critical solution’s approach to the DSS solu-
tion becomes slower, and the closest approach becomes
less close. The time intervals in τ from approaching the
Choptuon within an RMS error of ∼ 0.1 (which is where
the curves in Fig. 3 starts) to the start of the depar-
tures are however roughly equal. This and the slow ap-
proach account for the (only) approximate DSS behav-
ior of near-critical evolutions already observed in [4] for
0.18 ≤ η . 0.2.

Comparing Figs. 2 and 3 one infers that as the critical
evolution is attracted to the DSS solution it comes pe-
riodically close to the CSS solution, which implies that
the DSS and CSS solutions must themselves be close.
Figure 4 shows fits between the CSS solutions and the
explicitly-constructed DSS solutions (again fitting the
CSS parameter u∗

CSS independently at each slice). There
are two close approaches within each DSS cycle, corre-

sponding to the two sign choices φ = ±φCSS. Note that
the close approaches become closer as η decreases.
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FIG. 4. The distance (same definition as in figure 2) be-
tween the CSS and DSS solutions is shown as a function of
DSS phase (measured in orbits around the DSS Choptuon),
for η = 0.1726, 0.1806, and 0.2003. The origin of the DSS
phase scale is arbitrary at each coupling constant.

Combining our results, we conjecture the following bi-
furcation scenario in the language of dynamical systems:
for large couplings 0.2 . η < 0.5, the limit cycle rep-
resenting φDSS in phase space and the two fixed points
±φCSS lie far apart (in some suitable norm). As η is de-
creased, the limit cycle and the CSS points move closer
and finally merge at some ηc ≈ 0.17. In this limit the DSS
solution becomes a heteroclinic orbit connecting the CSS
fixed points and the period of the limit cycle tends to
infinity (see below). For η < ηc, DSS ceases to exist.

We conjecture that the DSS solution still plays the
role of a critical intermediate attractor even at coupling
constants just slightly larger than ηc, where the CSS so-
lutions lie very close to the DSS cycle. An evolution,
which is tuned to evolve towards the DSS-CSS region is
carried along by the flow of the DSS cycle to periodically
come close to the CSS fixed points. We have numerical
evidence that the periodical turning away from CSS is
dominated by the unstable mode of CSS.

When the DSS evolution is close to one of the CSS fixed
points in phase space we can expand the field in terms
of linear perturbations around the CSS solution. The
departure from CSS must thus happen via the unstable
mode of CSS. The amplitude for this mode grows from an
initial amplitude A0 to some fixed amplitude (still in the
linear regime) in a time T = −(1/λ) ln(A0) + constant,
where λ denotes the eigenvalue of the unstable mode of
the CSS solution. Since this happens twice in a DSS
cycle, we can write the total duration of the DSS cycle
as ∆ = 2T + Tturn, where Tturn denotes the time spent
in the (nonlinear) turnover from one of ±φCSS to the
other. From our linear perturbation analysis of the CSS
solution we find that λ ≈ 5.14 is only slowly varying
for η near ηc [13]. If we assume that A0 ∼ η − ηc for
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η near ηc and that Tturn is roughly constant, we have
∆ = −(2/λ) ln(η − ηc) + const. To test this prediction,
we have fitted the ∆(η) values shown in Fig. 1 to the
3-parameter functional form f(η) = −a ln(η − ηc) + b in
the range η ∈ [0.1726, 0.195]. The fit is very good, with
a maximum relative error of 0.3%. We obtain ηc ≃ 0.17,
which is consistent with what we expect from the raise in
the number of relevant Fourier coefficients, and a ∼ 2/λ
with a relative error of ∼ 7%. Given the fact that we
neglected higher order terms and the variation of λ, the
fitted value for a is remarkably close to the theoretically
predicted one.

Figure 5 gives a schematic overview of all our observa-
tions.
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FIG. 5. This figure shows the different phenomenology we
observe at various couplings η. The dashed line denotes CSS
solutions, that contain marginally trapped surfaces.

We also observe episodic CSS at couplings 0.14 . η <
ηc, where we believe the DSS solution ceases to exist.
What is tuned out in such a critical search? In the lan-
guage of dynamical systems the answer could be that
below the critical coupling the cycle of DSS is broken
i.e. it does not close, but the flow still defines locally an
invariant manifold of codimension one. It is this mani-
fold which separates black hole formation from dispersal.
The mass scaling from supercritical searches in the inter-
mediate regime 0.14 . η < 0.2 has not been conclusive
so far. Observed deviations from a simple scaling law
require further investigation.

Another important question is: Why does the CSS so-
lution cease to be a critical solution for black hole for-
mation for larger couplings? Our stability analysis shows
that CSS has a single unstable mode up to η = 0.5, which
in principle could be tuned out in a critical search. We
believe that the answer to this is related to the obser-
vation by Bizoń and Wasserman [9], that this solution
contains a spacelike hypersurface of marginally trapped
surfaces outside the backwards light cone of the culmi-
nation point for η > 0.152. We find that numerical evo-
lutions for η = 0.2 with initial data that are close to
the CSS solution inside the backwards lightcone and are
asymptotically flat outside, very quickly develop an ap-
parent horizon and thus become a black hole. If this is

the generic behavior, then the CSS solution can not lie
on the boundary of black hole formation.

Summing up, the SU(2) σ-model shows CSS criti-
cal behavior for small and DSS for large values of the
coupling constant. In the transition region we observe
episodic CSS behavior. We have strong evidence that the
CSS/DSS transition is the infinite dimensional analog of
a global heteroclinic bifurcation, which is quite different
from previously reported bifurcations in self-similar crit-
ical collapse, which were found to be characterized by a
change of stability (see e.g. [14]). In particular, analogies
to finite dimensional dynamical systems pictures have
proven essential in interpreting critical collapse (see e.g.
Ref. [3] for an overview), and we believe that the bifurca-
tion picture discussed here will stimulate further insights
into critical gravitational collapse. It would be interest-
ing to see whether episodic CSS occurs in the critical
collapse of different matter models, or also in completely
different physical systems. Details of our methods and
results, some of which could only be mentioned here will
be published in a forthcoming paper.
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