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Abstract
The geometry of a two-dimensional surface in a curved space can be most easily
visualized by using an isometric embedding in flat three-dimensional space.
Here we present a new method for embedding surfaces with spherical topology
in flat space when such an embedding exists. Our method is based on expanding
the surface in spherical harmonics and minimizing the differences between the
metric on the original surface and on the trial surface in the space of the
expansion coefficients. We have applied this method to study the geometry of
black-hole horizons in the presence of strong, non-axisymmetric, gravitational
waves (Brill waves). We have noted that, in many cases, although the metric of
the horizon seems to have large deviations from axisymmetry, the intrinsic
geometry of the horizon is almost axisymmetric. The origin of the large
apparent non-axisymmetry of the metric is the deformation of the coordinate
system in which the metric was computed.

PACS numbers: 0425D, 0430D, 9530S, 9760L

1. Introduction

In the past few years, important progress has been made in the development of fully three-
dimensional (3D) numerical relativity codes. These codes are capable of simulating the
evolution of strongly gravitating systems, such as colliding black holes and neutron stars,
and can provide important physical information about those systems such as the gravitational
waves they produce. The codes also allow one to locate and track the evolution of apparent
and event horizons of black holes that might exist already in the initial data or might form
during the evolution of the spacetime. However, since the location of such horizons is obtained
only in coordinate space, one typically has little information about the real geometry of those
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surfaces. One can, for example, obtain very similar shapes in coordinate space for horizons that
are in fact very different (see for example the family of distorted black holes studied in [1];
their coordinate locations are very similar, but their geometries are quite different). The
most natural way to visualize the geometry of a black-hole horizon, or of any other surface
computed in some abstract curved space is to find a surface in ordinary flat space that has the
same intrinsic geometry as the original surface. The procedure of finding such a surface is
called embedding the surface in flat space.

It is a well known fact [2] that any two-dimensional (2D) surface is locally embeddable in
flat 3D space. Global embeddings of a surface, on the other hand, might easily not exist, and
even when they do they are not easy to find. However, several methods have been proposed
in the past for computing partial (or global) embeddings of surfaces when such embeddings
exist.

Partial embeddings of a slice through the Misner initial data for colliding black holes [3]
have been computed for example in [4]. The method used to find such embeddings starts from
the metric of the original surface written in terms of some local coordinates (u, v)

ds2 = E du2 + 2F du dv + G dv2. (1)

One then introduces embedding functions X(u, v), Y(u, v) and Z(u, v) such that

dX2 + dY 2 + dZ2 = ds2 = E du2 + 2F du dv + G dv2 (2)

which implies

E = X2
,u + Y 2

,u + Z2
,u (3)

F = X,uX,v + Y,uY,v + Z,uZ,v (4)

G = X2
,v + Y 2

,v + Z2
,v. (5)

The above system of nonlinear first-order partial differential equations is not of any
standard type. In order to solve it one can use a method originally proposed by Darboux.
This leads to a single nonlinear second-order partial differential equation for Z(u, v) known
as the Darboux equation. The character of the Darboux equation depends on the sign of the
Gaussian curvature K of the surface and on the orientation of the embedding at the point of
integration as follows: for K � 0 the equation is elliptic, for K � 0 it is hyperbolic and it has
parabolic character both if K = 0 or if the surface is vertical. For the Misner geometry, the
curvature is always negative and the Darboux equation is hyperbolic. It can then be rewritten
by using the characteristics as coordinates and solved as a Cauchy problem given appropriate
initial data. Once the Darboux equation has been solved for Z(u, v), the remaining equations
can be integrated to give X(u, v) and Y(u, v).

This method is not appropriate for embedding surfaces that have both regions with K > 0
and regions with K < 0. The reason for this is that the Darboux equation one has to integrate
is elliptic for K > 0 and hyperbolic for K < 0. This means that for such surfaces the Darboux
equation will change type and its integration will become very difficult. This will typically be
the case for surfaces with spherical topology, such as black-hole horizons, which will always
have some regions of positive curvature, and may well have regions of negative curvature too.

One of the first studies of the intrinsic geometry of rotating black-hole horizon surfaces
was carried out by Smarr [5]. There it was shown, by direct construction of the embedding
from the analytic Kerr metric, that while the horizon of a Schwarzschild black hole is spherical,
for rotating black holes the horizon has an equatorial bulge, a satisfying and intuitive result that
reinforces the notion that geometric studies of black-hole horizons can add physical insight.
The equatorial bulge can be characterized by an oblateness factor that is uniquely determined
by the ratio a/m, where m is the mass of the black hole and a its rotation parameter. It was
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also shown that for rapidly rotating black holes, with a/m >
√

3/2, the Gaussian curvature
becomes negative near the poles, and the surface is not embeddable in Euclidean space, as it
is ‘too flat’!

Extending on this paper, using a direct constructive embedding method described below,
a number of studies were made of distorted, rotating and colliding black-hole horizons in
axisymmetry [1, 6–10] where it was shown that embeddings are very useful tools to aid in
the understanding of the dynamics of black holes. For example, distorted rotating black-hole
horizons were found to oscillate, about their oblate equilibrium shape, at their quasi-normal
frequency. The recent study on isolated horizons [11–14] shows how geometric measurements
of the horizon can be used to determine, for example, the spin of a black hole formed in some
process and other physical features.

However, in the absence of axisymmetry, the problem of constructing an embedding for a
black-hole horizon becomes much more difficult. One approach to compute such embeddings
of horizons in 3D spacetimes has been suggested by Nollert and Herold [15]. They consider
a triangular wire frame on the original surface and compute the distances between each point
and its neighbours using the intrinsic metric of the surface. They then consider a network with
the same topology in flat space and try to solve the system of equations

|ri − rj | = dij (6)

where rk represents the position vector of the kth point in flat space and dij represents the
distance between the points Pi and Pj computed on the original surface. If necessary, they
refine the grid until they reach a desired accuracy.

The approach of Nollert and Herold seems very natural, but it has the serious drawback
that it does not always converge to the correct solution. The reason for this is that the method
imposes constraints only on the distances between points, but it does not guarantee that the
final surface will be smooth. There are in fact multiple solutions to the system of equations,
and for most such solutions the resulting embedding is not smooth. For example, if one tries
to embed a simple sphere, this method might indeed converge to the sphere, but it might also
converge to the surface one obtains when one cuts the top of the sphere, turns it upside down
and glues it back. The distances between point are the same in both surfaces, but only one of
them is smooth.

The method for computing the embeddings that we present in this paper is based on a
spectral decomposition of the surface in spherical harmonics written in a non-trivial mapping
of the coordinate system. We search for the embedding by minimizing the difference between
the metric of the original surface and that of our trial embedding in the space of the coefficients
of the spherical harmonics and of the coordinate mappings. Since we use a decomposition of
the surface in spherical harmonics, the surface is guaranteed to be smooth. By increasing the
number of spherical harmonics used in the decomposition of the physical surface, one can get
as close to the correct embedding as desired.

2. Method

The intrinsic geometry of any surface is completely determined by its metric. To construct
the embedding of a given surface S, one needs to find a surface S′ in flat space that has the
same metric as S in an appropriate coordinate system. It is important to stress here the fact
that finding the embedding surface S′ also requires that one finds an appropriate mapping of
the original coordinate system in the surface S to a new coordinate system in the surface S′ in
which the two metrics are supposed to agree.
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2.1. A direct method for horizon embeddings in axisymmetry

Before describing our new method, it is instructive to describe a simple and direct method for
axisymmetric embeddings of horizons, used by a number of authors to study the physics of
dynamic black holes [1, 7–10, 16, 17].

For the case of non-rotating, axisymmetric spacetimes (easily generalized to rotation, but
restricted here merely for ease of illustration), the 3D metric on a given time slice can be
written as

ds2
(3) = A(η, θ) dη2 + B(η, θ) dθ2 + D(η, θ) sin2 θ dφ2. (7)

The location of the axisymmetric horizon surface is given by the function η = ηs(θ). The 2D
metric induced on the horizon surface is then given by

ds2
(2) =

[
B +

(
dηs

dθ

)2

A

]
dθ2 + D sin2 θ dφ2. (8)

Now, the flat metric in cylindrical coordinates (z, ρ, ψ) can be written as

ds2 = dz2 + dρ2 + ρ2 dψ2. (9)

To create an embedding in a 3D Euclidean space, we want to construct functions z(θ , φ),
ρ(θ , φ) and ψ(θ , φ) such that we can identify the line elements given by equations (8) and
(9), that is, that all lengths be preserved.

Here, we are faced with our first choice about the coordinates used in the embedding,
a problem which will be more complex in the general case as we show below. Since the
spacetime itself is axisymmetric, it is a natural choice to make the embedding axisymmetric.
We choose, then, to construct a surface for a constant value of φ = 0, and we then have
z = z(θ), ρ = ρ(θ), and the resulting embedding will be a surface of revolution about the
z-axis. Using the obvious mapping between ψ and φ, ψ = φ, it becomes straightforward to
derive ordinary differential equations to integrate for ρ(θ ) and z(θ ) along the horizon surface.
It is important to emphasize that we have to make a choice about the embedding coordinates,
even in this simpler case, as we must in the general case discussed below.

Using this method, embeddings were carried out during the numerical evolution for a
variety of dynamic, axisymmetric black hole spacetimes [1, 7–10, 16, 17]. The evolution of
these embeddings were found to be extremely useful in understanding the physics of these
systems. We will use some of these results as test cases for the more general method for 3D
spacetimes, as detailed in the next section.

2.2. Our general method for embeddings in full 3D

Given a coordinate system ξ i (i, j = 1, 2) on our surface, the first step in looking for an
embedding is to find the 2D metric gij of the surface induced by the metric of the 3D space
hab (a, b = 1, 2, 3) in which it is defined. The general procedure to find such induced metric
is to construct a coordinate basis of tangent vectors ei := ∂i on the surface. The induced
metric will then be given by

gij (θ, φ) = ei(θ, φ) · ej (θ, φ) = hab e
a
i ebj (10)

where eai is the component of the vector ei with respect to the 3D coordinate xa.
Since the surfaces we are concerned with in this paper (black-hole horizons) have spherical

topology, we will assume that the 3D metric hab is given in terms of spherical coordinates
(r, θ , φ) defined with respect to some origin enclosed by the surface. Furthermore, we will
also assume that the surface is a ‘ray-body’ (Minkowski’s strahlkorper [18], also known as a
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‘star-shaped’ region) that is, a surface such that any ray coming from the origin intersects the
surface at only one point. Such a property implies that we can choose as a natural coordinate
system on the surface simply the angular coordinates (θ , φ).

If we take our surface to be defined by the function r = f (θ , φ), then it is not difficult to
show that the induced metric gij on the surface will be given in terms of the 3D metric hab as

gθθ = hθθ + hrr(∂θf )2 + 2hrθ∂θf (11)

gφφ = hφφ + hrr(∂φf )2 + 2hrφ∂φf (12)

gθφ = hθφ + hrr∂θf ∂φf + hrφ∂θf + hrθ∂φf. (13)

Let us now for a moment assume that an embedding of our surface in flat space exists, and let
us also introduce a spherical coordinate system (re, θe, φe) in flat space. Note that there is no
reason to assume that a point with coordinates (θ , φ) in the original surface will be mapped to
a point with the same angular coordinates in the embedding. In general, the embedded surface
in flat space will be described by the relations

re = re(θ, φ) θe = θe(θ, φ) φe = φe(θ, φ). (14)

A crucial observation at this point is that the angular coordinates {θ, φ} in the original surface
still provide us with a well-behaved coordinate system in the embedded surface, only one that
does not correspond directly to the flat space angular coordinates {θe, φe}, but is instead related
to them by the coordinate transformations θe = θe(θ, φ) and φe = φe(θ, φ). This means that
under the embedding, points with coordinates (θ , φ) in the original surface will be mapped
to points with the same coordinates (θ , φ) in the embedded surface, but different coordinates
(θe, φe). We then have two natural sets of coordinates in the embedded surface: the ones
inherited directly from the original surface through the embedding mapping, and the standard
angular coordinates in flat space.

By definition, an embedding preserves distances, so the proper distance between two
points in the original surface must be equal to the distance between the two corresponding
points in the embedded surface. Since those corresponding points have precisely the same
coordinates {θ, φ}, we must conclude that for the embedding to be correct, the components of
the metric tensor in both surfaces when expressed in terms of the coordinates {θ, φ} must be
identical. That is, if we call ge

ij the metric of the embedded surface, we must have

gθθ = ge
θθ gθφ = ge

θφ gφφ = ge
φφ. (15)

It is important to stress that the components of the metric in the embedded surface will only be
equal to the components of the metric in the original surface if we use the inherited coordinate
system, but not if we use the standard angular coordinates in flat space.

Computing the components of the metric in the embedded surface in terms of the inherited
coordinate system {θ, φ}, given the embedding relations (14), is not difficult. All one needs
to do in practice is consider four points in the original surface with coordinates P1(θ ,φ),
P2 = (θ + δθ, φ), P3 = (θ, φ + δφ), P4 = (θ + δθ, φ + δφ), find their corresponding
coordinates {re, θe, φe} in flat space using (14), compute their squared distances using the flat
space metric and then solve for the metric components from

(P1P2)
2 = ge

θθ dθ2 (16)

(P1P3)
2 = ge

φφ dφ2 (17)

(P1P4)
2 = ge

θθ dθ2 + ge
φφ dφ2 + 2ge

θφ dθ dφ. (18)

Finding the embedding now means finding a mapping (14) such that equations (15) are satisfied
everywhere.
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Let us consider first the relation between the (θ , φ) coordinates on the original surface
and the angular coordinates (θe, φe) in flat space. Even if these two sets of coordinates are
not equal, we can safely assume that there is a one-to-one correspondence between them.
Moreover, both are sets of angular coordinates, so they have the same behaviour: θ and θ e go
from 0 to π , and φ and φe go from 0 to 2π and are periodic. From these properties, it is not
difficult to see that the most general functional relation between both sets has the form

θe(θ, φ) = θ +
∞∑
n=0

bn0 sin(nθ) +
∞∑
n=1

∞∑
m=1

bnm sin(nθ) sin(mφ) (19)

φe(θ, φ) = φ + c00 θ +
∞∑
n=1

cn0 sin(nθ) +
∞∑

m=1

c0m sin mφ +
∞∑
n=1

∞∑
m=1

cnm sin(nθ) sin(mφ).

(20)

The second term in the expansion for θ e represents a general axisymmetric remapping of θ ,
while the third term is required if axisymmetry is not assumed. In the expression for φe, the
second and third terms represent a possible rigid twist of the coordinate system, and the last
two terms stand for a general dependence of φe on both θ and φ.

For the radial coordinate re, it is also not difficult to see that one can use a simple expansion
in spherical harmonics of the form

re(θ, φ) =
∞∑
l=0

l∑
m=−l

√
4π almYlm(θ, φ) (21)

where the overall normalization factor of
√

4π has been inserted so that a00 is the average
radius of the surface, a10 is its average displacement in the z-direction, and so on. We will also
use a real basis of spherical harmonics, for which m and −m stand for an angular dependence
cos(mφ) and sin(mφ), instead of the complex exp(imφ) and exp(−imφ).

The metric of the embedded surface will now be completely determined by the set of
coefficients alm, bnm and cnm. The space of these coefficients can be regarded as a vector
space V , with any given point in V representing a surface in flat space together with a certain
coordinate mapping.

Consider now an embeddable surface S in some arbitrary curved space. It is not difficult
to find a real valued function F defined on V that has a global minimum at the point P ∈ V for
which the metric of the embedded surface Se is the same as the metric of the original surface.
One such function is

F =
∫ π

θ=0

∫ 2π

φ=0

[ (
gθθ (θ, φ) − ge

θθ (θ, φ)
)2

+
(
gφφ(θ, φ) − ge

φφ(θ, φ)
)2

+
(
gθφ(θ, φ) − ge

θφ(θ, φ)
)2

]
dθdφ. (22)

We call the function F above the ‘embedding’ function. It is easy to see that F � 0 on any
point in V , and that F = 0 if and only if g = ge for all (θ , φ). The embedding then corresponds
to the absolute minimum of F in V . There are many different numerical algorithms for
finding minima of general functions in multidimensional spaces. In our code we have used
Powell’s minimization algorithm [19], but we are aware that other methods might perform
better. It is important to mention that the definition of the embedding function F above is by
no means unique. Many different forms for F can be constructed, in particular, one could take
into account the fact that not all metric functions have similar magnitudes and construct an
embedding function that normalizes each term in the above expression.
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One of the problems with minimization algorithms in general is that they cannot
distinguish between a global minimum (what we really want) and a local minimum. In
our case, the value of F at the absolute minimum is zero, so we can easily distinguish between
a real embedding and a wrong solution that might appear if the minimization algorithm gets
stuck in a local minimum. However, steering the algorithm toward the global minimum is
non-trivial. From experience we have seen that local minima for which F �= 0 do exist for
our problem. In order to avoid them, we have found it necessary to run first the minimization
algorithm with a small number of coefficients a, b and c, and then increase the number of
coefficients one by one until we find a good solution. This method is certainly time consuming,
but it seems to work well in the examples we have considered so far.

Of course, in order to find a ‘perfect’ embedding, one would have to push the number
of coefficients all the way to infinity. This is numerically impossible, so in practice we just
set up a given tolerance in the value of the function F and increase the number of coefficients
until we achieve that tolerance. We also check that the value of F goes to zero exponentially
as we increase the total number of coefficients. We have seen that n = l ∼ 14 is enough for
relatively simple surfaces like most black-hole horizons. If one wants to embed something
more complicated (like a human face, for example) starting from its metric in some coordinate
system, this value would clearly be too small. Another way to see whether an embedding
is good or not is to compare directly the metric of the original surface with the metric of
the resulting embedding. If the fit is good enough, the code has converged to the correct
embedding.

One important test we have used for our algorithm is a direct comparison of the results
obtained with our code with embeddings computed with a different code in the special case
when the surface is axisymmetric.

3. Tests

3.1. Recovering a known surface

A very simple test for our algorithm is to look for the embedding of a surface that is known to
be embeddable and has a known embedding. In order to do this we first construct a surface in
flat space by choosing some arbitrary values of the spherical harmonic coefficients. We then
compute the metric of this surface in the standard (θ , φ) angular coordinates, and give this
metric as input to our code. The code must then recover the correct values of the spherical
harmonic coefficients plus a trivial mapping of the angular coordinates.

We show an example of this in figure 1, where we have chosen a surface defined by the
spherical harmonic coefficients

a00 = 9 a22 = 1 a44 = 4 (23)

with all other coefficients equal to zero. In the left panel of the figure we show the original
surface, and in the right panel the resulting embedding. The differences in the shape of the
two surfaces are very difficult to see.

For this test we have used 100 × 100 grid points to describe the surface. Since the
surface is symmetric with respect to reflections on all three (x, y, z) coordinate planes, we have
considered only one octant, so the angular resolution was /θ = /φ = π/200. The recovered
expansion coefficients are shown in Table 1. The coefficients corresponding to the mapping
of the angular coordinates, as well as the rest of the Ylm coefficients were either exactly zero
because of the octant symmetry or had values smaller than 10−3.

Figure 2 shows a direct comparison of the metric components gθθ , gθφ and gφφ along the
lines θ = π/4 and φ = π/4, i.e in the middle of the computational domain.



382 M Bondarescu et al

Figure 1. Embedding of a test surface defined by the spherical harmonic coefficients (a00 = 9,
a22 = 1, a44 = 4). The left panel shows the original surface and the right panel the resulting
embedding.

Table 1. Comparison of the recovered expansion coefficients for the embedding of the test surface
described in the text.

Expansion coefficient Original value Recovered value

a00 9 9 + 1.1 × 10−5

a20 0 −3.6 × 10−5

a22 1 1 + 4 × 10−6

a40 0 1.5 × 10−5

a42 0 −2.24 × 10−5

a44 2 2 + 1.9 × 10−5

The final value for the embedding function in this test was F = 1.6 × 10−5, but we have
found that we can easily decrease this value by refining the numerical grid on the surface.

3.2. An axisymmetric example: rotating black holes

As already mentioned in section 1, a well-known set of axisymmetric surfaces whose
embeddings have been studied, first by Smarr [5], and also as a test case in [15], is that
of the horizons of rotating black holes. In the static Kerr case, the metric of the horizon is
given by

dσ 2 = ρ2 dθ2 +
sin2 θ

ρ2
(r2 + a2) dφ2 (24)

with

ρ2 = r2 + a2 cos2 θ r = m +
√
m2 − a2 (25)

and where m and a are two parameters representing the mass of the black hole and its angular
momentum, respectively.

It is well known that the Kerr horizon is globally embeddable in flat space only for
a/m �

√
3/2 [5]. Using our embedding code, we have been able to successfully recover

these embeddings when they exist. As an example we show in figure 3 the embedding obtained
for the last embeddable case a/m = √

3/2. The solid line shows the embedding obtained
with the axisymmetric algorithm described above, and the dotted line the one obtained with
our minimization algorithm.
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Figure 2. The difference in the metric components for the embedding of the test surface described
in the text. On the left panel we show the line θ = π/4 and on the right panel the line φ = π/4.
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Figure 3. Embedding of a Kerr black hole with a/m = √
3/2. The dotted line is the embedding

we obtained using our minimization algorithm. The solid line is an embedding of the same surface
computed with an axisymmetric algorithm.
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Figure 4. An attempt to embed a Kerr black-hole horizon with a/m = 0.99. The dotted line is the
output of the minimization algorithm. The solid line is an embedding of the same surface made
with an axisymmetric algorithm. The flat line on the top represents the region where an embedding
in flat space does not exist.

When a/m �
√

3/2, a global embedding does not exist, and our method fails as expected.
Figure 4 shows the result of an attempt to embed a Kerr black-hole horizon in the case when
a/m = 0.99. The dotted line is the output of our minimization algorithm and the solid line is
an embedding of the same surface made with an axisymmetric algorithm in the embeddable
region, plus a flat top in the region where the embedding does not exist. The axisymmetric
method is a local constructive method, and hence it is able to build the embedding surface
from one point to the next where it exists (in this case starting from the equator). Since
our method is global we get the embedding wrong everywhere. As currently implemented,
our method will insist on trying to find a global embedding, and will settle on a shape that
minimizes the function F. If the embedding does not exist, the minimum value of F found
will be clearly different from zero. This is easily seen by examining the residual function F
for the embeddings of the Kerr horizons. In figure 5 we show the value of the minimum of
F found with our algorithm, plotted against the total number of expansion coefficients, for
the cases a/m = √

3/2 (solid line) and a/m = 0.99 (dotted line). One can see that for the
non-embeddable case, F stops decreasing at a value that is more than two orders of magnitude
larger than the one we obtain when the embedding exists.

Our code might be adjusted in the future for finding partial embeddings by reducing the
integration domain in the definition of F, equation (22), to something smaller than the full
sphere. This approach might lead to correct partial embeddings of surfaces that cannot be
embedded globally. The disadvantage would be that one would have to guess the domain
where the embedding exits before starting the computation.
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Figure 5. The value of the embedding function F versus the total number of coefficients for the
two Kerr black holes discussed above. The triangles correspond to a/m = 0.99 and the stars to
a/m = √

3/2.

3.3. Black hole plus Brill wave

We now move to the case of numerically generated, distorted black holes. Schwarzschild
black holes distorted by Brill waves [20] have been extensively studied in numerical relativity
[21–24]. The axisymmetric data sets used for numerical evolutions consist of a Schwarzschild
black hole distorted by a toroidal, time-symmetric gravitational wave.

It is convenient to describe the metric of the black hole plus Brill wave spacetime in
a spherical-polar like coordinate system (η, θ , φ) were η is a logarithmic radial coordinate
defined by η = ln(2r/M) and (θ , φ) are the standard angular coordinates. In these coordinates,
the spatial metric has the form [6, 23]

dl2 = 14[e2q(dη2 + dθ2) + r2 sin2 θ dφ2] (26)

where both q and 1 are functions of η and θ only. In order to satisfy the appropriate regularity
and fall-off conditions, the function q has been chosen in the following way:

q(η, θ) = a sinn θ

[
e
−

(
η+b
ω

)2

+ e
−

(
η−b

ω

)2]
(27)

where n is an arbitrary even number larger than zero. The parameter a characterizes the
amplitude of the Brill wave, while the parameters b and ω characterize its radial location and
width, respectively. Having chosen the form of the function q, the Hamiltonian constraint
is solved numerically for the conformal factor 1 . An isometry condition is imposed at a
coordinate sphere to guarantee that the final spacetime will contain a black hole.

Note that the metric (26) is the 3D metric of space, and not the 2D metric of the apparent
horizons. The apparent horizons for these datasets have to be located numerically. Once these
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Figure 6. Embedding of the apparent horizon of a black hole plus Brill wave dataset corresponding
to the parameters (a = 1.0, b = 0.0, ω = 1.0, n = 2). The dotted line is the embedding obtained
with our minimization algorithm and the solid line the embedding of the same surface obtained by
Anninos et al.

horizons are found, their 2D metric can be computed from the 3D metric given above, using
the expressions given in (13).

The horizons from these axisymmetric black hole plus Brill wave datasets and their
embeddings have been studied previously in [23] and we have been able to reproduce their
results using our algorithm. An example of this can be seen in figure 6, where we show
the embedding of the horizon of a black hole plus Brill wave dataset corresponding to the
parameters

a = 1.0 b = 0.0 w = 1.0 n = 2. (28)

In the figure, the dotted line shows the embedding obtained with our minimization algorithm,
and the solid line shows the embedding of the same surface obtained in [23]. Note how the
intrinsic geometry of the horizon is far from spherical.

3.4. Application to full 3D spacetimes

Having tested our algorithm on both analytic and numerically generated axisymmetric black-
hole spacetimes, we now turn to the case of full 3D black hole spacetimes for which our
method was developed.

The axisymmetric black hole plus Brill wave datasets from [23] have been generalized
in [25] to full 3D by multiplying the Brill wavefunction q by a factor that has azimuthal
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Figure 7. Embedding of the apparent horizon for the non-axisymmetric black hole plus
Brill wave dataset corresponding to the parameters (a = 1.0, b = 0.0, ω = 1.0, n =
4, c = 0.4). Although the metric has a non-trivial non-axisymmetric contribution, the
surface looks quite axisymmetric.

dependence to obtain

q(η, θ, φ) = a sinn θ (1 + c cos2 φ)

[
e
−

(
η+b
ω

)2

+ e
−

(
η−b

ω

)2]
(29)

where c is an arbitrary parameter characterizing the non-axisymmetry of the Brill wave.
We have computed embeddings of the non-axisymmetric apparent horizons obtained in

this case. Here we will show examples of two such horizons. First we consider the embedding
of the apparent horizon for the dataset with parameters

a = 0.3 b = 0.0 ω = 1.0 n = 4 c = 0.4 (30)

which corresponds to a relatively small non-axisymmetric distortion of the black hole. Figure 7
shows the embedding of the corresponding apparent horizon. Note how the surface looks quite
axisymmetric even though we have added a non-trivial non-axisymmetric contribution to the
metric. It is clear that the non-axisymmetry of the metric components is to a large degree
a coordinate effect. Numerical evolutions of such black holes do show radiation in non-
axisymmetric modes of gravitational radiation. However the mass energy carried away by
the non-axisymmetric modes is much smaller than the energy of the axisymmetric modes
[21, 26]. This is consistent with our result showing that the horizon is almost axisymmetric.

Figure 8 shows a direct comparison of the different angular metric components on the
apparent horizon and the resulting embedding, along the φ = π/4 and θ = π/4 lines. We can
see how the fit is very good in both the cases. Note also how there is indeed some dependence
of the metric components on φ.

To check if our algorithm is converging to the correct embedding, we show in figure 9 the
value of the embedding function F at the minimum, in terms of the total number of expansion
coefficients. We clearly see that the value of F is converging exponentially to zero.

As a second example, we now consider the embedding of the apparent horizon
corresponding to the black hole plus Brill wave dataset with parameters

a = 0.3 b = 0.0 ω = 1.0 n = 4 c = 1.9. (31)

In this case, the non-axisymmetry is considerably larger, and one can see from figure 10 that
the horizon is clearly not axisymmetric.

In figure 11 we show again a direct comparison of the angular metric components on the
apparent horizon and the resulting embedding along the φ = π/4 and θ = π/4 lines. As
before, the fit is very good.
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Figure 8. We show the angular metric components on the apparent horizon and on the
resulting embedding for the black hole plus Brill wave dataset corresponding to the parameters
(a = 1.0, b = 0.0, ω = 1.0, n = 4, c = 0.4). On the left panel we show the line θ = π/4 and on
the right panel the line φ = π/4.
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Figure 9. We show the value of the embedding function F at the minimum in terms of the total
number of expansion coefficients in a logarithmic scale for the black hole plus Brill wave dataset
corresponding to the parameters (a = 1.0, b = 0.0, ω = 1.0, n = 4, c = 0.4).
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Figure 10. Two orientations of the embedding of the apparent horizon of a black hole perturbed
by a Brill wave with a higher non-axisymmetry than in the previous example.

0
−5

0

5

10

15

20

π/4 π/2

recovered

original
g

g

g

θθ

θφ

φφ

0−10

0

10

20

30

40

50

π/4 π/2

g

g

g

θθ

θφ

φφ

Figure 11. The three independent components of the metric for the black hole plus Brill wave
with a larger non-axisymmetric perturbation. On the left panel we show the line θ = π/4 and on
the right panel the line φ = π/4.

Finally, in figure 12 we show again the value of the embedding function F at the minimum
in terms of the number of expansion coefficients. As before, the value of F converges
exponentially to zero, but the convergence is slower than in the previous example due to the
higher degree of complexity of the surface.
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Figure 12. The value of the embedding function F at the minimum in terms of the total number
of expansion coefficients on a logarithmic scale for the black hole plus Brill wave with a larger
non-axisymmetric contribution.

4. Conclusions

We have implemented and tested a new algorithm for computing isometric embeddings of
curved surfaces with spherical topology in flat space. We define a function on the space
of surfaces that has a global minimum for the right embedding and we find this minimum
using a standard minimization algorithm. In this paper we have discussed the method and
its applications to black hole visualization in numerical relativity. The method has been
tested both on simple test surfaces and on Kerr black-hole horizons, and shown to correctly
reproduce known results within specified tolerances. We have also used our method to
construct embeddings of non-axisymmetric, distorted black holes for the first time. We
observed that the non-axisymmetry of the embedded surface is somehow smaller than one
expects from just looking at the metric. This is consistent with the small amount of gravitational
radiation emitted in non-axisymmetric modes during the numerical evolution of such systems
[21, 26].

Our method is rather robust, and by construction produces smooth surfaces, therefore
avoiding some of the problems of previous methods. One disadvantage of our method is
that the expansion in spherical harmonics implies that it can only be used to embed ray-body
surfaces (i.e. surfaces such that any ray coming from the origin intersects the surface at only one
point), still we expect most black-hole horizons to have this property. The main disadvantage,
however, is that the method is very time consuming due to the fact that minimization algorithms
in general are slow. Another problem is the fact that minimization algorithms can easily get
trapped in local minima. In order to avoid this we have found it necessary to increase the
number of coefficients one by one and to use at each step the result of the previous step as
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initial guess, adding to the total amount of time the algorithm needs to find the embedding.
As presently implemented, it also cannot find partial embeddings when no global embeddings
exist, but straightforward modifications to the algorithm should permit this in certain cases.

In the future, we will apply this method to study the dynamics of 3D black-hole horizons
as a tool to aid in understanding the physics of such systems. Although our method has been
applied in this paper only to apparent horizons, it can clearly be applied to obtain embeddings
of event horizons as well, once they have been located in numerical evolutions.

Our embedding algorithm has been implemented as a thorn in the Cactus code3 and is
available for the community upon request from the authors.
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