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We present a detailed description of techniques developed to combine 3D numerical simulations and,
subsequently, a single black hole close-limit approximation. This method has made it possible to compute the
first complete waveforms covering the post-orbital dynamics of a binary—black-hole system with the numerical
simulation covering the essential nonlinear interaction before the close limit becomes applicable for the late
time dynamics. In order to couple full numerical and perturbative methods we must address several questions.
To determine when close-limit perturbation theory is applicable we apply a combination of inveaaioti
estimates an@ posterioriconsistency checks of the robustness of our results against exchange of linear and
nonlinear treatments near the interface. Our method begins with a specialized application of standard numerical
techniques adapted to the presently realistic goal of brief, but accurate simulations. Once the numerically
modeled binary system reaches a regime that can be treated as perturbations of the Kerr spacetime, we must
approximately relate the numerical coordinates to the perturbative background coordinates. We also perform a
rotation of a numerically defined tetrad to asymptotically reproduce the tetrad required in the perturbative
treatment. We can then produce numerical Cauchy data for the close-limit evolution in the form of the Weyl
scalary, and its time derivative), i, with both objects being first order coordinate and tetrad invariant. The
Teukolsky equation in Boyer-Lindquist coordinates is adopted to further continue the evolution. To illustrate
the application of these techniques we evolve a single Kerr hole and compute the spurious radiation as a
measure of the error of the whole procedure. We also briefly discuss the extension of the project to make use
of improved full numerical evolutions and outline the approach to a full understanding of astrophysical
black-hole—binary systems which we can now pursue.
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I. INTRODUCTION slow adiabatic inspiral, or “far-limit,” phase of these sys-
tems. Similarly, for the final moments, when black holes are
Binary—black-hole mergers are among the most powerfutlose enough to each other to sit inside a common gravita-
and efficient sources of gravitational radiation in our uni-tional well, one can successfully apply the “close limit”
verse and are thus the primary targets for direct experimentdCL) approximation[3], which effectively describes the
detection by the future interferometric observatories. Recenwhole system as a perturbation of a single black hole which
astronomical observations of x-ray emission sources reinrapidly “rings down” to stationarity. Before this last stage,
force the evidence of black holes in many galaxies, and ashough, when the black holes are still close to itieermost
trophysical simulations of globular clustefd,2] show stable circular orbit (ISCO), the orbital dynamics are ex-
binary—black-hole mergers in such an abundance as to boogsécted to yield to plunge and coalescence. No approximation
the gravitational wave detection rate estimation to 1.6method can be applied in this highly nonlinear phase and it is
x 107 yr~1 Mpc~3, which results in about one detection generally expected that one can treat the system only by a
event every 2 years for the Laser Interferometric Gravitafull numerical (FN) integration of Einstein’'s equations.
tional Wave ObservatoryLIGO) and in one event per day Intensive efforts have been under way in the past decade
for LIGO L. to develop numerical codes able to solve Einstein’s general
It is thus not surprising that on the theoretical side therelativity equations, by the use of powerful supercomputers.
study of binary—black-hole mergers has become one of th8o far the numerical treatment of black hole systems in full
most exciting and challenging topics in astrophysical relativthree dimensiong3D) has proved very difficult and chal-
ity. Several theoretical approaches have been developed ftenging because of the huge computer memory requirements,
treating these systems. So far the post-NewtolR) ap-  on one hand, and very severe numerical instabilities, on the
proximation has provided a good understanding of the earlpther, which make the codes fail before any useful gravita-
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tional wave information can be extracted. In spite of suchwave research community in providing Cauchy data for
difficulties, interesting progress has been made, includingsimulations may soon lead to a practical PN-FN interface.
for example, the work iff4], where a true 3D simulation (2) Extract critical information about the late-time configu-
based on the traditional 81 decomposition of space and ration of this system, and translate this information to a cor-
time has been successfully carried out for the so-called norresponding solution of the gravitational initial-value prob-
axisymmetric “grazing” collisions of two black holes. How- lem. (3) Apply a full 3D numerical simulation of Einstein’s
ever, because of the limited evolution time achievable befor€quations to generate a numerical spacetime covering the
these codes become unstable or otherwise inaccurate thed@nlinear interaction region of the spacetime. The evolution
simulations must still begin too late in the plunge to be prac-Should proceed for long enough so that the subsequent evo-
tical for direct astrophysical application. In most cases treatlution of the region exterior to the final single remnant black
able so far, the close limit approximation theory represents 80le can be well approximated by perturbative dynanti¢s.
good alternative model for the late time dynamics of thesé®t this point choose a “late-time” slice from the numerically
systems. generated spacetime and extragt= Caﬁwgn“mﬁnymﬁ and
Considering the above situation, in Reff§,6] we intro- 4,4, to quantify the deviation of the numerical spacetime
duced a new hybrid approach to the binary—black-hol€rom a Kerr geometry. Theil5) evolve via the Teukolsky
merger problem, called theazarus projectwith the motiva-  equation, which governs the dynamics of Kerr perturbations
tion of providing expectant gravitational wave observersin the time domair{9], long enough to drive all significant
with some early estimate of the full merger waveformsradiation into the radiation zone where it can be interpreted.
within a “factor two,” and to guide future, more advanced Making the greatest possible use of perturbation theory in
numerical simulations. The key idea of the Lazarus project ighis way not only saves precious three dimensional compu-
very simple: combine the best of the already existing apiational resources, concentrating these, for the first time,
proaches by applying each of these methods in sequence aaduarely in the intermediate coalescence phase, but also pro-
in their best suited regime, while focusing the numericalvides a new framework to explore and interpret the interest-
simulations squarely on the intermediate phase of the inteing new physics that is expected to take place in the transi-
action where no available perturbative approach is applition from nonlinear to linear dynamics.
cable. The emphasis of this paper is to realize steps 2—-5 above
Clearly, the primary task of the combined model is devel-and to describe in detail a general approach to providing the
oping appropriate interfaces between these three existingN-CL interface. In Sec. Il we discuss our approach to the
treatments in such a way that we can also benefit from futuréull numerical simulations which we have used to achieve a
improvements in any of the above three approaches. In asuccessful evolution of truly detached black holes for the
earlier Lettef{5] we presented the first results of our eclecticfirst time. This discussion naturally divides into two pa(ss:
approach for a model problem, the head-on collision of blaclour preparation of the initial data, by which we greatly im-
holes, where we successfully addressed the problem of conprove the simulation efficiency an@) our numerical evolu-
bining the close-limit approximation describing ringing tion method.
black holes and full three-dimensional numerical relativity. Two important questions arise in implementing the tran-
In this well-known case, our method proved capable of desition, step 3, from a numerical approach to a perturbative
termining radiation waveforms with accuracy comparable toapproach. First, how long must we evolve the system nu-
the best published 2D numerical results, allowing at the sammerically before we can obtain a reliable description in terms
time a more direct physical understanding of the collisionsof a single perturbed black hole? We use a combination of
and indicating clearly when nonlinear dynamics are impor-several independent and complementary indicators to estab-
tant as the final black hole is formed. Previous attempts tdish when perturbation theory should begin to work. In Sec.
make a combined use of numerical and close-limit evolutionll, we discuss our study of two of such indicatofg) The
[7] have been implemented in the case of two axisymmetrispeciality invariants, introduced in Ref[10], which is ex-
black holes formed by collapsing mat{&], using a 2D nu- actly equal to 1 for the Kerr geometry with leading devia-
merical code antl=2 metric perturbationén the manner of tions quadratic in the gravitational distortiondy) Cauchy
Zerilli) of the Schwarzschild background and are not generelata extracted at successively later numerical time slices.
alizable to full 3D simulations. In Ref6] we studied the When the system has entered the linear regime, the wave-
nonaxisymmetric coalescence of equal mass nonspinning bierms evolved via the Teukolsky equation should essentially
nary black holes from an estimate of the innermost stablsuperpose on each other. Consequently also a certain leveling
circular orbit down to the final single rotating black hole, andoff of the radiated energy should be observed. Wlide
provided the first, astrophysically plausible, theoretical pre-gives a local measure of the physical distortions from the
dictions for the gravitational radiated energy, angular mo-Kerr geometry(b) rather depends on the past light cone data.
mentum, and waveforms to be expected from these systems. The second question is how to identify the single “back-
A sketch of the eclectic approach to the binary black holeground” black hole that is emerging in the numerical space-
calculation is outlined in the following stepél) First pro- time. In order to define deviations from this background
vide a description of the early dynamics of the system withblack hole we must be able to relate it, by an explicit diffeo-
an approach, such as the post-Newtonian method, which imorphism, to the numerical spacetime. We need to specify
appropriate for slowly moving, well-separated black holes. Aboth the spatial coordinates and the time slice, which in gen-
recent interest within the post-Newtonian and gravitationakral may be different from the one used to numerically inte-
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IIl. SUMMARY OF THE FULL NUMERICAL TECHNIQUES

¢ In our full numerical simulations we use many of the
standard techniques applied in, for example, the Binary—
Black-Hole Grand Challenge effort, with adaptations appro-
priate to the needs of our more specifically defined numerical
simulation problem. Many previous applications of numeri-
cal relativity to the binary—black-hole problem have been
developmental test problems aiming toward an ultimate goal
of indefinitely long-running 3D numerical simulations to
cover the evolution beginning with well separated black
holes and evolving through the entire interaction until further
radiation is no longer significant. With regard to gravitational
radiation, these efforts have been focused on indefinite nu-
merical stability and successful radiation waveform extrac-
tion by an observer in the “faraway” region of the numerical
domain. These efforts have often been successful with rela-
FIG. 1. The eclectic approach: We represent the three phases ti#ely brief black hole evolutions, but have demonstrated the
the binary—black-hole evolution and the corresponding techniqueserious difficulties in succeeding with the desired long-
adapted to each phase. The full numerical evolution is located tounning numerical simulations, and this approach has not yet
cover the truly nonlinear dynamical interaction. The domain of per-generated radiation studies that approach relevance to astro-
turbative evolution(CL) follows the FN domain allowing indefinite  physical problems.
evolution. Waveforms are extracted at the dotted world line de- \We will ask less of our numerical simulations. Our de-
picted on the right. Though such observers are located in the Cinagnd is for a highly accurate determination of the most sig-
part of the spacetime they will experience all radiation arriving nificantly nonlinear part of the binary interaction. We will try
from th_e _strong_ field dynamical FN_reglon. In _the far limit regime t5 make use of codes that may only run stably for a relatively
we envision using the post-Newtonian approximation brief period, but which can provide an accurate representa-
grate the Einstein equations. This geometrical puzzle is dision of the part of the spacetime we are most interested in.
cussed in detail in Sec. IV. There is in general no'I.'h|s point of view allovys us, for example, to avoid the dif-
geometrically preferred way to associate the numerical anficult problem of imposing physically accurate outer bound-
background spacetimes, but the first order gauge and tetr@dy conditions, by considering only the part of the spacetime
invariance of the perturbative formalism implies that the re-Causally separated from _th_e bou_ndary. We find that tr_us can
sults should not depend strongly on small variations in thesE® done much more efficiently in specialized coordinates,
choices. described in the first section below. Similarly, we have not
In Sec. V, we describe how to compute the Cauchy dat¥et ngeded more §table formu]ations of Einstein’s equation;,
for the Teukolsky equation, i.e. the Weyl scalgy and its  ©F difficult sophlstlcated technlqpes such as black hole. exci-
background time derivativé,i,, from the numerical three- SON. _Our s_tralghtforward numerlcal approach to evolution is
metric g;; and extrinsic curvature<;;, on the transition described in the second section.
Cauchy hypersurface. The numerical calculation of the
Cauchy data requires, first, a nontrivial identification of an
appropriate numerical “tetrad,” which reduces to ttaull Ultimately we wish to derive initial data based on infor-
and complex tetrad used in the perturbative calculation in mation from an approximation procedure, such as the post-
the small perturbation limit. Second, the numerical calculaNewtonian method which is applicable in the limit of slow-
tion of 9,4, is done “on slice” using Einstein’s equations to moving and far-apart black holes. As no such interface is
be consistent with the Boyer-Lindquist time of the final Kerr presently available we use, in our present work, initial data
black hole. from an alternative source, commonly applied in numerical
In Sec. VI we briefly describe the perturbative Teukolskyrelativity, the “puncture” formalism with conformally flat
equation and the 21 numerical code used to solve it nu- three-metric and purely longitudinal extrinsic curvature on a
merically. We then apply all of our techniques, in Sec. VII, to maximal slice. This assumes a three-sheeted topology instead
evolution of a single Kerr black hole with vanishing shift and of an inversion symmetry across the throftg], allowing
maximal slicing to test the consistency of our metiede for a solution of the elliptic Hamiltonian constraint equation
Fig. 1). Our essentially trivial result is obtained in a very without having to impose interior boundary conditidd£].
nontrivial way since our numerical tetrad is not necessarily Within this family it is possible to identify data roughly
aligned with the principal null directions, nor are our numeri- corresponding to quasicircular orbits using the effective po-
cal coordinates the Boyer-Lindquist coordinates used in théential method as in Refl11]. The binding energy of the
perturbative code. Only after we make the appropriate rotasystem is computed as a function of the proper separation of
tion of the tetrad and transform the coordinates to reproducthe holes keeping everything else constant. A minimum in
the Boyer-Lindquist ones do we see quadratic convergenciie binding energy is then interpreted as giving a stable qua-
to near vanishing outgoing gravitational radiation. sicircular orbit. Within this approach an ISCO is determined

A. Preparing the initial data
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by varying the orbital angular momentum of the system until 14 . .
this minimum becomes an inflection point. For less separatec

configurations, a stable quasicircular orbit is no longer pos- 256x512,
—o 192x384 tisheye

sible. We use these ISCO data, determinefil], for non-
spinning equal-mass black holes as a particularly reasonabl
starting point for approaching astrophysical systé¢fis

Having selected the physical initial data we then prepare
them for numerical evolution. When Smarr and Ydid| RelS] 1+
spelled out the problem of-81 numerical relativity in the
1970s, they specifically sought out methods that would be
invariant to gauge transformations in the initial data. In the
pursuit of long-running all-purpose numerical relativity
tools, this viewpoint has been traditionally preserved, and
little attention has been given to the question of choosing |
appropriate coordinates for the initial data. It is clear though 0.6
that, whenever differential equations are to be solved nu-
merically, some choices of variablésoordinates will be
more practical than others. In a wave-propagation problem, FIG. 2. The benefit of our fish-eye coordinates compared against
for instance, the simulation will be much more efficient if a the typical isotropic coordinates. Tlnvariant, plotted here, gives
wave is evenly resolved as it moves across the numerican indication of the radiation moving out from an initial ISCO
domain, or similarly if the coordinate characteristic speedssystem after 181 of numerical evolution. In the strong field region
are constant in space and time. up toz=6 the two coordinate systems are very similar. On moving

For numerical relativity simulations in practice we are outside that region though, the fish-eye coordinates cover a signifi-
often very far from this ideal. In typical coordinates, such ascantly larger region of the physical spacetime with fewer grid
isotropic coordinates for oufinitially) conformally flat points. Thg extra grid points in isotroplic.coordiqates are Wast.ed by
spaces, the waves are strongly redshifted as they move awgyerresolvmg the outer part of the radiation. In fish-eye coordinates

from the strong-field region. Since we require both a physite Wave is resolved more evenly.

cally large computational domain and also high resolution ingoordinate the wave is evidently more evenly resolved across
the strong field region, use of the standard coordinates leadge grid, and we cover the domain of the isotropic coordinate
to a great waste of numerical effort on overresolving an OuUtsystem with only about a 60% increase in the grid dimen-
going radiation wave that was originally generated withsjon. As shown, the fish-eye coordinate system has a much
much poorer resolution. In this way, relatively little is gained more distanphysicalouter boundary than that of the isotro-
by expanding the computational domain with additional nu-pic case while still having only about half of the grid points
merical grid points. We find that we can make great improvein 3p. Note that we would gain no further advantage by
ments in numerical efficiency with a relatively simgld hoc  attempting to compactify spatial infinity as in for example
coordinate transformation on the initial data which we call[15] since the resolution must nevertheless still fail to resolve
“fish-eye” coordinates. A typical such transformation is a \yaves at a finite radius in such a scheme.

radial rescaling, riso= RnumCOSN (Ryum/Ro)"] with typical Foreseeing longer term full numerical evolutions, we have
valuesRy=7.7 andn=2. This allows us to maintain a cen- a|so implemented other recoordinizations of the initial data
tral resolution of up toM/24 with outer boundaries near that have a fairly constant high resolution in the center of the
Fnew=37M using only 256512 grid points, moving the grid (where the grid stretching is more seveamd a lower
outer boundary much farther away without loss of physicakesolution near the boundaries, but still fairly constant to
resolution in the strong field region. This problem is illus- gllow the application of the usual radiative boundary condi-

trated in Fig. 2, which shows data from numerical simula-tions (adapted to the different characteristic sped@he of
tions in two alternative coordinate systems aftel16f evo-  these functions is

lution from an initial ISCO configuration. The outgoing

0.8 -

zNUM

radiation wave is noticeable in the real part of the gauge 2(Ryum— Ro)

independens invariant discussed in Sec. Ill A. These curves Fiso=Rnum| 1+ tan"(T+o'35)
represent the same physical spacetime as seen from alterna-

tive numerical coordinate systems. In this figure the strong 2Ry z

field dynamics are most important in the left side on the +tan T_0'35 2.1

figure up to about the value of the numerical coordinate ) ) )
(along thez axis) of Z,,»=6. Up to that point the two co- With b,d,R, adjustable parameters that determine the ratio of
ordinate systems are nearly identical. As we add grid point§€ntral to boundary resolutions and the width and location of
on the right side of the figure beyond this strong field regionthe effective resolution transition region, respectively.

we are frustrated in the isotropic coordinate case by the red-
shift effect, and only a modest additional part of the outgoing
wave, about half a wave cycle, is added to the grid when we Our numerical evolution must be consistent with our need
roughly triple the grid dimension. In the case of our fish-eyefor highly accurate relatively brief simulations. Conse-

B. Numerical evolution
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quently, in our work so far, we have used the standard ADM [ll. DETERMINING THE LINEAR REGIME
(Arnowitt-Deser-Misner formulation of the Einstein equa-
tions[16] as adapted by Smarr and Ydrk4]. Our evolution
equations are thus simply

Black hole perturbation theory has recently generated
much interest as a model for the late stages of a binary—
black-hole collision spacetini@]. When two black holes are
2.2 close enough to each other one can simply treat the problem,

in the close limit approximation, as a single distorted black
. hole that rings down into its final equilibrium state. So after
9K ap=— VaVpa+ a(Rap— 2K K+ KapK) (2.3 some nonlinear numerical evolution of the full Einstein's
equations for a system of two initially well-detached black
wheredy=d,—£5. Here and below latin indices run from 1 holes, there should always be a transition tifeafter which
to 3. the system simply behaves linearly i.e. satisfies the linear

Although a newer conformal formulation of Einstein’s perturbation equations around the final Kerr black hole.
equations has been found to be more stable in various nirFinding thelinearization time Tis thus the first nontrivial
merical simulationg17], here we focus on the accuracy of question that arises in the context of our eclectic approach. In
the solutions rather than long term stability. Our observatiorpther words, we need one or more working criteriavdren
is that the standard ADM equations seem to give more accu¥e can expect perturbation theory to be accurately effective
rate results for binary black hole simulations in our gaugedased only on numerical data. As we shall see below, we
while the simulation is stable. apply at least two independent criteria for estimating the on-

If it is possible to have a slicing that is consistent with thatset of linear dynamics, the speciality invariant prediction
of our perturbation theory, then we can avoid the rather larg@ased only on the Cauchy data and another estimate based on
technical problem of producing data on a slice inconsistenthe stability of the radiation waveform phase.
with the background. Consistent with our choice of Boyer-

Lindquist coordinates in our perturbation treatment of the A. The speciality invariant test
background black hole, we have chosen maximal slicing to
define the lapse,

éogab: —2aKyp,

Motivated by this purpose in Ref10] we introduced an
invariant quantity,

K=0, Aa=aK, K. (2.9 S=277%73, (3.1

This implies an elliptic equation forx which we have typi-  \here7 and 7 are the two complex curvature invariarfs
3{?!')’ sol\'/:ed e\'/eryl's'ttime SteptstltJ]Singh%i”Cg'et bﬁugd_ary CON-and 7, which are essentially the square and cube of the self-

itions. For simplicity we set the shifg'=0, which is an = _ : mn
adequate condition for relatively brief runs. The numericalggf}l PAt,Copys=Capyot (1/2)€apmiCea, OF the Weyl ten-
evolution is performed using an iterative Crank-Nicholson™ "
method of third order which is second order convergent. In - X apys ~ =05 pvap
our simulations we have used resolutions updtc=M/24 T=CopysC*7 and J=C,p,sCL,CH" 7. (3.2
with dt=0.25x. Because we have moved the outer bound-
ary to a point causally separated from the region we ardoth these scalars can be expressed in terms of the Weyl
interested in, it is acceptable simply to impose static boundcomponents, for an arbitrary tetrad choice:
ary conditions.

In evaluating the results of our numerical simulations we Z= 35— 4¢3+ Paiho,

make frequent use of two indicators: The degree of satisfac-
tion of the ADM constraint equations gives a measure of the  7— _ Y3+ Yohathr+ 20 athy— ath>— 3. (3.3
numerical error produced by the evolution

The geometrical significance & is that it measures the

V&(Kab~gapK) =0, (2.9 deviations from algebraic specialitin the Petrov classifica-
tion of the Weyl tensor
R—2K,,K3+K?=0. (2.6) For the unperturbed algebraically spediktrov type D

Kerr backgroundS=1. However, for interesting spacetimes
These quantities provide an important indication of wheninvolving nontrivial dynamics, like distorted black holes,
numerical inaccuraciggnd eventually instabilitieshave be-  which are in general not algebraically spe¢Rétrov type ),
come significant in our simulations. Even if Einstein's equa-we expectS=1+AS, and the size of the deviatiohS# 0
tions could be solved perfectly, any simulation with a finite can be used as a guide to predict the applicability of black
boundary is subject to an additional type of error arisinghole perturbation theory. In particular we adopt the criterion
from inappropriate boundary conditions. A geometricallythat, whenS differs from its background value of unity by
correct solution may have physically unreasonable disturless than a factor of 2 outside tlibackground horizon, a
bances propagating in from the boundary. We have found thperturbative treatment may be expected to provide a reason-
speciality invariantS[10] to be a sensitive indicator of such able description of the radiative dynamics. A larger deviation
boundary waves, which do not violate the constraints. from algebraic speciality implies significant second order
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Re(S), along z—axis ISCO, total energy radiated
1.75 0.05‘ T T T T T
15 0.04 |
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FIG. 4. Energy radiated from two black holes from an ISCO
0.25 2“ : ;{ : é : é : 10 configuration for different transition times showing a plateau when

Z reaching the linear regime.
NUM

FIG. 3. The speciality invariant for binary black holes evolving NOt dominated by strong “peeling” property fall-off behav-
from the 1ISCO showing damped oscillations around unity, its Kerriof, Which tends to indicate spacetime dynamics. Because the
value. The location of the horizon in these coordinates is roughiy/Vey!l tensor,C,z,s, carries information about the gravita-
2.5. Its behavior at larger radius suggests that radiation is beginningonal fields in the spacetimé, turns out to be an interesting
to leave the system. indicator of radiation of the spacetime and tests, for instance,

how much radiation is produced by the imposition of ap-
perturbations. In fact, for perturbations on a background Kerproximate boundary conditions. We have found that e
spacetime, with an arbitrary tetrad perturbation, one can ea#avariant is simple to calculate and can be applied directly to
ily deduce that full 3D numerical evolutions to provide a gauge invariant

indication of the dynamics.

A
S= 1—362W +0(€%), (3.9 B. Waveform locking and energy plateau
(¥2") The phase and the amplitude of the radiation, or equiva-
lently the locking of the waveforms and the corresponding

where iy, ¥, and ¢, are the usual Newman-Penrose com- . o . )
plex Weyl scalars. The lowest order term in the deviation isenergy plateau, also provide an indicator of linear dynamics.

second order in the perturbation parameterand should S_tarting with detached black holgs,.we expect an initial pe-
tend to vanish if first order perturbation theory is appropriaterIOd of weak brer.nsstrahlu.ng'radlanon followed by the ap-
Note that the superscripts (0) and (1) stand respectively fopearance of quasinormal ringing. On the other hand, switch-

|'hg to perturbative evolution immediate leads to premature

backgrognd and flrst.order pieces of a perturbed quant'tyringing. Hence if we cut short the numerical simulation and
wheree is a perturbation parameter.

In Fig. 3 we display the speciality invariant along the apply linear theory too early, we observe quasinormal ring-

. . : in rly an Icul waveform that i f ph
axis, perpendicular to the orbital plane of two black holes g too early and calculate a waveform that is out of phase

i ; S ~“with the desired result. Comparing waveforms derived from
starting the evolution from the ISCO determination used Ir]dif'fering durations of numerical simulation then we tend to

[6]. Its value oscillates . around fthe Kerr packground see a phase shift in the onset of the ringing when we have not
valge. After some evolutlonTw.ll.l\/I, the ampll'zude of .the et allowed enough numerical simulation. In practice, we
osclllla'uon decreases to a dewatlon below 50 /o. outside th us follow the behavior of the waveforms through the evo-
h_onzon(located at arogndnum~2.5 in the_ numerical coor- lution by extracting the Cauchy data at successively later
d|nat¢$, and perturbat|o_n theory can reliably t‘?"‘e_ over .thenumerical time slices. When the system enters the linear re-
remaining of the evolution. Bgcguse the graV|t.at|on.aI fleIdgime, the waveforms evolved via the perturbative Teukolsky
has two c_iegre_es_ of freedom_ is it clear that ‘*‘W?‘”?‘”t equation should essentially superpose on each other, as
alone is insufficient to provide a complete description of pan4ing this transition time amounts to an equivalent ex-
black hole perturbations, and can be complemented with ity 50 of linear and nonlinear evolution for the intervening
time variations. Consequently, we have been looking at theregion of spacetime. Consequently also a certain leveling off
turning points whereS=0 and the amplitude of the distor- of the radiated energy should be observsee Fig. 4.
tion reaches a maximum. As we show in Fig. 5, extracting waveforms evernyl lof

As noted in Sec. IS is also very useful outside the nonlinear numerical evolution allows us to study the transi-
perturbative context. Its usefulness is derived from the faction to linear dynamics, and to perform important consis-
that it is a gauge invariant quantity which, unlikandJ, is  tency tests on our results. If we have made a good definition
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Re(y,) , r*=30M, 6=0 congruence of null rays directed outward have vanishing ex-
0.05 . . . pansion[18]. A common apparent horizon lies inside and in
a binary system appears later than a common event horizon;
and typically much later than the time when the system can
be effectively described by linear perturbations. The linear-
ization time refers to when the close limit approximation can
be applied and this intuitively occurs when a common poten-
tial barrier covers the binary system. In black hole perturba-
tion theory, a potential is present somewhat outside the ho-
rizon of the black hole which tends to prevent radiation from
escaping this region. This is the main reason why the close
limit is such a good approximation even beyond the original
expectationg19].

0.025 -

-0.025

IV. CONSTRUCTING THE KERR BACKGROUND

-0.05

30 35 40 45 50 55
/M Einstein's theory of gravity in principle demands the
equivalence of all coordinate representations of gravitational
dynamics. However, in practice one always needs to choose
a convenient gauge to accurately carry over the full numeri-
of the perturbative background, as described in Sec. IV, thefal evolution to the point where the two black hole system
we can expect our radiation waveform results to be indepereffectively behaves like a single perturbed black hole. Hav-
dent of the transition timeT, once the linear regime is ing determined that a late time numerical spacetime geom-
reached and for as long as the numerical simulation continetry is close to the Kerr spacetime does not give us any
ues to be accurate. information about the coordinate system in which this is
A closer look at Fig. 5 gives us an idea of how the linear-written. In order to be able to continue the numerical evolu-
ization happens. Curves df=10M and 1M of evolution  tion with the Teukolsky equatiof6.2), we thus need to re-
are close to the correct waveform for this orbital case startingonstruct a Kerr background in a recognizable form, for in-
at a proper separatidt/M =4.9. If we apply right away the  stance in Boyer-Lindquist coordinates. Because there is in
close limit approximation we get the curve labeled By  general no unique procedure to reconstruct such a Kerr back-
=0M which starts ringing prematurely. AfterN2 of full  ground, we shall require that this should deseenough to
numerical evolution we obtain good agreement 'with the coripe given numerical spacetime. In other words, we will re-
rect waveform up tot/M~33. When perturbation theory qire that the two spacetimes agreethe first orderin e.
takes over after M of full numerical evolution the agree- Since the physics of our problem will then be described by
ment is very good up té/M~38. Neart/M =45M we see o : - -
) . _ guantities, likey,, which are first order gaug@nd tetrad
tfat we need Bl of nonl!near e"o'!“'o” while neat/M invariant, the physical results we compute will be indepen-
I:) r?gg/lr t::-r?ll\élscft];‘l;uggr:'grgne]g?l?lbi\é?:]lgl?(;l k?éiir?:igfc:haen\?vhitldem (Fo first ordej of .the identification of the backgrounq
oordinates we describe below. To have complete theoretical

relevant waveform. This process shows how the full nonlm—COntrol of the perturbation theory, it is desirable to have a

ear dynamlqs shn‘tg toa cer_1tra| region covgred by the Coméomplete family of initial data sets which reduces to the
mon potential barrier allowing us to describe linearly the

: background geometry in the limé&— 0. While this require-
evolution of the outer part. ment is not strictly required in a practical perturbative appli-
_ cation[7], we would like to stay as close as possible to this
C. Common horizon arrangement for its benefit in evaluating our results. In our
An intuitive picture to visualize the applicability of the case the perturbation parametecan be regarded as a de-
close limit approximation would be the appearance of a comereasing function of the transition tinTe In practice, we will
mon event horizon that encompasses the binary system. Unot be able to achieve an exact Kerr black hole in The
der these conditions the spacetime exterior to the horizor=2 limit, but we will aim for the practical goal that the
(the relevant one for computing gravitational radiation reach¥emaining perturbations are small compared to the radiation
ing infinity) can be treated as perturbations of a Kerr hole. Inwe are interested in, a condition that we test in Sec. VII.
practiceeventhorizons are difficult to compute in numerical ~ We initially suppose that the background Kerr black hole
relativity because they are a global feature of the spacetimis given by the parametel anda of the initial data. With a
and we would need to first evolve the binary system for &first estimate of the total radiated energy and angular mo-
long time and then extract posteriori the information to mentum these parameters can be iterated to approach the
locate the event horizon. An easier quantity to compute is thénal values for the stationary Kerr black hole.
apparenthorizon, which can be defined locally as the outer- The Kerr metric in Boyer-Lindquist coordinateisi(, 6, ¢)
most marginally trapped surface of the spacetime where teads

FIG. 5. Detail of the progressive waveform locking process for
black holes at the location of the ISCO.
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ground, algebraic slicings, for instanf20] (1+log), and a
reparametrization of the maximal slicing by d&t«) such

that the numerical lapse resembles the Boyer-Lindquist one
even more closely. We performed such tests and checked that
whenever the deviations from the Boyer-Lindquist lapse are
close enough the results for the radiated waveforms and en-
ergies do not change notably, in agreement with the first
order gauge invariance af, andd;i,.

B. The spatial coordinates

The general idea here is to numerically compute physical
quantities or geometrical invariants and relate them to their
analytic expressions in the perturbatively preferred coordi-
nate system. Curvature invariant methods have the distinct
advantage that they can be applied to evolutions using nu-
merically generated coordinates which are not understood
analytically. On the other hand, the values of curvature in-
variants in the perturbed spacetime may be sensitive to per-
turbative distortions, making them less useful for identifying

FIG. 6. The maximal lapse used for black holes evolving from@ background spacetime. In light of these effects, we pursue
the 1ISCO compared to the analytic Kerr lapse in Boyer-Lindquistd combined approach, utilizing both gauge and geometrical
coordinates for different evolution times.

information where each seems most appropriate. In the outer
regions of our spatial slices we expect the gauge to be close
to the quasi-isotropic gauge for Kerr data. Moving in from

ds?= —(1— %)dt%— E dr2+3de%+ sinzagd(ﬁz this to the interior region we expect, most importantly, two
z A z gauge effects. First, our slicing has the tendetwithout a

aMr shift) to cause the coordinates to fall inward with evolution.
s sirfadtde, (4.)  We counteract this with a rescaling of the raditg.,,

=rken(r), making use of theZ invariant which depends
most significantly on the radial coordinate in the background
slice,Z7=3M?/(r —ia cos#)®. We use this relation and infor-
mation about the numerical value 6fto define the rescaled
radius. To do this we need to produce one valug fifr each
constant sphere in the numerical slice. The maximum value
of f%“Idgo tends to lie on the equatorial symmetry plane of

We recall that a Boyer-Lindquist slice of the Kerr metric our binary black hole problem, where t&invariant also

hasK=0. The full numerical coordinate condition of maxi- indicates relatively weaker distortions. This makes
mal slicing, Eq.(2.4), is solved for the lapse with an ex-

where A=r2—2Mr+a?, I=r?+a%cog¢ and Q=(r?
+a?)3 + 2Mra?sir’g, M is the mass of the black hole, aad
its angular momentum per unit mass.

A. The slice

2m
terior boundary condition set to reproduce the value of the (D)= zif I(r,0=ml2,p)de, 4.2
Boyer-Lindquist lapse there, but to vanish at the location of mJo
the individual black hole “punctures.” The resulting lapse
from the evolution of two holes from the ISCO is shown in I kerr= 6\/SM/(Z> (4.3

Fig. 6. The lapse resembles the Boyer-Lindquist lapse ini-
tially and further evolution brings them closer. Thus thea practical definition that counteracts the coordinate infall.
maximal lapse with our boundary condition approaches the Unlike onr, there are no obvious dynamical effects on the
background lapse quite closely. Where there are differenced, coordinate and it has been sufficient to adopt the numerical
near the horizon, our lapse tends to produce a coordinatealue co®=2/\/(x*+y?+7%). We have successfully applied
system in which the coordinate observers drift slowly intothis remapping of coordinates already in the head-on colli-
the black hole. Considering our coordinate trajectories fronsion casq5].
the frame of the background black hole, one can conclude The second important coordinate effect, which becomes
that, since the trajectories and lapse are similar away fromelevant when the total angular momentum is significant, is
the horizon, and the lapse is a bit different near the horizonthe result of frame dragging caused essentially by the differ-
our slicing will be close to the background slicing, but ence between our vanishing shift and the nonvanishing
slightly distorted toward the future near the horizon. In SecBoyer-Lindquist shift. This effect drags the coordinates in
VI we try to quantify the significance of this distortion with the ¢ direction and has the effect of producing an off-
a numerical study of the Kerr spacetime in these coordinatesliagonal distortion in the numerical metric. We can undo the
Other lapse possibilities can be considered which alsdrame dragging by attempting to restore the diagonal form of
produce a slicing similar to that of the Boyer-Lindquist back-the Boyer-Lindquist three-metric.

044001-8
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We seek to set frame dragging gauge freedom by supple
menting the Cartesian definition gf with a correction that  0.05
makes the metric component most strongly affected by frame
dragging.g, 4, vanish:

0.04

$=arctafy/x]+ f (Orp/9y0)dr. (4.4)

where the caret stands for the full numerically evolved met—o'03

ric. To see this, considag,, with no shift and transform to

PHYSICAL REVIEW B5 044001

d(poﬂse/ dt

—-—- T=6.5 1
T=7.5

75 12.5
r’/m

10 15

FIG. 7. The effective shift correction for black holes evolving
from the ISCO compared to the analytic Kerr shift in Boyer-
Lindquist coordinates for successive evolution times.

distortion (with the appropriate boundary conditionghich
A is naturally adapted to the stationarity Killing vector of the

background Kerr spacetimé4], may, for example, elimi-
nate frame dragging and thus reduce the need for a transfor-

mation such as$4.4).

Jab With ¢ shift by ¢— ¢ — @gni(t.r, 6). Thus 0.02
grqszozéw_ﬁr@smﬁéw (4.5
so that 0:01
9
Jr Pspif=~—. (4.6 0
fere
If gap is the Kerr metric
gt(p: ét(p_ at(PShiftézpzp (47)
so that
Ot
Pshitt= — —=— Nﬁerr (4.8
g‘P‘P
is the Kerr shift, and
3 oshin="0, (4.9
@shift= ~ tNEerr - (4.10

Equation(4.10 allows us to test how close our derived
(from the block diagonal metric conditipshift correction is
to the Boyer-Lindquist shift. The results of this comparison
are displayed in Fig. 7. For two black holes evolving from
the ISCO, the shift correction correctly reproduces the frame
dragging effect outside the potential barrier of the syster’r{0
and evolution bring the shift closer to that of a single rotating
Kerr hole.

We note that some means of fixing this frame-dragging
degree of gauge freedom, as we have done here, is essential
also if one wishes to speak meaningfully of the number of
orbits the system has undergone in the strong field region
during numerical simulations.

As already pointed out there is no unique way of choosing

V. CONSTRUCTING THE CAUCHY DATA

Given the numerical metrig;; and the extrinsic curvature
Kj; derived as in Sec. Il on a Cauchy hypersurface, and the
coordinates of the background metric determined in Sec. IV,
we proceed to compute the Weyl scalq and its back-
ground time derivative,,, the Cauchy data we will need to
continue the evolution via the Teukolsky equation. As was
discussed in Refs21-24, one can make a following 3
41 decomposition, using the basi§=dt, §'=dx +N'dt,
get

Ua=—[Riju +2Ki[kKI]j]niEjnkm+8[Kj[k,l]

+ I‘JP[kK”p]n[oa”nkm _4[ RJI - KJpK|p

the coordinate transformations in order to bring them closeand its time derivative

to that of the Kerr background. Our philosophy in this sec-
tion has been to consider the simplest of these transforma-
tions that approaches the Boyer-Lindquist coordinates with
enough accuracy for the binary—black-hole numerical simu-
lations we are interested in. Obviously, other possibilities
that would improve the accuracy of the procedure can be
incorporated as needed. We also note that the optimal choice
of coordinate transformation needed here may depend on the
shift condition used in evolution and the coordinates used for
the initial data. The use of a shift condition, such as minimal
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where the last term extends the expression in R3], hav-  To numerically determine an exact tetrad we could in prin-
ing been added to take into account the variation of the tetradiple search for possible candidates for two of the PND’s of

termsdo[ nmnm]. Here&zn“a#, 5= EM&M, and the Weyl tensor. One could, of course, try to pick up some
null directions in our numerical spacetingg,” which we
‘//3:_[Rijkl+2Ki[kK|]j]|injaknl+4[Kj[kI]+FJp[kKI]p] kgow_ are close to_the PND's in Kerr spacetime Whenev_er
o o ’ gl,}im is a perturbation of the Kerr spacetime. However, this
X (1P mfn! = nPmili*n') — 2[Ry — K, KP+ KK ] turns out to be a bad choice because the PND’s do not be-
o o have analytically under analytic perturbations of Kerr space-
X (110 mPn! — [PnIIROm'y, (5.3  time. The reason is that the principal null directions of Kerr

spacetime are double principal null directions of the Weyl
where the background (null and complex tetrad tensor, which in general will split under the perturbation. It
(|M1nu7mﬂ,au) is specified in the subsection below. turns out that the splitting of eigenvectors of an endomor-

The derivatives involved in the above expressions can b@hism under a perturbation of orderbehaves in general as
computed in terms of the initial data on the Cauchy hypersome fractional power ot (hence nonsmoothly So the
surface as in EqA19) in the Appendix. principal null directions will be too strongly perturbed.

With the tetrad specified, the foregoing formulas are co- An alternative and more effective procedure to define an
ordinate independent. Therefore the only adjustment needekkact tetrad that has the required property in the linear re-
to specify initial data for the evolution equations is to insertgime is the following.(a) We assume the following 81
the appropriate background quantities in the above equalecomposition of the tetrad:
tions. In particular, takingN and N;, respectively as the
zeroth order Kerr lapse and shiftl(o))z VAS/Q and N{ -1
=[0,0,—2aMr/Q], allows us to computé, i, directly with I#= E(“Mr r), (5.6a
respect to the background Boyer-Lindquist time, thus avoid-
ing additional perturbations introduced if one computes the

numc_arical_derivative by finite differences @f, on two suc- i i(u“—r”“) 5.60
cessive slices. \/E ) .
A. The tetrad _
A null and complex “exact” tetradi.e. orthonormal in the m#= E(a’% "), (5.60

numerical spacetimemust be chosen such that it reduces in

the linear regimg to the choice mat_je in_our perturbatiothereu,L is the normalized timelike unit normal to the hy-
treatment of the final Kerr hole, the Kinnersley tetf&d In ersurface and*=[103], 6*=[0p%], ¢*=[00?] are or-

Boyer-Lindquist coordinates the background tetrad vector$h 2 . i
are onormal vectors pointing along the numerically defined co-
ordinate directions(b) We thus identify the set of null

1 rotations to bring Eq(5.6) to the form (5.5), in order to
lin= K[(r2+ a?),A,0a], (5.4a  make it consistent with the tetrad assumed in the perturbative
calculation.

1 Step a is straightforward. Begin with real vectors aligned
£ o= _—[(r2+a2),—A.0a], 540 with thg numen(_:al space and radial directions, which in
Mkin= 25 [(r"+a?) al (54 Cartesian coordinates read
; 1 ia (5.40 vi=[-y.x0],
mKin: : " Wy li——|. 54
sing Sing
J2(r +ia cosé) vi=[xy.2],

The Kinnersley tetrad is particularly well suited for pertur- a Y2ad b e

bation studies because it has the property thandn* are vz=de(g) g eqp v 10 ;- (5.7
chosen to lie along thébackground principal null directions

(PND’s) of the Weyl tensor in such a way that one can deriveWe then redefine these, to achieve orthonormalization. It is
decoupled perturbation equations. In terms of thel3basis  important to begin the ortho-normalization procedure with

of Egs.(5.1)—(5.3), we have the azimuthal direction vectar; which is not affected by the
frame-dragging effect discussed in Sec. Il B. At each step, a
[#=[NOIQ 1T+N©8 7, (5.59  Gram-Schmidt procedure is then used to ensure that the triad
remains orthonormal, so that
n#=[N©ng,,n'+N'Ong, ], (5.5b .
a V1
. . v — 1
m#=[N@mg;., I+ N Omg, 1. (5.509 NP
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VI. THE TEUKOLSKY EQUATION

Perturbations of a rotating Kerr black hole are described
by the well known Teukolsky equatid®], which is derived
from the Newman-Penrose formalism. The Weyl scalar
that represents outgoing gravitational radiation satisfies a de-
coupled wave equation

where wij=(vf’v}’gab). In the case of Kerr spacetime one {(A+4u+p+3y=y)(Dtde—p)—(5+3atptim—1)

X(6+4B8—1)— 340 yM=0. (6.2)

finds, in Boyer-Lindquist coordinates,
AS In this generic form the Teukolsky equation is manifestly
3,0,0 , (5.88  independent of the choice of coordinate system used to de-
scribe the Kerr background and its perturbations. In the fore-
) going equation the usual notation for spin coefficients
A A — nH —mi
w_ aj_ \ﬁ @,B,... was used andA=n*d,, é=m*g,, and D
=[] »1’ 2’0’0}’ (589 =1#g,, represent directional derivatives.
For the applications in this paper we consider Boyer-
Lindquist coordinatest(r,d,¢) and the Kinnersley tetrad.
(5.80 The Teukolsky equation then reads

uMt=

1
9*=[003]=]0,0-=,0

5

r’+a?)? 9%y AMar 2 a2
g—azsinza —Z/,+— L o
r 1 \/§ A at A dtdgp | A
_ ay_— _ —
(’DM_[O’Ul]_»O’O'OSinG Q} (5-8(]) _Lé)z_w_Azi io"_lﬂ _ii Sine&_l’b
Sirf 0| a¢? ar\A or] sind g6 ET
i M= M= “m— M=
normahzgd such tha.t—uﬂu rur#=0,0"=¢,0"=1 so M (r2—a?) . o a(r—M)
that the inverse metric can be expressed/ds=2(m*m” T—r—lacose Eﬂl A
_|(MHV))_
For step b identify a combination of null rotations of types i cosO| dyr
| and Il parametrized by, and a type lli(boost null rota- sing %+(4 cof+2)y=0, 6.2

tion parametrized b¥ , andF g which bring the orthonormal

tetrad(5.6) to the form (5.5 for the unperturbed case. The wherey=[r —ia cos@)]*s.

transformation This formulation has several advantagés:It is a first
order gauge invariant descriptiofii.) It does not rely on any
frequency or multipole decompositiofiii ) It can be used to
evolve 3+ 1 dimensional spacetimes without any assumption
about symmetriegto deal with the final stage of orbiting
binary black holek (iv) The Weyl scalars are objects defined
in the full nonlinear theory and it can be argued that evolving
them with the linear theory provides a reliable description of
the perturbation§25]. In addition, the Newman-Penrose for-
mulation constitutes a simple and elegant framework to or-
ganize higher order perturbatiof4].

The numerical integration of the linear Teukolsky equa-
tion in the time domain using Boyer-Lindquist coordinates is
done closely following Ref[26]. We use the Lax-Wendroff
algorithm, using the standard tortoise coordindte

= A AZF D) 7 L1 + [ (AT Dy~ 1]

—iA(M—mA)l, (5.9a

-1
Nk = F%{[ JAZZ D)+ 1 TA+[(AZ+ 1) + 1]n#

—iA(MA—mH)}, (5.9

= R AT D+ A AT D)~ L]

r2 +a? r—r| r2 +a r—r_|
(5.90 r*=r+ - In

ro—r_ " 2M L r.—r_ | 2M

+iA(T#+nm)}

achieves this withA=asingyA/Q, Fp=2%/A and Fg r.=M=M%2-a? (6.3

=\3/(r+iacosé), thereby producing a tetrad consistent N

with the tetrad assumed in the perturbative calculation. which naturally leads to excision of the black hole interior
In practice we perform the tetrad transformation indi-and constant characteristic wave speed. We impose static

rectly, implementing its effect on the set of Weyl scalarsboundary conditions on the internal boundégyent horizon

(o, - .. .¢bs) as described in the Appendix, EGp24). of the Kerr backgroundand radiative boundary conditions
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on the exterior boundary. Frame dragging effects are taker Emd(m'”M), Kerr, a/M=0.8

care of by the background Boyer-Lindquist shift. Thus, this : : : : .
formulation has all the ingredients to allow for an indefinite /
stable evolution. In practice it provides an accurate evolution ;,!
for the few hundreds o/ of relevant signal generated inthe , | = 64x128,dx=M/8 /]
final stages of black hole merger. Since the Kerr backgrounc —— 96x192,dx=M/8 /

has the axial killing vectos,, we can Fourier decompos, | ==~~~ 128x256",dx=M/16 /

into e™?ks modes. In particular, for numerical convenience,
we use the Kerr-Schilds,

‘ a

;
—-1
r

a
¢Ks:¢+r — In
+ - +

+ —

This allows us to reduce the dimensionality of the Teukolsky
equation from 3-1 to 2+ 1. In addition this decomposition
into modes can be applied to the output of the full numerical
code with the advantage of handling 2D instead of 3D fields.q -
Typical evolutions of the Teukolsky equation used a grid size 0 2 4 6 8 10
of nyX n,«=40x 1200, with— 18<r*/M <78 for signals of ™M
t~100M, and we f_|IIed in |n|t|all)_/ with zerogor use_d ex- FIG. 8. The total radiated energy for an evolved Kerr hole for
trapolaﬂ_onﬁ; the grid p0|nts_out5|de the full numerical do- gifterent resolutions and boundary locations.
main. Finally, the computation of the energy and momenta
radiated is performed using the formulas of R&¥4], Sec.  black hole in the numerical data and defining a tetrad, ex-
lnc. tracting the Cauchy data and continuing its evolution with
It is worth stressing here that the Teukolsky equation carthe Teukolsky equation. Ideally, the final result should pro-
be written in any coordinate system. We are using it in theduce no radiation. In practice, the computed radiation energy
Boyer-Lindquist coordinates for present convenience, but iand waveforms will give us a measure of the error with
full numerical codes including excision black hole interiors which we can determine such quantities.
turn out to be more practical in Kerr-Schild-like coordinates, This is a nontrivial test because the full numerical evolu-
it may be convenient to evolve perturbations in Kerr-Schildtion is performed with vanishing shift and the singularity
slices of the Kerr metri¢27]. avoiding maximal slicing. This is in contrast to the Boyer-
Lindquist lapse and the nonvanishing Boyer-Lindquist shift
VII. APPLICATION TO A SINGLE ROTATING fqr rotation pargmetea/M=O.8 in the example shown in
KERR HOLE Fig. 8. In a;idmon the Cauchy data fap, anc_i drihy are
computed with a tetrad adapted to the numerical spacetime,
We have done extensive testing of our method on variousvhich must then be transformed according to Sec. V A in
toy models. In an earlier incarnation, we tried our approaclorder to nearly reproduce the Kinnersley tetrad in the pertur-
successfully on axisymmetric head-on collision. As we havebative limit. These complications mean, in particular, that the
described, we have done a lot of work generalizing ourdata passed between our first three codes are not expected to
method to include orbital cases with angular momentum orbe approximately vanishing, but must sum to zero in the end.
the final black hole. We have checked our equations explicin practice our result is subject to both numerical error and
itly on exact Boyer-Lindquist Kerr data, but in our real nu- false radiation caused by an inexact identification of the
merical simulations we will not reproduce the Boyer- background coordinates and tetrad, perhaps producing non-
Lindquist coordinates exactly and it is useful to get sometrivial Cauchy data which we then evolve via the Teukolsky
measure of how important the coordinate differences are foequation. The results of the whole procedure are summarized
the radiation. Additionally, our calculation requires the use ofin Fig. 8. The levels of spurious radiation are around°N.
four computer codes, a code for the numerical simulatiorResults after relatively short evolution times converge qua-
(cACTUS [28]), a specialized codécalled zorRRO running  dratically toward zero with increasing resolution. The longer
within the simulation that calculates all the quantities neede@volutions are affected by the location of a close exterior
for producing Cauchy dat@ee the Appendixa code(called  boundary, and are improved when we move the boundary
TEUKCAUCHY) that runs after the simulation defining the outward by 50%.(As discussed above we will use much
background black hole and constructing the Cauchy datenore distant outer boundaries for our astrophysical applica-
from the output of the evolution on various time slices, andtions) All this indicates that the coordinate effects are, so far,
the Teukolsky evolution codéreukcoDE). The Kerr case smaller than the numerical effects, which in turn tend to
has been a key source of rigorous tests of all these codes.produce radiation about two orders of magnitude smaller
We performed a highly nontrivial test of our setup by than the radiation we are interested in. Notably these results
applying the entire procedure to Kerr initial data, evolving aare achieved with lower resolutions and closer boundaries
single Kerr hole fully numerically, finding a “background” than the typical resolutions of runs we performed for two
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black holes starting from the ISCO configuration used inPl sequence of pre-ISCO stable circular orbits. Moving up
Ref.[6]. within this sequence towards more separated black holes as-
For the sake of completeness we mention two further testgmptotically eliminates the features of these data which may
that we performed for two black hole initial datd) The be less astrophysical. Similarly, it is possible to define curves
mass scaling of the whole procedure. Since Einstein equdhrough the parameter space of our initial data family which
tions scale with the total ADM mass, we made a full numeri-approach the trajectories defined by the Buonanno-Damour
cal run with initial mass equal to 2 and compared the scalingxtension of the post-Newtonian method. The application of
of the Cauchy data, post-processing and final waveformsore advanced numerical techniquig9], which we are
with the mass 1 case. This proved to be a very useful test fgqresently undertaking, should make it possible to begin gen-
the corresponding set of four codes we used to compute ea@rating waveforms from farther up these sequences. Still,
of the above stagegii) The initial separation of the holes. though, the effective potential method initial data sequence is
When we reduce this from that of the ISCO to one quarter ofan imperfect substiute for robust interface with the post-
that value we reach the close limit regime and can comparblewtonian method, which we expect to be ultimately re-
with the results from the known analytic expressid@9]  quired. Since a primary concern about the astrophysical rel-
and scaling for the separation as well as for the angular desvance of numerical/close-limit results is artificial radiation
pendence off, and d;i,. content in the initial data, another useful line of research is
comparison studies of waveform alternative initial data sets
which would be equivalent in their astrophysical interpreta-
VIil. DISCUSSION tion. These will provide a measure of the significance of this

The Lazarus approach to binary black holes Combinegﬂterp_retive indeterminacy. to the gravitational'ra('jigt'ion.
three treatments, each adapted to one of three stages of theomising work with evolutions from Kerr-Schild-like initial
dynamics: the far-limit, nonlinear-interaction, and close-limit dat@, for which an alternative application of the Lazarus ap-
(one black holg regimes. In this paper we have provided aProach is under developmef8l], should provide an ex-
detailed explanation of how numerical simulation and Teu-2Mple of such comparative work. ,
kolsky equation perturbative dynamics can be interfaced to Another area of study that can now be pursued is to de-
provide a complete description of gravitational radiation aris-V€/0P some preliminary indications of the effect spin has on
ing from the post-orbital binary—black-hole dynamics. the W_aveforms _generated in the post-lnsplral o_lynamlcs. The

This technology makes it possible, for the first time, toéfféctive potential approach provides a descriptigd] of
apply numerical relativity to the nonlinear dynamical inter- the effect sm_aI.I_amounts of |nd|V|dua_I black hole spin _have
action of these systems. In our approach to this unknow?n the ISCO initial data. We are applying our approach in the

regime, we have identified several parameter sequences tHgt instance to cases of spin parallel and antiparallel to the
make a connection to better-studied cases: aaquence that °rPital angular momentum. _ _ _
allows us to increase the separation from the close-limit re- Eventually numerical simulations will run routinely for
gime to the ISCO, amx sequence that allows us to connectundreds or thousands bf, having begun from established
boosted head-on collisions studied in 2D to the ISCO with #2Strophysical data. But the possibility of observation is be-
fixed magnitude of each black hole’s momentum, ang a 9iNNing aimost immediately, and until now we have not met
sequence through which we connect to head-on collisions df'® Ne€ds of observers who consider that any additional in-
resting black holes by varying the magnitude of the momenformation abom_Jt the the final stage of binary black holes may
tum to the I1SCO valug6]. These important studies will give P€ €xtremely important33]. Our efforts have shown that a
us some understanding of how the dynamics from ISCO concrucial requirement for producing results relevant to observ-
figurations relate to and differ from the simpler problems®€rs iS to adapt numerical evolutions to astrophysical prob-
treated so far by numerical simulations and close-limit stud/ems- Numerical relativity is ready, now, to begin answering
ies. questions about binary black holes in the near ISCO and
After establishing such a basis for understanding the ned?®1SCO regime.

ISCO regime dynamics we can reach out further, and seek to

firmly establish the relation of these ISCO black hole con- ACKNOWLEDGMENTS

figurations to astrophysics. As we have discussed in detail \ys \wish to thank especially B. Bgmann and R. Taka-
for the numerical simulation/close-limit interface, the dual hashi for many contributions to this work. We also acknowl-
approach to dynamics in overlapping validity regions pro'edge many helpful discussions with P. Laguna, R. Price, and
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provide the same sort of consistency studies for the far-limi 0334. All our numerical computations were performed at
numerical simulation interface and to thereby establish a firmy g aﬁd NCSA Origin 2000s.

astrophysical foundation for expensive, and difficult, numeri-

cal wprk. Again, a_handful of initial data sequences are ap- AppENDIX: A PRACTICAL CONSTRUCTION OF THE
propriate for beginning to evaluate the connection of CAUCHY DATA

numerical/close-limit results to astrophysical problems.

Within the effective-potential method which we have taken Here we describe a procedure for calculatingthat al-
advantage of in order to define ISCO data there is a naturdbws us to cleanly separate the specification of the back-
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ground black hole fro_m _the numerical simulation, as i_s prac- 50¢2:50Rijkl|imjaknl+;90Rojk|(|omjakn|_noankml
tical for studying variations of the background metric and

background coordinates. Since we have not yet determined _m0|iﬁknl+ﬁoni|kml)+50Ro_ (1°mimPn'
. . jol
the background black hole at the time of evolution we must o o o
compute a larger set of quantities which can then be trans- —1°min°m' = m® i m°m' + n°lim®m"), (A9)
formed to the desired result after the background is specified.
The steps are as follows. . ' :9o</fl=boRijkmiljmkl'vL??oRojk.(nOIimkl'—Iomjnkl'
(a) Compute the numerical-81 tetrad components as in A . . _ .
Eq. (5.6). — 1% MM+ mnk ") + 9gRo;01 (N MO — Pl om!
(b) With this tetrad, using the Cauchy data on a numerical Ovei 01l 4 (O O
time slice directly compute all five Weyl scalafs, . . . i, —1nim7E+ Pl Pm), (A10)
and their time variationggiyq, . . . o4 as follows:

5()1#0:bORinlimjlkm'-ﬁ-ZboRojm(lomjlkml—moljlkml)
— DB, ikl (O Kl 0 KAl . , , ,
¢4 lekln m’n"m +2ROJkI(n m'n"m-—m-n'n m) +&OROJ-O,(IOmJIOm'+m°IJm0I'—2I0me0I').
+Rojm(noﬁjnoﬂ+E°njﬁon'—2n°ﬁaon'), (A11)
(A1) The derivatives involved in the above expressions can be
L = — computed in terms of the data on the Cauchy hypersurface
—B.. linimkn!  (19nTmKn! — A0l KR! . X i .
3= Rijul'm*n'+ Roj (I"n'm*n' —n"m’l*n using Einstein’s equations:
—n%m*n'+mni*n") + Ry; i (1°n/m°n! i 1
doRijk = —4N(0)[ KikRipj = KjkRipi = ER(Ki[kgl]j

—1%0n%m' = N mPn' + n°1in°m'), (A2)
¢2:Rijk||imjaknl+Ro;k|(|0mjmknl_noaj|kml —Kj[kgl]i)}+29i[k:90R|]j_29j[k:90Rl]i
01Kl 1 01 Kl (10 0]
m-1'm*n’+ m-n’1*m’) + Rg; o (I"m'm"n ~ Gigkdy; AR+ 2K oK g — 2K oK g
—1%min®m' = mPH mPm' + n°im°m'), (A3) (A12)
_ imk | 01§ kg | [0pmi K1 ! — 10y k(! - - -
lpl_RijklnIIJml +R0jk|(n |Jm| —1 m]n "= n]ml aOROjkl:&OKj[kJ]+[?OFJP[kK|]p+FJP[kaOK|]p1 AL3
+mUnM") + Rojo/ (N MO = n%11%m' —19nim?! (AL3)
+1%i1%m') (A4) JoRojor = [ R} — 2K{ doK j)p = 2N K KPK {1+ K jy doK
l//ozR|Jk|||mjlkml+2Rojk|(|0mjlkm|_moljlkml) +KaOKJ|]' (A14)
+ Rojor(1°m1°m' + m%mP' = 21°mim%"),  (A5)  where
where JoK =NKpqKPI— V2N, (A15)
R = Rijia + 2KipKpy :?oKij :N[Eij +KKij = 2K, KP = N_le], (A16)
Roiki= — 4Kk + TP Ko ], .
oiki =~ ALKk + FipKpl JoR=2KPIgoK g+ 4NK KPK 39— 2K oK, (A7)
ROjOIZRjI_ijKlp+ KKJ| . (A6) A — — A~ — A
3oRij = Vi oL ') = Vi (0T ), (A18)
We compute the time variations only from data on the o -
slice: oLl = — 2V(NKjy) + VK(NK;) ). (A19)
;9ol/f4=;9oRijk|niEjnka'+250Rojk|(n°mnkm—a°njnkm) These time variations may be precisely the background
- 0= 0= . =00l 0= 0| time derivatives we want if have already specified the back-
+ doRojo (N"MIN"“m’+m°n'm°n’—2n"m'm"n’), ground spacetime and can g¥tN, as the background

(A7)  lapse. On the other hand when we want to determine the
background independently of the numerical simulation code

50¢3:50Rijkl|injakn| +(A90R0jkl(lonjaknl —n%mi1kn! we can p_roduce th_e_ requ_ired inform_ation for later processing
from all five quantities with the choicBl=1.
_n0|JHkn'+Eonukn')+30R0j0|(|0njﬁon' (c) Next define the background coordinate system as de-
o o N scribed in Sec. IV. This allows us now to refer to quantities
—1%0n%m! = n%imPn'+ n°inm'), (A8)  defined in the background coordinates. If we have used
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=1 in constructing the time variations we must next translate ~
the time variations calculated above to genuine background
time derivatives with a set of corrections for the effect of the

background lapse and shift. For the lapse,

Jotho— adoto+2 aiihg+2 a i, (A20a)
Jot— adoy + a,;l//l%a,;,( Yot 31, (A20b)
dotha— adoa + a (ya+ ), (A200)
Foths— adol— a b+ gl 3, (A200)
Jotha— adoha—2 a;iha+2 a b3, (A200)

PHYSICAL REVIEW B5 044001

doths— 50%_i ,3%9(//4"‘i ,3,%;‘/’3‘F NI
(A220

whereﬂ‘? and,B“’;9 are related to the lapse for the background
Kerr metric,

ing
Be=\[tpe = BO oo g,

grr
(A23)
. g siné
Bi= N go =N =87

(d) The Weyl scalars corresponding to the transformed
tetrad defined in Eq5.9), ¥, anda,¥,, can then be respec-

wherea ; anda j are related to the lapse for the backgroundtively expressed as a linear combination of the five

Kerr metric,

(A21)
Y \F N
a = eyt .
,0 \/9_0.9 ,0 2 ,0
The shift corrections are
dotho— dotho + | B%@%‘H ﬂ%‘ﬂl +N* g tho, (A223)
- - i i _
dotpr— doif1+ Eﬁﬁ(l/fo‘*' ho) — EB%( 1= 1)
i —
+5 B (2= h2) + ¥y, (A22b)
~ ~ [
dotha— dotz+ 5 BE(W1t i) + N oy, (A220)
~ ~ [ i - _
dotpz— ozt 5/3,‘?(1#44‘ th) + 5/3?%( h3— i3)
i - —
+5 B (2= ) + N oy, (A22d)

numerical-tetrad Weyl scalarsiyy, ..., and the

dota - . . dothy, a@s given in Eqs(A22), with coefficients de-
pending on the background coordinateand 6, and onM
anda:

1
AF2F2

—BA%Y,— AIA(VAP+ 1+ 1) g+ (VAZ+ 1+ 1)24,],
(A24)

[(VAZ+1—1)2p+ 4IA(VAZ+1—-1) ¢,

i

- 1 .
FM/Eﬁg[( VAZ+1-1)29040

+4A(VAZ+1— 1) dghy — 6A2d0 1,
— 4iA(VAZF 1+ 1) dgha+ (VAZ+ 1+ 1)20044].

(e) Use thee'™#xs decomposition which is affected by the
¢ transformation given in Eq$4.4) and(6.4). This transfor-

mation is implemented at the end of the calculationyy
— elmeshifiy;, and likewise ford,g,. Note that the calculation

of the last shift correction term in Eq§A22) can also be
conveniently carried over after stdp) rather than in step

(d).
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