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We present a detailed description of techniques developed to combine 3D numerical simulations and,
subsequently, a single black hole close-limit approximation. This method has made it possible to compute the
first complete waveforms covering the post-orbital dynamics of a binary–black-hole system with the numerical
simulation covering the essential nonlinear interaction before the close limit becomes applicable for the late
time dynamics. In order to couple full numerical and perturbative methods we must address several questions.
To determine when close-limit perturbation theory is applicable we apply a combination of invarianta priori
estimates anda posterioriconsistency checks of the robustness of our results against exchange of linear and
nonlinear treatments near the interface. Our method begins with a specialized application of standard numerical
techniques adapted to the presently realistic goal of brief, but accurate simulations. Once the numerically
modeled binary system reaches a regime that can be treated as perturbations of the Kerr spacetime, we must
approximately relate the numerical coordinates to the perturbative background coordinates. We also perform a
rotation of a numerically defined tetrad to asymptotically reproduce the tetrad required in the perturbative
treatment. We can then produce numerical Cauchy data for the close-limit evolution in the form of the Weyl
scalarc4 and its time derivative] tc4 with both objects being first order coordinate and tetrad invariant. The
Teukolsky equation in Boyer-Lindquist coordinates is adopted to further continue the evolution. To illustrate
the application of these techniques we evolve a single Kerr hole and compute the spurious radiation as a
measure of the error of the whole procedure. We also briefly discuss the extension of the project to make use
of improved full numerical evolutions and outline the approach to a full understanding of astrophysical
black-hole–binary systems which we can now pursue.

DOI: 10.1103/PhysRevD.65.044001 PACS number~s!: 04.25.Nx, 04.30.Db, 04.70.Bw
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I. INTRODUCTION

Binary–black-hole mergers are among the most powe
and efficient sources of gravitational radiation in our u
verse and are thus the primary targets for direct experime
detection by the future interferometric observatories. Rec
astronomical observations of x-ray emission sources r
force the evidence of black holes in many galaxies, and
trophysical simulations of globular clusters@1,2# show
binary–black-hole mergers in such an abundance as to b
the gravitational wave detection rate estimation to
31027 yr21 Mpc23, which results in about one detectio
event every 2 years for the Laser Interferometric Grav
tional Wave Observatory~LIGO! and in one event per da
for LIGO II.

It is thus not surprising that on the theoretical side
study of binary–black-hole mergers has become one of
most exciting and challenging topics in astrophysical rela
ity. Several theoretical approaches have been develope
treating these systems. So far the post-Newtonian~PN! ap-
proximation has provided a good understanding of the e
0556-2821/2002/65~4!/044001~16!/$20.00 65 0440
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slow adiabatic inspiral, or ‘‘far-limit,’’ phase of these sys
tems. Similarly, for the final moments, when black holes a
close enough to each other to sit inside a common grav
tional well, one can successfully apply the ‘‘close limi
~CL! approximation @3#, which effectively describes the
whole system as a perturbation of a single black hole wh
rapidly ‘‘rings down’’ to stationarity. Before this last stage
though, when the black holes are still close to theinnermost
stable circular orbit ~ISCO!, the orbital dynamics are ex
pected to yield to plunge and coalescence. No approxima
method can be applied in this highly nonlinear phase and
generally expected that one can treat the system only b
full numerical ~FN! integration of Einstein’s equations.

Intensive efforts have been under way in the past dec
to develop numerical codes able to solve Einstein’s gen
relativity equations, by the use of powerful supercompute
So far the numerical treatment of black hole systems in
three dimensions~3D! has proved very difficult and chal
lenging because of the huge computer memory requireme
on one hand, and very severe numerical instabilities, on
other, which make the codes fail before any useful grav
©2002 The American Physical Society01-1
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tional wave information can be extracted. In spite of su
difficulties, interesting progress has been made, includ
for example, the work in@4#, where a true 3D simulation
based on the traditional 311 decomposition of space an
time has been successfully carried out for the so-called n
axisymmetric ‘‘grazing’’ collisions of two black holes. How
ever, because of the limited evolution time achievable bef
these codes become unstable or otherwise inaccurate
simulations must still begin too late in the plunge to be pr
tical for direct astrophysical application. In most cases tre
able so far, the close limit approximation theory represen
good alternative model for the late time dynamics of the
systems.

Considering the above situation, in Refs.@5,6# we intro-
duced a new hybrid approach to the binary–black-h
merger problem, called theLazarus project, with the motiva-
tion of providing expectant gravitational wave observe
with some early estimate of the full merger waveform
within a ‘‘factor two,’’ and to guide future, more advance
numerical simulations. The key idea of the Lazarus projec
very simple: combine the best of the already existing
proaches by applying each of these methods in sequence
in their best suited regime, while focusing the numeri
simulations squarely on the intermediate phase of the in
action where no available perturbative approach is ap
cable.

Clearly, the primary task of the combined model is dev
oping appropriate interfaces between these three exis
treatments in such a way that we can also benefit from fu
improvements in any of the above three approaches. In
earlier Letter@5# we presented the first results of our eclec
approach for a model problem, the head-on collision of bla
holes, where we successfully addressed the problem of c
bining the close-limit approximation describing ringin
black holes and full three-dimensional numerical relativ
In this well-known case, our method proved capable of
termining radiation waveforms with accuracy comparable
the best published 2D numerical results, allowing at the sa
time a more direct physical understanding of the collisio
and indicating clearly when nonlinear dynamics are imp
tant as the final black hole is formed. Previous attempts
make a combined use of numerical and close-limit evolut
@7# have been implemented in the case of two axisymme
black holes formed by collapsing matter@8#, using a 2D nu-
merical code andl 52 metric perturbations~in the manner of
Zerilli ! of the Schwarzschild background and are not gen
alizable to full 3D simulations. In Ref.@6# we studied the
nonaxisymmetric coalescence of equal mass nonspinning
nary black holes from an estimate of the innermost sta
circular orbit down to the final single rotating black hole, a
provided the first, astrophysically plausible, theoretical p
dictions for the gravitational radiated energy, angular m
mentum, and waveforms to be expected from these syst

A sketch of the eclectic approach to the binary black h
calculation is outlined in the following steps:~1! First pro-
vide a description of the early dynamics of the system w
an approach, such as the post-Newtonian method, whic
appropriate for slowly moving, well-separated black holes
recent interest within the post-Newtonian and gravitatio
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wave research community in providing Cauchy data
simulations may soon lead to a practical PN-FN interfa
~2! Extract critical information about the late-time config
ration of this system, and translate this information to a c
responding solution of the gravitational initial-value pro
lem. ~3! Apply a full 3D numerical simulation of Einstein’s
equations to generate a numerical spacetime covering
nonlinear interaction region of the spacetime. The evolut
should proceed for long enough so that the subsequent
lution of the region exterior to the final single remnant bla
hole can be well approximated by perturbative dynamics.~4!
At this point choose a ‘‘late-time’’ slice from the numericall
generated spacetime and extractc45Cabgdnam̄bngm̄d and
] tc4, to quantify the deviation of the numerical spacetim
from a Kerr geometry. Then~5! evolve via the Teukolsky
equation, which governs the dynamics of Kerr perturbatio
in the time domain@9#, long enough to drive all significan
radiation into the radiation zone where it can be interpret
Making the greatest possible use of perturbation theory
this way not only saves precious three dimensional com
tational resources, concentrating these, for the first tim
squarely in the intermediate coalescence phase, but also
vides a new framework to explore and interpret the intere
ing new physics that is expected to take place in the tra
tion from nonlinear to linear dynamics.

The emphasis of this paper is to realize steps 2–5 ab
and to describe in detail a general approach to providing
FN-CL interface. In Sec. II we discuss our approach to
full numerical simulations which we have used to achiev
successful evolution of truly detached black holes for
first time. This discussion naturally divides into two parts:~a!
our preparation of the initial data, by which we greatly im
prove the simulation efficiency and~b! our numerical evolu-
tion method.

Two important questions arise in implementing the tra
sition, step 3, from a numerical approach to a perturba
approach. First, how long must we evolve the system
merically before we can obtain a reliable description in ter
of a single perturbed black hole? We use a combination
several independent and complementary indicators to es
lish when perturbation theory should begin to work. In S
III, we discuss our study of two of such indicators:~a! The
speciality invariant,S, introduced in Ref.@10#, which is ex-
actly equal to 1 for the Kerr geometry with leading devi
tions quadratic in the gravitational distortions;~b! Cauchy
data extracted at successively later numerical time slic
When the system has entered the linear regime, the w
forms evolved via the Teukolsky equation should essenti
superpose on each other. Consequently also a certain lev
off of the radiated energy should be observed. While~a!
gives a local measure of the physical distortions from
Kerr geometry,~b! rather depends on the past light cone da

The second question is how to identify the single ‘‘bac
ground’’ black hole that is emerging in the numerical spa
time. In order to define deviations from this backgrou
black hole we must be able to relate it, by an explicit diffe
morphism, to the numerical spacetime. We need to spe
both the spatial coordinates and the time slice, which in g
eral may be different from the one used to numerically in
1-2
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THE LAZARUS PROJECT: A PRAGMATIC APPROACH . . . PHYSICAL REVIEW D65 044001
grate the Einstein equations. This geometrical puzzle is
cussed in detail in Sec. IV. There is in general
geometrically preferred way to associate the numerical
background spacetimes, but the first order gauge and te
invariance of the perturbative formalism implies that the
sults should not depend strongly on small variations in th
choices.

In Sec. V, we describe how to compute the Cauchy d
for the Teukolsky equation, i.e. the Weyl scalarc4 and its
background time derivative] tc4, from the numerical three
metric gi j and extrinsic curvatureKi j , on the transition
Cauchy hypersurface. The numerical calculation of
Cauchy data requires, first, a nontrivial identification of
appropriate numerical ‘‘tetrad,’’ which reduces to the~null
and complex! tetrad used in the perturbative calculation
the small perturbation limit. Second, the numerical calcu
tion of ] tc4 is done ‘‘on slice’’ using Einstein’s equations t
be consistent with the Boyer-Lindquist time of the final Ke
black hole.

In Sec. VI we briefly describe the perturbative Teukols
equation and the 211 numerical code used to solve it nu
merically. We then apply all of our techniques, in Sec. VII,
evolution of a single Kerr black hole with vanishing shift an
maximal slicing to test the consistency of our method~see
Fig. 1!. Our essentially trivial result is obtained in a ve
nontrivial way since our numerical tetrad is not necessa
aligned with the principal null directions, nor are our nume
cal coordinates the Boyer-Lindquist coordinates used in
perturbative code. Only after we make the appropriate ro
tion of the tetrad and transform the coordinates to reprod
the Boyer-Lindquist ones do we see quadratic converge
to near vanishing outgoing gravitational radiation.

FIG. 1. The eclectic approach: We represent the three phas
the binary–black-hole evolution and the corresponding techniq
adapted to each phase. The full numerical evolution is locate
cover the truly nonlinear dynamical interaction. The domain of p
turbative evolution~CL! follows the FN domain allowing indefinite
evolution. Waveforms are extracted at the dotted world line
picted on the right. Though such observers are located in the
part of the spacetime they will experience all radiation arrivi
from the strong field dynamical FN region. In the far limit regim
we envision using the post-Newtonian approximation
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II. SUMMARY OF THE FULL NUMERICAL TECHNIQUES

In our full numerical simulations we use many of th
standard techniques applied in, for example, the Bina
Black-Hole Grand Challenge effort, with adaptations app
priate to the needs of our more specifically defined numer
simulation problem. Many previous applications of nume
cal relativity to the binary–black-hole problem have be
developmental test problems aiming toward an ultimate g
of indefinitely long-running 3D numerical simulations t
cover the evolution beginning with well separated bla
holes and evolving through the entire interaction until furth
radiation is no longer significant. With regard to gravitation
radiation, these efforts have been focused on indefinite
merical stability and successful radiation waveform extr
tion by an observer in the ‘‘faraway’’ region of the numeric
domain. These efforts have often been successful with r
tively brief black hole evolutions, but have demonstrated
serious difficulties in succeeding with the desired lon
running numerical simulations, and this approach has not
generated radiation studies that approach relevance to a
physical problems.

We will ask less of our numerical simulations. Our d
mand is for a highly accurate determination of the most s
nificantly nonlinear part of the binary interaction. We will tr
to make use of codes that may only run stably for a relativ
brief period, but which can provide an accurate represe
tion of the part of the spacetime we are most interested
This point of view allows us, for example, to avoid the d
ficult problem of imposing physically accurate outer boun
ary conditions, by considering only the part of the spaceti
causally separated from the boundary. We find that this
be done much more efficiently in specialized coordinat
described in the first section below. Similarly, we have n
yet needed more stable formulations of Einstein’s equatio
or difficult sophisticated techniques such as black hole e
sion. Our straightforward numerical approach to evolution
described in the second section.

A. Preparing the initial data

Ultimately we wish to derive initial data based on info
mation from an approximation procedure, such as the p
Newtonian method which is applicable in the limit of slow
moving and far-apart black holes. As no such interface
presently available we use, in our present work, initial d
from an alternative source, commonly applied in numeri
relativity, the ‘‘puncture’’ formalism with conformally flat
three-metric and purely longitudinal extrinsic curvature on
maximal slice. This assumes a three-sheeted topology ins
of an inversion symmetry across the throats@11#, allowing
for a solution of the elliptic Hamiltonian constraint equatio
without having to impose interior boundary conditions@12#.

Within this family it is possible to identify data roughl
corresponding to quasicircular orbits using the effective
tential method as in Ref.@11#. The binding energy of the
system is computed as a function of the proper separatio
the holes keeping everything else constant. A minimum
the binding energy is then interpreted as giving a stable q
sicircular orbit. Within this approach an ISCO is determin
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JOHN BAKER, MANUELA CAMPANELLI, AND CARLOS O. LOUSTO PHYSICAL REVIEW D65 044001
by varying the orbital angular momentum of the system u
this minimum becomes an inflection point. For less separa
configurations, a stable quasicircular orbit is no longer p
sible. We use these ISCO data, determined in@13#, for non-
spinning equal-mass black holes as a particularly reason
starting point for approaching astrophysical systems@6#.

Having selected the physical initial data we then prep
them for numerical evolution. When Smarr and York@14#
spelled out the problem of 311 numerical relativity in the
1970s, they specifically sought out methods that would
invariant to gauge transformations in the initial data. In t
pursuit of long-running all-purpose numerical relativi
tools, this viewpoint has been traditionally preserved, a
little attention has been given to the question of choos
appropriate coordinates for the initial data. It is clear thou
that, whenever differential equations are to be solved
merically, some choices of variables~coordinates! will be
more practical than others. In a wave-propagation probl
for instance, the simulation will be much more efficient if
wave is evenly resolved as it moves across the nume
domain, or similarly if the coordinate characteristic spee
are constant in space and time.

For numerical relativity simulations in practice we a
often very far from this ideal. In typical coordinates, such
isotropic coordinates for our~initially ! conformally flat
spaces, the waves are strongly redshifted as they move a
from the strong-field region. Since we require both a phy
cally large computational domain and also high resolution
the strong field region, use of the standard coordinates le
to a great waste of numerical effort on overresolving an o
going radiation wave that was originally generated w
much poorer resolution. In this way, relatively little is gain
by expanding the computational domain with additional n
merical grid points. We find that we can make great impro
ments in numerical efficiency with a relatively simplead hoc
coordinate transformation on the initial data which we c
‘‘fish-eye’’ coordinates. A typical such transformation is
radial rescaling,r iso5Rnumcosh@(Rnum/R0)

n# with typical
valuesR057.7 andn52. This allows us to maintain a cen
tral resolution of up toM /24 with outer boundaries nea
r new537M using only 25635122 grid points, moving the
outer boundary much farther away without loss of physi
resolution in the strong field region. This problem is illu
trated in Fig. 2, which shows data from numerical simu
tions in two alternative coordinate systems after 10M of evo-
lution from an initial ISCO configuration. The outgoin
radiation wave is noticeable in the real part of the gau
independentS invariant discussed in Sec. III A. These curv
represent the same physical spacetime as seen from alt
tive numerical coordinate systems. In this figure the stro
field dynamics are most important in the left side on t
figure up to about the value of the numerical coordin
~along thez axis! of Znum56. Up to that point the two co-
ordinate systems are nearly identical. As we add grid po
on the right side of the figure beyond this strong field regi
we are frustrated in the isotropic coordinate case by the
shift effect, and only a modest additional part of the outgo
wave, about half a wave cycle, is added to the grid when
roughly triple the grid dimension. In the case of our fish-e
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coordinate the wave is evidently more evenly resolved acr
the grid, and we cover the domain of the isotropic coordin
system with only about a 60% increase in the grid dime
sion. As shown, the fish-eye coordinate system has a m
more distantphysicalouter boundary than that of the isotro
pic case while still having only about half of the grid poin
in 3D. Note that we would gain no further advantage
attempting to compactify spatial infinity as in for examp
@15# since the resolution must nevertheless still fail to reso
waves at a finite radius in such a scheme.

Foreseeing longer term full numerical evolutions, we ha
also implemented other recoordinizations of the initial d
that have a fairly constant high resolution in the center of
grid ~where the grid stretching is more severe! and a lower
resolution near the boundaries, but still fairly constant
allow the application of the usual radiative boundary con
tions ~adapted to the different characteristic speed!. One of
these functions is

r iso5RnumH 11bF tanhS 2~Rnum2R0!

d
10.35D

1tanhS 2R0

d
20.35D G J 2

~2.1!

with b,d,R0 adjustable parameters that determine the ratio
central to boundary resolutions and the width and location
the effective resolution transition region, respectively.

B. Numerical evolution

Our numerical evolution must be consistent with our ne
for highly accurate relatively brief simulations. Cons

FIG. 2. The benefit of our fish-eye coordinates compared aga
the typical isotropic coordinates. TheS invariant, plotted here, gives
an indication of the radiation moving out from an initial ISC
system after 10M of numerical evolution. In the strong field regio
up toz56 the two coordinate systems are very similar. On mov
outside that region though, the fish-eye coordinates cover a sig
cantly larger region of the physical spacetime with fewer g
points. The extra grid points in isotropic coordinates are wasted
overresolving the outer part of the radiation. In fish-eye coordina
the wave is resolved more evenly.
1-4



M
-

1

’s
n

of
io
c
g

a
rg
en
er
th

t

on

ca
on
. I

d
ar
nd

we
fa
th

e

a
ite
ing
lly
tu
th

h

ted
ry–

lem,
ck
er
’s
ck

ear
le.

. In

tive
we

on-
on
d on

elf-

eyl

s
s,

ck
on
y

son-
ion
er

THE LAZARUS PROJECT: A PRAGMATIC APPROACH . . . PHYSICAL REVIEW D65 044001
quently, in our work so far, we have used the standard AD
~Arnowitt-Deser-Misner! formulation of the Einstein equa
tions @16# as adapted by Smarr and York@14#. Our evolution
equations are thus simply

]̂0gab522aKab , ~2.2!

]̂0Kab52¹a¹ba1a~Rab22KacKb
c1KabK ! ~2.3!

where]̂05] t2£b . Here and below latin indices run from
to 3.

Although a newer conformal formulation of Einstein
equations has been found to be more stable in various
merical simulations@17#, here we focus on the accuracy
the solutions rather than long term stability. Our observat
is that the standard ADM equations seem to give more ac
rate results for binary black hole simulations in our gau
while the simulation is stable.

If it is possible to have a slicing that is consistent with th
of our perturbation theory, then we can avoid the rather la
technical problem of producing data on a slice inconsist
with the background. Consistent with our choice of Boy
Lindquist coordinates in our perturbation treatment of
background black hole, we have chosen maximal slicing
define the lapsea,

K50, Da5aKabK
ab. ~2.4!

This implies an elliptic equation fora which we have typi-
cally solved every 5 time steps using Dirichlet boundary c
ditions. For simplicity we set the shiftb i50, which is an
adequate condition for relatively brief runs. The numeri
evolution is performed using an iterative Crank-Nichols
method of third order which is second order convergent
our simulations we have used resolutions up todx5M /24
with dt50.25dx. Because we have moved the outer boun
ary to a point causally separated from the region we
interested in, it is acceptable simply to impose static bou
ary conditions.

In evaluating the results of our numerical simulations
make frequent use of two indicators: The degree of satis
tion of the ADM constraint equations gives a measure of
numerical error produced by the evolution

¹a~Kab2gabK !50, ~2.5!

R22KabK
ab1K250. ~2.6!

These quantities provide an important indication of wh
numerical inaccuracies~and eventually instabilities! have be-
come significant in our simulations. Even if Einstein’s equ
tions could be solved perfectly, any simulation with a fin
boundary is subject to an additional type of error aris
from inappropriate boundary conditions. A geometrica
correct solution may have physically unreasonable dis
bances propagating in from the boundary. We have found
speciality invariantS @10# to be a sensitive indicator of suc
boundary waves, which do not violate the constraints.
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III. DETERMINING THE LINEAR REGIME

Black hole perturbation theory has recently genera
much interest as a model for the late stages of a bina
black-hole collision spacetime@3#. When two black holes are
close enough to each other one can simply treat the prob
in the close limit approximation, as a single distorted bla
hole that rings down into its final equilibrium state. So aft
some nonlinear numerical evolution of the full Einstein
equations for a system of two initially well-detached bla
holes, there should always be a transition time,T, after which
the system simply behaves linearly i.e. satisfies the lin
perturbation equations around the final Kerr black ho
Finding the linearization time Tis thus the first nontrivial
question that arises in the context of our eclectic approach
other words, we need one or more working criteria forwhen
we can expect perturbation theory to be accurately effec
based only on numerical data. As we shall see below,
apply at least two independent criteria for estimating the
set of linear dynamics, the speciality invariant predicti
based only on the Cauchy data and another estimate base
the stability of the radiation waveform phase.

A. The speciality invariant test

Motivated by this purpose in Ref.@10# we introduced an
invariant quantity,

S527J 2/I 3, ~3.1!

whereI and J are the two complex curvature invariantsI
andJ, which are essentially the square and cube of the s
dual part,C̃abgd5Cabgd1( i /2)eabmnCcd

mn , of the Weyl ten-
sor:

I5C̃abgdC̃abgd and J5C̃abgdC̃mn
gd C̃mnab. ~3.2!

Both these scalars can be expressed in terms of the W
components, for an arbitrary tetrad choice:

I53c2
224c1c31c4c0 ,

J52c2
31c0c4c212c1c3c22c4c1

22c0c3
2 . ~3.3!

The geometrical significance ofS is that it measures the
deviations from algebraic speciality~in the Petrov classifica-
tion of the Weyl tensor!.

For the unperturbed algebraically special~Petrov type D!
Kerr backgroundS51. However, for interesting spacetime
involving nontrivial dynamics, like distorted black hole
which are in general not algebraically special~Petrov type I!,
we expectS511DS, and the size of the deviationDSÞ0
can be used as a guide to predict the applicability of bla
hole perturbation theory. In particular we adopt the criteri
that, whenS differs from its background value of unity b
less than a factor of 2 outside the~background! horizon, a
perturbative treatment may be expected to provide a rea
able description of the radiative dynamics. A larger deviat
from algebraic speciality implies significant second ord
1-5
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perturbations. In fact, for perturbations on a background K
spacetime, with an arbitrary tetrad perturbation, one can
ily deduce that

S5123e2
c0

(1)c4
(1)

~c2
(0)!2

1O~e3!, ~3.4!

wherec0 , c4 andc2 are the usual Newman-Penrose co
plex Weyl scalars. The lowest order term in the deviation
second order in the perturbation parametere, and should
tend to vanish if first order perturbation theory is appropria
Note that the superscripts (0) and (1) stand respectively
background and first order pieces of a perturbed quan
wheree is a perturbation parameter.

In Fig. 3 we display the speciality invariant along thez
axis, perpendicular to the orbital plane of two black ho
starting the evolution from the ISCO determination used
@6#. Its value oscillates around 1~the Kerr background
value!. After some evolutionT'11M , the amplitude of the
oscillation decreases to a deviation below 50% outside
horizon~located at aroundZnum'2.5 in the numerical coor-
dinates!, and perturbation theory can reliably take over t
remaining of the evolution. Because the gravitational fi
has two degrees of freedom is it clear that theS invariant
alone is insufficient to provide a complete description
black hole perturbations, and can be complemented with
time variationṠ. Consequently, we have been looking at t
turning points whereṠ50 and the amplitude of the distor
tion reaches a maximum.

As noted in Sec. III,S is also very useful outside th
perturbative context. Its usefulness is derived from the f
that it is a gauge invariant quantity which, unlikeI andJ, is

FIG. 3. The speciality invariant for binary black holes evolvin
from the ISCO showing damped oscillations around unity, its K
value. The location of the horizon in these coordinates is roug
2.5. Its behavior at larger radius suggests that radiation is begin
to leave the system.
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not dominated by strong ‘‘peeling’’ property fall-off behav
ior, which tends to indicate spacetime dynamics. Because
Weyl tensor,Cabgd , carries information about the gravita
tional fields in the spacetime,S turns out to be an interestin
indicator of radiation of the spacetime and tests, for instan
how much radiation is produced by the imposition of a
proximate boundary conditions. We have found that theS
invariant is simple to calculate and can be applied directly
full 3D numerical evolutions to provide a gauge invaria
indication of the dynamics.

B. Waveform locking and energy plateau

The phase and the amplitude of the radiation, or equi
lently the locking of the waveforms and the correspond
energy plateau, also provide an indicator of linear dynam
Starting with detached black holes, we expect an initial
riod of weak bremsstrahlung radiation followed by the a
pearance of quasinormal ringing. On the other hand, swi
ing to perturbative evolution immediate leads to premat
ringing. Hence if we cut short the numerical simulation a
apply linear theory too early, we observe quasinormal rin
ing too early and calculate a waveform that is out of pha
with the desired result. Comparing waveforms derived fro
differing durations of numerical simulation then we tend
see a phase shift in the onset of the ringing when we have
yet allowed enough numerical simulation. In practice,
thus follow the behavior of the waveforms through the ev
lution by extracting the Cauchy data at successively la
numerical time slices. When the system enters the linear
gime, the waveforms evolved via the perturbative Teukols
equation should essentially superpose on each other
changing this transition time amounts to an equivalent
change of linear and nonlinear evolution for the interven
region of spacetime. Consequently also a certain leveling
of the radiated energy should be observed~see Fig. 4!.

As we show in Fig. 5, extracting waveforms every 1M of
nonlinear numerical evolution allows us to study the tran
tion to linear dynamics, and to perform important cons
tency tests on our results. If we have made a good defini

r
ly
ng

FIG. 4. Energy radiated from two black holes from an ISC
configuration for different transition times showing a plateau wh
reaching the linear regime.
1-6
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of the perturbative background, as described in Sec. IV, t
we can expect our radiation waveform results to be indep
dent of the transition time,T, once the linear regime is
reached and for as long as the numerical simulation con
ues to be accurate.

A closer look at Fig. 5 gives us an idea of how the line
ization happens. Curves ofT510M and 11M of evolution
are close to the correct waveform for this orbital case star
at a proper separationL/M54.9. If we apply right away the
close limit approximation we get the curve labeled byT
50M which starts ringing prematurely. After 2M of full
numerical evolution we obtain good agreement with the c
rect waveform up tot/M'33. When perturbation theor
takes over after 4M of full numerical evolution the agree
ment is very good up tot/M'38. Neart/M545M we see
that we need 8M of nonlinear evolution while neart/M
550M 10M of full numerical evolution are needed and
longer times the agreement begins to be fine for the wh
relevant waveform. This process shows how the full non
ear dynamics shifts to a central region covered by the c
mon potential barrier allowing us to describe linearly t
evolution of the outer part.

C. Common horizon

An intuitive picture to visualize the applicability of th
close limit approximation would be the appearance of a co
mon event horizon that encompasses the binary system.
der these conditions the spacetime exterior to the hori
~the relevant one for computing gravitational radiation rea
ing infinity! can be treated as perturbations of a Kerr hole
practiceeventhorizons are difficult to compute in numeric
relativity because they are a global feature of the space
and we would need to first evolve the binary system fo
long time and then extract aposteriori the information to
locate the event horizon. An easier quantity to compute is
apparenthorizon, which can be defined locally as the out
most marginally trapped surface of the spacetime wher

FIG. 5. Detail of the progressive waveform locking process
black holes at the location of the ISCO.
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congruence of null rays directed outward have vanishing
pansion@18#. A common apparent horizon lies inside and
a binary system appears later than a common event hori
and typically much later than the time when the system
be effectively described by linear perturbations. The line
ization time refers to when the close limit approximation c
be applied and this intuitively occurs when a common pot
tial barrier covers the binary system. In black hole pertur
tion theory, a potential is present somewhat outside the
rizon of the black hole which tends to prevent radiation fro
escaping this region. This is the main reason why the cl
limit is such a good approximation even beyond the origi
expectations@19#.

IV. CONSTRUCTING THE KERR BACKGROUND

Einstein’s theory of gravity in principle demands th
equivalence of all coordinate representations of gravitatio
dynamics. However, in practice one always needs to cho
a convenient gauge to accurately carry over the full num
cal evolution to the point where the two black hole syste
effectively behaves like a single perturbed black hole. H
ing determined that a late time numerical spacetime ge
etry is close to the Kerr spacetime does not give us
information about the coordinate system in which this
written. In order to be able to continue the numerical evo
tion with the Teukolsky equation~6.2!, we thus need to re-
construct a Kerr background in a recognizable form, for
stance in Boyer-Lindquist coordinates. Because there is
general no unique procedure to reconstruct such a Kerr b
ground, we shall require that this should becloseenough to
the given numerical spacetime. In other words, we will
quire that the two spacetimes agreeto the first orderin e.
Since the physics of our problem will then be described
quantities, likec4, which are first order gauge~and tetrad!
invariant, the physical results we compute will be indepe
dent ~to first order! of the identification of the backgroun
coordinates we describe below. To have complete theore
control of the perturbation theory, it is desirable to have
complete family of initial data sets which reduces to t
background geometry in the limite→0. While this require-
ment is not strictly required in a practical perturbative app
cation @7#, we would like to stay as close as possible to th
arrangement for its benefit in evaluating our results. In o
case the perturbation parametere can be regarded as a de
creasing function of the transition timeT. In practice, we will
not be able to achieve an exact Kerr black hole in theT
→` limit, but we will aim for the practical goal that the
remaining perturbations are small compared to the radia
we are interested in, a condition that we test in Sec. VII.

We initially suppose that the background Kerr black ho
is given by the parametersM anda of the initial data. With a
first estimate of the total radiated energy and angular m
mentum these parameters can be iterated to approach
final values for the stationary Kerr black hole.

The Kerr metric in Boyer-Lindquist coordinates (t,r ,u,f)
reads

r

1-7
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ds252S 12
2Mr

S Ddt21S S

D Ddr21Sdu21sin2u
V

S
df2

2
4aMr

S
sin2udtdf, ~4.1!

where D5r 222Mr 1a2, S5r 21a2cos2u and V5(r 2

1a2)S12Mra2sin2u, M is the mass of the black hole, anda
its angular momentum per unit mass.

A. The slice

We recall that a Boyer-Lindquist slice of the Kerr metr
hasK50. The full numerical coordinate condition of max
mal slicing, Eq.~2.4!, is solved for the lapsea with an ex-
terior boundary condition set to reproduce the value of
Boyer-Lindquist lapse there, but to vanish at the location
the individual black hole ‘‘punctures.’’ The resulting laps
from the evolution of two holes from the ISCO is shown
Fig. 6. The lapse resembles the Boyer-Lindquist lapse
tially and further evolution brings them closer. Thus t
maximal lapse with our boundary condition approaches
background lapse quite closely. Where there are differen
near the horizon, our lapse tends to produce a coordi
system in which the coordinate observers drift slowly in
the black hole. Considering our coordinate trajectories fr
the frame of the background black hole, one can concl
that, since the trajectories and lapse are similar away f
the horizon, and the lapse is a bit different near the horiz
our slicing will be close to the background slicing, b
slightly distorted toward the future near the horizon. In S
VI we try to quantify the significance of this distortion wit
a numerical study of the Kerr spacetime in these coordina

Other lapse possibilities can be considered which a
produce a slicing similar to that of the Boyer-Lindquist bac

FIG. 6. The maximal lapse used for black holes evolving fro
the ISCO compared to the analytic Kerr lapse in Boyer-Lindqu
coordinates for different evolution times.
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ground, algebraic slicings, for instance@20# (11 log), and a
reparametrization of the maximal slicing by anf (a) such
that the numerical lapse resembles the Boyer-Lindquist
even more closely. We performed such tests and checked
whenever the deviations from the Boyer-Lindquist lapse
close enough the results for the radiated waveforms and
ergies do not change notably, in agreement with the fi
order gauge invariance ofc4 and] tc4.

B. The spatial coordinates

The general idea here is to numerically compute phys
quantities or geometrical invariants and relate them to th
analytic expressions in the perturbatively preferred coo
nate system. Curvature invariant methods have the dist
advantage that they can be applied to evolutions using
merically generated coordinates which are not underst
analytically. On the other hand, the values of curvature
variants in the perturbed spacetime may be sensitive to
turbative distortions, making them less useful for identifyi
a background spacetime. In light of these effects, we pur
a combined approach, utilizing both gauge and geometr
information where each seems most appropriate. In the o
regions of our spatial slices we expect the gauge to be c
to the quasi-isotropic gauge for Kerr data. Moving in fro
this to the interior region we expect, most importantly, tw
gauge effects. First, our slicing has the tendency~without a
shift! to cause the coordinates to fall inward with evolutio
We counteract this with a rescaling of the radiusr Kerr
5r Kerr(r ), making use of theI invariant which depends
most significantly on the radial coordinate in the backgrou
slice,I53M2/(r 2 ia cosu)6. We use this relation and infor
mation about the numerical value ofI to define the rescaled
radius. To do this we need to produce one value ofI for each
constantr sphere in the numerical slice. The maximum val
of *0

2pIdw tends to lie on the equatorial symmetry plane
our binary black hole problem, where theS invariant also
indicates relatively weaker distortions. This makes

^I&5
1

2pE0

2p

I~r ,u5p/2,w!dw, ~4.2!

r Kerr5A6 3M /^I& ~4.3!

a practical definition that counteracts the coordinate infal
Unlike onr, there are no obvious dynamical effects on t

u coordinate and it has been sufficient to adopt the numer
value cosu5z/A(x21y21z2). We have successfully applie
this remapping of coordinates already in the head-on co
sion case@5#.

The second important coordinate effect, which becom
relevant when the total angular momentum is significant
the result of frame dragging caused essentially by the dif
ence between our vanishing shift and the nonvanish
Boyer-Lindquist shift. This effect drags the coordinates
the w direction and has the effect of producing an o
diagonal distortion in the numerical metric. We can undo
frame dragging by attempting to restore the diagonal form
the Boyer-Lindquist three-metric.

t

1-8
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We seek to set frame dragging gauge freedom by sup
menting the Cartesian definition ofw with a correction that
makes the metric component most strongly affected by fra
dragging,grf , vanish:

f5arctan@y/x#1E ~ ĝrw /ĝww!dr. ~4.4!

where the caret stands for the full numerically evolved m
ric. To see this, considerĝab with no shift and transform to
gab with f shift by f→ŵ2wShift(t,r ,u). Thus

grf505ĝrw2] rwShift ĝww ~4.5!

so that

] rwShift5
ĝrw

ĝww

. ~4.6!

If gab is the Kerr metric

gtw5ĝtw2] twShift ĝww ~4.7!

so that

] twShift52
ĝtw

ĝww

52NKerr
w ~4.8!

is the Kerr shift, and

] t
2wShift50, ~4.9!

wShift52tNKerr
w . ~4.10!

Equation~4.10! allows us to test how close our derive
~from the block diagonal metric condition! shift correction is
to the Boyer-Lindquist shift. The results of this comparis
are displayed in Fig. 7. For two black holes evolving fro
the ISCO, the shift correction correctly reproduces the fra
dragging effect outside the potential barrier of the syst
and evolution bring the shift closer to that of a single rotat
Kerr hole.

We note that some means of fixing this frame-dragg
degree of gauge freedom, as we have done here, is ess
also if one wishes to speak meaningfully of the number
orbits the system has undergone in the strong field reg
during numerical simulations.

As already pointed out there is no unique way of choos
the coordinate transformations in order to bring them clo
to that of the Kerr background. Our philosophy in this se
tion has been to consider the simplest of these transfor
tions that approaches the Boyer-Lindquist coordinates w
enough accuracy for the binary–black-hole numerical sim
lations we are interested in. Obviously, other possibilit
that would improve the accuracy of the procedure can
incorporated as needed. We also note that the optimal ch
of coordinate transformation needed here may depend on
shift condition used in evolution and the coordinates used
the initial data. The use of a shift condition, such as minim
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distortion~with the appropriate boundary conditions!, which
is naturally adapted to the stationarity Killing vector of th
background Kerr spacetime@14#, may, for example, elimi-
nate frame dragging and thus reduce the need for a tran
mation such as~4.4!.

V. CONSTRUCTING THE CAUCHY DATA

Given the numerical metricgi j and the extrinsic curvature
Ki j derived as in Sec. II on a Cauchy hypersurface, and
coordinates of the background metric determined in Sec.
we proceed to compute the Weyl scalarc4 and its back-
ground time derivative] tc4, the Cauchy data we will need t
continue the evolution via the Teukolsky equation. As w
discussed in Refs.@21–24#, one can make a following 3
11 decomposition, using the basisu05dt, u i5dxi1Nidt,
to get

c452@Ri jkl 12Ki [kKl ] j #n
im̄jnkm̄l18@K j [k,l ]

1G j [k
p Kl ] p#n[0m̄j ]nkm̄l24@Rjl 2K jpKl

p

1KK jl #n
[0m̄j ]n[0m̄l ] , ~5.1!

and its time derivative

] tc45Ni] i~c4!2@ ]̂0Ri jkl #n
im̄jnkm̄l18@ ]̂0K j [k,l ]

1 ]̂0G j [k
p Kl ] p1G j [k

p ]̂0Kl ] p#n[0m̄j ]nkm̄l24@ ]̂0Rjl

22K ( l
p ]̂0K j )p22NKjpKq

pKl
q1K jl ]̂0K

1K ]̂0K jl #n
[0m̄j ]n[0m̄l ]22$c4~ l iD̂2mi d̄ !Ni

1c3~ni d̄2m̄iD̂ !Ni%, ~5.2!

FIG. 7. The effective shift correction for black holes evolvin
from the ISCO compared to the analytic Kerr shift in Boye
Lindquist coordinates for successive evolution times.
1-9
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where the last term extends the expression in Ref.@23#, hav-
ing been added to take into account the variation of the te
terms]̂0@nm̄nm̄#. HereD̂5nm]m , d̄5m̄m]m , and

c352@Ri jkl 12Ki [kKl ] j # l
injm̄knl14@K j [k,l ]1G j [k

p Kl ] p#

3~ l [0nj ]m̄knl2n[0m̄j ] l knl !22@Rjl 2K jpKl
p1KK jl #

3~ l [0nj ]m̄0nl2 l [0nj ]n0m̄l !, ~5.3!

where the background ~null and complex! tetrad
( l m,nm,mm,m̄m) is specified in the subsection below.

The derivatives involved in the above expressions can
computed in terms of the initial data on the Cauchy hyp
surface as in Eq.~A19! in the Appendix.

With the tetrad specified, the foregoing formulas are
ordinate independent. Therefore the only adjustment nee
to specify initial data for the evolution equations is to ins
the appropriate background quantities in the above eq
tions. In particular, takingN and N( i ) respectively as the
zeroth order Kerr lapse and shift,N(0)5ADS/V and N( i )

(0)

5@0,0,22aMr/V#, allows us to compute] tc4 directly with
respect to the background Boyer-Lindquist time, thus avo
ing additional perturbations introduced if one computes
numerical derivative by finite differences ofc4 on two suc-
cessive slices.

A. The tetrad

A null and complex ‘‘exact’’ tetrad~i.e. orthonormal in the
numerical spacetime! must be chosen such that it reduces
the linear regime to the choice made in our perturbat
treatment of the final Kerr hole, the Kinnersley tetrad@9#. In
Boyer-Lindquist coordinates the background tetrad vec
are

l Kin
m 5

1

D
@~r 21a2!,D,0,a#, ~5.4a!

nKin
m 5

1

2S
@~r 21a2!,2D,0,a#, ~5.4b!

mKin
m 5

1

A2~r 1 ia cosu!
F ia

sinu
,0,1,

i

sinuG . ~5.4c!

The Kinnersley tetrad is particularly well suited for pertu
bation studies because it has the property thatl m andnm are
chosen to lie along the~background! principal null directions
~PND’s! of the Weyl tensor in such a way that one can der
decoupled perturbation equations. In terms of the 311 basis
of Eqs.~5.1!–~5.3!, we have

l m5@N(0)l Kin
0 ,l i1Ni (0)l Kin

0 #, ~5.5a!

nm5@N(0)nKin
0 ,ni1Ni (0)nKin

0 #, ~5.5b!

mm5@N(0)mKin
0 ,l i1Ni (0)mKin

0 #. ~5.5c!
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To numerically determine an exact tetrad we could in pr
ciple search for possible candidates for two of the PND’s
the Weyl tensor. One could, of course, try to pick up so
null directions in our numerical spacetimegmn

num which we
know are close to the PND’s in Kerr spacetime whene
gmn

num is a perturbation of the Kerr spacetime. However, t
turns out to be a bad choice because the PND’s do not
have analytically under analytic perturbations of Kerr spa
time. The reason is that the principal null directions of Ke
spacetime are double principal null directions of the We
tensor, which in general will split under the perturbation.
turns out that the splitting of eigenvectors of an endom
phism under a perturbation of ordere behaves in general a
some fractional power ofe ~hence nonsmoothly!. So the
principal null directions will be too strongly perturbed.

An alternative and more effective procedure to define
exact tetrad that has the required property in the linear
gime is the following.~a! We assume the following 311
decomposition of the tetrad:

l̃ m5
1

A2
~um1r m!, ~5.6a!

ñm5
1

A2
~um2r m!, ~5.6b!

m̃m5
1

A2
~um1 iwm!, ~5.6c!

whereum is the normalized timelike unit normal to the hy
persurface andr m5@1,v2

a#, um5@0,v3
a#, wm5@0,v1

a# are or-
thonormal vectors pointing along the numerically defined
ordinate directions.~b! We thus identify the set of nul
rotations to bring Eq.~5.6! to the form ~5.5!, in order to
make it consistent with the tetrad assumed in the perturba
calculation.

Step a is straightforward. Begin with real vectors align
with the numerical spacew and radial directions, which in
Cartesian coordinates read

v1
a5@2y,x,0#,

v2
a5@x,y,z#,

v3
a5det~g!1/2gadedbcv1

bv2
c . ~5.7!

We then redefine these, to achieve orthonormalization. I
important to begin the ortho-normalization procedure w
the azimuthal direction vectorv1

a which is not affected by the
frame-dragging effect discussed in Sec. II B. At each step
Gram-Schmidt procedure is then used to ensure that the
remains orthonormal, so that

v1
a→ v1

a

Av11

,

1-10
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v2
a→ ~v2

a2v1
av12!

Av22

,

v3
a→ ~v3

a2v1
av132v2

av23!

Av33

,

where v i j 5(v i
av j

bgab). In the case of Kerr spacetime on
finds, in Boyer-Lindquist coordinates,

um5FADS

V
,0,0G , ~5.8a!

r m5@1,v2
a#5F1,AD

S
,0,0G , ~5.8b!

um5@0,v3
a#5F0,0,

1

AD
,0G , ~5.8c!

wm5@0,v1
a#5F0,0,0,

1

sinu
AS

VG , ~5.8d!

normalized such that2umum5r mr m5umum5wmwm51 so
that the inverse metric can be expressed asgmn52(m(mm̄n)

2 l (mn̄n)).
For step b identify a combination of null rotations of typ

I and II parametrized byA, and a type III~boost! null rota-
tion parametrized byFA andFB which bring the orthonorma
tetrad ~5.6! to the form ~5.5! for the unperturbed case. Th
transformation

l m5
FA

2
$@A~A211!11# l̃ m1@A~A211!21#ñm

2 iA~m̃m2m̃̄m!%, ~5.9a!

nm5
FA

21

2
$@A~A221!11# l̃ m1@A~A211!11#ñm

2 iA~m̃m2m̃̄m!%, ~5.9b!

mm5
FB

2
$@A~A211!11#m̃m2@A~A211!21#m̃̄m

1 iA~ l̃ m1ñm!% ~5.9c!

achieves this withA5asinuAD/V, FA5A2S/D and FB

5AS/(r 1 ia cosu), thereby producing a tetrad consiste
with the tetrad assumed in the perturbative calculation.

In practice we perform the tetrad transformation in
rectly, implementing its effect on the set of Weyl scala
(c0 , . . . ,c4) as described in the Appendix, Eq.~A24!.
04400
t

VI. THE TEUKOLSKY EQUATION

Perturbations of a rotating Kerr black hole are describ
by the well known Teukolsky equation@9#, which is derived
from the Newman-Penrose formalism. The Weyl scalarc4
that represents outgoing gravitational radiation satisfies a
coupled wave equation

$~D14m1m̄13g2ḡ !~D14e2r!2~ d̄13a1b̄14p2 t̄ !

3~d14b2t!23c2
(0)%c4

(1)50. ~6.1!

In this generic form the Teukolsky equation is manifes
independent of the choice of coordinate system used to
scribe the Kerr background and its perturbations. In the fo
going equation the usual notation for spin coefficien
a,b, . . . was used andD̂5nm]m , d5mm]m , and D
5 l m]m represent directional derivatives.

For the applications in this paper we consider Boy
Lindquist coordinates (t,r ,u,f) and the Kinnersley tetrad
The Teukolsky equation then reads

F ~r 21a2!2

D
2a2sin2uG]2c

]t2 1
4Mar

D

]2c

]t]f
1Fa2

D

2
1

sin2uG]2c

]f2 2D2
]

]r S 1

D

]c

]r D2
1

sinu

]

]u S sinu
]c

]u D
14FM ~r 22a2!

D
2r 2 iacosuG ]c

]t
14Fa~r 2M !

D

1
i cosu

sinu G ]c

]f
1~4 cot2u12!c50, ~6.2!

wherec5@r 2 ia cos(u)#4c4.
This formulation has several advantages:~i! It is a first

order gauge invariant description.~ii ! It does not rely on any
frequency or multipole decomposition.~iii ! It can be used to
evolve 311 dimensional spacetimes without any assumpt
about symmetries~to deal with the final stage of orbiting
binary black holes!. ~iv! The Weyl scalars are objects define
in the full nonlinear theory and it can be argued that evolv
them with the linear theory provides a reliable description
the perturbations@25#. In addition, the Newman-Penrose fo
mulation constitutes a simple and elegant framework to
ganize higher order perturbations@24#.

The numerical integration of the linear Teukolsky equ
tion in the time domain using Boyer-Lindquist coordinates
done closely following Ref.@26#. We use the Lax-Wendroff
algorithm, using the standard tortoise coordinater * ,

r * 5r 1
r 1

2 1a2

r 12r 2
lnUr 2r 1

2M U2 r 2
2 1a2

r 12r 2
lnUr 2r 2

2M U,
r 65M6AM22a2, ~6.3!

which naturally leads to excision of the black hole interi
and constant characteristic wave speed. We impose s
boundary conditions on the internal boundary~event horizon
of the Kerr background! and radiative boundary condition
1-11



ke
his
ite
io
e
un

e

k

ca
ds
iz

-
nt

ca
th
t
rs
s
ild

ou
c
v
u
o
li

u-
r-

m
f
o

io

de

e
a
n

s
y
a

’’

ex-
ith
ro-
rgy
ith

lu-
ty
r-
ift

ime,
in

tur-
the
ed to
nd.
nd

the
non-
ky
ized

ua-
er
ior
ary
h
ica-
ar,
to
ller
ults
ries
o

for

JOHN BAKER, MANUELA CAMPANELLI, AND CARLOS O. LOUSTO PHYSICAL REVIEW D65 044001
on the exterior boundary. Frame dragging effects are ta
care of by the background Boyer-Lindquist shift. Thus, t
formulation has all the ingredients to allow for an indefin
stable evolution. In practice it provides an accurate evolut
for the few hundreds ofM of relevant signal generated in th
final stages of black hole merger. Since the Kerr backgro
has the axial killing vector]f we can Fourier decomposec4
into eimfKS modes. In particular, for numerical convenienc
we use the Kerr-SchildfKS ,

fKS5f1
a

r 12r 2
lnU r

r 1
21U2 a

r 12r 2
lnU r

r 2
21U.

~6.4!

This allows us to reduce the dimensionality of the Teukols
equation from 311 to 211. In addition this decomposition
into modes can be applied to the output of the full numeri
code with the advantage of handling 2D instead of 3D fiel
Typical evolutions of the Teukolsky equation used a grid s
of nu3nr* 54031200, with218,r * /M,78 for signals of
t;100M , and we filled in initially with zeros~or used ex-
trapolations! the grid points outside the full numerical do
main. Finally, the computation of the energy and mome
radiated is performed using the formulas of Ref.@24#, Sec.
III C.

It is worth stressing here that the Teukolsky equation
be written in any coordinate system. We are using it in
Boyer-Lindquist coordinates for present convenience, bu
full numerical codes including excision black hole interio
turn out to be more practical in Kerr-Schild-like coordinate
it may be convenient to evolve perturbations in Kerr-Sch
slices of the Kerr metric@27#.

VII. APPLICATION TO A SINGLE ROTATING
KERR HOLE

We have done extensive testing of our method on vari
toy models. In an earlier incarnation, we tried our approa
successfully on axisymmetric head-on collision. As we ha
described, we have done a lot of work generalizing o
method to include orbital cases with angular momentum
the final black hole. We have checked our equations exp
itly on exact Boyer-Lindquist Kerr data, but in our real n
merical simulations we will not reproduce the Boye
Lindquist coordinates exactly and it is useful to get so
measure of how important the coordinate differences are
the radiation. Additionally, our calculation requires the use
four computer codes, a code for the numerical simulat
~CACTUS @28#!, a specialized code~called ZORRO! running
within the simulation that calculates all the quantities nee
for producing Cauchy data~see the Appendix!, a code~called
TEUKCAUCHY! that runs after the simulation defining th
background black hole and constructing the Cauchy d
from the output of the evolution on various time slices, a
the Teukolsky evolution code~TEUKCODE!. The Kerr case
has been a key source of rigorous tests of all these code

We performed a highly nontrivial test of our setup b
applying the entire procedure to Kerr initial data, evolving
single Kerr hole fully numerically, finding a ‘‘background
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black hole in the numerical data and defining a tetrad,
tracting the Cauchy data and continuing its evolution w
the Teukolsky equation. Ideally, the final result should p
duce no radiation. In practice, the computed radiation ene
and waveforms will give us a measure of the error w
which we can determine such quantities.

This is a nontrivial test because the full numerical evo
tion is performed with vanishing shift and the singulari
avoiding maximal slicing. This is in contrast to the Boye
Lindquist lapse and the nonvanishing Boyer-Lindquist sh
for rotation parametera/M50.8 in the example shown in
Fig. 8. In addition the Cauchy data forc4 and ] tc4 are
computed with a tetrad adapted to the numerical spacet
which must then be transformed according to Sec. V A
order to nearly reproduce the Kinnersley tetrad in the per
bative limit. These complications mean, in particular, that
data passed between our first three codes are not expect
be approximately vanishing, but must sum to zero in the e
In practice our result is subject to both numerical error a
false radiation caused by an inexact identification of
background coordinates and tetrad, perhaps producing
trivial Cauchy data which we then evolve via the Teukols
equation. The results of the whole procedure are summar
in Fig. 8. The levels of spurious radiation are around 1025M .
Results after relatively short evolution times converge q
dratically toward zero with increasing resolution. The long
evolutions are affected by the location of a close exter
boundary, and are improved when we move the bound
outward by 50%.~As discussed above we will use muc
more distant outer boundaries for our astrophysical appl
tions.! All this indicates that the coordinate effects are, so f
smaller than the numerical effects, which in turn tend
produce radiation about two orders of magnitude sma
than the radiation we are interested in. Notably these res
are achieved with lower resolutions and closer bounda
than the typical resolutions of runs we performed for tw

FIG. 8. The total radiated energy for an evolved Kerr hole
different resolutions and boundary locations.
1-12
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black holes starting from the ISCO configuration used
Ref. @6#.

For the sake of completeness we mention two further t
that we performed for two black hole initial data:~i! The
mass scaling of the whole procedure. Since Einstein eq
tions scale with the total ADM mass, we made a full nume
cal run with initial mass equal to 2 and compared the sca
of the Cauchy data, post-processing and final wavefo
with the mass 1 case. This proved to be a very useful tes
the corresponding set of four codes we used to compute
of the above stages.~ii ! The initial separation of the holes
When we reduce this from that of the ISCO to one quarte
that value we reach the close limit regime and can comp
with the results from the known analytic expressions@29#
and scaling for the separation as well as for the angular
pendence ofc4 and] tc4.

VIII. DISCUSSION

The Lazarus approach to binary black holes combi
three treatments, each adapted to one of three stages o
dynamics: the far-limit, nonlinear-interaction, and close-lim
~one black hole! regimes. In this paper we have provided
detailed explanation of how numerical simulation and Te
kolsky equation perturbative dynamics can be interfaced
provide a complete description of gravitational radiation a
ing from the post-orbital binary–black-hole dynamics.

This technology makes it possible, for the first time,
apply numerical relativity to the nonlinear dynamical inte
action of these systems. In our approach to this unkno
regime, we have identified several parameter sequences
make a connection to better-studied cases: anL sequence tha
allows us to increase the separation from the close-limit
gime to the ISCO, ana sequence that allows us to conne
boosted head-on collisions studied in 2D to the ISCO wit
fixed magnitude of each black hole’s momentum, and aP
sequence through which we connect to head-on collision
resting black holes by varying the magnitude of the mom
tum to the ISCO value@6#. These important studies will give
us some understanding of how the dynamics from ISCO c
figurations relate to and differ from the simpler problem
treated so far by numerical simulations and close-limit st
ies.

After establishing such a basis for understanding the n
ISCO regime dynamics we can reach out further, and see
firmly establish the relation of these ISCO black hole co
figurations to astrophysics. As we have discussed in de
for the numerical simulation/close-limit interface, the du
approach to dynamics in overlapping validity regions p
vides a vital consistency check on the reliability of the
sults. A key goal, which we can now begin to approach, is
provide the same sort of consistency studies for the far-lim
numerical simulation interface and to thereby establish a fi
astrophysical foundation for expensive, and difficult, nume
cal work. Again, a handful of initial data sequences are
propriate for beginning to evaluate the connection
numerical/close-limit results to astrophysical problem
Within the effective-potential method which we have tak
advantage of in order to define ISCO data there is a nat
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PI sequence of pre-ISCO stable circular orbits. Moving
within this sequence towards more separated black holes
ymptotically eliminates the features of these data which m
be less astrophysical. Similarly, it is possible to define cur
through the parameter space of our initial data family wh
approach the trajectories defined by the Buonanno-Dam
extension of the post-Newtonian method. The application
more advanced numerical techniques@30#, which we are
presently undertaking, should make it possible to begin g
erating waveforms from farther up these sequences. S
though, the effective potential method initial data sequenc
an imperfect substiute for robust interface with the po
Newtonian method, which we expect to be ultimately r
quired. Since a primary concern about the astrophysical
evance of numerical/close-limit results is artificial radiati
content in the initial data, another useful line of research
comparison studies of waveform alternative initial data s
which would be equivalent in their astrophysical interpre
tion. These will provide a measure of the significance of t
interpretive indeterminacy to the gravitational radiatio
Promising work with evolutions from Kerr-Schild-like initia
data, for which an alternative application of the Lazarus
proach is under development@31#, should provide an ex-
ample of such comparative work.

Another area of study that can now be pursued is to
velop some preliminary indications of the effect spin has
the waveforms generated in the post-inspiral dynamics.
effective potential approach provides a description@32# of
the effect small amounts of individual black hole spin ha
on the ISCO initial data. We are applying our approach in
first instance to cases of spin parallel and antiparallel to
orbital angular momentum.

Eventually numerical simulations will run routinely fo
hundreds or thousands ofM, having begun from establishe
astrophysical data. But the possibility of observation is b
ginning almost immediately, and until now we have not m
the needs of observers who consider that any additiona
formation about the the final stage of binary black holes m
be extremely important@33#. Our efforts have shown that
crucial requirement for producing results relevant to obse
ers is to adapt numerical evolutions to astrophysical pr
lems. Numerical relativity is ready, now, to begin answeri
questions about binary black holes in the near ISCO
pre-ISCO regime.
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APPENDIX: A PRACTICAL CONSTRUCTION OF THE
CAUCHY DATA

Here we describe a procedure for calculatingc4 that al-
lows us to cleanly separate the specification of the ba
1-13
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ground black hole from the numerical simulation, as is pr
tical for studying variations of the background metric a
background coordinates. Since we have not yet determ
the background black hole at the time of evolution we m
compute a larger set of quantities which can then be tra
formed to the desired result after the background is specifi
The steps are as follows.

~a! Compute the numerical 311 tetrad components as i
Eq. ~5.6!.

~b! With this tetrad, using the Cauchy data on a numeri
time slice directly compute all five Weyl scalarsc0 , . . . ,c4

and their time variations]̂0c0 , . . . ,]̂0c4 as follows:

c45Ri jkl n
im̄jnkm̄l12R0 jkl~n0m̄jnkm̄l2m̄0njnkm̄l !

1R0 j 0l~n0m̄jn0m̄l1m̄0njm̄0nl22n0m̄jm̄0nl !,

~A1!

c35Ri jkl l
injm̄knl1R0 jkl~ l 0njm̄knl2n0m̄j l knl

2n0l j m̄knl1m̄0nj l knl !1R0 j 0l~ l 0njm̄0nl

2 l 0njn0m̄l2n0l j m̄0nl1n0l jn0m̄l !, ~A2!

c25Ri jkl l
imjm̄knl1R0 jkl~ l 0mjm̄knl2n0m̄j l kml

2m0l j m̄knl1m̄0nj l kml !1R0 j 0l~ l 0mjm̄0nl

2 l 0mjn0m̄l2m0l j m̄0m̄l1n0l jm0m̄l !, ~A3!

c15Ri jkl n
i l jmkl l1R0 jkl~n0l jmkl l2 l 0mjnkl l2 l 0njmkl l

1m0l jnkl l !1R0 j 0l~n0l jm0l l2n0l j l 0ml2 l 0njm0l l

1 l 0nj l 0ml ! ~A4!

c05Ri jkl l
imj l kml12R0 jkl~ l 0mjl kml2m0l j l kml !

1R0 j 0l~ l 0mjl 0ml1m0l jm0l l22l 0mjm0l l !, ~A5!

where

Ri jkl 5Ri jkl 12Ki [kKl ] j ,

R0 jkl524@K j [k,l ]1G j [k
p Kl ] p#,

R0 j 0l5Rjl 2K jpKl
p1KK jl . ~A6!

We compute the time variations only from data on t
slice:

]̂0c45 ]̂0Ri jkl n
im̄jnkm̄l12]̂0R0 jkl~n0m̄jnkm̄l2m̄0njnkm̄l !

1 ]̂0R0 j 0l~n0m̄jn0m̄l1m̄0njm̄0nl22n0m̄jm̄0nl !,

~A7!

]̂0c35 ]̂0Ri jkl l
injm̄knl1 ]̂0R0 jkl~ l 0njm̄knl2n0m̄j l knl

2n0l j m̄knl1m̄0nj l knl !1 ]̂0R0 j 0l~ l 0njm̄0nl

2 l 0njn0m̄l2n0l j m̄0nl1n0l jn0m̄l !, ~A8!
04400
-
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t
s-
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]̂0c25 ]̂0Ri jkl l
imjm̄knl1 ]̂0R0 jkl~ l 0mjm̄knl2n0m̄j l kml

2m0l j m̄knl1m̄0nj l kml !1 ]̂0R0 j 0l~ l 0mjm̄0nl

2 l 0mjn0m̄l2m0l j m̄0m̄l1n0l jm0m̄l !, ~A9!

]̂0c15 ]̂0Ri jkl n
i l jmkl l1 ]̂0R0 jkl~n0l jmkl l2 l 0mjnkl l

2 l 0njmkl l1m0l jnkl l !1 ]̂0R0 j 0l~n0l jm0l l2n0l j l 0ml

2 l 0njm0l l1 l 0nj l 0ml !, ~A10!

]̂0c05 ]̂0Ri jkl l
imj l kml12]̂0R0 jkl~ l 0mjl kml2m0l j l kml !

1 ]̂0R0 j 0l~ l 0mjl 0ml1m0l jm0l l22l 0mjm0l l !.

~A11!

The derivatives involved in the above expressions can
computed in terms of the data on the Cauchy hypersurf
using Einstein’s equations:

]̂0Ri jkl 524N(0)H Ki [kRl ] j2K j [kRl ] i2
1

2
R~Ki [kgl ] j

2K j [kgl ] i !J 12gi [k]̂0Rl ] j22gj [k]̂0Rl ] i

2gi [kgl ] j]0R12Ki [k]0Kl ] j22K j [k]0Kl ] i ,

~A12!

]̂0R0 jkl5]0K j [k,l ]1 ]̂0G j [k
p Kl ] p1G j [k

p ]̂0Kl ] p ,
~A13!

]̂0R0 j 0l5@]0Rjl 22K ( l
p ]0K j )p22NKjpKq

pKl
q1K jl ]0K

1K]0K jl #, ~A14!

where

]̂0K5NKpqK
pq2¹2N, ~A15!

]̂0Ki j 5N@R̄i j 1KKi j 22KipKp
j2N21¹̄i¹̄jN#, ~A16!

]̂0R52Kpq]0Kpq14NKpqKs
pKsq22K]0K, ~A17!

]̂0R̄i j 5¹̄k~ ]̂0Ḡ i j
k !2¹̄j~ ]̂0Ḡ ik

k !, ~A18!

]̂0Ḡ i j
k 522¹̄( i~NKj )

k!1¹̄k~NKi j !. ~A19!

These time variations may be precisely the backgrou
time derivatives we want if have already specified the ba
ground spacetime and can setN5N(0) as the background
lapse. On the other hand when we want to determine
background independently of the numerical simulation co
we can produce the required information for later process
from all five quantities with the choiceN51.

~c! Next define the background coordinate system as
scribed in Sec. IV. This allows us now to refer to quantiti
defined in the background coordinates. If we have usedN
1-14
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51 in constructing the time variations we must next transl
the time variations calculated above to genuine backgro
time derivatives with a set of corrections for the effect of t
background lapse and shift. For the lapse,

]̂0c0→a]̂0c012 a , r̂c012 a ,ûc1 , ~A20a!

]̂0c1→a]̂0c11a , r̂c11
1

2
a ,û~c013c2!, ~A20b!

]̂0c2→a]̂0c21a ,û~c11c3!, ~A20c!

]̂0c3→a]̂0c32a , r̂c31
1

2
a ,û~c413c2!, ~A20d!

]̂0c4→a]̂0c422 a , r̂c412 a ,ûc3 , ~A20e!

wherea , r̂ anda ,û are related to the lapse for the backgrou
Kerr metric,

a , r̂5
1

Agrr

N,r5AD

S
N,r

~A21!

a ,û5
1

Aguu

N,u5A1

S
N,u .

The shift corrections are

]̂0c0→ ]̂0c01 i b ,û
ŵ

c01 i b , r̂
ŵ
c1 1Nk]kc0, ~A22a!

]̂0c1→ ]̂0c11
i

2
b , r̂

ŵ
~c01c2!2

i

2
b ,û

ŵ
~c12c̄1!

1
i

2
b , r̂

ŵ
~c22c̄2!1Nk]kc1, ~A22b!

]̂0c2→ ]̂0c21
i

2
b , r̂

ŵ
~c11c3!1Nk]kc2, ~A22c!

]̂0c3→ ]̂0c31
i

2
b , r̂

ŵ
~c41c2!1

i

2
b ,û

ŵ
~c32c̄3!

1
i

2
b , r̂

ŵ
~c22c̄2!1Nk]kc3, ~A22d!
.

o,

04400
e
d

]̂0c4→ ]̂0c42 i b ,û
ŵ

c41 i b ,û
ŵ

c31Nk]kc4 ,
~A22e!

whereb , r̂
ŵ andb ,û

ŵ are related to the lapse for the backgrou
Kerr metric,

b , r̂
ŵ

5Agww

grr
bw

,r5ADV
sinu

S
bw

,r ,

~A23!

b ,û
ŵ

5Agww

guu
bw

,u5AV
sinu

S
bw

,u .

~d! The Weyl scalars corresponding to the transform
tetrad defined in Eq.~5.9!, C̃4 and] tC̃4, can then be respec
tively expressed as a linear combination of the fi
numerical-tetrad Weyl scalarsc4 , . . . ,c0 and the
]̂0c4 . . . ]̂0c0, as given in Eqs.~A22!, with coefficients de-
pending on the background coordinatesr and u, and onM
anda:

c̃45
1

4FA
2FB

2 @~AA21121!2c014iA~AA21121!c1

26A2c224iA~AA21111!c31~AA21111!2c4#,

~A24!

] tc̃45
1

4FA
2FB

2@~AA21121!2]̂0c0

14iA~AA21121!]̂0c126A2]̂0c2

24iA~AA21111!]̂0c31~AA21111!2]̂0c4#.

~e! Use theeimfKS decomposition which is affected by th
w transformation given in Eqs.~4.4! and~6.4!. This transfor-
mation is implemented at the end of the calculation byc̃4

→eimwShi f tc̃4 and likewise for] tc̃4. Note that the calculation
of the last shift correction term in Eqs.~A22! can also be
conveniently carried over after step~e! rather than in step
~d!.
.
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