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Liouville field theory is considered with conformal boundary. The analytical ex-
pression for the expectation value of the boundary three point function is explicitly
given in terms of the fusion matrix determining the monodromy properties of the
conformal blocks.

1 Liouville theory on the sphere

The celebrated two dimensional Liouville Field Theory has been attracting
attention for the last 20 years due to its appearance in different contexts like
two dimensional gravity, non critical string theory and D-branes physics. It is
the most simple case of non compact conformal field theories, (i.e. CFT with
a continuous spectrum of primary fields), and is a natural starting point for
the developement of techniques for the exact solution of such conformal field
theories.

Let us recall some results on Liouville theory, see [4] for more details and
references: LFT on the sphere is semiclassically defined by the following action

1
A = / (E(aaﬁf’)z + H82b¢) d*z (1)
with the following boundary condition on the Liouville field ¢
¢(z,2) = —Qlog(zz) + O(1) at {z| = oo. (2)

The parameter b is the coupling constant, the scale parameter u is the cos-
mological constant, and @ is the background charge

Q=b+1/b.

It was first proposed in {1] that Liouville theory can be quantized as a
conformal field theory with a space of states that decomposes as follows into
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irreducible unitary highest weight representations V of the Virasoro algebra:

He [daVa®Ve §=3 4R @)
5

The highest weight A, of the representation V., is parametrized as A, =
a{Q — o). The action of the Virasoro algebra on H is generated by the modes
of the energy momentum tensors:

T(z) = —(89)* + Q0°¢,
T(z) = —(9¢)* + Q5°¢.
(4)
The central charge of the Virasoro algebra is then given in terms of b via
cr = 1+6Q%

The local observables can be generated from the fields Vu(2, Z) which
semiclassically (b — 0) correspond to exponential functions e22#(%%) of the
Liouville field. The fields Vu(z, ) transform as primary fields under conformal
transformations with conformal weight Ay. Thanks to conformal symmetry
the fields Vy(z,%) are fully characterized by the three point functions

Clas, 0n,0n) = lim_|as|**3 (0]Vaxy (25, 78) Vrs (1, 1) Ve (0,0)10)

An explicit formula for the three point function was proposed in [2,3]*
Q—oj —ag—ag
Clas, oz, 1) = [77#’7(52)52"%2]
Tg’I‘b(Qal)Tb(2a2)’I‘b(2a3)
Tb((h + ap + g — Q)Tb(al + Qg — O!3)T5(C¥1 4 Qg — Olz)Tb(ag + a3 — C!1)

(5)

where y(z) = WF%%,TO = reSg=0 ‘—1%—3(51.

These pieces of information indeed amount to a full characterization of Liou-
ville theory on the sphere or cylinder: Multipoint correlation functions can
be factorized into three point functions by summing over intermediate states.
Let us consider the four point function (0] [Tj—; Vau (#i, %)]0). Such four point

¢gee Appendix for some definitions and properties of the special functions used in this
article. :
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functions may be represented by summing over intermediate states from the
spectrum (3) iff the variables c,...,oq are restricted to the range®

2|Re(ar + oz — Q)| < @, 2|Re(a1 — )| < @,
2|Re(as + g — Q)| < @, 2|Re(as — ay)] < Q.
(6)

Inserting a complete set of intermediate states between (0[|V,,Va, and
Vs Ve |0) would lead to an expression of the following form:

(VCM (347 24)Vaa (331 -53)VOA'2 (223 EQ)VQ1 (31 ) El)) -
‘/0 0(04, Qg, Q/2 - ?’P)O(Q/2 + ’l:P, a2, a1)|]:8(Aai t A, zi)lzdp
(7)

Fe(Aa, A, 2;) is the s-channel conformal block which is completly determined
by the conformal symmetry (although no closed formula is known for it in
general).

fa(Aai!A: zi) =
(24 — 22)~282(zy — 7)o HBe—Ba—Bary, o )B1+Aa—As—Ay

_ Da—Ay—~Ag Ay ) 3
(23 — 21) Xf(aza4lplﬂ)

where

_ (&1 — =) (23 — 2)
(22 — 24)(21 — 23)

and Ay, = 0;(Q — 03), A= & + P2,

Locahty of the fields V,, or assoc1at1v1ty of the opera.tor product expansion
would lead to an alternative representa,tlon for (0] H,_l Va, (2i, Z)|0) as sum
over t-channel conformal blocks F*:

(Vaq, (.34, zé)vaa (23: 5‘3)VO£2 (zZ: 52)Va1 (zl 3 21)) =
./ 0(34: Q/2 — iF, al)O(Q/2 +iP, as, a2)|'7:t(Aa.' ) A, z,-)'zdP
0
(8)

Tt turns out [3] that the four-point function defined in the range (6) permits a meromorphic
continuation to generic values of cg,..., 0.
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For the equivalence of the two representations (7) and (8) it is crucial that
there exist [4] invertible fusion transformations between s- and t-channel con-
formal blocks, defining the fiision coefficients:

P B B 2) = [ oo Faas | 2 02| FHBr B2 9
S 4 01

In [5], an explicit formula for this fusion matrix was proposed in terms of
the Racah-Wigner coefficients for an appropriate continuous geries of rep-
resentations of the quantum group U, (51(2, R)) with deformation parameter

q= e This formula was subsequently [4] confirmed by direct calculation.
The resulting expression for the fusion coefficients is the following:

Foo s [ﬂz 51] _

g3 01

T5(2Q — f1 — B2 — B3)Ts(B2 + Bz — B1)Ts(Q + B2 — B — B3) y

T5(2Q — 01 — B1 — 02)Ls(o1 + 02 — B1)TH(Q — f1 — 02 + 01)

Ty(Bs + o1 + 03 — Q)p(01 + o5 — Bs)s (03 + Bz — 01) y

T,(B2 + 02 + 03 — Q)Ts(02 + o3 — f2)Ts (03 + B2 — 02) (10)
Tp(Q -+ Bz — Bo — B1)TH(Q — Bz — o1 + 03)  T's(2Q ~ 202)['s(203)

T5(Q — B — a1 + 02)Ts(Q — B2 — 02 + a3) Tp(Q — 285)T4(28s — Q)

. ]’" 1 5T+ 5)S4(Us +8)Sy(Us + )Sy(Us + 9)
i So(V1 + 8)Sp(Va + 8)Sp (Vs + 8)Ss (@ + 8) ’

— 100
where:

Uy, = o3 + 01~ B, Vi=Q+ 02— f3— p1+0s,
Up=Q+ 02— 1 —01,Va=02+f3+as— P,

Us =09 + B2+ 03 — Q, V3 =209,
U4:UQ—52+U3.

An important identity satisfied by the fusion coeflicients is the go-called
pentagonal equation, which follows from a similar identity satisfied by the
Racah-Wigner coefficient mentioned previously [6].

Qg (o [ otg 7 | [y oty
A£1Fﬁ161 [ﬁ2 al] Fﬁz’fz Las a F51'Y1 72 0o
FCM ﬂ!s1 -’}’1 CYz—

= [ I
Bavi | o ‘31_ B1va | o5 @

(11)
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2 Liouville theory on domains with boundary

One may also be interested to define a version of Liouville theory on a simply
connected domain I' with nontrivial boundary 8I'. For definiteness, we will
only consider the conformally equivalent cases where I' is either the unit disk,
the upper half plane or the infinite strip.

Semiclassically, one may define the theory by means of the action

1 : k
Abound = / (E(aaff’)z + #62b¢) d’z + / (% + useb"’) de,  (12)
T oT

where k is the curvature of the boundary 8I" and pp is the so-called boundary
cosmological constant. For the description of exact results in the quantum
theory it was found to be useful [7] to parametrize up by means of a variable
o that is related to up via

Q H - 3 : :
cos (27rb(0' - 5)) = :/%\/sm(vrb }- (13)

Requiring pp to be real one finds the two following regimes for the parameter
o:

1. if f\‘/—%\/sin(wbz) > 1, then ¢ is of the form o = Q/2+iP

2. if %Msin(wb% < 1, then o is real.

Anticipating that all relevant objects will be found to possess meromorphic
continuations w.r.t. the boundary parameters o, we shall discuss only the
first regime explicitly in the following. .

The Hamiltonian interpretation of the theory [9] is simplest in the case
where T' is the infinite strip. The associated Hilbert space Hp was found
in [9] to decompose as follows into irreducible representations of the Virasoro
algebra:

&
HB = f df Vs. (14)
s

The highest weight states generating the subrepresentation Vg in HE2 will be
denoted |B; g2,01), where o2 (resp. 1) are the parameters of the boundary
conditions associated to the left (resp. right) boundaries of the strip. It was
proposed in [7] [9] that the states |§; o2, o1} satisfy a reflection relation of the
form

|B; 02,01) = S(B; 02,01)|Q — Bi02,01)- (15)
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which expresses the totally reflecting nature of the Liouville potential in (12).
The following formula was given in [7] for the reflection coefficient S(8; 02, 01):

S(B,03,01) =(ruy (BB~ ) F(@720) x
Ty(28 — Q) Sy(oa+ 01— B)Sy(2Q — B—01 —03)  (16)
Th(Q —28) Sy(B+02—01)Sp(B8+01—0a2)

In addition to the fields Vi (z, Z) localized in the interior of I, one one may
now also consider operators 72 Bgl (z) that are localized at the boundary 4T\
The insertion point z may separate segments of the boundary with different
boundary conditions o and o1. The boundary fields 7 Bg* (z) are required to
be primary fields with conformal weight Ag = S(Q — B). They are therefore
expacted to create states |#;09,01) and (B;02,01]| Via

lim 72Bg’ (2)|0) = |B;02,01),  lim (0]7Bp’ (=)|z|*2f =(Q — B;02,01].
(17)
To fully characterize LFT on the upper half plane, one needs to deter-
mine some additional structure functions beside the bulk three point function
0(03, Og, O!l)

1. Bulk one point function: {7, 8]

U
(Va(2,2)) = ——EWTBA)- (18)
2 — 2
2. Boundary two point function: [7]
<mBE$ (m)”BE; (0)> — 6(‘83 + 56— Q) +|j£520'2301)5(ﬂ2 - ﬁl). (19)

The appearance of the second term in (19) is a consequence of the reflec-
tion property (15).

3. bulk-boundary two point function [13]°

=\o o -R( 318‘0')
(Va(2,7)° B (z)) = = -z|2f-‘ai>ﬂ e (20)

cthe bulk one point function is a special case of the bulk-boundary coefficient with =0



275

4. boundary three point function

(7 B3 a0 B e2)" B ) =

(raoa01)
Cﬁaﬁzﬁl
Ar+Ha—Ag Aat+Ag—LHn Ag+A,—-Ap”
| %32} |31 |

|21 |

(21)

Taking advantage of the reflection property (15), we shall consider instead of

Cé:%:ff) the related quantity

(eso201)8s — (osoz01) — q-1 . (os0201)
052%12 V= OQiﬁs,ﬁlz.ﬁl =S5 (BE; al’as)cﬁa%2E1l . (22)
Let us now turn to the determination of this last structure function.

2.1 Boundary three point function

Asgsociativity condition

The basic consistency condition that the three-point function of boundary
operators has to satisfy expresses the associativity of the product of boundary
fields. Let us consider the 4 point function of boundary operators. Inserting
a complete set of intermediate states between the first two and the last two
fields leads to an expansion into conformal blocks of the following form: ¢

(7 B (w4)7* B3 (25)° B (22)7 B3 (m1) ) =

- -/sdﬁzl Clrigsonfolrarrfe 72 (A g, Mgy, 2)

3 |ﬁ21

By using associativity of the operator product expansion one would get a
second expansion (t-channel):

(7 By (w0)7 BE (w0)" B3 (a2) " B3 (m1)) =

- Ldﬁ320é§:$101)ﬁ4 C;g:gaﬂz)ﬁnp(aﬁh Aﬁsz: xi)

d As in the case one restricts oneself to the case where Re{f;), i = 1...4 are close enough
to Q/2. In this case, fs1 is of the form Q/2+ P, Meromorphic continuation is understood
otherwise.
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Using the fusion transformations (9), the equivalence of the factorisation in
the two channels can be rewritten:

[ di gz G B | B ] = O ol
(23)

By means of the pentagonal equation (11) it easy to verify that the following
ansatz

0(0'30201}#33 — 9(63,0'3,0'1) Fa [ﬁ2 ﬁl 24
AaPr g(B2,03,02)9(B1,02,01) 23 | 73 oy (24)

yields a solution to (23), as was noticed in [10]. The functions g(f8,09,01)
appearing are unrestricted by (23), and do correspond to the normalization
of the boundary operators. Let us remark however that we have already fixed
the normalization by requiring the prefactor of the first delta-distribution on
the right hand side of (19) to be unity.

Normalization of the boundary operators

The boundary three point function Cé:}zﬁ?) should be meromorphic

w.r.t. the variables 83, f,51. This assumption can be motivated in vari-
ous ways: One may e.g. use arguments like those reviewed in section 3 of [4]
concering the path integral for Liouville theory. These arguments exhibit the
analytic properties of correlation functions as a reflection of the asymptotic
behavior of the Liouville path integral measure in the region ¢ — —oo where
the interaction terms vanish.

Such considerations lead in particular to the identification of the residues
for the poles of O’é‘;}‘:%‘:l) with certain correlation functions in free field theory,
which generalize the so-called screening-charge constructions of [11,12]. The
resulting prescription for the calculation of these residues was formulated in

[7]. Most relevant for our purposes will'be the observation that C‘é‘;%:g‘;‘) has
a pole with residue 1 if f; + P2 + f3 = Q: The relevant correlation functions
in free field theory do not contain any screening charges.

On the other hand it seems worth observing that the fusion coefficients
themselves are meromorphic functions of all gix variables they depend on.
This means that the function Oé:%‘;"ﬁ:’) that is given by the expression (24)
will be meromorphic iff the function g(f;02,01) is meromophic w.r.t. A.

In the following, we shall consider the special boundary field 71 B_,"*,
which corresponds to a degenerate representation of the Virasoro algebra.
As pointed out in [7] it is in general not a trivial issue ta decide when a
boundary field that corresponds to a degenerate representation will satisfy the
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corresponding differential equations expressing null vector decoupling. Here,
however, one may observe that one may create the boundary field 71 B_,”*
by sending the bulk field V_,/2 to the boundary. It follows from the fact
that V_3/o satisfies a second order differential equation that the asymptotic
behavior when V_;/» approaches the boundary is described by an boundary
field 71 B_,“* that satisfies a third order differential equation. This last fact
also implies that the operator product expansion of 7 B_,?* with & generic
boundary operator can only contain three types of contributions:

B3 B, = ey (B BEL_y + colfa) "B +c- (B By (25)

One may then consider the vacuum expectation values of the product of opera-
tors that is obtained by multiplying (25) with the boundary fields  Bg® 5 _ ..,
g8 = —,0,+. Taking into account (19), one is lead to identify the structure
functions ¢,(8) (s = +,0, —) with residues of the general three point function.
As mentioned previously, the relevant residues can be represented as correla-
tion function in free field theory. The structure function ¢y is nothing but a
special case of the residue at £, + 82 + 83 = @, which is 1.

This should be compared to what would follow from our ansatz (24). Let
us note that the fusion coefficients indeed have a pole in the presently consid-
ered case. The corresponding residue is most easily calculated by recursion
using the pentagon equation with, say, ey and as equal to —b/2. The residue
of the fusion matrix with one coeflicient being —b/2 is a well-known 2 x 2
matrix, see appendix. We find

Ba —b| _
Fyi 8a—b [Uz 01] =
T'(1 + %) ['(2b51)T(26(Q — 01))

T(1 + 26%) T(6(Q — Bz + 05 — 010))T(O(@ — B2 + 01 — 73))
I'(5(Q —~ 28:))T'(b(Q — 282 + b))

C(b(os + o1 — B2))T(0(2Q — B2 — 03 — 01)) (26)

Our ansatz (24) together with ¢y = 1 therefore implies the following first
order difference equation for g:

g(ﬁﬂlmb:afﬁ:o-l) [ﬁz “b]
1 = F0'1 - - 27
9(B2,03,01)g(—b,01,01) 2=t g3 01 (27)
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This functiona,l equation is solved by the following expression:

(6:03,01) "

£(o8,1)"” 82Dy (Q)Ts(Q — 28)T(201)T5(2Q ~ 20)
T5(2Q — B — 01 — 03)u(o1 + 03 — BYTH(Q — B+ 01 —08)T(Q — B+ 03 —01)’
(28

where f(os,01) is an arbitrary function. Let us furthermore note that one ma.;;)r
derive a second finite difference equation that is related to (27) by substituting
b — b~ if one considers “* B_,-17" instead of “* B_;7*. Taken together, these
two functional equations allow one to conclude that our solution (28) is unique
at least for irrational values of b.

It is finally useful to note that we now have two possible ways to calculate
the structure function ¢_(f; o2, 01): On the one hand one may use our ansatz
(24), using (28) and the following residue of the fusion coefficients:

fAs —b
Fyy Batb [02 o1 ] -
T'(1+b%) T'(2bo)T'(26(Q — 71))

T(1+ 26%) T'(6(Bs + 03 — 01 )L (b(Bz + 01 — 03))
['(2b82 — 2bQ)T'(2bf6; ~ 1)
T'(b{os + 01 + B2 — QNT(b(B2 — 03 — 01 + @))

(29)

On the other hand, c_(8; 02, 1) is one of the cases where a representation in
terms of free field correlation functions is available [7]:

2

c_(Bio2,01) = -%%%l
x T(5(282 — Q))T(2bBz — 1)T(1 — 2b32)T'(1 ~ (262 + b))
X sinwh(Q + B2 — 03 — 1) sinwb(Ba + o3 + 01 — @)

x sin wb(Bz + o3 — o1 ) sinwb(Bs + 1 — 03).
(30)
It is a nontrivial check of the consistency of our approach that the expressions
which one obtains by following these two ways are indeed consistent and agree
if the function f(os,01) is chosen according to

flos,o1) = muy(p?)p* 2" (31)

By collecting the pieces, one finally arrives at the following expression for
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the three point function of boundary operators:

O‘é:%fao'l)ﬁa — (ﬂ.”,},(bZ)bz—ﬂbz) 55 (Bs —f2—F1)

Ty(Q+ B2 — B — B3)Ts(Q + Pz — B - f2)
I'y(Q — 26,)T5(Q)
v Tp(2Q ~ p1 — B2 — Bs)Ts(B2 + Pz — Br)
[y (263 — Q)T (Q — 26a)
y So(B3 + 01 — 03)Sp(Q + B3 — 03 — 01)
Sp(B2 + 02 ~ 03)Se(Q + B2 — o3 — a2)

x 1 70 ds Sb(Ul -+ S)Sb(Uz -+ S)Sb(Ug -+ S)Sb(U.d + 5)
(3 Sp(Vi + 8)Ss(Va + 8)Sp(Va + 8)5,(Q + 8)

—i00
the coefficients U;, V; and i = 1,...,4 read

Uy =01 +02 -1 Vi=Q+0y—0s— 1+ 03
Uo=Q—01+02— 5 Vo =2Q +02 —03 — 1 — P
Us =Bo + 09 — 03 Vz = 209

Uy =Q — P2+ 03— 03

3 Remarks

The details of this section and some additional information can be found
in [14]

1. It is possible to check explicitly that the boundary three point function
is invariant w.r.t. cyclic permutations.

2. One recovers the expression for the boundary reflection amplitude from
the boundary three point function the same way the bulk reflection am-
plitude was recovered from the bulk three point function in [3]. Using
the fact that the fusion matrix depends on conformal weights only, and
is thus invariant when 8; — Q — f;,

O(o30301)Q—ps _ 9(Q ~ B3, 03,01) (78 201)8s (32)

Fab 9(B3,03,01)

From the expression (28) for the function g, one indeed finds formula (16)
for S(B;02,01)-




280

3. One may explicitly check that the two-point function (19) is recovered
by taking e.g. the limit 8; — 0 if the three-point function:

Jim (7B g, (c0)™ B3 (1) B3 (0)) =

§(Bs — Pa) + S(B2;03 01)0(Bs + 2 — Q)

(33)
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Appendix

Special functions

s I'; function
The Double Gamma function introduced by Barnes [15] is defined by:

a o0
logls (8|lwy,we) = (& Z (8 + niwy + nzwz)_t)
t=0

11 ,72=0

-1
Definition: [s(z) = prfaraies=r-

Functional relations:

Vamb=}
T b r
V2rbEtE
T 1/b) = r
o(z + 1/b) T@/b) b(z
T, is a meromorphic function of x, which poles are located at r = —nb—
mb~t,n,meN
Integral representation convergent for 0 < Rez
* di e~ — e~ Q2 (Q/2—x)? QR/2—z
logl’ = — — L
oeru(e) = [ F | e ey e :
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e S, function

Definition: Sp(x) = %ﬁ%

Functional relations:

Sp(x + b) = 2sin(7bz) Sy (z)
Sylx + 1/b) = 2sin(wz/b) Sy (z)

Sp(z) is a meromorphic function of z, which poles are located at = =
—-nb— mb~',n,m € N, and which zeros are located at z = Q + nb +
mb~1,n,m € N,

Integral representation convergent in the strip 0 < Rex < Q)

2sinh(2E)sinh(£) t

oo inh(42 — -
g8 (z) = [ é;{ sinh(§ ~2)t__ (Q —22)

0

e T, function
Definition: Yy(z)™! = Ty (z)T%(Q — )
Functional relations:

Ty(z +b) = %bl—%wﬁ(w)
Ye(z +1/b) = f‘%bzw/b“l’f&(w}

Ty (z) is an entire function of ¢ which zeros are located at # = —nb—mb™!
and z =Q+nb+mb~1, n,m e N,
Integral representation convergent in the strip 0 < Rez <

oo 2 o 120Q t
| lOgTb(m)zf E?.E [(%_m) e_t _.Sll'lh (2 33)2]

- ﬁ - ’-tm
o ¢ sinh % sinh

Restdues of fusion coefficients for f, = —b/2
By definition

gg O3

[/32 “5/2]
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where s, 8’ = =+.

F = L(5(20: ~ b)) (b(b — 262) + 1)
T T(b(or — Bz — 03 + b/2) + DT (b(o1 — B2 + 03 — b/2))
B T'(b(201 — B))T(b(282 — b) — 1)
T T(b(oy + Bz + 03 — 30/2) — )T(b(oy + P2 — 05 — b/2))
_ I'(2 — b(201 — b))D(b(b — 262) + 1)
B I'(2—b(oy + B2+ 03 — 31)/2))1—‘(1 —b{oy + By ~— o3 — b/2))
B T'(2 — b(201 — b))I'(B(285 — b) — 1)
— T(b(—01 + B2 + 03 ~ b/2))T(b(—0o1 + B2 — o3 + b/2) + 1)

Fy_

y

F__
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