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Abstract

Removal of narrowband noise features (also called /ines) of known instrumental
origin from a time series is important for improving the performance of
algorithms, such as those for the detection of transients. We present a new
method for removing lines which (i) is not based on any model for the features
to be removed, (ii) is designed so as not to affect transients substantially and
(iii)) works in the time domain. Property (i) allows lines to be removed
irrespective of their physical origin, (ii) ensures that transients remain detectable
in the residual after line removal and (iii) means that, unlike Fourier domain
methods, line power is not redistributed in the entire frequency band.

PACS numbers: 0705K, 0480N, 9575W

1. Introduction

Real time series from interferometers and their associated environmental sensors are often
contaminated by narrowband noise features or /ines, such as interference from the power
supply. Sometimes these features are strong enough to degrade the performance of algorithms,
such as those that detect transients. For example, transient detection in the frequency domain
would suffer because of power leakage from strong lines biasing spectral estimates. Moreover,
since these features appear non-stationary over short time stretches, a transient detector would
generate excess false alarms.

Thus, it is desirable to ‘clean’ a time series of strong lines before doing further processing
on it. Of course, because of estimation errors caused by the broadband noise, the residual will
be disturbed from the original in narrow frequency bands. The effect on the broadband noise
is not of much concern. However, the effect on signals embedded in the time series should be
as small as possible.
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It is preferable to use time domain methods for line removal as opposed to frequency
domain methods. By the latter we mean methods which work by taking discrete Fourier
transforms (DFTs) of segments of the data, nulling the frequency components around the lines
and inverting back to the time domain. This way of removing lines is only an approximation.
The DFT spreads the power in a line over all frequencies. Hence, suppression of a subset of
the frequency components does not remove all of the line power.

A standard method for removing unwanted line noise is the use of time domain notch
filters [1] which have (ideally) nulls in their transfer functions at the line frequencies. The
disadvantage is that the signal-to-noise ratio of a transient will also be reduced. The reduction
depends on the bandwidth of the transient and also the location of the notches relative to the
shape of the transient spectrum.

Other line removal methods, such as the Kalman filter [2], CLRT [3] and cross-channel
regression [4, 5], first estimate the time series of the line to be removed and then subtract
it from the data. The estimation is based on a model of the line evolution and, hence, only
applies to a subset of lines. Thus, [2] applies to violin resonances whereas [3-5] work for the
power line and its harmonics. Besides this, these models do not explicitly take the effect of
transients into account which implies that these methods will in turn affect transients.

The discussion above provides motivation for developing a method of line removal which
(1) is independent of any model for line evolution, (ii) is resistant to the presence of transients
and (iii) works in the time domain. We introduce a new method, called the median based
line tracker (MBLT), which is explicitly designed to meet these three goals. In this paper we
describe the MBLT algorithm and a few results. A more detailed report on its performance
will be presented in a future study.

The rest of the paper is organized as follows. Section 2.1 describes the MBLT algorithm.
A brief discussion on implementation and computational issues is presented in section 2.2.
This is followed, in section 3, by the presentation of some results obtained using real data. We
conclude with a discussion in section 4.

2. The median based line tracker

We fix some notations first. Given a time series 4, let a(n) be its nth sample and given two
time series @ and b, let @(x)b be a time series ¢ such that c(n) = a(n)b(n).

Let ¥ be the time series from which lines have to be removed. Let F = {f,},
m = 1,..., M, be the carrier frequencies of the lines that are to be removed and B = {b,,},
m = 1,..., M, be the bandwidths around the carrier frequencies that are allowed to be

disturbed (after line removal). In the following, we will assume the sampling frequency of a
time series to be 1 Hz without any loss of generality.

2.1. Algorithm

The algorithm works by successively refining the estimate of each line in F' through several
stages (say, stages 1 to P). Let the estimate in stage & of a line at frequency f; be égk). To

obtain the estimate é&k), the original time series X is first modified by subtracting an auxiliary

time series Eﬁk). Let the modified time series be denoted by fﬁk) =X— Ei.k)

how Eﬁ.k) and éjk)

. We explain below
are obtained.
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The auxiliary series is obtained as (k # 1)

M
~(k ~(k—1
5= 2. & M
=1
mj
where
s =o0. )
The estimate é;k) at stage k > 1 is obtained as follows.

(i) Heterodyne X;k) at the carrier frequency f;. This produces two time series, which we
denote by X ;k) and Y;k) , that are obtained as follows:

X0 4ir® = ¢ (x?” )0 j) 3)
Qj(n) = exp(—2mif;n) 4)

where £ denotes a low pass filter with a cut-off frequency of f;.
(ii) Apply a running median to both quadratures to obtain the time series X ® and Y. The
pply 8 q ] ]
running median V of a time series V is obtained as

V(n) = median({V (r)}) r=n-—mog,...,n+mgy 5)

where my is a fixed number. We call 2my the blocksize for the running median. The

blocksize for éjk) issetto 1/b;.

(iii) The line estimate éjk) is obtained by modulating a carrier at f; with the two quadratures
(k) (k)
X7 and V;

¢ = Re ((22}“ + 137;")) (*)Qj) . 6)

The basic idea behind the above algorithm is to estimate a line after removing the influence of
other strong lines. Removal of other lines is done by subtracting the auxiliary time series Efk) .
The successive stages simply refine this process further. The use of a median for estimation
instead of a mean makes the estimate more robust against transients as we show later.

2.2. Implementation and computational issues

The algorithm described above is a time domain algorithm: the data ¥ do not have to be
divided into segments to get the estimate. For a practical reason, namely, the necessity to pass
arguments to functions as finite-dimensional arrays, ¥ can be broken into segments. However,
by preserving appropriate information about the state of the estimate at the end of one segment,
one can initialize the estimate of the next segment such that continuity is preserved across
segments. This information consists of the median of the last block and samples of the last
block sorted in ascending order.

Calculating the running median is expensive if every block is sorted (sorting is an O (n?)
operation in the worst case). However, to compute the next sample of the running median, all
one needs to do is correctly insert the next sample of the time series into the previously sorted
block and remove the earliest sample of the block. We have developed and implemented an
algorithm in C along this idea which reduces the number of operations per block to O (/n) in
the worst case.



1516 S D Mohanty

60 60
(@ (b)

50 . 50 .

40 . 401 .
o o
k=2 =)

S 30t - € 30t -
2 2
= €
(o)) (=)
© ©
= =

e 20 . e 20 .
2 2
3] k3]
[0} D
) @

= 10} . 10} a
[} [}
3 3
[e] o
o a

0 g 0 ! |

-10 . -10 .

—20 I I I I . I I I I
0 200 400 600 800 1000 0 200 400 600 800 1000
Frequency Frequency

Figure 1. The PSD of (a) the original time series X and () the final residual after line removal.

MBLT is parallelizable and can be implemented on multiple instruction multiple data
parallel processing architectures such as Beowulf clusters. At any given stage, each line
estimate is obtained independently of others (though all estimates from the previous stage are
used). Thus, at each stage different processors can handle the estimation of different subsets
of lines.

The entire algorithm is currently implemented as a Matlab! code. Running on a stand-
alone PC, this code itself is ~5 times faster (for a single line with three stages of refinement)
than what is required for online processing. An MPI [6] based C code is currently under
development.

The computer memory requirements of this algorithm can be significant. This is because
the estimates of all lines must be held in memory with each estimate having the original
sampling frequency. Alternative implementations that require less memory need to be
explored.

The algorithm requires a one time external specification of F' and B (cf section 2.1). This
has to be provided by the user. We currently do this by measuring F and B off the power
spectral density (PSD) of a segment of the data.

! Matlab, a technical computing environment for high-performance numerical computations in linear algebra, is a
product of The MathWorks Inc.
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Figure 2. The PSD of the residual after (a) stage 1 and (b) stage 2.
3. Results

The results presented here should be treated as preliminary. We have used a short (20 s) stretch
of data (the IFO_DMRO channel) from the November 1994 run of the Caltech 40 m prototype
interferometer [8]. For these results, F = {30.718, 39.6, 41.1, 42.6, 52.2, 58.85, 70.00, 79.5,
109.4, 120.0, 139.6, 180.0, 197.82, 209.385, 210.82, 240.0, 246.0, 263.783, 279.155, 300.0,
349.0, 360.0, 418.76, 420.0, 479.95, 488.55, 499.95, 540.0, 558.38, 571.6, 578.66, 581.075,
582.55,583.77,594.183, 595.27,595.914,597.8, 599.05, 599.921, 605.5, 660, 720, 780, 840,
900}, b; < 1.0 Hz except for f; = 70.0 Hz where b; = 12.0 Hz and the number of stages
used was three. The data were down sampled to a sampling frequency of 2 kHz because of
memory limitations on the machine running this code.

3.1. Line removal

Figure 1 shows the PSD of the original time series and the final residual after subtraction.
The suppression is significant for most of the lines, including the violin resonances, except
towards the end of the spectrum (f > 700 Hz). The poor performance for the latter is under
investigation at present. It appears to be more of a technical than a fundamental problem since
the time series corresponding to this band shows much better results when analysed separately.

Figure 2 shows the PSD of the residual for the earlier stages of the algorithm (stages 1
and 2). The progressive improvement in suppression of the lines is evident.
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Figure 3. Effect on a transient. (a) The X quadrature, (b) Y quadrature. In both figures, the faint
dotted lines are the quadrature components, the dashed line shows the running mean estimate and
the solid line shows the running median estimate.

3.2. Effect on transients

Figure 3 shows the quadratures of a line in the presence of a transient. Here, we have used
synthetic data for both the line and the broadband noise. Also shown are the estimates obtained
using a running median and a running mean, the latter being a rough model for line removal
methods, such as a notch filter (cf section 1). The blocksize for the latter is empirically chosen
to give the same variance of the estimation error as the running median. It is evident that the
running median is affected less than the running mean. Correspondingly, after subtraction,
more of the transient will be left behind in the running-median-based residual. Also note that
the running mean is more biased in the wings of the transient.

4. Discussion

A new method is presented for the removal of narrowband noise features from a time series.
This method, MBLT, works in the time domain, does not require the modelling of line evolution
and is designed to have a minimal effect on transients.

Apart from the main channels, MBLT can be used to clean the auxiliary channels (such as
environmental sensors) without the need for any modelling. This allows a better control over
the false alarm rate for transient detection in these channels. Transients detected in auxiliary
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channels can provide anti-coincidence vetoes for events in gravitational wave strain channel
and also help in detector diagnostics.

It is possible to improve upon a running median for rejecting transients. One possibility
could be to take a weighted average over line estimates computed with different blocksizes.
There is also the possibility of merging adaptive filtering methods [7] with an essentially
non-linear method like MBLT.
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