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Abstract

This article is a guide to theorems on existence and global dynamics of solutions of the

Einstein equations. It draws attention to open questions in the field. The local-in-time Cauchy

problem, which is relatively well understood, is surveyed. Global results for solutions with

various types of symmetry are discussed. A selection of results from Newtonian theory and

special relativity that offer useful comparisons is presented. Treatments of global results in the

case of small data and results on constructing spacetimes with prescribed singularity structure

or late-time asymptotics are given. A conjectural picture of the asymptotic behaviour of

general cosmological solutions of the Einstein equations is built up. Some miscellaneous topics

connected with the main theme are collected in a separate section.
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1 Introduction

Systems of partial differential equations are of central importance in physics. Only the simplest
of these equations can be solved by explicit formulae. Those that cannot are commonly studied
by means of approximations. There is, however, another approach that is complementary. This
consists in determining the qualitative behaviour of solutions, without knowing them explicitly.
The first step in doing this is to establish the existence of solutions under appropriate circumstances.
Unfortunately, this is often hard, and obstructs the way to obtaining more interesting information.
When partial differential equations are investigated with a view to applications, proving existence
theorems should not become an end in itself. It is important to remember that, from a more
general point of view, it is only a starting point.

The basic partial differential equations of general relativity are Einstein’s equations. In general,
they are coupled to other partial differential equations describing the matter content of spacetime.
The Einstein equations are essentially hyperbolic in nature. In other words, the general properties
of solutions are similar to those found for the wave equation. It follows that it is reasonable to
try to determine a solution by initial data on a spacelike hypersurface. Thus the Cauchy problem
is the natural context for existence theorems for the Einstein equations. The Einstein equations
are also nonlinear. This means that there is a big difference between the local and global Cauchy
problems. A solution evolving from regular data may develop singularities.

A special feature of the Einstein equations is that they are diffeomorphism invariant. If the
equations are written down in an arbitrary coordinate system then the solutions of these coordinate
equations are not uniquely determined by initial data. Applying a diffeomorphism to one solution
gives another solution. If this diffeomorphism is the identity on the chosen Cauchy surface up to
first order then the data are left unchanged by this transformation. In order to obtain a system
for which uniqueness in the Cauchy problem holds in the straightforward sense that it does for the
wave equation, some coordinate or gauge fixing must be carried out.

Another special feature of the Einstein equations is that initial data cannot be prescribed
freely. They must satisfy constraint equations. To prove the existence of a solution of the Einstein
equations, it is first necessary to prove the existence of a solution of the constraints. The usual
method of solving the constraints relies on the theory of elliptic equations.

The local existence theory of solutions of the Einstein equations is rather well understood.
Section 2 points out some of the things that are not known. On the other hand, the problem
of proving general global existence theorems for the Einstein equations is beyond the reach of
the mathematics presently available. To make some progress, it is necessary to concentrate on
simplified models. The most common simplifications are to look at solutions with various types
of symmetry and solutions for small data. These two approaches are reviewed in Sections 3
and 5, respectively. A different approach is to prove the existence of solutions with a prescribed
singularity structure or late-time asymptotics. This is discussed in Section 6. Section 9 collects
some miscellaneous results that cannot easily be classified. Since insights about the properties of
solutions of the Einstein equations can be obtained from the comparison with Newtonian theory
and special relativity, relevant results from those areas are presented in Section 4.

The sections just listed are to some extent catalogues of known results, augmented with some
suggestions as to how these could be extended in the future. Sections 7 and 8 complement this by
looking ahead to see what the final answer to some interesting general questions might be. They are
necessarily more speculative than the other sections but are rooted in the known results surveyed
elsewhere in the article. Section 7 also summarizes various results on cosmological models with
accelerated expansion.

The area of research reviewed in the following relies heavily on the theory of differential equa-
tions, particularly that of hyperbolic partial differential equations. For the benefit of readers
with little background in differential equations, some general references that the author has found
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to be useful will be listed. A thorough introduction to ordinary differential equations is given
in [165]. A lot of intuition for ordinary differential equations can be obtained from [181]. The
article [27] is full of information, in rather compressed form. A classic introductory text on
partial differential equations, where hyperbolic equations are well represented, is [192]. Use-
ful texts on hyperbolic equations, some of which explicitly deal with the Einstein equations,
are [329, 197, 263, 233, 321, 193, 132].

An important aspect of existence theorems in general relativity that one should be aware of
is their relation to the cosmic censorship hypothesis. This point of view was introduced in an
influential paper by Moncrief and Eardley [242]. An extended discussion of the idea can be found
in [110].

This article is descriptive in nature and equations have been kept to a minimum. A collection
of relevant equations together with the background necessary to understand the notation can be
found in [295].
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2 Local Existence

In this section basic facts about local existence theorems for the Einstein equations are recalled.
Since the theory is well developed and good accounts exist elsewhere (see for instance [143]),
attention is focussed on remaining open questions known to the author. In particular, the questions
of the minimal regularity required to get a well-posed problem and of free boundaries for fluid bodies
are discussed.

2.1 The constraints

The unknowns in the constraint equations are the initial data for the Einstein equations. These
consist of a three-dimensional manifold S, a Riemannian metric hab, and a symmetric tensor kab

on S, and initial data for any matter fields present. The equations are:

R − kabk
ab + (habkab)

2 = 16πρ, (1a)

∇akab −∇b(h
ackac) = 8πjb. (1b)

Here R is the scalar curvature of the metric hab, and ρ and ja are projections of the energy-
momentum tensor. Assuming that the matter fields satisfy the dominant energy condition implies
that ρ ≥ (jaja)1/2. This means that the trivial procedure of making an arbitrary choice of hab

and kab and defining ρ and ja by Equations (1) is of no use for producing physically interesting
solutions.

The usual method for solving the Equations (1) is the conformal method [91]. In this method
parts of the data (the so-called free data) are chosen, and the constraints imply four elliptic
equations for the remaining parts. The case that has been studied the most is the constant
mean curvature (CMC) case, where tr k = habkab is constant. In that case there is an important
simplification. Three of the elliptic equations, which form a linear system, decouple from the
remaining one. This last equation, which is nonlinear, but scalar, is called the Lichnerowicz
equation. The heart of the existence theory for the constraints in the CMC case is the theory of
the Lichnerowicz equation.

Solving an elliptic equation is a non-local problem and so boundary conditions or asymptotic
conditions are important. For the constraints, the cases most frequently considered in the literature
are that where S is compact (so that no boundary conditions are needed) and that where the free
data satisfy some asymptotic flatness conditions. In the CMC case the problem is well understood
for both kinds of boundary conditions [73, 106, 182]. The other case that has been studied in
detail is that of hyperboloidal data [8]. The kind of theorem that is obtained is that sufficiently
differentiable free data, in some cases required to satisfy some global restrictions, can be completed
in a unique way to a solution of the constraints. It should be noted in passing that in certain cases
physically interesting free data may not be “sufficiently differentiable” in the sense it is meant
here. One such case is mentioned at the end of Section 2.6. The usual kinds of differentiability
conditions that are required in the study of the constraints involve the free data belonging to
suitable Sobolev or Hölder spaces. Sobolev spaces have the advantage that they fit well with the
theory of the evolution equations (compare the discussion in Section 2.2). The question of the
minimal differentiability necessary to apply the conformal method has been studied in [237] where
it was shown that the method works for metrics in the Sobolev space Hs with s > 3/2. It was also
shown that each of these solutions can be approximated by a sequence of smooth solutions.

Usually it is not natural to prescribe the values of solutions of the Einstein equations on a finite
boundary. There is, however, one case which naturally occurs in physical problems, namely that of
the boundary of a black hole. Existence of solutions of the constraints appropriate for describing
black holes has been proved by solving boundary value problems in [123] and [238].
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In the non-CMC case our understanding is much more limited although some results have been
obtained in recent years (see [186, 89] and references therein). It is an important open problem
to extend these so that an overview is obtained comparable to that available in the CMC case.
Progress on this could also lead to a better understanding of the question of whether a spacetime
that admits a compact, or asymptotically flat, Cauchy surface also admits one of constant mean
curvature. Up to now there have been only isolated examples that exhibit obstructions to the
existence of CMC hypersurfaces [32]. Until very recently it was not known whether there were
vacuum spacetimes with a compact Cauchy surface admitting no CMC hypersurfaces. In [113] it
was shown using gluing techniques (see below) that spacetimes of this type do exist and this fact
restricts the applicability of CMC foliations for defining a preferred time coordinate in cosmological
spacetimes. Certain limitations of the conformal method in producing non-CMC initial data sets
were exhibited in [188].

It would be interesting to know whether there is a useful concept of the most general physically
reasonable solutions of the constraints representing regular initial configurations. Data of this kind
should not themselves contain singularities. Thus it seems reasonable to suppose at least that
the metric hab is complete and that the length of kab, as measured using hab, is bounded. Does
the existence of solutions of the constraints imply a restriction on the topology of S or on the
asymptotic geometry of the data? This question is largely open, and it seems that information is
available only in the compact and asymptotically flat cases. In the case of compact S, where there
is no asymptotic regime, there is known to be no topological restriction. In the asymptotically
flat case there is also no topological restriction implied by the constraints beyond that implied by
the condition of asymptotic flatness itself [343], [184]. This shows in particular that any manifold
that is obtained by deleting a point from a compact manifold admits a solution of the constraints
satisfying the minimal conditions demanded above. A starting point for going beyond this could be
the study of data that are asymptotically homogeneous. For instance, the Schwarzschild solution
contains interesting CMC hypersurfaces that are asymptotic to the metric product of a round
2-sphere with the real line. More general data of this kind could be useful for the study of the
dynamics of black hole interiors [286].

Recently techniques have been developed for gluing together solutions of the constraints (see
[113] and references therein). Given two solutions of the constraints it is possible, under very
general conditions, to cut a hole in each and connect the resulting pieces by a wormhole to get a
new solution of the constraints. Depending on the variant of the method used the geometry on the
original pieces is changed by an arbitrarily small amount, or not at all. This gives a new flexibility
in constructing solutions of the constraints with interesting properties.

To sum up, the conformal approach to solving the constraints, which has been the standard one
up to now, is well understood in the compact, asymptotically flat and hyperboloidal cases under
the constant mean curvature assumption, and only in these cases. For some other approaches
see [33, 34, 347]. New techniques have been applied by Corvino [117] to prove the existence of
regular solutions of the vacuum constraints on R

3 that are Schwarzschild outside a compact set.
The latter ideas have also flowed into the gluing constructions mentioned above.

2.2 The vacuum evolution equations

The main aspects of the local-in-time existence theory for the Einstein equations can be illustrated
by restricting to smooth (i.e. infinitely differentiable) data for the vacuum Einstein equations.
The generalizations to less smooth data and matter fields are discussed in Sections 2.3 and 2.5,
respectively. In the vacuum case, the data are hab and kab on a three-dimensional manifold S, as
discussed in Section 2.1. A solution corresponding to these data is given by a four-dimensional
manifold M , a Lorentz metric gαβ on M , and an embedding of S in M . Here, gαβ is supposed
to be a solution of the vacuum Einstein equations, while hab and kab are the induced metric and
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second fundamental form of the embedding, respectively.
The basic local existence theorem says that, given smooth data for the vacuum Einstein equa-

tions, there exists a smooth solution of the equations which gives rise to these data [91]. Moreover,
it can be assumed that the image of S under the given embedding is a Cauchy surface for the metric
gαβ. The latter fact may be expressed loosely, identifying S with its image, by the statement that
S is a Cauchy surface. A solution of the Einstein equations with given initial data having S as
a Cauchy surface is called a Cauchy development of those data. The existence theorem is local
because it says nothing about the size of the solution obtained. A Cauchy development of given
data has many open subsets that are also Cauchy developments of that data.

It is intuitively clear what it means for one Cauchy development to be an extension of another.
The extension is called proper if it is strictly larger than the other development. A Cauchy
development that has no proper extension is called maximal. The standard global uniqueness
theorem for the Einstein equations uses the notion of the maximal development. It is due to
Choquet-Bruhat and Geroch [87]. It says that the maximal development of any Cauchy data
is unique up to a diffeomorphism that fixes the initial hypersurface. It is also possible to make
a statement of Cauchy stability that says that, in an appropriate sense, the solution depends
continuously on the initial data. Details on this can be found in [91].

A somewhat stronger form of the local existence theorem is to say that the solution exists on a
uniform time interval in all of space. The meaning of this is not a priori clear, due to the lack of a
preferred time coordinate in general relativity. The following is a formulation that is independent
of coordinates. Let p be a point of S. The temporal extent T (p) of a development of data on S
is the supremum of the length of all causal curves in the development passing through p. In this
way, a development defines a function T on S. The development can be regarded as a solution
that exists on a uniform time interval if T is bounded below by a strictly positive constant. For
compact S this is a straightforward consequence of Cauchy stability. In the case of asymptotically
flat data it is less trivial. In the case of the vacuum Einstein equations it is true, and in fact the
function T grows at least linearly as a function of spatial distance at infinity [106]. It should follow
from the results of [206] that the constant of proportionality in the linear lower bound for T can
be chosen to be unity, but this does not seem to have been worked out explicitly.

When proving the above local existence and global uniqueness theorems it is necessary to use
some coordinate or gauge conditions. At least no explicitly diffeomorphism-invariant proofs have
been found up to now. Introducing these extra elements leads to a system of reduced equations,
whose solutions are determined uniquely by initial data in the strict sense, and not just uniquely
up to diffeomorphisms. When a solution of the reduced equations has been obtained, it must be
checked that it is a solution of the original equations. This means checking that the constraints and
gauge conditions propagate. There are many methods for reducing the equations. An overview of
the possibilities may be found in [139]. See also [143].

2.3 Questions of differentiability

Solving the Cauchy problem for a system of partial differential equations involves specifying a set
of initial data to be considered, and determining the differentiability properties of solutions. Thus,
two regularity properties are involved – the differentiability of the allowed data, and that of the
corresponding solutions. Normally, it is stated that for all data with a given regularity, solutions
with a certain type of regularity are obtained. For instance, in Section 2.2 we chose both types of
regularity to be “infinitely differentiable”. The correspondence between the regularity of data and
that of solutions is not a matter of free choice. It is determined by the equations themselves, and
in general the possibilities are severely limited. A similar issue arises in the context of the Einstein
constraints, where there is a correspondence between the regularity of free data and full data.

The kinds of regularity properties that can be dealt with in the Cauchy problem depend, of
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course, on the mathematical techniques available. When solving the Cauchy problem for the
Einstein equations, it is necessary to deal at least with nonlinear systems of hyperbolic equations.
(There may be other types of equations involved, but they will be ignored here.) For general
nonlinear systems of hyperbolic equations the standard technique is the method of energy estimates.
This method is closely connected with Sobolev spaces, which will now be discussed briefly.

Let u be a real-valued function on R
n. Let

‖u‖s =

(

s
∑

i=0

∫

|Diu|2(x) dx

)1/2

. (2)

The space of functions for which this quantity is finite is the Sobolev space Hs(Rn). Here, |Diu|2
denotes the sum of the squares of all partial derivatives of u of order i. Thus, the Sobolev space
Hs is the space of functions, all of whose partial derivatives up to order s are square integrable.
Similar spaces can be defined for vector valued functions by taking a sum of contributions from the
separate components in the integral. It is also possible to define Sobolev spaces on any Riemannian
manifold, using covariant derivatives. General information on this can be found in [28]. Consider
now a solution u of the wave equation in Minkowski space. Let u(t) be the restriction of this
function to a time slice. Then it is easy to compute that, provided u is smooth and u(t) has
compact support for each t, the quantity ‖Du(t)‖2

s + ‖∂tu(t)‖2
s is time independent for each s. For

s = 0 this is just the energy of a solution of the wave equation. For a general nonlinear hyperbolic
system, the Sobolev norms are no longer time-independent. The constancy in time is replaced by
certain inequalities. Due to the similarity to the energy for the wave equation, these are called
energy estimates. They constitute the foundation of the theory of hyperbolic equations. It is
because of these estimates that Sobolev spaces are natural spaces of initial data in the Cauchy
problem for hyperbolic equations. The energy estimates ensure that a solution evolving from data
belonging to a given Sobolev space on one spacelike hypersurface will induce data belonging to the
same Sobolev space on later spacelike hypersurfaces. In other words, the property of belonging
to a Sobolev space is propagated by the equations. Due to the locality properties of hyperbolic
equations (existence of a finite domain of dependence), it is useful to introduce the spaces Hs

loc
,

which are defined by the condition that whenever the domain of integration is restricted to a
compact set, the integral defining the space Hs is finite.

In the end, the solution of the Cauchy problem should be a function that is differentiable enough
so that all derivatives that occur in the equation exist in the usual (pointwise) sense. A square
integrable function is in general defined only almost everywhere and the derivatives in the above
formula must be interpreted as distributional derivatives. For this reason, a connection between
Sobolev spaces and functions whose derivatives exist pointwise is required. This is provided by the
Sobolev embedding theorem. This says that if a function u on R

n belongs to the Sobolev space
Hs

loc and if k < s − n/2, then there is a k times continuously differentiable function that agrees
with u except on a set of measure zero.

In the existence and uniqueness theorems stated in Section 2.2, the assumptions on the initial
data for the vacuum Einstein equations can be weakened to say that hab should belong to Hs

loc

and kab to Hs−1

loc
. Then, provided s is large enough, a solution is obtained that belongs to Hs

loc
.

In fact, its restriction to any spacelike hypersurface also belongs to Hs
loc, a property that is a

priori stronger. The details of how large s must be would be out of place here, since they involve
examining the detailed structure of the energy estimates. However, there is a simple rule for
computing the required value of s. The value of s needed to obtain an existence theorem for
the Einstein equations using energy estimates is that for which the Sobolev embedding theorem,
applied to spatial slices, just ensures that the metric is continuously differentiable. Thus the
requirement is that s > n/2 + 1 = 5/2, since n = 3. It follows that the smallest possible integer s
is three. Strangely enough, the standard methods only give uniqueness up to diffeomorphisms for
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s ≥ 4. The reason is that in proving the uniqueness theorem a diffeomorphism must be carried out,
which need not be smooth. This apparently leads to a loss of one derivative. In [9] local existence
and uniqueness for the vacuum Einstein equations was proved using a gauge condition defined
by elliptic equations for which this loss does not occur. In that case the gap of one derivative is
eliminated. On the other hand, the occurrence of elliptic equations as part of the reduced Einstein
equations with this gauge makes the result intrinsically global and it is not clear whether it can
be localized in space. Another interesting aspect of the main theorem of [9] is that it includes a
continuation criterion for solutions. There exists a definition of Sobolev spaces for an arbitrary real
number s, and hyperbolic equations can also be solved in the spaces with s not an integer [328].
Presumably these techniques could be applied to prove local existence for the Einstein equations
with s any real number greater than 5/2. In any case, the condition for local existence has been
weakened to s > 2 using other techniques, as discussed in section 2.4.

Consider now C∞ initial data. Corresponding to these data there is a development of class
Hs for each s. It could conceivably be the case that the size of these developments shrinks with
increasing s. In that case, their intersection might contain no open neighbourhood of the initial
hypersurface, and no smooth development would be obtained. Fortunately, it is known that the Hs

developments cannot shrink with increasing s, and so the existence of a C∞ solution is obtained
for C∞ data. It appears that the Hs spaces with s sufficiently large are the only spaces containing
the space of smooth functions for which it has been proved that the Einstein equations are locally
solvable.

What is the motivation for considering regularity conditions other than the apparently very
natural C∞ condition? One motivation concerns matter fields and will be discussed in Section 2.5.
Another is the idea that assuming the existence of many derivatives that have no direct physical
significance seems like an admission that the problem has not been fully understood. A further
reason for considering low regularity solutions is connected to the possibility of extending a local
existence result to a global one. If the proof of a local existence theorem is examined closely it
is generally possible to give a continuation criterion. This is a statement that if a solution on a
finite time interval is such that a certain quantity constructed from the solution is bounded on
that interval, then the solution can be extended to a longer time interval. (In applying this to the
Einstein equations we need to worry about introducing an appropriate time coordinate.) If it can
be shown that the relevant quantity is bounded on any finite time interval where a solution exists,
then global existence follows. It suffices to consider the maximal interval on which a solution is
defined, and obtain a contradiction if that interval is finite. This description is a little vague,
but contains the essence of a type of argument that is often used in global existence proofs. The
problem in putting it into practice is that often the quantity whose boundedness has to be checked
contains many derivatives, and is therefore difficult to control. If the continuation criterion can
be improved by reducing the number of derivatives required, then this can be a significant step
toward a global result. Reducing the number of derivatives in the continuation criterion is closely
related to reducing the number of derivatives of the data required for a local existence proof.

A striking example is provided by the work of Klainerman and Machedon [205] on the Yang–
Mills equations in Minkowski space. Global existence in this case was first proved by Eardley
and Moncrief [130], assuming initial data of sufficiently high differentiability. Klainerman and
Machedon gave a new proof of this, which, though technically complicated, is based on a concep-
tually simple idea. They prove a local existence theorem for data of finite energy. Since energy
is conserved this immediately proves global existence. In this case finite energy corresponds to
the Sobolev space H1 for the gauge potential. Of course, a result of this kind cannot be expected
for the Einstein equations, since spacetime singularities do sometimes develop from regular initial
data. However, some weaker analogue of the result could exist.
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2.4 New techniques for rough solutions

Recently, new mathematical techniques have been developed to lower the threshold of differentia-
bility required to obtain local existence for quasilinear wave equations in general and the Einstein
equations in particular. Some aspects of this development will now be discussed following [204, 209].
A central aspect is that of Strichartz inequalities. These allow one to go beyond the theory based
on L2 spaces and use Sobolev spaces based on the Lebesgue Lp spaces for p 6= 2. The classical ap-
proach to deriving Strichartz estimates is based on the Fourier transform and applies to flat space.
The new ideas allow the use of the Fourier transform to be limited to that of Littlewood–Paley
theory and facilitate generalizations to curved space.

The idea of Littlewood–Paley theory is as follows (see [1] for a good exposition of this). Suppose
that we want to describe the regularity of a function (or, more generally, a tempered distribution)
u on R

n. Differentiability properties of u correspond, roughly speaking, to fall-off properties
of its Fourier transform û. This is because the Fourier transform converts differentiation into
multiplication. The Fourier transform is decomposed as û =

∑

φiû, where φi is a dyadic partition
of unity. The statement that it is dyadic means that all the φi except one are obtained from each
other by scaling the argument by a factor which is a power of two. Transforming back we get the
decomposition u =

∑

ui, where ui is the inverse Fourier transform of φiû. The component ui of u
contains only frequencies of the order 2i. In studying rough solutions of the Einstein equations, the
Littlewood–Paley decomposition is applied to the metric itself. The high frequencies are discarded
to obtain a smoothed metric which plays an important role in the arguments.

Another important element of the proofs is to rescale the solution by a factor depending on
the cut-off λ applied in the Littlewood–Paley decomposition. Proving the desired estimates then
comes down to proving the existence of the rescaled solutions on a time interval depending on λ in
a particular way. The rescaled data are small in some sense and so a connection is established to
the question of long-time existence of solutions of the Einstein equations for small initial data. In
this way, techniques from the work of Christodoulou and Klainerman on the stability of Minkowski
space (see Section 5.2) are brought in.

What is finally proved? In general, there is a close connection between proving local existence
for data in a certain space and showing that the time of existence of smooth solutions depends
only on the norm of the data in the given space. Klainerman and Rodnianski [209] demonstrate
that the time of existence of solutions of the reduced Einstein equations in harmonic coordinates
depends only on the H2+ǫ norm of the initial data for any ǫ > 0. Combining this with the results
of [237] gives an existence result in the same space. It is of interest to try to push the existence
theorem to the limiting case ǫ = 0 or even to the slightly weaker assumption on the data that
the curvature is square integrable. This L2 curvature conjecture (local existence in this setting)
is extremely difficult but interesting progress has been made by Klainerman and Rodnianski in
[210] where the structure of null hypersurfaces was analysed under very weak hypotheses. For this
purpose the authors developed an invariant form of Littlewood-Paley theory [211]. This uses the
asymptotics of solutions of the heat equation on a manifold and is coordinate-independent.

The techniques discussed in this section, which have been stimulated by the desire to understand
the Einstein equations, are also helpful in understanding other nonlinear wave equations. Thus,
this is an example where information can flow from general relativity to the theory of partial
differential equations.

It may be that the technique of using parabolic equations as a tool to better understand
hyperbolic equations can be carried much further. In [327] Tao presents ideas how the harmonic
map heat flow could be used to define a high quality gauge for the study of wave maps.
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2.5 Matter fields

Analogues of the results for the vacuum Einstein equations given in Section 2.2 are known for the
Einstein equations coupled to many types of matter model. These include perfect fluids, elasticity
theory [41], kinetic theory, scalar fields, Maxwell fields, Yang–Mills fields, and combinations of
these. An important restriction is that the general results for perfect fluids and elasticity apply
only to situations where the energy density is uniformly bounded away from zero on the region
of interest. In particular, they do not apply to cases representing material bodies surrounded by
vacuum. In cases where the energy density, while everywhere positive, tends to zero at infinity, a
local solution is known to exist, but it is not clear whether a local existence theorem can be obtained
that is uniform in time. In cases where the fluid has a sharp boundary, ignoring the boundary
leads to solutions of the Einstein–Euler equations with low differentiability (cf. Section 2.3), while
taking it into account explicitly leads to a free boundary problem. This will be discussed in more
detail in Section 2.6. In the case of kinetic or field theoretic matter models it makes no difference
whether the energy density vanishes somewhere or not.

2.6 Free boundary problems

In applying general relativity one would like to have solutions of the Einstein–matter equations
modelling material bodies. As will be discussed in Section 3.1 there are solutions available for
describing equilibrium situations. However, dynamical situations require solving a free boundary
problem if the body is to be made of fluid or an elastic solid. We will now discuss the few results
which are known on this subject. For a spherically symmetric self-gravitating fluid body in general
relativity, a local-in-time existence theorem was proved in [201]. This concerned the case in which
the density of the fluid at the boundary is non-zero. In [279] a local existence theorem was proved
for certain equations of state with vanishing boundary density. These solutions need not have
any symmetry but they are very special in other ways. In particular, they do not include small
perturbations of the stationary solutions discussed in Section 3.1. There is no general result on
this problem up to now.

Remarkably, the free boundary problem for a fluid body is also poorly understood in classical
physics. There is a result for a viscous fluid [313], but in the case of a perfect fluid the problem
was wide open until recently. A major step forward was taken by Wu [346], who obtained a
result for a fluid that is incompressible and irrotational. There is a good physical reason why
local existence for a fluid with a free boundary might fail. This is the Rayleigh–Taylor instability
which involves perturbations of fluid interfaces that grow with unbounded exponential rates (cf.
the discussion in [39]). It turns out that in the case considered by Wu this instability does not
cause problems, and there is no reason to expect that a self-gravitating compressible fluid with
rotation in general relativity with a free boundary cannot also be described by a well-posed free
boundary value problem. For the generalization of the problem considered by Wu to the case of a
fluid with rotation, Christodoulou and Lindblad [105] have obtained estimates that look as if they
should be enough to obtain an existence theorem. Strangely, it proved very difficult to complete the
argument. This point deserves some further comment. In many problems the heart of an existence
proof is obtaining suitable estimates. Then more or less standard approximation techniques can be
used to obtain the desired conclusion (for a discussion of this see [143], Section 3.1). In the problem
studied in [105] it is an appropriate approximation method that is missing. More recently Lindblad
was able to an obtain an existence result using a different approach involving the Nash-Moser
theorem and a detailed analysis of the linearized system about a given solution. He treated the
incompressible case in [225] while in the case of a compressible fluid with non-vanishing boundary
density the linearized analysis has been carried out [224] .

One of the problems in tackling the initial value problem for a dynamical fluid body is that the
boundary is moving. It would be very convenient to use Lagrangian coordinates, since in those
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coordinates the boundary is fixed. Unfortunately, it is not at all obvious that the Euler equations in
Lagrangian coordinates have a well-posed initial value problem, even in the absence of a boundary.
It was, however, recently shown by Friedrich [140] that it is possible to treat the Cauchy problem
for fluids in general relativity in Lagrangian coordinates.

In the case of a fluid with non-vanishing boundary density it is not only the evolution equations
that cause problems. It is already difficult to construct suitable solutions of the constraints. A
theorem on this has recently been obtained by Dain and Nagy [124]. There remains an undesir-
able technical restriction, but the theorem nevertheless provides a very general class of physically
interesting initial data for a self-gravitating fluid body in general relativity.
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3 Global Symmetric Solutions

An obvious procedure to obtain special cases of the general global existence problem for the Einstein
equations that are amenable to attack is to make symmetry assumptions. In this section, we
discuss the results obtained for various symmetry classes defined by different choices of number
and character of Killing vectors.

3.1 Stationary solutions

Many of the results on global solutions of the Einstein equations involve considering classes of
spacetimes with Killing vectors. A particularly simple case is that of a timelike Killing vector,
i.e. the case of stationary spacetimes. In the vacuum case there are very few solutions satisfying
physically reasonable boundary conditions. This is related to no hair theorems for black holes and
lies outside the scope of this review. More information on the topic can be found in the book of
Heusler [176] and in his Living Review [177] (see also [52] where the stability of the Kerr metric
is discussed). Anderson [3, 4] has proved uniqueness theorems for stationary vacuum spacetimes
under very weak assumptions. The case of phenomenological matter models has been reviewed
in [292]. The account given there will be updated in the following.

The area of stationary solutions of the Einstein equations coupled to field theoretic matter mod-
els has been active in recent years as a consequence of the discovery by Bartnik and McKinnon [35]
of a discrete family of regular, static, spherically symmetric solutions of the Einstein–Yang–Mills
equations with gauge group SU(2). The equations to be solved are ordinary differential equations,
and in [35] they were solved numerically by a shooting method. The first existence proof for a
solution of this kind is due to Smoller, Wasserman, Yau and McLeod [318] and involves an arduous
qualitative analysis of the differential equations. The work on the Bartnik–McKinnon solutions,
including the existence theorems, has been extended in many directions. Recently, static solutions
of the Einstein–Yang–Mills equations that are not spherically symmetric were discovered numer-
ically [212]. It is a challenge to prove the existence of solutions of this kind. Now the ordinary
differential equations of the previously known case are replaced by elliptic equations. Moreover,
the solutions appear to still be discrete, so that a simple perturbation argument starting from the
spherical case does not seem feasible. In another development, it was shown that a linearized anal-
ysis indicates the existence of stationary non-static solutions [68]. It would be desirable to study
the question of linearization stability in this case, which, if the answer were favourable, would give
an existence proof for solutions of this kind. It has, however, been argued that solutions of this
kind should not exist [337].

Now we return to phenomenological matter models, starting with the case of spherically sym-
metric static solutions. Basic existence theorems for this case have been proved for perfect flu-
ids [301], collisionless matter [273, 265], and elastic bodies [259]. All these theorems demonstrate
the existence of solutions that are everywhere smooth and exist globally as functions of area radius
for a general class of constitutive relations. The physically significant question of the finiteness of
the mass of these configurations was only answered in these papers under restricted circumstances.
For instance, in the case of perfect fluids and collisionless matter, solutions were constructed by
perturbing about the Newtonian case. Solutions for an elastic body were obtained by perturbing
about the case of isotropic pressure, which is equivalent to a fluid. Further progress on the question
of the finiteness of the mass of the solutions was made in the case of a fluid by Makino [234], who
gave a rather general criterion on the equation of state ensuring the finiteness of the radius. Fur-
ther information on this issue was obtained in [169] using dynamical systems methods. Makino’s
criterion was generalized to kinetic theory in [275]. This resulted in existence proofs for various
models that have been considered in galactic dynamics and which had previously been constructed
numerically (cf. [55, 314] for an account of these models in the non-relativistic and relativistic
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cases, respectively). In the non-relativistic case dynamical systems methods were applied to the
case of collisionless matter in [168]. Most of the work quoted up to now refers to solutions where
the support of the density is a ball. For matter with anisotropic pressure the support may also
be a shell, i.e. the region bounded by two concentric spheres. The existence of static shells in the
case of the Einstein–Vlasov equations was proved in [268].

In the case of self-gravitating Newtonian spherically symmetric configurations of collisionless
matter, it can be proved that the phase space density of particles depends only on the energy of the
particle and the modulus of its angular momentum [36]. This is known as Jeans’ theorem. It was
already shown in [265] that the naive generalization of this to the general relativistic case does not
hold if a black hole is present. Recently, counterexamples to the generalization of Jeans’ theorem to
the relativistic case, which are not dependent on a black hole, were constructed by Schaeffer [312].
It remains to be seen whether there might be a natural modification of the formulation that would
lead to a true statement.

For a perfect fluid there are results stating that a static solution is necessarily spherically
symmetric [228]. They still require a restriction on the equation of state, which it would be
desirable to remove. A similar result is not to be expected in the case of other matter models,
although as yet no examples of non-spherical static solutions are available. In the Newtonian
case examples have been constructed by Rein [269]. (In that case static solutions are defined to
be those in which the particle current vanishes.) For a fluid there is an existence theorem for
solutions that are stationary but not static (models for rotating stars) [167]. At present there are
no corresponding theorems for collisionless matter or elastic bodies. In [269], stationary, non-static
configurations of collisionless matter were constructed in the Newtonian case.

Two obvious characteristics of a spherically symmetric static solution of the Einstein–Euler
equations that has a non-zero density only in a bounded spatial region are its radius R and its
total mass M . For a given equation of state there is a one-parameter family of solutions. These
trace out a curve in the (M, R) plane. In the physics literature, pictures of this curve indicate that
it spirals in on a certain point in the limit of large density. The occurrence of such a spiral and
its precise asymptotic form have been proved rigorously by Makino [235] for a particular choice of
equation of state. An approach to these spirals which leads to a better conceptual understanding
can be found in [169].

The existence of cylindrically symmetric static solutions of the Einstein-Euler system has been
proved in [53]. For some remarks on the question of stability of spherically symmetric solutions
see Section 4.1.

3.2 Spatially homogeneous solutions

A solution of the Einstein equations is called spatially homogeneous if there exists a group of
symmetries with three-dimensional spacelike orbits. In this case there are at least three linearly
independent spacelike Killing vector fields. For most matter models the field equations reduce
to ordinary differential equations. (Kinetic matter leads to an integro-differential equation.) The
most important results in this area have been reviewed in the book [338] edited by Wainwright and
Ellis. See, in particular, Part Two of the book. There remain a host of interesting and accessible
open questions. The spatially homogeneous solutions have the advantage that it is not necessary
to stop at just existence theorems; information on the global qualitative behaviour of solutions can
also be obtained.

An important question that was open for a long time concerns the mixmaster model, as dis-
cussed in [290]. This is a class of spatially homogeneous solutions of the vacuum Einstein equations,
which are invariant under the group SU(2). A special subclass of these SU(2)-invariant solutions,
the (parameter-dependent) Taub–NUT solution, is known explicitly in terms of elementary func-
tions. The Taub–NUT solution has a simple initial singularity which is in fact a Cauchy horizon.
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All other vacuum solutions admitting a transitive action of SU(2) on spacelike hypersurfaces
(Bianchi type IX solutions) will be called generic in the present discussion. These generic Bianchi
IX solutions (which might be said to constitute the mixmaster solution proper) have been believed
for a long time to have singularities that are oscillatory in nature where some curvature invariant
blows up. This belief was based on a combination of heuristic considerations and numerical calcu-
lations. Although these together do make a persuasive case for the accepted picture, until recently
there were no mathematical proofs of these features of the mixmaster model available. This has
now changed. First, a proof of curvature blow-up and oscillatory behaviour for a simpler model
(a solution of the Einstein–Maxwell equations) which shares many qualitative features with the
mixmaster model, was obtained by Weaver [341]. In the much more difficult case of the mixmaster
model itself, corresponding results were obtained by Ringström [306]. Later he extended this in
several directions in [305]. In that paper more detailed information was obtained concerning the
asymptotics and an attractor for the evolution was identified. It was shown that generic solutions
of Bianchi type IX with a perfect fluid whose equation of state is p = (γ − 1)ρ with 1 ≤ γ < 2 are
approximated near the singularity by vacuum solutions. The case of a stiff fluid (γ = 2) which has
a different asymptotic behaviour was analysed completely for all models of Bianchi class A, a class
which includes Bianchi type IX.

Ringström’s analysis of the mixmaster model is potentially of great significance for the math-
ematical understanding of singularities of the Einstein equations in general. Thus, its significance
goes far beyond the spatially homogeneous case. According to extensive investigations of Belinskii,
Khalatnikov and Lifshitz (see [221, 45, 46] and references therein), the mixmaster model should
provide an approximate description for the general behaviour of solutions of the Einstein equations
near singularities. This should apply to many matter models as well as to the vacuum equations.
The work of Belinskii, Khalatnikov, and Lifshitz (BKL) is hard to understand and it is particularly
difficult to find a precise mathematical formulation of their conclusions. This has caused many
people to remain sceptical about the validity of the BKL picture. Nevertheless, it seems that
nothing has ever been found to indicate any significant flaws in the final version. As long as the
mixmaster model itself was not understood this represented a fundamental obstacle to progress on
understanding the BKL picture mathematically. The removal of this barrier opens up an avenue
to progress on this issue. The BKL picture is discussed in more detail in Section 8.

Some recent and qualitatively new results concerning the asymptotic behaviour of spatially
homogeneous solutions of the Einstein–matter equations, both close to the initial singularity and
in a phase of unlimited expansion, (and with various matter models) can be found in [302, 303,
296, 339, 253, 179, 175]. These show in particular that the dynamics can depend sensitively on
the form of matter chosen. (Note that these results are consistent with the BKL picture.) The
dynamics of indefinitely expanding cosmological models is discussed further in Section 7.

3.3 Spherically symmetric solutions

The most extensive results on global inhomogeneous solutions of the Einstein equations obtained
up to now concern spherically symmetric solutions of the Einstein equations coupled to a massless
scalar field with asymptotically flat initial data. In a series of papers, Christodoulou [93, 92, 95,
94, 96, 97, 98, 102] has proved a variety of deep results on the global structure of these solutions.
Particularly notable are his proofs that naked singularities can develop from regular initial data [98]
and that this phenomenon is unstable with respect to perturbations of the data [102]. In related
work, Christodoulou [99, 100, 101] has studied global spherically symmetric solutions of the Einstein
equations coupled to a fluid with a special equation of state (the so-called two-phase model).
Generalization of the results of [93] to the case of a nonlinear scalar field and to the Maxwell-Higgs
system have been given by Chae [78, 79].

The rigorous investigation of the spherically symmetric collapse of collisionless matter in general
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relativity was initiated by Rein and the author [272], who showed that the evolution of small initial
data leads to geodesically complete spacetimes where the density and curvature fall off at large
times. Later, it was shown [276] that independent of the size of the initial data the first singularity,
if there is one at all, must occur at the centre of symmetry. This result uses a time coordinate of
Schwarzschild type; an analogous result for a maximal time coordinate was proved in [291]. The
generalization of these results to the case of charged matter has been investigated in [255] and
[254]. The question of what happens in the collapse uncharged collisionless matter for general
large initial data could not yet be answered by analytical techniques. In [277], numerical methods
were applied to try to make some progress in this direction. The results are discussed below.

Some of the results of Christodoulou have been extended to much more general spacetimes by
Dafermos [120]. In this work there are two basic assumptions. The first is the existence of at least
one trapped surface in the spacetime under consideration. The second is that the matter content is
well behaved in a certain sense which means intuitively that it does not form singularities outside
black hole regions. Under these circumstances conclusions can be drawn on the global structure
of the spacetime. It contains a black hole with a complete null infinity. It has been shown that
collisionless matter has the desired property [121]. It also holds for certain nonlinear scalar fields
and this has led to valuable insights in the discussion of the formation of naked singularities in a
class of models motivated by string theory [174], [119].

Despite the range and diversity of the results obtained by Christodoulou on the spherical
collapse of a scalar field, they do not encompass some of the most interesting phenomena that have
been observed numerically. These are related to the issue of critical collapse. For sufficiently small
data the field disperses. For sufficiently large data a black hole is formed. The question is what
happens in between. This can be investigated by examining a one-parameter family of initial data
interpolating between the two cases. It was found by Choptuik [83] that there is a critical value of
the parameter below which dispersion takes place and above which a black hole is formed, and that
the mass of the black hole approaches zero as the critical parameter value is approached. This gave
rise to a large literature in which the spherical collapse of different kinds of matter was computed
numerically and various qualitative features were determined. For reviews of this see [157, 158]. In
the calculations of [277] for collisionless matter, it was found that in the situations considered the
black hole mass tended to a strictly positive limit as the critical parameter was approached from
above. These results were confirmed and extended by Olabarrieta and Choptuik [258]. There are
no rigorous mathematical results available on the issue of a mass gap for either a scalar field or
collisionless matter and it is an outstanding challenge for mathematical relativists to change this
situation.

Another aspect of Choptuik’s results is the occurrence of a discretely self-similar solution. It
would seem hard to prove the existence of a solution of this kind analytically. For other types of
matter, such as a perfect fluid with linear equation of state, the critical solution is continuously
self-similar and this looks more tractable. The problem reduces to solving a system of singular
ordinary differential equations subject to certain boundary conditions. This problem was solved
in [98] for the case where the matter model is given by a massless scalar field, but the solutions
produced there, which are continuously self-similar, cannot include the Choptuik critical solution.
Bizoń and Wasserman [59] studied the corresponding problem for the Einstein equations coupled
to a wave map with target SU(2). They proved the existence of continuously self-similar solutions
including one which, according the results of numerical calculations, appears to play the role of
critical solution in collapse. Another case where the question of the existence of the critical solution
seems to be a problem that could possibly be solved in the near future is that of a perfect fluid. A
good starting point for this is the work of Goliath, Nilsson, and Uggla [153, 154]. These authors
gave a formulation of the problem in terms of dynamical systems and were able to determine
certain qualitative features of the solutions. See also [74, 75].

A possible strategy for learning more about critical collapse, pursued by Bizoń and collabo-
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rators, is to study model problems in flat space that exhibit features similar to those observed
numerically in the case of the Einstein equations. Until now, only models showing continuous
self-similarity have been found. These include wave maps in various dimensions and the Yang–
Mills equations in spacetimes of dimension greater than four. As mentioned in Section 2.3, it is
known that in four dimensions there exist global smooth solutions of the Yang–Mills equations
corresponding to rather general initial data [130, 205]. In dimensions greater than five it is known
that there exist solutions that develop singularities in finite time. This follows from the existence
of continuously self-similar solutions [58]. Numerical evidence indicates that this type of blow-up
is stable, i.e. occurs for an open set of initial data. The numerical work also indicates that there
is a critical self-similar solution separating this kind of blow-up from dispersion. The spacetime
dimension five is critical for Yang–Mills theory. Apparently singularities form, but in a different
way from what happens in dimension six. There is as yet no rigorous proof of blow-up in five
dimensions.

The various features of Yang–Mills theory just mentioned are mirrored in two dimensions less
by wave maps with values in spheres [57]. In four dimensions, blow-up is known while in three
dimensions there appears (numerically) to be a kind of blow-up similar to that found for Yang–
Mills in dimension five. There is no rigorous proof of blow-up. What is seen numerically is that
the collapse takes place by scaling within a one-parameter family of static solutions. The case
of wave maps is the most favourable known model problem for proving theorems about critical
phenomena associated to singularity formation. The existence of a solution having the properties
expected of the critical solution for wave maps in four dimensions has been proved in [56]. Some
rigorous support for the numerical findings in three dimensions has been given by work of Struwe
[322]. He showed, among other things, that if there is blow-up in finite time it must take place in
a way resembling that observed in the numerical calculations.

Self-similar solutions are characteristic of what is called Type II critical collapse. In Type I
collapse an analogous role is played by static solutions and quite a bit is known about the existence
of these. For instance, in the case of the Einstein–Yang–Mills equations, it is one of the Bartnik–
McKinnon solutions mentioned in Section 3.1 which does this. In the case of collisionless matter
the results of [258] show that at least in some cases critical collapse is mediated by a static solution
in the form of a shell. There are existence results for shells of this kind [268] although no connection
has yet been made between those shells whose existence has been proved and those which have been
observed numerically in critical collapse calculations. Note that Mart́ın-Garćıa and Gundlach [236]
have presented a (partially numerical) construction of self-similar solutions of the Einstein–Vlasov
system.

3.4 Weak null singularities and Price’s law

The results of this subsection concern spherically symmetric solutions but in order to explain
their significance they need to be presented in context. A non-rotating uncharged black hole
is represented by the Schwarzschild solution, which contains a singularity. At this singularity
the Kretschmann scalar RαβγδR

αβγδ blows up uniformly and this represents an obstruction to
extending the spacetime through the singularity, at least in a C2 manner.

A rotating uncharged black hole is represented by the Kerr solution in which the Schwarzschild
singularity is replaced by a Cauchy horizon. This horizon marks a pathology of the global causal
structure of the solution but locally the geometry can be extended smoothly through it. A similar
situation is found in the non-rotating charged black hole which is represented by the Reissner-
Nordström solution. These facts are worrying since they suggest that black holes may generally
lead to causal pathologies. The rotating case is the more physically interesting but the charged case
is a valuable model problem for the rotating case. Spherical symmetry leads to immense technical
simplifications and so only that case will be discussed here. It is the only one where theorems on
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global existence and qualitative behaviour relevant to this problem are available.
It was early suggested that the Cauchy horizon of the Reissner-Nordström solution should

be unstable and that a generic perturbation of the initial data would lead to its being replaced
by a Schwarzschild-like singularity. This scenario turned out to be oversimplified. An alterna-
tive was suggested by Poisson and Israel [261]. In their picture a generic perturbation of the
Reissner-Nordström data leads to the Cauchy horizon being replaced by what they call a weak null
singularity. At this singularity the curvature blows up but the metric can be extended through
the singularity in a way which is continuous and non-degenerate. In this situation it is possible to
make sense of the causal character of the singularity which turns out to be null. Furthermore, an
important invariant, the Hawking mass, blows up at the singularity, a phenomenon known as mass
inflation. All these conclusions were based on heuristic arguments which were later backed up by
numerical results [180].

A mathematical understanding of these effects came with the work of Dafermos [118]. He
showed how, starting from a characteristic initial value problem with data given on two null
hypersurfaces, one of which is the event horizon it is possible to prove that a weak null singularity
forms and that there is mass inflation. He uses a model with an uncharged scalar field and a static
charge and works entirely inside the black hole region.

Ideally one would wish to start with regular data on a standard Cauchy surface and control
both formation of the black hole and the evolution in its interior, This requires using some kind of
charged matter, e.g. a charged scalar field. This is what was done numerically in [180]. Analytically
it remains out of reach at the moment.

In the original heuristic arguments it is important to make statements about the behaviour
of the solution outside the black hole and what behaviour on the horizon results. Here there are
classical heuristic results of Price [262] for a scalar field on a black hole background. He states
that the scalar field falls off in a certain way along the horizon. Let us call this Price’s law.
Now a form of Price’s law and its analogue for the coupled spherically symmetric Einstein-scalar
field system have been proved by Dafermos and Rodnianski [122]. Thus we have come a long way
towards an understanding of the problem discussed here, This has required the development of new
mathematical techniques and these may one day turn out to be of importance in understanding
the nonlinear stability of black holes.

3.5 Cylindrically symmetric solutions

Solutions of the Einstein equations with cylindrical symmetry that are asymptotically flat in all
directions allowed by the symmetry represent an interesting variation on asymptotic flatness. There
are two Killing vectors, one translational (without fixed points) and one rotational (with fixed
points on the axis). Since black holes are apparently incompatible with this symmetry, one may
hope to prove geodesic completeness of solutions under appropriate assumptions. (It would be
interesting to have a theorem making the statement about black holes precise.) A proof of geodesic
completeness has been achieved for the Einstein vacuum equations and for the source-free Einstein–
Maxwell equations in [49], building on global existence theorems for wave maps [108, 107]. For a
quite different point of view on this question involving integrable systems see [345]. A recent paper
of Hauser and Ernst [166] also appears to be related to this question. However, due to the great
length of this text and its reliance on many concepts unfamiliar to this author, no further useful
comments on the subject can be made here.

Solutions of the Einstein-Vlasov system with cylindrical symmetry have been studied by Fjällborg
[135]. He shows global existence provided certain conditions are satisfied near the axis.

Cylindrical symmetry can be generalized by abandoning the rotational Killing vector while
maintaining the translational one. This sitation does not seem to have been studied in the litera-
ture. It may be that results on solutions with approximate cylindrical symmetry may be obtained
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using the work of Krieger [213] on wave maps.

3.6 Spatially compact solutions

In the context of spatially compact spacetimes it is first necessary to ask what kind of global
statements are to be expected. In a situation where the model expands indefinitely it is natural
to pose the question whether the spacetime is causally geodesically complete towards the future.
In a situation where the model develops a singularity either in the past or in the future one can
ask what the qualitative nature of the singularity is. It is very difficult to prove results of this
kind. As a first step one may prove a global existence theorem in a well-chosen time coordinate.
In other words, a time coordinate is chosen that is geometrically defined and that, under ideal
circumstances, will take all values in a certain interval (t−, t+). The aim is then to show that, in
the maximal Cauchy development of data belonging to a certain class, a time coordinate of the
given type exists and exhausts the expected interval. The first result of this kind for inhomogeneous
spacetimes was proved by Moncrief in [240]. This result concerned Gowdy spacetimes. These are
vacuum spacetimes with a two-dimensional Abelian group of isometries acting on compact orbits.
The area of the orbits defines a natural time coordinate (areal time coordinate). Moncrief showed
that in the maximal Cauchy development of data given on a hypersurface of constant time, this
time coordinate takes on the maximal possible range, namely (0,∞). This result was extended to
more general vacuum spacetimes with two Killing vectors in [48]. Andréasson [14] extended it in
another direction to the case of collisionless matter in a spacetime with Gowdy symmetry. This
development was completed in [18] where general cosmological solutions of the Einstein-Vlasov
system with two commuting spacelike Killing vectors were treated. Corresponding results for
spacetimes with hyperbolic symmetry were obtained in [17].

In all of these cases other than Gowdy the areal time coordinate was proved to cover the
maximal globally hyperbolic development but the range of the coordinate was only shown to be
(R0,∞) for an undetermined constant R0 > 0. It was not known whether R0 was necessarily zero
except in the Gowdy case. This issue was settled in [190] for the vacuum case with two commuting
Killing vectors and this was extended to include Vlasov matter in [342]. It turns out that in
vacuum R0 = 0 apart from the exceptional case of the flat Kasner solution and an unconventional
choice of the two Killing vectors. With Vlasov matter and a distribution function which does not
vanish identically R0 = 0 without exception. The corresponding result in cosmological models with
spherical symmetry was proved in [330] where the case of a negative cosmological constant was
also included. For solutions of the Einstein-Vlasov system with hyperbolic symmetry the question
is still open, although the homogeneous case was treated in [330].

Another attractive time coordinate is constant mean curvature (CMC) time. For a general
discussion of this see [286]. A global existence theorem in this time for spacetimes with two Killing
vectors and certain matter models (collisionless matter, wave maps) was proved in [289]. That the
choice of matter model is important for this result was demonstrated by a global non-existence
result for dust in [288]. As shown in [189], this leads to examples of spacetimes that are not
covered by a CMC slicing. Results on global existence of CMC foliations have also been obtained
for spherical and hyperbolic symmetry [283, 69].

A drawback of the results on the existence of CMC foliations just cited is that they require as
a hypothesis the existence of one CMC Cauchy surface in the given spacetime. More recently, this
restriction has been removed in certain cases by Henkel using a generalization of CMC foliations
called prescribed mean curvature (PMC) foliations. A PMC foliation can be built that includes any
given Cauchy surface [173] and global existence of PMC foliations can be proved in a way analogous
to that previously done for CMC foliations [172, 171]. These global foliations provide barriers that
imply the existence of a CMC hypersurface. Thus, in the end it turns out that the unwanted
condition in the previous theorems on CMC foliations is in fact automatically satisfied. Connections
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between areal, CMC, and PMC time coordinates were further explored in [17]. One important
observation there is that hypersurfaces of constant areal time in spacetimes with symmetry often
have mean curvature of a definite sign. Related problems for the Einstein equations coupled to
fields motivated by string theory have been studied by Narita [246, 247, 248, 249].

Once global existence has been proved for a preferred time coordinate, the next step is to
investigate the asymptotic behaviour of the solution as t → t±. There are few cases in which
this has been done successfully. Notable examples are Gowdy spacetimes [109, 185, 112] and
solutions of the Einstein–Vlasov system with spherical and plane symmetry [266]. These last results
have been extended to allow a non-zero cosmological constant in [330]. Progress in constructing
spacetimes with prescribed singularities will be described in Section 6. In the future this could lead
in some cases to the determination of the asymptotic behaviour of large classes of spacetimes as
the singularity is approached. Detailed information has been obtained on the late-time behaviour
of a class of inhomogeneous solutions of the Einstein-Vlasov system with positive cosmological
constant in [331] and [332] (see section 7.6).

In the case of polarized Gowdy spacetimes a description of the late-time asymptotics was given
in [112]. A proof of the validity of the asymptotic expansions can be found in [194]. The central
object in the analysis of these spacetimes is a function P that satisfies the equation Ptt + t−1Pt =
Pθθ. The picture that emerges is that the leading asymptotics are given by P = A log t + B for
constants A and B, this being the form taken by this function in a general Kasner model, while
the next order correction consists of waves whose amplitude decays like t−1/2, where t is the usual
Gowdy time coordinate. The entire spacetime can be reconstructed from P by integration. It
turns out that the generalized Kasner exponents converge to (1, 0, 0) for inhomogeneous models.
This shows that if it is stated that these models are approximated by Kasner models at late times
it is necessary to be careful in what sense the approximation is supposed to hold.

General (non-polarized) Gowdy models, which are technically much more difficult to handle,
have been analysed in [310]. Interesting and new qualitative behaviour was found. This is one
of the rare examples where a rigorous mathematical approach has discovered phenomena which
had not previously been suspected on the basis of heuristic and numerical work. In the general
Gowdy model the function P is joined by a function Q and these two functions satisfy a coupled
system of nonlinear wave equations. Assuming periodic boundary conditions the solution at a
fixed time t defines a closed loop in the (P, Q) plane. (In fact it is natural to interpret it as the
hyperbolic plane.) Thus the solution as a whole can be represented by a loop which moves in the
hyperbolic plane. On the basis of what happens in the polarized case it might be expected that
the following would happen at late times. The diameter of the loop shrinks like t−1/2 while the
centre of the loop, defined in a suitable way moves along geodesic. In [310] Ringström shows that
there are solutions which behave in the way described but there are also just as many solutions
which behave in a quite different way. The shrinking of the diameter is always valid but the way
the resulting small loop moves is different. There are solutions where it converges to a circle in
the hyperbolic plane which is not a geodesic and it continues to move around this circle for ever.
A physical interpretation of this behaviour does not seem to be known.

Ringström has also obtained important new results on the structure of singularities in Gowdy
spacetimes. They are discussed in section 8.4.
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4 Newtonian Theory and Special Relativity

To put the global results discussed in this article into context it is helpful to compare with Newto-
nian theory and special relativity. Some of the theorems that have been proved in those contexts
and that can offer insight into questions in general relativity will now be reviewed. It should be
noted that even in these simpler contexts open questions abound.

4.1 Hydrodynamics

Solutions of the classical (compressible) Euler equations typically develop singularities, i.e. discon-
tinuities of the basic fluid variables, in finite time [316]. Some of the results of [316] were recently
generalized to the case of a relativistic fluid [162]. The proofs of the development of singularities
are by contradiction and so do not give information about what happens when the smooth solution
breaks down. One of the things that can happen is the formation of shock waves and it is known
that, at least in certain cases, solutions can be extended in a physically meaningful way beyond the
time of shock formation. The extended solutions only satisfy the equations in the weak sense. For
the classical Euler equations there is a well-known theorem on global existence of weak solutions
in one space dimension which goes back to [152]. This has been generalized to the relativistic case.
Smoller and Temple treated the case of an isentropic fluid with linear equation of state [317] while
Chen analysed the cases of polytropic equations of state [81] and flows with variable entropy [82].
This means that there is now an understanding of this question in the relativistic case similar to
that available in the classical case.

In space dimensions higher than one there are no general global existence theorems. For a long
time there were also no uniqueness theorems for weak solutions even in one dimension. It should
be emphasized that weak solutions can easily be shown to be non-unique unless they are required
to satisfy additional restrictions such as entropy conditions. A reasonable aim is to find a class of
weak solutions in which both existence and uniqueness hold. In the one-dimensional case this has
recently been achieved by Bressan and collaborators (see [65, 67, 66] and references therein).

It would be desirable to know more about which quantities must blow up when a singular-
ity forms in higher dimensions. A partial answer was obtained for classical hydrodynamics by
Chemin [80]. The possibility of generalizing this to relativistic and self-gravitating fluids was
studied by Brauer [63]. There is one situation in which a smooth solution of the classical Euler
equations is known to exist for all time. This is when the initial data are small and the fluid initially
is flowing uniformly outwards. A theorem of this type has been proved by Grassin [156]. There
is also a global existence result due to Guo [159] for an irrotational charged fluid in Newtonian
physics, where the repulsive effect of the charge can suppress the formation of singularities.

A question of great practical interest for physics is that of the stability of equilibrium stel-
lar models. The linear stability of a large class of static spherically symmetric solutions of the
Einstein–Euler equations within the class of spherically symmetric perturbations has been proved
by Makino [234] (cf. also [222] for the Newtonian problem). A nonlinear stability result for solu-
tions of the Euler-Poisson system was proved in [270] under the assumption of global existence.
The spectral properties of the linearized operator for general (i.e. non-spherically symmetric) per-
turbations in the Newtonian problem have been studied by Beyer [51]. This could perhaps provide
a basis for a stability analysis, but this has not been done.

4.2 Kinetic theory

Collisionless matter is known to admit a global singularity-free evolution in many cases. For
self-gravitating collisionless matter, which is described by the Vlasov–Poisson system, there is
a general global existence theorem [260, 230]. There is also a version of this which applies to
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Newtonian cosmology [274]. A more difficult case is that of the Vlasov–Maxwell system, which
describes charged collisionless matter. Global existence is not known for general data in three
space dimensions but has been shown in two space dimensions [149, 150] and in three dimensions
with one symmetry [148] or with almost spherically symmetric data [264].

A model system which has attracted some interest (see [16]) is the Nordström-Vlasov system
where the Vlasov equation is coupled to a scalar field as in Nordström’s theory of gravitation. This
is not a physically correct model but may be useful for obtaining mathematical insights. A similar
procedure was used to look for numerical insights in [315]. At the moment the state of knowledge
concerning this system can be summed up by saying that it is roughly equal to that available for
the Vlasov–Maxwell system.

The nonlinear stability of static solutions of the Vlasov–Poisson system describing Newtonian
self-gravitating collisionless matter has been investigated using the energy–Casimir method. For
information on this see [160] and its references. The energy–Casimir method has been applied to
the Einstein equations in [344].

For the classical Boltzmann equation, global existence and uniqueness of smooth solutions has
been proved for homogeneous initial data and for data that are small or close to equilibrium. For
general data with finite energy and entropy, global existence of weak solutions (without unique-
ness) was proved by DiPerna and Lions [127]. For information on these results and on the classical
Boltzmann equation in general see [76, 77]. Despite the non-uniqueness it is possible to show that
all solutions tend to equilibrium at late times. This was first proved by Arkeryd [25] by non-
standard analysis and then by Lions [229] without those techniques. It should be noted that since
the usual conservation laws for classical solutions are not known to hold for the DiPerna–Lions
solutions, it is not possible to predict which equilibrium solution a given solution will converge to.
In the meantime, analogues of several of these results for the classical Boltzmann equation have
been proved in the relativistic case. Global existence of weak solutions was proved in [129]. Global
existence and convergence to equilibrium for classical solutions starting close to equilibrium was
proved in [151]. On the other hand, global existence of classical solutions for small initial data
is not known. Convergence to equilibrium for weak solutions with general data was proved by
Andréasson [13]. Until recently there was no existence and uniqueness theorem in the literature
for general spatially homogeneous solutions of the relativistic Boltzmann equation. A paper claim-
ing to prove existence and uniqueness for solutions of the Einstein–Boltzmann system which are
homogeneous and isotropic [244] contains fundamental errors. These problems were corrected in
[257] and a global existence theorem for the special relativistic Boltzmann equation was obtained.
In [256] this was generalized to a global existence theorem for LRS Bianchi type I solutions of the
Einstein-Boltzmann system.

Further information on kinetic theory and its relation to general relativity can be found in the
Living Review of Andréasson [15].

4.3 Elasticity theory

There is an extensive literature on mathematical elasticity theory but the mathematics of self-
gravitating elastic bodies seems to have been largely neglected. An existence theorem for spheri-
cally symmetric elastic bodies in general relativity was mentioned in Section 3.1. More recently,
Beig and Schmidt [40] proved an existence theorem for static elastic bodies subject to Newtonian
gravity, which need not be spherically symmetric. This was extended to rotating bodies and special
relativity in [42].
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5 Global Existence for Small Data

An alternative to symmetry assumptions is provided by “small data” results, where solutions are
studied that develop from data close to those for known solutions. This leads to some simplification
in comparison to the general problem, but with present techniques it is still very hard to obtain
results of this kind.

5.1 Stability of de Sitter space

In [136], Friedrich proved a result on the stability of de Sitter space. He gives data at infinity but
the same type of argument can be applied starting from a Cauchy surface in spacetime to give an
analogous result. This concerns the Einstein vacuum equations with positive cosmological constant
and is as follows. Consider initial data induced by de Sitter space on a regular Cauchy hypersurface.
Then all initial data (vacuum with positive cosmological constant) near enough to these data in
a suitable (Sobolev) topology have maximal Cauchy developments that are geodesically complete.
The result gives much more detail on the asymptotic behaviour than just this and may be thought
of as proving a form of the cosmic no hair conjecture in the vacuum case. (This conjecture says
roughly that the de Sitter solution is an attractor for expanding cosmological models with positive
cosmological constant.) This result is proved using conformal techniques and, in particular, the
regular conformal field equations developed by Friedrich. An alternative proof of this result which
extends to all higher even dimensions was given in [5]. For some comments on the case of odd
dimensions see [298].

There are results obtained using the regular conformal field equations for negative or vanishing
cosmological constant [138, 141], but a detailed discussion of their nature would be out of place
here (cf. however Section 9.1).

5.2 Stability of Minkowski space

Another result on global existence for small data is that of Christodoulou and Klainerman on
the stability of Minkowski space [104]. The formulation of the result is close to that given in
Section 5.1, but now de Sitter space is replaced by Minkowski space. Suppose then that initial
data for the vacuum Einstein equations are prescribed that are asymptotically flat and sufficiently
close to those induced by Minkowski space on a hyperplane. Then Christodoulou and Klainerman
prove that the maximal Cauchy development of these data is geodesically complete. They also
provide a wealth of detail on the asymptotic behaviour of the solutions. The proof is very long
and technical. The central tool is the Bel–Robinson tensor, which plays an analogous role for the
gravitational field to that played by the energy-momentum tensor for matter fields. Apart from
the book of Christodoulou and Klainerman itself, some introductory material on geometric and
analytic aspects of the proof can be found in [62, 103], respectively. The result for the vacuum
Einstein equations was generalized to the case of the Einstein–Maxwell system by Zipser [348].

In the original version of the theorem, initial data had to be prescribed on all of R
3. A general-

ization described in [206] concerns the case where data need only be prescribed on the complement
of a compact set in R

3. This means that statements can be obtained for any asymptotically flat
spacetime where the initial matter distribution has compact support, provided attention is confined
to a suitable neighbourhood of infinity. The proof of the new version uses a double null foliation
instead of the foliation by spacelike hypersurfaces previously used and leads to certain conceptual
simplifications. A detailed treatment of this material can be found in the book of Klainerman and
Nicolò [207].

An aspect of all this work which seemed less than optimal was the following. Well-known
heuristic analyses by relativists produced a detailed picture of the fall-off of radiation fields in
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asymptotically flat solutions of the Einstein equations, known as peeling. It says that certain com-
ponents of the Weyl tensor decay at certain rates. The analysis of Christodoulou and Klainerman
reproduced some of these fall-off rates but not all. More light was shed on this discrepancy by
Klainerman and Nicolò [208] who showed that if the fall-off conditions on the initial data assumed
in [104] are strengthened somewhat then peeling can be proved.

A much shorter proof of the stability of Minkowski space has been given by Lindblad and
Rodnianski [227]. It uses harmonic coordinates and so is closer to the original local existence proof
of Choquet-Bruhat. The fact that this approach was not used earlier is related to the fact that the
null condition, an important structural condition for nonlinear wave equations which implies global
existence for small data, is not satisfied by the Einstein equations written in harmonic coordinates.
Lindblad and Rodnianski formulated a generalization called the weak null condition [226]. This is
only one element which goes into the global existence proof but it does play an important role. The
result of Lindblad and Rodnianski does not give as much detail about the asymptotic structure
as the approach of Christodoulou and Klainerman. On the other hand it seems that the proof
generalizes without difficulty to the case of the Einstein equations coupled to a massless scalar
field.

5.3 Stability of the (compactified) Milne model

The interior of the light cone in Minkowski space foliated by the spacelike hypersurfaces of constant
Lorentzian distance from the origin can be thought of as a vacuum cosmological model, sometimes
known as the Milne model. By means of a suitable discrete subgroup of the Lorentz group it can be
compactified to give a spatially compact cosmological model. With a slight abuse of terminology
the latter spacetime will also be referred to here as the Milne model. The stability of the latter
model has been proved by Andersson and Moncrief (see [7] and [10]). The result is that, given
data for the Milne model on a manifold obtained by compactifying a hyperboloid in Minkowski
space, the maximal Cauchy developments of nearby data are geodesically complete in the future.
Moreover, the Milne model is asymptotically stable in the sense that any other solution in this
class converges towards the Milne model in terms of suitable dimensionless variables.

The techniques used by Andersson and Moncrief are similar to those used by Christodoulou
and Klainerman. In particular, the Bel–Robinson tensor is crucial. However, their situation is
much simpler than that of Christodoulou and Klainerman, so that the complexity of the proof is
not so great. This has to do with the fact that the fall-off of the fields towards infinity in the
Minkowksi case is different in different directions, while it is uniform in the Milne case. Thus it is
enough in the latter case to always contract the Bel–Robinson tensor with the same timelike vector
when deriving energy estimates. The fact that the proof is simpler opens up a real possibility of
generalizations, for instance by adding different matter models.

5.4 Stability of the Bianchi type III form of flat spacetime

Another vacuum cosmological model whose nonlinear stability has been investigated is the Bianchi
III form of flat spacetime. To obtain this model, first do the construction described in the last
section with the difference that the starting solution is three-dimensional Minkowski space. Then,
take the metric product of the resulting three-dimensional Lorentz manifold with a circle. This
defines a flat spacetime that has one Killing vector, which is the generator of rotations of the circle.
It has been shown by Choquet-Bruhat and Moncrief [90] that this solution is stable under small
vacuum perturbations preserving the one-dimensional symmetry. More precisely, they proved the
result only for the polarized case. This restriction was lifted in [84]. As in the case of the Milne
model, a natural task is to generalize this result to spacetimes with suitable matter content. It
has been generalized to the Einstein-Maxwell-Higgs system in [85]. The reasons it is necessary to
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restrict to symmetric perturbations in this analysis, in contrast to what happens with the Milne
model, are discussed in detail in [90].

One of the main techniques used is a method of modified energy estimates that is likely to be
of more general applicability. The Bel–Robinson tensor plays no role. The other main technique is
based on the fact that the problem under study is equivalent to the study of the 2+1-dimensional
Einstein equations coupled to a wave map (a scalar field in the polarized case). This helps to
explain why the use of the Dirichlet energy could be imported into this problem from the work
of [11] on 2+1 vacuum gravity.
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6 Prescribed Asymptotics

If it is too hard to get information on the qualitative nature of solutions by evolving from a regular
initial hypersurface toward a certain limiting regime (such as a possible singularity or phase of
unlimited expansion), an alternative approach is to construct spacetimes with given asymptotics.
Recently, the latter method has made significant progress and the new results are presented in this
section.

6.1 Isotropic singularities

The existence and uniqueness results discussed in this section are motivated by Penrose’s Weyl
curvature hypothesis. Penrose suggests that the initial singularity in a cosmological model should
be such that the Weyl tensor tends to zero or at least remains bounded. There is some difficulty
in capturing this by a geometric condition, and it was suggested in [155] that a clearly formulated
geometric condition (which, on an intuitive level, is closely related to the original condition) is
that the conformal structure should remain regular at the singularity. Singularities of this type
are known as conformal or isotropic singularities.

Consider now the Einstein equations coupled to a perfect fluid with the radiation equation of
state p = ρ/3. Then, it has been shown [251, 252, 114] that solutions with an isotropic singularity
are determined uniquely by certain free data given at the singularity. The data that can be given
are, roughly speaking, half as much as in the case of a regular Cauchy hypersurface. The method
of proof is to derive an existence and uniqueness theorem for a suitable class of singular hyperbolic
equations. In [22] this was extended to the equation of state p = (γ − 1)ρ for any γ satisfying
1 < γ ≤ 2.

What happens to this theory when the fluid is replaced by a different matter model? The study
of the case of a collisionless gas of massless particles was initiated in [23]. The equations were put
into a form similar to that which was so useful in the fluid case and therefore likely to be conducive
to proving existence theorems. Then theorems of this kind were proved in the homogeneous special
case. These were extended to the general (i.e. inhomogeneous) case in [21]. The picture obtained
for collisionless matter is very different from that for a perfect fluid. Much more data can be given
freely at the singularity in the collisionless case.

These results mean that the problem of isotropic singularities has largely been solved. There do,
however, remain a couple of open questions. What happens if the massless particles are replaced
by massive ones? What happens if the matter is described by the Boltzmann equation with non-
trivial collision term? Does the result in that case look more like the Vlasov case or more like the
Euler case? A formal power series analysis of this last question was given in [336]. It was found
that the asymptotic behaviour depends very much on the growth of the collision kernel for large
values of the momenta.

6.2 Fuchsian equations

The singular equations that arise in the study of isotropic singularities are closely related to what
Kichenassamy [197] calls Fuchsian equations. He has developed a rather general theory of these
equations (see [197, 196, 195], and also the earlier papers [29, 198, 199]). In [200] this was applied
to analytic Gowdy spacetimes on T 3 to construct a family of vacuum spacetimes depending on
the maximum number of free functions (for the given symmetry class) whose singularities can be
described in detail. The symmetry assumed in that paper requires the two-surfaces orthogonal to
the group orbits to be surface-forming (vanishing twist constants). In [183] a corresponding result
was obtained for the class of vacuum spacetimes with polarized U(1) × U(1) symmetry and non-
vanishing twist. The analyticity requirement on the free functions in the case of Gowdy spacetimes
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on T 3 was reduced to smoothness in [294]. There are also Gowdy spacetimes on S3 and S2 × S1,
which have been less studied than those on T 3. The Killing vectors have zeros, defining axes, and
these lead to technical difficulties. In [319] Fuchsian techniques were applied to Gowdy spacetimes
on S3 and S2 × S1. The maximum number of free functions was not obtained due to difficulties
on the axes.

In [187] solutions of the vacuum Einstein equations with U(1) symmetry and controlled sin-
gularity structure were constructed. They are required to satisfy some extra conditions, being
polarized or half-polarized. Without these conditions oscillations are expected. The result was
generalized to a larger class of topologies in [88]

Anguige [19] has obtained results on solutions with perfect fluid that are general under the
condition of plane symmetry, which is stronger than Gowdy symmetry. He also extended this to
polarized Gowdy symmetry in [20].

Work related to these Fuchsian methods was done earlier in a somewhat simpler context by
Moncrief [241], who showed the existence of a large class of analytic vacuum spacetimes with
Cauchy horizons.

As a result of the BKL picture, it cannot be expected that the singularities in general solutions of
the Einstein equations in vacuum or with a non-stiff fluid can be handled using Fuchsian techniques
(cf. Section 8.1). However, things look better in the presence of a massless scalar field or a stiff
fluid. For these types of matter it has been possible [12] to prove a theorem analogous to that
of [200] without requiring symmetry assumptions. The same conclusion can be obtained for a
scalar field with mass or with a potential of moderate growth [293].

The results included in this review concern the Einstein equations in four spacetime dimensions.
Of course, many of the questions discussed have analogues in other dimensions and these may be
of interest for string theory and related topics. In [125] Fuchsian techniques were applied to the
Einstein equations coupled to a variety of field theoretic matter models in arbitrary dimensions.
One of the highlights is the result that it is possible to apply Fuchsian techniques without requiring
symmetry assumptions to the vacuum Einstein equations in spacetime dimension at least eleven.
Many new results are also obtained in four dimensions. For instance, the Einstein–Maxwell–dilaton
and Einstein–Yang–Mills equations are treated. The general nature of the results is that, provided
certain inequalities are satisfied by coupling constants, solutions with prescribed singularities can
be constructed that depend on the same number of free functions as the general solution of the given
Einstein–matter system. Other results on models coming from string theory have been obtained
by Fuchsian methods in [250, 248, 249].

6.3 Asymptotics for a phase of accelerated expansion

Fuchsian techniques cannot only be used to construct singular spacetimes; they can also be used
to construct spacetimes which are future geodesically complete and which exhibit accelerated
expansion at late times. A solution of the Einstein equations with a foliation of spacelike hyper-
surfaces whose mean curvature trk is negative can be thought of as an expanding cosmological
model. Supposing, for simplicity, that the hypersurfaces are compact their volume V (t) satisfies
dV/dt = −(trk)V . Associated to the volume V is a length scale l = V 1/3, (This formula applies
to the case of 3 space dimensions. In n dimensions it should be l = V 1/n.) Expansion corresponds
to l̇ > 0 which is equivalent to trk < 0. The defining condition for accelerated expansion is l̈ > 0.
This is equivalent to − d

dt (trk)+ 1

3
(trk)2 > 0. If the leaves of the foliation are not compact this can

be taken as the definition of accelerated expansion.
In [298] Fuchsian techniques were used to construct solutions of the Einstein vacuum equations

with positive cosmological constant in any dimension which have accelerated expansion at late times
and and are not assumed to have any symmetry. Detailed asymptotic expansions are obtained
for the late-time behaviour of these solutions. In the case of three spacetime dimensions these
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expansions were first written down by Starobinsky [320]. These spacetimes are closely related to
those discussed in section 5.1. In even spacetime dimensions they have asymptotic expansions in
powers of e−Ht where H =

√

Λ/3 but in odd dimensions there are in general terms containing a
positive power of t multiplied by a power of e−Ht.
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7 Asymptotics of Expanding Cosmological Models

The aim of this section is to present a picture of the dynamics of forever-expanding cosmological
models, by which we mean spacetimes that are maximal globally hyperbolic developments and
which can be covered by a foliation by Cauchy surfaces whose mean curvature tr k is strictly
negative. In contrast to the approach to the big bang considered in Section 8, the spatial topology
can be expected to play an important role in the present considerations. Intuitively, it may well
happen that gravitational waves have time to propagate all the way around the universe. It will
be assumed, as the simplest case, that the spacetimes considered admit a compact Cauchy surface.
Then the hypersurfaces of negative mean curvature introduced above have finite volume and this
volume is a strictly increasing function of time.

Models with accelerated expansion are now an important subject in cosmology. They have
been important for a long time in connection with the early universe, where inflation plays a key
role. More recently they have acquired a new significance in view of accumulating observational
evidence that the expansion of the universe is accelerating at the present epoch. For these reasons
it is particularly interesting to consider solutions of the Einstein equations which are appropriate
for modelling cosmic acceleration. The last four subsections are devoted to various aspects of this
topic. An introductory account which describes some of the physical background can be found in
[299].

7.1 Lessons from homogeneous solutions

Which features should we focus on when thinking about the dynamics of forever expanding cos-
mological models? Consider for a moment the Kasner solution

− dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2, (3)

where p1 +p2 +p3 = 1 and p2
1 +p2

2 +p2
3 = 1. These are the first and second Kasner relations. They

imply that not all pi can be strictly positive. Taking the coordinates x, y and z to be periodic,
gives a vacuum cosmological model whose spatial topology is that of a three-torus. The volume of
the hypersurfaces t = const. grows monotonically. However, the geometry does not expand in all
directions, since not all pi are positive. This can be reformulated in a way which is more helpful
when generalizing to inhomogeneous models. In fact the quantities −pi are the eigenvalues of the
second fundamental form. The statement then is that the second fundamental form is not negative
definite. Looking at other homogeneous models indicates that this behaviour of the Kasner solution
is not typical of what happens more generally. On the contrary, it seems reasonable to conjecture
that in general the second fundamental form eventually becomes negative definite, at least in the
presence of matter.

Some examples will now be presented. The following discussion makes use of the Bianchi
classification of homogenous cosmological models (see e.g. [338]). If we take the Kasner solution
and add a perfect fluid with equation of state p = (γ − 1)ρ, 1 ≤ γ < 2, maintaining the symmetry
(Bianchi type I), then the eigenvalues λi of the second fundamental satisfy λi/tr k → 1/3 in the
limit of infinite expansion. The solution isotropizes. More generally this does not happen. If
we look at models of Bianchi type II with non-tilted perfect fluid, i.e. where the fluid velocity
is orthogonal to the homogeneous hypersurfaces, then the quantities pi = λi/tr k converge to
limits that are positive but differ from 1/3 (see [338], p. 138.) There is partial but not complete
isotropization. The quantities pi just introduced are called generalized Kasner exponents, since in
the case of the Kasner solution they reduce to the pi in the metric form (3). This kind of partial
isotropization, ensuring the definiteness of the second fundamental form at late times, seems to be
typical.

28



Intuitively, a sufficiently general vacuum spacetime should resemble gravitational waves prop-
agating on some metric describing the large-scale geometry. This could even apply to spatially
homogeneous solutions, provided they are sufficiently general. Hence, in that case also there should
be partial isotropization. This expectation is confirmed in the case of vacuum spacetimes of Bianchi
type VIII [307]. In that case the generalized Kasner exponents converge to non-negative limits dif-
ferent from 1/3. For a vacuum model this can only happen if the quantity R̂ = R/(tr k)2, where R
is the spatial scalar curvature, does not tend to zero in the limit of large time. Detailed asymptotics
for these spacetimes has been obtained in [308].

The Bianchi models of type VIII are the most general indefinitely expanding models of class A.
Note, however, that models of class VIh for all h together are just as general. The latter models
with perfect fluid and equation of state p = (γ − 1)ρ sometimes tend to the Collins model for an
open set of values of h for each fixed γ (cf. [338], p. 160). These models do not in general exhibit
partial isotropization. It is interesting to ask whether this is connected to the issue of spatial
boundary conditions. General models of class B cannot be spatially compactified in such a way as
to be locally spatially homogeneous while models of Bianchi type VIII can. See also the discussion
in [31].

Another issue is what assumptions on matter are required in order that it have the effect of
(partial) isotropization. Consider the case of Bianchi I. The case of a perfect fluid has already been
mentioned. Collisionless matter described by kinetic theory also leads to isotropization (at least
under the assumption of reflection symmetry), as do fluids with almost any physically reasonable
equation of state [287]. There is, however, one exception. This is the stiff fluid, which has a linear
equation of state with γ = 2. In that case the generalized Kasner exponents are time-independent,
and may take on negative values. In a model with two non-interacting fluids with linear equation
of state the one with the smaller value of γ dominates the dynamics at late times [116], and so
the isotropization is restored. Consider now the case of a magnetic field and a perfect fluid with
linear equation of state. A variety of cases of Bianchi types I, II and VI0 have been studied
in [216, 217, 218], with a mixture of rigorous results and conjectures being obtained. The general
picture seems to be that, apart from very special cases, there is at least partial isotropization. The
asymptotic behaviour varies with the parameter γ in the equation of state and with the Bianchi type
(only the case γ ≥ 1 will be considered here). At one extreme, Bianchi type I models with γ ≤ 4/3
isotropize. At the other extreme, the long time behaviour resembles that of a magnetovacuum
model. This occurs for γ > 5/3 in type I, for γ > 10/7 in type II and for all γ > 1 in type VI0. In
all these cases there is partial isotropization.

Under what circumstances can a spatially homogeneous spacetime have the property that the
generalized Kasner exponents are independent of time? The strong energy condition says that
Rαβnαnβ ≥ 0 for any causal vector nα. It follows from the Hamiltonian constraint and the
evolution equation for tr k that if the generalized Kasner exponents are constant in time in a
spacetime of Bianchi type I, then the normal vector nα to the homogeneous hypersurfaces gives
equality in the inequality of the strong energy condition. Hence the matter model is in a sense
on the verge of violating the strong energy condition and this is a major restriction on the matter
model.

A further question that can be posed concerning the dynamics of expanding cosmological models
is whether ρ̂ = ρ/(tr k)2 tends to zero. This is of cosmological interest since ρ̂ is (up to a constant
factor) the density parameter Ω used in the cosmology literature. Note that it is not hard to show
that tr k and ρ each tend to zero in the limit for any model with Λ = 0 which exists globally in
the future and where the matter satisfies the dominant and strong energy conditions. First, it can
be seen from the evolution equation for tr k that this quantity is monotone increasing and tends
to zero as t → ∞. Then it follows from the Hamiltonian constraint that ρ tends to zero.

A reasonable condition to be demanded of an expanding cosmological model is that it be future
geodesically complete. This has been proved for many homogeneous models in [284].
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7.2 Inhomogeneous solutions with Λ = 0

For inhomogeneous models with vanishing cosmological constant there is little information available
about what happens in general. Fischer and Moncrief [134] have made an interesting proposal that
attempts to establish connections between the evolution of a suitably conformally rescaled version
of the spatial metric in an expanding cosmological model and themes in Riemannian geometry such
as the Thurston geometrization conjecture [335], degeneration of families of metrics with bounded
curvature [2], and the Ricci flow [164]. A key element of this picture is the theorem on the stability
of the Milne model discussed in Section 5.3. More generally, the rescaled metric is supposed to
converge to a hyperbolic metric (metric of constant negative curvature) on a region that is large in
the sense that the volume of its complement tends to zero. If the topology of the Cauchy surface
is such that it is consistent with a metric of some Bianchi type, then the hyperbolic region will be
missing and the volume of the entire rescaled metric will tend to zero. In this situation it might
be expected that the metric converges to a (locally) homogeneous metric in some sense. Evidently
the study of the nonlinear stability of Bianchi models is very relevant to developing this picture
further.

Independently of the Fischer–Moncrief picture the study of small (but finite) perturbations of
Bianchi models is an avenue for making progress in understanding expanding cosmological models.
There is a large literature on linear perturbations of cosmological models and it would be desirable
to determine what insights the results of this work might suggest for the full nonlinear dynamics.
There has recently been important progress in understanding linear vacuum perturbations of var-
ious Bianchi models due to Tanimoto [324, 325, 326]. Just as it is interesting to know under what
circumstances homogeneous cosmological models become isotropic in the course of expansion, it is
interesting to know when more general models become homogeneous. This does happen in the case
of small perturbations of the Milne model. On the other hand, there is an apparent obstruction in
other cases. This is the Jeans instability [231, 61]. A linear analysis indicates that under certain
circumstances (e.g. perturbations of a flat Friedmann model) inhomogeneities grow with time. As
yet there are no results on this available for the fully nonlinear case. A comparison that should be
useful is that with Landau damping in plasma physics, where rigorous results are available [161].

The most popular matter model for spatially homogeneous cosmological models is the perfect
fluid. Generalizing this to inhomogeneous models is problematic since formation of shocks or (in
the case of dust) shell-crossing must be expected to occur. These signal an end to the interval of
evolution of the cosmological model, which can be treated mathematically with known techniques.
Initial steps have been taken to handle shocks in solutions of the Einstein-Euler equations, based
on the techniques of classical hydrodynamics. The global existence (but not uniqueness) of plane
symmetric weak solutions of a type which can accomodate shocks was proved in [30] while criteria
proving the occurrence of shocks in plane symmetry were established in unpublished work of F.
St̊ahl and the author.

There are not too many results on future geodesic completeness for inhomogeneous cosmological
models. A general criterion for geodesic completeness is given in [86]. It does not apply to cases like
the Kasner solution but is well-suited to the case where the second fundamental form is eventually
negative definite. It is part of the conclusions of [310] that Gowdy spacetimes on a torus are future
geodesically complete. Information on the asymptotics is also available in the case of small but
finite perturbations of the Milne model and the Bianchi type III form of flat spacetime, as discussed
in Sections 5.3 and 5.4, respectively.

For solutions of the Einstein-Vlasov system with hyperbolic symmetry it has been shown by
Rein [271] that future geodesic completeness holds for a certain open set of initial data. For
solutions of the Einstein equations coupled to a massless linear scalar field with plane symmetry
future geodesic completeness has been shown by Tegankong [333].
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7.3 Homogeneous models with Λ > 0

One important aspect of the fragmentary picture of the dynamics of expanding cosmological models
presented in the last two sections is that it seems to be complicated. A situation where we can
hope for a simpler, more unified picture is that where there is sufficiently strong acceleration
of the cosmological expansion. This has the tendency to damp out irregularities. The simplest
way of achieving this is to introduce a positive cosmological constant. Recall first that when the
cosmological constant vanishes and the matter satisfies the usual energy conditions, spacetimes
of Bianchi type IX recollapse [223] and so never belong to the indefinitely expanding models.
When Λ > 0 this is no longer true. Then Bianchi IX spacetimes show complicated features, and
it has been suggested in the literature that they exhibit chaotic behaviour (cf. [126]). A more
recent study [170] suggests that the claimed features of the solutions indicating the presence of
chaos may be artefacts of the numerical treatment of a dynamical system which is not everywhere
regular. The numerical work in [170] gives a different picture, parts of which the authors confirm by
mathematical proofs. As a consequence this system, while complicated, may not be so intractable
as previously feared and merits further analytical and numerical investigation.

In discussing homogeneous models in the following we restrict to Bianchi types other than IX.
Then a general theorem of Wald [340] states that any model whose matter content satisfies the
strong and dominant energy conditions and which expands for an infinite proper time t is such
that all generalized Kasner exponents tend to 1/3 as t → ∞. A positive cosmological constant
leads to isotropization. The mean curvature tends to the constant value −

√
3Λ as t → ∞, while

the scale factors increase exponentially.
Wald’s result is only dependent on energy conditions and uses no details of the matter field

equations. The question remains whether solutions corresponding to initial data for the Einstein
equations with positive cosmological constant, coupled to reasonable matter, exist globally in time
under the sole condition that the model is originally expanding. It can be shown that this is true
for various matter models using the techniques of [284] and [281]. This has been worked out in
detail for the case of collisionless matter by Lee [219]. For the case of a perfect fluid with linear
equation of state see [297]. Once global existence is known and a specific matter model has been
chosen, details of the asymptotic behaviour of the matter fields can be determined and this was
done in [219] and [297]. For instance, it was shown that the solutions of the Vlasov equation behave
like dust asymptotically.

7.4 Acceleration due to nonlinear scalar fields

The effect of a cosmological constant can be mimicked by a suitable exotic matter field that violates
the strong energy condition: for example, a nonlinear scalar field with exponential potential. In
the latter case, an analogue of Wald’s theorem has been proved by Kitada and Maeda in [202]

and [203]. For a potential of the form e−
√

8πλφ with λ <
√

2, the qualitative picture is similar to
that in the case of a positive cosmological constant. The difference is that the volume grows like a
power of t instead of exponentially and that the asymptotic rate of decay of various quantities is
not the same as in the case with positive Λ. This is called power-law inflation. A global existence
theorem for homogeneous solutions of the Einstein-Vlasov system with a nonlinear scalar field and
a positive potential was proved in [220]. This applies in particular to the case of an exponential
potential. The detailed asymptotics of geometry and matter for an exponential potential with
λ <

√
2 were worked out in [220]. Corresponding global existence results in the case of a perfect

fluid with linear equation of state are given in [297]. The behaviour of homogeneous and isotropic
models with general λ has been investigated in [163].

Our knowledge of the fundamental physics is insufficient to show which potential for the scalar
field is most relevant for physics. It therefore makes sense to study the dynamics for large classes
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of potentials. A useful way of organizing the possibilities uses the ‘rolling’ picture. In a spatially
homogeneous spacetime the scalar field satisfies

φ̈ − 1

3
trkφ̇ = −V ′(φ) (4)

This resembles the equation of motion of a ball rolling on the graph of the potential V with variable
friction given by trk. Of course the evolution of trk is coupled back to that of φ and so this analogy
does not allow immediate conclusions. Nevertheless it gives an intuitive picture of what should
happen. The ball should roll down to a minimum of the potential and settle down there, possibility
oscillating as it does so.

The simplest case is where the potential has a strictly positive minimum. In [297] it was proved
under some technical assumptions that a direct analogue of Wald’s theorem holds. The late time
behaviour of the geometry closely resembles that for a cosmological constant. The value of this
effective cosmological constant is Λeff = 8πV (φ1), where φ1 is the value where V has its minimum.
The asymptotic behaviour of the matter fields was determined in the case of collisionless matter
and perfect fluids with a linear equation of state.

Another important case is where V is everywhere positive and decreasing and tends to zero as
φ → ∞. The ‘rolling’ picture suggests that φ should tend to infinity as t → ∞. Under suitable
technical assumptions this is true and information can be obtained concerning the asymptotics. The
exponential potential is a borderline case. An important assumption is that limφ→∞ V ′/V <

√
2

or, more generally lim supφ→∞ V ′/V <
√

2. Intuitively this says that the potential falls off no
faster at infinity than an exponential potential which gives rise to power-law inflation. A theorem
in [300] where this assumption is made in a set-up like that in Wald’s theorem shows that there
is always accelerated expansion for t sufficiently large. If it is further assumed that V ′/V → 0 as
φ → ∞ then it is possible to say a lot more. It is found that, if σab is the tracefree part of the second
fundamental form, R is the spatial scalar curvature and ρ is the energy density of matter other
that the scalar field then σabσ

ab/(trk)2, R/(trk)2 and ρ/(trk)2 tend to zero as t → ∞. In the limit
t → ∞ the solution is approximated by one which is isotropic and spatially flat and contains no
matter other then the scalar field. This kind of situation is sometimes called intermediate inflation
since the potential is intermediate between a constant (corresponding to a cosmological constant)
and an exponential (corresponding to power-law inflation).

If V ′/V → 0 as φ → ∞ and V ′′/V ′ is bounded for large φ then it is possible to get further
information. This is related to the ‘slow-roll approximation’. The intuitive idea is that if the
slope of the graph of V is not too steep the ball will roll slowly and certain quantities will change
gradually. It can be proved that asymptotically the term with second order derivatives in (4) can
be neglected and that the late-time behaviour is described approximately by the resulting first
order equation. In fact this can be further simplified to give the equation φ̇ = −V ′/

√
24πV for φ

alone. This asymptotic description is not only interesting in itself; it gives a powerful method for
determining the late time asymptotics when a specific potential has been chosen. For more details
see [300].

Both models with a positive cosmological constant and models with a scalar field with exponen-
tial potential are called inflationary because the rate of expansion is increasing with time. There is
also another kind of inflationary behaviour that arises in the presence of a scalar field with power
law potential like φ4 or φ2. In that case the inflationary property concerns the behaviour of the
model at intermediate times rather than at late times. The picture is that at late times the universe
resembles a dust model without cosmological constant. This is known as reheating. The dynamics
have been analysed heuristically by Belinskii et al. [44]. Part of their conclusions have been proved
rigorously in [296]. Calculations analogous to those leading to a proof of isotropization in the case
of a positive cosmological constant or an exponential potential have been done for a power law
potential in [243]. In that case, the conclusion cannot apply to late time behaviour. Instead, some
estimates are obtained for the expansion rate at intermediate times.
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7.5 Other models for cosmic acceleration

Nonlinear minimally coupled scalar fields were originally applied to the very early universe which
is why the name inflation is often attached to them. Now many of these models have been recycled
to model cosmic acceleration at later epochs up to the present day. In the latter context the name
quintessence is used. More generally an exotic matter field violating the strong energy condition
and leading to cosmic acceleration is often referred to as dark energy. In this section some models
will be considered which go beyond the cosmological constant and ordinary quintessence. There is
such a proliferation of models in the literature that the list considered here is far from complete.

A simple generalization of the scalar field models is a collection of several scalar fields φi [115].
These have kinetic energy

∑

i(φ̇
i)2 and potential energy given by a function V of all the φi. If the

φi are thought of as defining a mapping with values in R
n endowed with the Euclidean metric then

it is easy to see a further generalization. Simply replace R
n by a Riemannian manifold (N, h) and

use the metric h to define a kinetic energy as in a wave map or nonlinear σ-model. The unknown
in the equation is then a mapping φ from spacetime to N and the potential is a function on N . A
more concrete description of φ can be obtained by using its components φi in a local coordinate
chart on N . One type of model is called assisted inflation and has a potential which is the sum of
exponentials of scalar fields. The name comes from the fact that even if each of these exponentials
alone decays too fast to produce inflation they can assist each other so as to produce inflation in
combination.

A more radical generalization is to consider a scalar field with Lagrangian p(φ,∇αφ∇αφ). This
is known as k-essence [26]. In quintessence models the equation of motion of the scalar field is
always hyperbolic so that the Einstein-matter equations have a well-posed initial value problem.
Under the assumption that the potential is non-negative the dominant energy condition is always
satisfied. These properties need not hold in k-essence models unless the function p is restricted.
In fact there is a motivation for considering models in which the dominant energy condition is
violated. The value of w = p/ρ in our universe can in principle be determined by observation. It is
not far from −1 and if it happened to be less than −1 (which is consistent with the observations)
then the dominant energy condition would be violated. It would be desirable to determine general
conditions on p which guarantee well-posedness and/or the dominant energy condition. In k-
essence the equations of motion are in general quasilinear and not semilinear as they are in the
case of quintessence. This may lead to the spontaneous formation of singularities in the matter
field. It would be interesting to know under what conditions on p this can be avoided.

Partial answers to the questions just raised can be found in [147], [146] and [133]. An interesting
class of models which seem to be relatively well-behaved are the tachyon models where p(φ, X) =
−V (φ)

√
1 + X for some non-negative potential V . Despite their name they have characteristics

which lie inside the light cone. Specialising further to V (φ) = 1 gives a model equivalent to an
exotic fluid, the Chaplygin gas. More information about the equivalence between different matter
models can be found in [299].

When the dominant energy condition is violated new phenomena can occur. It is possible for an
expanding cosmological model to end after finite proper time, something known as the big rip since
before the final time all physical systems are ripped apart [71]. As this final time is approached
the mean curvature tends to infinity, as does the energy density. This kind of behaviour can be
seen explicitly for a fluid with p = wρ and w < −1. It is not clear that it is reasonable to consider
such a fluid but similar things could happen for other matter fields violating the dominant energy
condition. It seems that there is no overview in the literature of what matter models are concerned.

To end this section we list without further comment some other exotic models which have been
considered. There is the curvature-coupled scalar field (where there are some mathematical results
[54]) and theories where the Einstein-Hilbert Lagrangian is replaced by some other function of the
curvature. There are also models, different from Einstein gravity, which are motivated by loop
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quantum gravity [60] and brane-world theories [232] where the form of the Hamiltonian constraint
is modified.

7.6 Inhomogeneous spacetimes with accelerated expansion

Consider what happens to Wald’s proof in an inhomogeneous spacetime with positive cosmological
constant. His arguments only use the Hamiltonian constraint and the evolution equation for the
mean curvature. In Gauss coordinates spatial derivatives of the metric only enter these equations
via the spatial scalar curvature in the Hamiltonian constraint. Hence, as noticed in [191], Wald’s
argument applies to the inhomogeneous case, provided we have a spacetime that exists globally in
the future in Gauss coordinates and which has everywhere non-positive spatial scalar curvature.
Unfortunately, it is hard to see how the latter condition can be verified starting from initial data. It
is not clear whether there is a non-empty set of inhomogeneous initial data to which this argument
can be applied.

In the vacuum case with positive cosmological constant, the result of Friedrich discussed in
Section 5.1 proves isotropization of inhomogeneous spacetimes, i.e. that all generalized Kasner
exponents corresponding to a suitable spacelike foliation tend to 1/3 in the limit. To see this,
consider (part of) the de Sitter metric in the form −dt2 + e2t(dx2 + dy2 + dz2). (Here, to simplify
the algebra, we have chosen Λ = 3.) This choice of the metric form, which is different from that
discussed in [136], simplifies the algebra as much as possible. Letting τ = e−t shows that the
above metric can be written in the form τ−2(−dτ2 + dx2 + dy2 + dz2). This exhibits the de Sitter
metric as being conformal to a flat metric. In the construction of Friedrich the conformal class and
conformal factor are perturbed. The corrections to the metric in terms of coordinate components
are of relative order τ = e−t. Thus, the trace-free part of the second fundamental form decays
exponentially, as desired.

Inflationary asymptotics has been proved in the case of inhomogeneous solutions of the Einstein-
Vlasov system with positive cosmological constant and three Killing vectors. This was done under
the assumption of plane symmetry in [332] and for a restricted class of spherically symmetric
solutions in [331]. The spacetimes were shown to be future geodesically complete and to have an
asymptotic behaviour which resembles that of the de Sitter solution in leading order. Detailed
information was obtained on the asymptotics of the matter fields. The results of [334] on local
existence and continuation criteria for solutions of the Einstein-Vlasov-scalar field system can be
thought of as a first step towards generalizing the results of [332] by replacing the cosmological
constant by a scalar field.

There have been several numerical studies of inflation in inhomogeneous spacetimes. These are
surveyed in Section 3 of [24]. An interesting effect which can occur in the inhomogeneous case
is the formation of domain walls. Consider a potential which has two minima and suppose that
the evolution at different spatial points decouples at late times. Then it may happen that in one
spatial region the scalar field falls into one minimum of the potential while in another region it
falls into the other minimum. In between the spatial derivatives must be relatively large in a small
region forming the boundary of the two regions. This boundary is a domain wall. It would be very
interesting to prove the formation of domain walls in some case.

There are heuristic results on the asymptotics of inhomogeneous solutions which are general in
the sense that they have no symmetry and depend on the same number of free functions as the
general solution. In [320] this kind of analysis was done for solutions of the Einstein equations in
vacuum or coupled to a fluid with non-stiff linear equation of state. The mathematical interpreta-
tion of the formulae of [320] was elucidated in [298] where an analysis was done in the framework
of formal power series. In the vacuum case it was shown that there are large classes of solutions
for which these series converge. A formal series analysis analogous to that of [298] was done for a
scalar field with a positive minimum in [54]. It was also extended to the case of curvature-coupled
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scalar fields. An analysis on the level of [320] has been done for a scalar field with an exponential
potential in [245].
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8 Structure of General Singularities

The aim of this section is to present a picture of the nature of singularities in general solutions of
the Einstein equations. It is inspired by the ideas of Belinskii, Khalatnikov, and Lifshitz (BKL).
To fix ideas, consider the case of a solution of the Einstein equations representing a cosmological
model with a big bang singularity. A central idea of the BKL picture is that near the singularity
the evolution at different spatial points decouples. This means that the global spatial topology
of the model plays no role. The decoupled equations are ordinary differential equations. They
coincide with the equations for spatially homogeneous cosmological models, so that the study of
the latter is of particular significance.

8.1 Lessons from homogeneous solutions

In the BKL picture a Gaussian coordinate system (t, xa) is introduced such that the big bang
singularity lies at t = 0. It is not a priori clear whether this should be possible for very general
spacetimes. A positive indication is given by the results of [12], where coordinates of this type are
introduced in one very general class of spacetimes. Once these coordinates have been introduced,
the BKL picture says that the solution of the Einstein equations should be approximated near
the singularity by a family of spatially homogeneous solutions depending on the coordinates xa as
parameters. The spatially homogeneous solutions satisfy ordinary differential equations in t.

Spatially homogeneous solutions can be classified into Bianchi and Kantowski–Sachs solutions.
The Bianchi solutions in turn can be subdivided into types I to IX according to the Lie algebra of
the isometry group of the spacetime. Two of the types, VIh and VIIh are in fact one-parameter
families of non-isomorphic Lie algebras labelled by h. The generality of the different symmetry
types can be judged by counting the number of parameters in the initial data for each type. The
result of this is that the most general types are Bianchi VIII, Bianchi IX, and Bianchi VI−1/9.
The usual picture is that Bianchi VIII and Bianchi IX have more complicated dynamics than all
other types and that the dynamics is similar in both these cases. This leads one to concentrate on
Bianchi type IX and the mixmaster solution (see Section 3.2). Bianchi type VI−1/9 was apparently
never mentioned in the work of BKL and has been largely ignored in the literature. Recently
a detailed picture of the dynamics of these solutions has been obtained by Hewitt et. al. [178]
although the resulting dynamical system has not yet been analysed rigorously. Here we follow the
majority and focus on Bianchi type IX.

Another aspect of the BKL picture is that most types of matter should become negligible near
the singularity for suitably general solutions. In the case of perfect fluid solutions of Bianchi type IX
with a linear equation of state, this has been proved by Ringström [305]. In the case of collisionless
matter it remains an open issue, since rigorous results are confined to Bianchi types I, II and
III and Kantowski–Sachs, and have nothing to say about Bianchi type IX. If it is accepted that
matter is usually asymptotically negligible then vacuum solutions become crucial. The vacuum
solutions of Bianchi type IX (mixmaster solutions) play a central role. They exhibit complicated
oscillatory behaviour, and essential aspects of this have been captured rigorously in the work of
Ringström [306, 305] (compare Section 3.2).

Some matter fields can have an important effect on the dynamics near the singularity. A
scalar field or stiff fluid leads to the oscillatory behaviour being replaced by monotone behaviour
of the basic quantities near the singularity, and thus to a great simplification of the dynamics.
An electromagnetic field can cause oscillatory behaviour that is not present in vacuum models or
models with perfect fluid of the same symmetry type. For instance, models of Bianchi type I with
an electromagnetic field show oscillatory, mixmaster-like behaviour [216]. However, it seems that
this does not lead to anything essentially new. It is simply that the effects of spatial curvature in
the more complicated Bianchi types can be replaced by electromagnetic fields in simpler Bianchi

36



types.
A useful heuristic picture that systematizes much of what is known about the qualitative dynam-

ical behaviour of spatially homogeneous solutions of the Einstein equations is the idea developed
by Misner [239] of representing the dynamics as the motion of a particle in a time-dependent po-
tential. In the approach to the singularity the potential develops steep walls where the particle is
reflected. The mixmaster evolution consists of an infinite sequence of bounces of this kind.

8.2 Inhomogeneous solutions

Consider now inhomogeneous solutions of the Einstein equations where, according to the BKL
picture, oscillations of mixmaster type are to be expected. This is for instance the case for general
solutions of the vacuum Einstein equations. There is only one rigorous result to confirm the
presence of these oscillations in an inhomogeneous spacetime of any type, and that concerns a family
of spacetimes depending on only finitely many parameters [50]. They are obtained by applying a
solution-generating technique to the mixmaster solution. Perhaps a reason for the dearth of results
is that oscillations usually only occur in combination with the formation of local spatial structure
discussed in Section 8.3. On the other hand, there is a rich variety of numerical and heuristic work
supporting the BKL picture in the inhomogeneous case [47]. There is now a numerical calculation
which shows mixmaster oscillations in vacuum solutions without any symmetry [145].

A situation where there is more hope of obtaining rigorous results is where the BKL picture
suggests that there should be monotone behaviour near the singularity. This is the situation for
which Fuchsian techniques can often be applied to prove the existence of large classes of space-
times having the expected behaviour near the initial singularity (see Section 6.2). It would be
desirable to have a stronger statement than these techniques have provided up to now. Ideally, it
should be shown that a non-empty open set of solutions of the given class (by which is meant all
solutions corresponding to an open set of initial data on a regular Cauchy surface) lead to a sin-
gularity of the given type. The only results of this type in the literature concern polarized Gowdy
spacetimes [185], plane symmetric spacetimes with a massless scalar field [285], spacetimes with
collisionless matter and spherical, plane or hyperbolic symmetry [266, 330], and a subset of general
Gowdy spacetimes [311, 309]. The work of Christodoulou [94] on spherically symmetric solutions
of the Einstein equations with a massless scalar field should also be mentioned in this context,
although it concerns the singularity inside a black hole rather than singularities in cosmological
models. Note that all these spacetimes have at least two Killing vectors so that the PDE problem
to be solved reduces to an effective problem in one space dimension.

8.3 Formation of localized structure

Numerical calculations and heuristic methods such as those used by BKL lead to the conclusion
that, as the singularity is approached, localized spatial structure will be formed. At any given
spatial point the dynamics is approximated by that of a spatially homogeneous model near the
singularity, and there will in general be bounces (cf. Section 8.1). However, there will be exceptional
spatial points where the bounce fails to happen. This leads to a situation in which the spatial
derivatives of the quantities describing the geometry blow up faster than these quantities themselves
as the singularity is approached. In general spacetimes there will be infinitely many bounces before
the singularity is reached, and so the points where the spatial derivatives are large will get more
and more closely separated as the singularity is approached.

In Gowdy spacetimes only a finite number of bounces are to be expected and the behaviour is
eventually monotone (no more bounces). There is only one essential spatial dimension due to the
symmetry and so large derivatives in general occur at isolated values of the one interesting spatial
coordinate. Of course, these correspond to surfaces in space when the symmetry directions are
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restored. The existence of Gowdy solutions showing features of this kind has been proved in [304].
This was done by means of an explicit transformation that makes use of the symmetry.

The formation of spatial structure calls the BKL picture into question (cf. the remarks in [43]).
The basic assumption underlying the BKL analysis is that spatial derivatives do not become too
large near the singularity. Following the argument to its logical conclusion then indicates that
spatial derivatives do become large near a dense set of points on the initial singularity. Given that
the BKL picture has given so many correct insights, the hope that it may be generally applicable
should not be abandoned too quickly. However, the problem represented by the formation of
spatial structure shows that at the very least it is necessary to think carefully about the sense in
which the BKL picture could provide a good approximation to the structure of general spacetime
singularities.

8.4 Cosmic censorship in Gowdy spacetimes

In as yet unpublished work Ringström has proved strong cosmic censorship for Gowdy spacetimes
with the spatial topology of a torus, thus completing a quest which has been going on for twenty-
five years. Since it was shown in [310] that these spacetimes are geodesically complete in the
future, proving strong cosmic censorship comes down to showing that for generic initial data
the corresponding maximal Cauchy development is inextendible towards the past. The method
for doing this is to prove enough about the asymptotics near the singularity to show that the
Kretschmann scalar blows up along past incomplete causal geodesics.

With a suitable genericity assumption (restriction to an open dense set of initial data) it is shown
that the singularity has a structure which is similar to that found in the solutions constructed in
[304]. An important technical tool is to show the existence of an ‘asymptotic velocity’. This is
a function constructed out of a given solution which allows the points at which localized spatial
structure in the sense of section 8.3 is formed.
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9 Further Results

This section collects miscellaneous results that do not fit into the main line of the exposition.

9.1 Evolution of hyperboloidal data

In Section 2.1, hyperboloidal initial data were mentioned. They can be thought of as generaliza-
tions of the data induced by Minkowski space on a hyperboloid. In the case of Minkowski space
the solution admits a conformal compactification where a conformal boundary, null infinity, can
be added to the spacetime. It can be shown that in the case of the maximal development of hy-
perboloidal data a piece of null infinity can be attached to the spacetime. For small data, i.e. data
close to that of a hyperboloid in Minkowski space, this conformal boundary also has completeness
properties in the future allowing an additional point i+ to be attached there (see [137] and refer-
ences therein for more details). Making contact between hyperboloidal data and asymptotically
flat initial data is much more difficult and there is as yet no complete picture. (An account of the
results obtained up to now is given in [141].) If the relation between hyperboloidal and asymptot-
ically flat initial data could be understood it would give a very different approach to the problem
treated by Christodoulou and Klainerman (Section 5.2). It might well also give more detailed
information on the asymptotic behaviour of the solutions.

The results on the hyperboloidal initial value problem rely on the conformal field equations, a
reformulation of the Einstein equations which only works in dimension four. There is an alternative
method which works in all even dimensions not less than four and gives a new approach in four
dimensions. This has been used in [6] to generalize some of the above results to higher even
dimensions.

9.2 The Newtonian limit

Most textbooks on general relativity discuss the fact that Newtonian gravitational theory is the
limit of general relativity as the speed of light tends to infinity. It is a non-trivial task to give a
precise mathematical formulation of this statement. Ehlers systematized extensive earlier work on
this problem and gave a precise definition of the Newtonian limit of general relativity that encodes
those properties that are desirable on physical grounds (see [131].) Once a definition has been given,
the question remains whether this definition is compatible with the Einstein equations in the sense
that there are general families of solutions of the Einstein equations that have a Newtonian limit
in the sense of the chosen definition. A theorem of this kind was proved in [282], where the matter
content of spacetime was assumed to be a collisionless gas described by the Vlasov equation.
(For another suggestion as to how this problem could be approached, see [144].) The essential
mathematical problem is that of a family of equations, depending continuously on a parameter λ,
which are hyperbolic for λ 6= 0 and degenerate for λ = 0. Because of the singular nature of the
limit it is by no means clear a priori that there are families of solutions that depend continuously
on λ. That there is an abundant supply of families of this kind is the result of [282]. Asking
whether there are families which are k times continuously differentiable in their dependence on λ is
related to the issue of giving a mathematical justification of post-Newtonian approximations. The
approach of [282] has not even been extended to the case k = 1, and it would be desirable to do this.
Note however that when k is too large, serious restrictions arise [280]. The latter fact corresponds
to the well-known divergent behaviour of higher order post-Newtonian approximations.

It may be useful for practical projects, for instance those based on numerical calculations, to use
hybrid models in which the equations for self-gravitating Newtonian matter are modified by terms
representing radiation damping. If we expand in terms of the parameter λ as above then at some
stage radiation damping terms should play a role. The hybrid models are obtained by truncating
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these expansions in a certain way. The kind of expansion that has just been mentioned can also
be done, at least formally, in the case of the Maxwell equations. In that case a theorem on global
existence and asymptotic behaviour for one of the hybrid models has been proved in [215]. These
results have been put into context and related to the Newtonian limit of the Einstein equations
in [214].

In the case of the Vlasov-Maxwell and Vlasov-Nordström systems the equivalent of the post-
Newtonian approximations have been justified rigorously up to certain orders [38], [37]. Calogero
has proved a theorem on the Newtonian limit of the special relativistic Boltzmann equation [72].

9.3 Newtonian cosmology

Apart from the interest of the Newtonian limit, Newtonian gravitational theory itself may provide
interesting lessons for general relativity. This is no less true for existence theorems than for other
issues. In this context, it is also interesting to consider a slight generalization of Newtonian theory,
the Newton–Cartan theory. This allows a nice treatment of cosmological models, which are in
conflict with the (sometimes implicit) assumption in Newtonian gravitational theory that only
isolated systems are considered. It is also unproblematic to introduce a cosmological constant into
the Newton–Cartan theory.

Three global existence theorems have been proved in Newtonian cosmology. The first [64] is
an analogue of the cosmic no hair theorem (cf. Section 5.1) and concerns models with a positive
cosmological constant. It asserts that homogeneous and isotropic models are nonlinearly stable if
the matter is described by dust or a polytropic fluid with pressure. Thus, it gives information about
global existence and asymptotic behaviour for models arising from small (but finite) perturbations
of homogeneous and isotropic data. The second and third results concern collisionless matter
and the case of vanishing cosmological constant. The second [274] says that data that constitute
a periodic (but not necessarily small) perturbation of a homogeneous and isotropic model that
expands indefinitely give rise to solutions that exist globally in the future. The third [267] says
that the homogeneous and isotropic models in Newtonian cosmology that correspond to a k = −1
Friedmann–Robertson–Walker model in general relativity are non-linearly stable.

9.4 The characteristic initial value problem

In the standard Cauchy problem, which has been the basic set-up for all the previous sections,
initial data are given on a spacelike hypersurface. However, there is also another possibility, where
data are given on one or more null hypersurfaces. This is the characteristic initial value problem.
It has the advantage over the Cauchy problem that the constraints reduce to ordinary differential
equations. One variant is to give initial data on two smooth null hypersurfaces that intersect
transversely in a spacelike surface. A local existence theorem for the Einstein equations with an
initial configuration of this type was proved in [278]. Another variant is to give data on a light
cone. In that case local existence for the Einstein equations has not been proved, although it
has been proved for a class of quasilinear hyperbolic equations that includes the reduced Einstein
equations in harmonic coordinates [128]. For some new work on the global characteristic initial
value problem see [70].

Another existence theorem that does not use the standard Cauchy problem, and which is
closely connected to the use of null hypersurfaces, concerns the Robinson–Trautman solutions of
the vacuum Einstein equations. In that case the Einstein equations reduce to a parabolic equation.
Global existence for this equation has been proved by Chruściel [111].
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9.5 The initial boundary value problem

In most applications of evolution equations in physics (and in other sciences), initial conditions need
to be supplemented by boundary conditions. This leads to the consideration of initial boundary
value problems. It is not so natural to consider such problems in the case of the Einstein equations
since in that case there are no physically motivated boundary conditions. (For instance, we do not
know how to build a mirror for gravitational waves.) An exception is the case of a fluid boundary
discussed in Section 2.6.

For the vacuum Einstein equations it is not a priori clear that it is even possible to find a
well-posed initial boundary value problem. Thus, it is particularly interesting that Friedrich and
Nagy [142] have been able to prove the well-posedness of certain initial boundary value problems
for the vacuum Einstein equations. Since boundary conditions come up quite naturally when the
Einstein equations are solved numerically, due to the need to use a finite grid, the results of [142]
are potentially important for numerical relativity. The techniques developed there could also play
a key role in the study of the initial value problem for fluid bodies (cf. Section 2.6).

9.6 The geodesic hypothesis

In elementary textbooks on general relativity we read that the Einstein equations imply that small
bodies move on geodesics of the spacetime metric. It is very hard to make this into a mathematically
precise statement which refers to actual solutions of the Einstein equations (and not just to some
formal approximations). Recently a theorem relating to this question was proved by Stuart [323].
He considers a nonlinear wave equation which possesses soliton solutions in flat space. He studies
families of solutions of the equations obtained by coupling a nonlinear wave equation of this kind
to the Einstein equations. Initial data are chosen in such a way that as the parameter labelling the
family tends to a limiting value the support of the data contracts to a point p. He shows that if the
family is chosen appropriately then the solutions exist on a common time interval (although the
data are becoming singular), that the geometry converges to a regular limit and that the support
of the solutions converges to a timelike geodesic passing through p.
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[56] Bizoń, P., “Equivariant self-similar wave maps from Minkowski spacetime into 3-sphere”,
Commun. Math. Phys., 215, 45–56, (2000).
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[106] Christodoulou, D., and Ó Murchadha, N., “The boost problem in general relativity”, Com-
mun. Math. Phys., 80, 271–300, (1981).

[107] Christodoulou, D., and Tahvildar-Zadeh, A.S., “On the asymptotic behaviour of spherically
symmetric wave maps”, Duke Math. J., 71, 31–69, (1993).

[108] Christodoulou, D., and Tahvildar-Zadeh, A.S., “On the regularity of spherically symmetric
wave maps”, Commun. Pure Appl. Math., 46, 1041–1091, (1993).
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tion.

[166] Hauser, I., and Ernst, F.J., “Proof of a generalized Geroch conjecture for the hyperbolic
Ernst equation”, Gen. Relativ. Gravit., 33, 195–293, (2001).

[167] Heilig, U., “On the existence of rotating stars in general relativity”, Commun. Math. Phys.,
166, 457–493, (1995).

[168] Heinzle, M., Rendall, A.D., and Uggla, C., “Theory of Newtonian self-gravitating stationary
spherically symmetric systems”, (August, 2004). URL (cited on 30 March 2005):
http://arXiv.org/abs/math-ph/0408045.
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