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Abstract
Here we present the results of applying the generalized Riemann ζ -function
regularization method to the gravitational radiation reaction problem. We
analyse in detail the head-on collision of two non-spinning black holes with
an extreme mass ratio. The resulting reaction force on the smaller hole is
repulsive. We discuss the possible extensions of these method to generic orbits
and spinning black holes. The determination of corrected trajectories allows
us to add second perturbative corrections with the consequent increase in the
accuracy of computed waveforms.

PACS numbers: 0430, 0425N, 0425, 0470B

There has been increasing astronomical evidence over the previous 30 years in favour of
the hypothesis that supermassive black holes, lying in the centre of galaxies are a common
phenomenon in our Universe. They are thought to be the main engines of quasars, x-ray sources
in the core of galaxy superclusters and gamma-ray bursters. There is even compelling evidence
that our own galaxy shelters a black hole of 3 × 106 solar masses in its centre [1]. Although
compelling, this is still indirect evidence of the existence of black holes. It appears that their
characteristic gravitational wave signature provides the best way to determine their definitive
existence. The LISA project [2] offers an excellent opportunity to match theory and observation
in order to reach such a goal. From the characteristics of this space detector, the main
astrophysical sources expected to be ‘seen’ are precisely supermassive black holes accreting
stars close to the galactic centre. This scenario offers the possibility to use perturbation
theory around a single black hole as the appropriate theoretical model to compute gravitational
radiation from such extreme mass ratio binary systems.

Perturbation theory had already reached maturity in the early 1970s [3, 4]. Linearized
Einstein equations have been successfully combined into wave equations for the two degrees
of freedom of the gravitational field propagating in the curved background of a massive black
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hole. The source terms depend on the trajectory of a test particle moving along a geodesic of the
background metric. There remained one important problem to be solved: the changes induced
in the trajectory of the particle due to the radiation generated by the orbital motion of the same
particle around the massive hole. Progress along this line always stumbled with the infinities
appearing in the equation of motion of the particle when perturbations are evaluated, precisely
at the location of the particle. A consistent regularization method was lacking until recently,
when Mino et al [5] provided a renormalized equation of motion using two different methods:
(a) the Hadamard regularization and (b) an asymptotic matching of the near- and far-metric
expansions. Quinn and Wald [6] assume an axiomatic approach to obtain the same equation of
motion independently. While the above work provides well founded formal expressions, they
appear impractical as yet when dealing with concrete computations since they rely on the use
of the harmonic gauge. Here we present an alternative, practical regularization method based
on the analytically continued Riemann ζ -function.

A test particle with rest mass m0 is represented here by the energy–momentum tensor

T µν = m0
UµUν

U 0r2
δ[r − rp(t)]δ

(2)[p]. (1)

Since the only ‘forces’ acting on the particle are gravitational, the equation of motion of
a test particle is given by the geodesic equation

d2x
µ
p

d2λ
+ �

µ
αβ(xp)

dxα
p

dλ

dxβ
p

dλ
= 0. (2)

It is precisely when one wants to evaluate the Christoffel symbols at the location of the particle
that divergences appear. They originate in the Dirac delta function representation we give to
the source term (1) of Einstein’s equations.

In [7–9] we studied the head-on collision of two Schwarzschild (non-spinning) black holes
with massesM andm, respectively. We treat this problem as perturbations of the Schwarzschild
background. The only expansion parameter being m/M , assumed to be much less than one.
The symmetry of the background allows us to decompose metric perturbations into spherical
harmonics Y�m(θ, φ) and the gravitational degrees of freedom satisfy the wave equation

−∂2ψ�

∂t2
+

∂2ψ�

∂r∗2
− V�(r)ψ� = S�(r, t), (3)

where r∗ ≡ r + 2M ln(r/2M − 1), V� is the Zerilli potential and S�(r, t), is the source term
generated by the small hole [7, 8].

From the waveform ψ�(r, t) one can reconstruct all perturbed metric coefficients in the
Regge–Wheeler gauge. One can then prove that all metric coefficients are C0 at rp for every �.
The divergences reappear when trying to add up all multipole contributions [10]. To see this
more explicitly, let us consider the r and t components (the only non-trivial for the head-on
case) of the geodesic equation (2) and combine them into a single equation for r(t)

d2r

dt2
= �t

rr

(
dr

dt

)3

+
(
2�t

tr − �r
rr

) (
dr

dt

)2

+
(
�t

tt − 2�r
tr

) (
dr

dt

)
− �r

tt . (4)

Linearization of this equation and subtraction of the zeroth-order geodesic gives the deviation
of the trajectory �rp(t) from the zeroth-order one,

ṙp(t) = ∂tzp = −(1 − 2M/zp)

√
2M/zp − 2M/z0

1 − 2M/z0
, (5)
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directly in terms of Schwarzschild coordinates, ready for further applications

�r̈p = A�rp + B�ṙp + C (6)

where

A = 2M

r3
p

[
3 − 3M

rp
− (1 − 3M/rp)ṙ

2
p

(1 − 2M/rp)2

]
,

B = 6Mṙp

r2
p(1 − 2M/rp)

,

C =
[

(1)

�t
rr ṙ3

p +
(
2

(1)

�t
tr −

(1)
�r

rr

)
ṙ2
p +

( (1)

�t
tt −2

(1)
�r

tr

)
ṙp−

(1)
�r

tt

]

=
∞∑
l=0

C�.

(7)

It is precisely C� the piece that, being finite for each multipole, diverges when summed over �
(here we consider the averaged value of C� over both radial sides of rp). The direct numerical
integration of the wave equation (3) shows that we can split C� as

C =
∞∑
�=0

{(
2� + 3

2 − β
)−β+1/2

C∞ + Cren
�

}
, (8)

where the introduction of β is motivated by the D-dimensional extension of the initial-value
problem for time-symmetric conformally flat data. In this case −β = D − 9

2 . We neatly
determined numerically that β = 1

2 along the trajectory of the particle.
This form of the coefficient C, determining the corrected trajectory of the particle, shows

clearly that the �-independent term, summed over �, diverges. We also determined numerically
that Cren

� behaves like �−2 for large �, thus giving raise to a finite contribution to C. The
key observation here is that we can bring the divergent sum to the form of the Riemann
ζ -function [11], ζ(a, b) = ∑∞

�=0(� + b)−a ,

C = 2−β+1/2C∞ζ
(
β − 1

2 ,
1
2

)
+

∞∑
�=0

Cren
� . (9)

Since the analytically continued ζ -function gives ζ
(
0, 1

2

) = 0, in order to regularize C, we
must just subtract from each multipole their � → ∞ piece. When we do that [10] we have
found that the effect of Cren on the trajectory is to generate a repulsive contribution that has a
maximum near the peak of the Zerilli potential at r = 3.1M .

Let us label functions with the ± superindex to refer to their values in the region r > rp
and r < rp near the location of the particle rp, respectively. One can see that both, initial data
and the Zerilli equation imply the following formal symmetry:√

Lψ±
� (−L) =

√
Lψ∓

� (L) (10)

where L = � + 1
2 . The same symmetry holds for the t and r derivatives, hence the reaction

‘force’ will have the form F±(L) = p(L2)±Lq(L2) and the large-L expansion of its average

〈Fp〉 =
∞∑
�=0

〈F�〉 =
∞∑
�=0

p(L2) =
∞∑
�=0

∞∑
n=0

An

L2n
〈Fp〉

=
∞∑
n=0

An

∞∑
�=0

L−2n =
∞∑
n=0

An ζ
(
2n, 1

2

)
= A0 ζ

(
0, 1

2

)
+ A2 ζ

(
2, 1

2

)
+ A4 ζ

(
4, 1

2

)
+ · · · (11)
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where we observe that ζ
(
0, 1

2

) = 0 gives the regularization, ζ
(
2, 1

2

) = 1
2π

2 gives the leading
reaction ‘force’ and ζ

(
4, 1

2

) = 1
6π

4 gives an estimate of the ‘error’ of the leading term of the
order of 7–8%, assuming analytical knowledge of the l = 0, 1 multipoles.

Barack and co-workers [13, 14] have developed independently a similar approach (in the
sense that they also decompose into multipoles), but that uses the regularization method of [5]
and implement it for the scalar radiation in the Schwarzschild background. Their results are
completely compatible with those of the ζ -function regularization in the sense that in the end
it is exactly only � → ∞ that has to be subtracted from the originally divergent force.

Barack and Lousto [12] have been able to confirm analytically the numerical behaviour
discussed above. Based on a local analysis of the two-point Green function we make a 1/L
(with L = � + 1

2 ) expansion to determine the behaviour of the waveform ψ� and its derivatives
for large �, for instance

ψ±
� (rp) = 4m0

√
2π

√
L

{
L−3 ± 2EL−4 + O(L−5)

}
∂rψ

±
� (rp) = 4m0

√
2π

rp − 2M

√
L

{
∓EL−2 − 3

2
E2L−3 ±

(
6M

rp
− 9

4

)
EL−4 + O(L−5)

}

∂tψ
±
� (rp) = −(1 − 2M/rp)

(
ṙp

E

)
∂rψ

±
� (rp)

(12)

for a particle released from rest at r0, E = √
1 − 2M/r0. ± denotes the side derivatives

concerning rp (waveforms are discontinuous). Hence we can compute

C±
� = a±L + b + c±L−1 + O(L−2), (13)

where a±, b and c± are l-independent coefficients. We find that the average value of a and c

vanish at the location of the particle, while the average

〈C(l → ∞)〉 = −
√
πm0

r2
(1 − 2M/rp)

3/2E−2. (14)

This method can be used to assist the numerical computation for large � carrying out the
expansion to order 1/L2 in C. Thus, making the numerical integration necessary for only the
first few lower multipoles. This might be crucial when dealing with generic orbits around
Schwarzschild black holes. The analytic expansions would allow a clean application of the
ζ -regularization scheme and sum over large � of the regularized reaction ‘force’.

In the orbital case it will also be important to test our final results with those of the
energy-balance approximation [15–17]. This method provides accurate results for circular
orbits on the Kerr background [16]. Our method, in principle, could also be implemented to
a particle orbiting a Kerr hole since the Teukolsky equation that describes the perturbations
around rotating holes, can be decomposed into multipoles in the frequency domain (Laplace
decomposition of the time dependence [18]). The details of this implementation remain to be
explicitly worked out.

A further application of the above results one can foresee is the extension of the analysis to
second perturbative order [19]. In this way one can increase the accuracy with which waveforms
are computed as well as reaching not so small mass ratios m/M . At this stage, the resulting
waveforms will not only be relevant for LISA, but also for ground-based gravitational wave
detectors sensitive to galactic binary black holes of comparable masses and black hole–neutron
star systems.

I would like to end this contribution with an optimistic note from the theoretical side and
predict that the subsequent progress in our understanding of radiation reaction will soon bring
good news for modelling gravitational emission from astrophysical sources.
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Appendix. Connection coefficients

Here we make explicit the details that enter into the computation of C� given in equation (7).
The connection coefficients involved in the first-order geodesic, equation (4) in terms of the
first-order perturbations as defined in the Regge–Wheeler (RW) gauge [3] are

�t
tt = M

r2
H1 − 1

2
Ḣ0, �t

tr = M

r2

(
1 − 2M

r

)−1

− 1

2
H ′

0,

�t
rr =

(
1 − 2M

r

)−2 [
1

2
Ḣ2 −

(
1 − 2M

r

)
H ′

1 − M

r2
H1

]
,

�r
tt =

(
1 − 2M

r

) [
Ḣ1 +

M

r2
(1 − H2 − H0) − 1

2

(
1 − 2M

r

)
H ′

0

]
,

�r
tr = −M

r2
H1 +

1

2
Ḣ2, �r

rr = −M

r2

(
1 − 2M

r

)−1

+
1

2
H ′

2,

(A1)

where the overdot and prime denote the derivative with respect to the Schwarzschild time t

and radial coordinate r , respectively. In addition, we have from Einstein’s equations in the
RW gauge (see [4], equation (C7g)), that for a radial infall

H0 = H2, � � 2. (A2)

This allows us to write everything in terms of H�
1 and H�

2 only (and its derivatives). K� does
not appears in the head-on geodesics.

Having proven the continuity of the metric coefficients at r = rp our way is clear to
compute the trajectory of the particle to first perturbative order. Our last step is to compute
these metric derivatives in terms of ψ and ψ̇ . Since we know that the metric coefficients are
continuous, their derivatives will have a jump, but not delta (or derivatives of it) terms. Then,
in order to simplify expressions we will not write the source terms and use an overbar (ψ̄)

on radial derivatives of ψ to indicate that we have already subtracted its singular behaviour at
r = rp and taken the average value.

The r-derivative of H2 from [10] is

∂rH2 = (r − 2M)∂3
r ψ̄ +

[
1 +

λr2 − λMr + 3M2

(λr + 3M)r

]
∂2
r ψ̄

+
−λ2 (λ + 1) r3 − λ (2λ − 3)Mr2 − 15λM2r − 18M3

r2(λr + 3M)2
∂rψ̄

+
λ3 (λ + 1) r4 + 3λ2 (λ − 1)Mr3 + 27λ2M2r2 + 63λM3r + 54M4

r3 (λr + 3M)3 ψ̄. (A3)

Likewise, upon r-derivation of the expression for H1, given in [10] we obtain

∂rH1 = r∂2
r

˙̄ψ +
2λr2 + (3 − 5λ)Mr − 9M2

(r − 2M)(λr + 3M)
∂r

˙̄ψ

+

[
λ (λ + 3) r2 − 6λMr + 3 (4λ + 3)M2

]
M

(r − 2M)2(λr + 3M)2
˙̄ψ. (A4)
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The time derivative of H2 can also be obtained

∂tH2 = (r − 2M)∂2
r

˙̄ψ +
3M2 − λMr + λr2

r(λr + 3M)
∂r

˙̄ψ

−9M3 + 9λM2r + 3λ2Mr2 + λ2(λ + 1)r3

r2(λr + 3M)2
˙̄ψ (A5)

and finally we find ∂tH1 from Zerilli’s [4] equation (C7e), where K ′ can be found from H2,
given in [10] and H ′

2 is given by equation (A3),

∂tH1 = (r − 2M)2

r
∂3
r ψ̄ + (r − 2M)

(
15M2 + 3λMr + λr2

)
r2 (3M + λr)

∂2
r ψ̄

−2
(
2λ2Mr3 + 18λM2r2 + 27rM3 − 9λ2M2r2 − 42λM3r

−63M4 + λ3r4 + λ2r4 − 2Mλ3r3
)
/
(
r3 (λr + 3M)2

)
∂rψ̄

+2
(− 189M5 + 81M4r − 216λM4r + 90λM3r2 − 90λ2M3r2

+33λ2M2r3 − 18λ3M2r3 − 3λ3(λ − 1)Mr4 + λ3r5 + λ4r5
)
ψ̄

× (
r4 (3M + λr)3

)−1
. (A6)

This expression completes the equations needed to (numerically) integrate the geodesic
equation (4) that gives us the particle’s trajectory to first perturbative order. Note that the
numerical implementation should be able to handle third-order derivatives of ψ�.
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