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Abstract

Some time ago, it was found that the never-ending oscillatory chaotic behaviour discovered by Belinskii, Khalatnikov and
Lifshitz (BKL) for the generic solution of the vacuum Einstein equations in the vicinity of a spacelike (“cosmological”)
singularity disappears in spacetime dimensionsD ≡ d + 1> 10. Recently, a study of the generalization of the BKL chaotic
behaviour to the superstring effective Lagrangians has revealed that this chaos is rooted in the structure of the fundamental Weyl
chamber of some underlying hyperbolic Kac–Moody algebra. In this Letter we show that the same connection applies to pure
gravity in any spacetime dimension� 4, where the relevant algebras areAEd . In this way the disappearance of chaos in pure
gravity models inD � 11 dimensions becomes linked to the fact that the Kac–Moody algebrasAEd are no longer hyperbolic
for d � 10.  2001 Elsevier Science B.V. All rights reserved.

1. Introduction

A remarkable result in theoretical cosmology has
been the construction, by Belinskii, Khalatnikov and
Lifshitz (BKL), of a generic solution to the 4-dimen-
sional vacuum Einstein equations in the vicinity of a
spacelike (“cosmological”) singularity [1]. This solu-
tion exhibits a never-ending oscillatory behaviour of
the mixmaster type [2,3] with strong chaotic proper-
ties. Some time ago, it was found that the BKL analy-
sis for pure gravity leads to completely different qual-
itative features in spacetime dimensionsD � 11 [4,5].
Namely, for those dimensions, the generic solution
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to the vacuum Einstein equations ceases to exhibit
chaotic features, but is instead asymptotically char-
acterized by a monotonic Kasner-like solution (for a
review, see [6]). The critical dimensionD = 11 was
discovered by a straightforward but lengthy proce-
dure, with no direct interpretation. Another system for
which chaos is known to disappear is the pure gravity-
dilaton system in all spacetime dimensions [7,8].

More recently [9–11], the BKL analysis was ex-
tended to the supergravity Lagrangians in 10 [12,13]
and 11 dimensions [14] that emerge as the low energy
limits of the superstring theories (IIA,IIB, I, HO, HE)
and M theory, respectively. Contrary to what happens
for the gravity-dilaton system in 10 dimensions or pure
gravity in 11 dimensions, the chaotic oscillatory be-
haviour was found to be generic in all superstring and
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M-theory models thanks to thep-forms present in the
field spectrum [9]. It was furthermore proved that this
chaos was rooted in the structure of the fundamen-
tal Weyl chamber of some Kac–Moody algebra [11].
More precisely, reformulating the asymptotic analysis
of the dynamics as a billiard problem‘a la Chitre–
Misner [15,16], it was shown that the never ending
oscillatory BKL behaviour could be described as a rel-
ativistic billiard within a simplex in 9-dimensional hy-
perbolic space. The reflections on the faces of this bil-
liard were shown to generate a Coxeter group, which
was then identified with the Weyl group of the hyper-
bolic Kac–Moody algebrasE10 for the type IIA, IIB,
and M theories, andBE10 for the type I, HO, HE theo-
ries (for background on Kac–Moody algebras and no-
tations, see the textbooks [17,18]). In this way, a rela-
tion was established between the fact that the billiard
has finite volume, and hence chaotic dynamics, and the
hyperbolicity of the underlying indefinite Kac–Moody
algebrasE10 andBE10.

In this Letter, we reexamine the case of pure gravity
in arbitrary space–time dimensionD ≡ d + 1 in
the light of these results. We demonstrate that the
asymptotic dynamics (fort → 0, at any point in space)
can again be viewed as a billiard in the fundamental
Weyl chamber of an indefinite Kac–Moody algebra,
which is now AEd ≡ A∧∧

d−2 ≡ AH
d−2. This algebra

is the “overextended” [19] or “canonical hyperbolic”
extension [17] of the (finite dimensional) Lie algebra
Ad−2; its associated Dynkin diagram is obtained by
attaching, at the affine node, one more node to the
Dynkin diagram of the affine algebraA(1)

d−2 ≡ A∧
d−2

and is displayed in Fig. 1. The algebraAE3 ≡ A∧∧
1 ≡

AH
1 has been particularly studied in [20] and was

related in [21] toD = 4 (super-)gravity. Note that the
double-line (in the conventions of [17]) in its Dynkin

Fig. 1. Dynkin diagram ofAEd (with AE3 on the left).

diagram can be viewed as the formal limit of the loop
of AEd asd → 3. [It is interesting to remark that the
Weyl group ofAE3 is PGL2(Z), which is arithmetic
[20,22].] Furthermore we show very explicitly how the
occurrence of chaotic behaviour is correlated to the
hyperbolicity of the underlying Kac–Moody algebra.
More specifically, the algebrasAEd are hyperbolic (in
the sense defined in Section 3 below) ford < 10,
whence pure gravity in dimensions 4� D � 10 is
chaotic, whereas chaos disappears in dimensionsD �
11 in accord with the fact that the algebrasAEd are no
longer hyperbolic ford � 10.

The very existence of a connection between the
BKL dynamics and indefinite Kac–Moody algebras
is already remarkable in itself. For the generic Ein-
stein system with matter couplings, one can always
define a billiard that describes the asymptotic dynam-
ics, but in general, this billiard will not exhibit any no-
ticeable regularity properties. In particular, the faces
of this billiard need not intersect at angles which are
submultiples ofπ , and consequently the associated
reflections will not generate a Coxeter (discrete) re-
flection group in general;a fortiori, the billiard need
not be the fundamental Weyl chamber of any Kac–
Moody algebra. The hyperbolic Kac–Moody algebra
E10 (and DE10) was already conjectured in [19,23]
to be a hidden symmetry of maximal supergravity re-
duced to one dimension. The results of [11] and of this
Letter indeed support the idea that hyperbolic Dynkin
diagrams play a key role in the massless bosonic sec-
tors of supergravity and superstring theory. But we
should emphasize that the Kac–Moody algebras do
not appear in the present BKL analysis as symmetry
algebras with associated Noether charges. They un-
derlie nevertheless the dynamics through their Weyl
group, in the sense that the dynamics can be de-
scribed in terms of “Weyl words”Wi1Wi2 . . . made
out of the “letters”Wi generating the Weyl reflec-
tions.

It is amazing to see the chaos being controlled by
the U-duality groupG of the toroidal compactification
to 3 dimensions via its overextensionG∧∧. Recently,
it has been shown [24] that bothG = SO(8,8) and
G = SO(8,9) are the U-duality groups of anomaly-
free string models; in fact, otherSO(8,8 + n) groups
can be realized beyond the heteroticSO(8,24). A
possible explanation for the universality ofBE10 will
be given there as well.



T. Damour et al. / Physics Letters B 509 (2001) 323–330 325

2. Gravitational billiard in d + 1 dimensions

We first review how Einstein’s theory gives rise to a
“gravitational billiard” as one approaches a cosmolog-
ical singularity; for more details, see [11]. As usual,
we assume that the singularity is att → 0+, where
t is the proper time in a Gaussian coordinate system
adapted to the singularity. In fact, it is convenient to
use a time coordinateτ ∼ − logt such thatτ → +∞
as t → 0+ [1,2]. In the asymptotic limit, the metric
takes the form

(2.1)

ds2 = −(N√
g dτ

)2 +
d∑

µ=1

exp
[−2βµ(τ, xi)

]
(ωµ)2,

where the time dependence of the spatial one-forms
ωµ ≡ e

µ
i (x

j , τ ) dxi (i = 1, . . . , d) can be neglected
with respect to the time-dependence of the scale func-
tionsβµ. In (2.1),N is the (rescaled) lapse

√−g00/g,
whereg = exp(−2

∑d
µ=1β

µ) is the determinant of
the spatial metric in the frame{ωµ}. We assumed � 3
(i.e., D � 4) since pure gravity inD = 3 spacetime
dimensions has no local degrees of freedom.

The central feature that enables one to investigate
the equations of motion in the vicinity of a spacelike
singularity is the asymptotic decoupling of the dynam-
ics at the different spatial points [1]. The remaining
effect of the spatial gradients can be accounted for by
potential terms for the local scale factorsβµ. There-
fore, we focus from now on a specific spatial point
and drop reference to the spatial coordinatesxi . In the
limit τ → +∞, the dynamics for the scale factorsβµ

is governed by the action

S
[
βµ(τ),N(τ)

]
(2.2)=

∫
dτ

[
Gµν

N

dβµ

dτ

dβν

dτ
−N V (βµ)

]
,

whereGµν is the metric defined by the Einstein–
Hilbert action in ad-dimensional auxiliary spaceMd

spanned by the “coordinates”βµ, which must not
be confused with physical space–time. This metric is
flat and of Minkowskian signature(−,+,+, · · · ,+);
explicitly, it reads

(2.3)

GµνV
µWν =

d∑
µ=1

V µWµ−
(

d∑
µ=1

V µ

)(
d∑

ν=1

Wν

)
.

We shall also need the inverse metricGµν

(2.4)

Gµνθµψν =
d∑

µ=1

θµψµ − 1

d − 1

(
d∑

µ=1

θµ

)(
d∑

ν=1

ψν

)
.

In (2.2), the potentialV is a sum of sharp wall
potentials,

(2.5)V =
∑
i

Vi, Vi =Θ∞
(−2wi(β)

)
,

whereΘ∞ vanishes for negative argument and is (pos-
itive) infinite for positive argument.1 The functions
wi(β) are homogeneous linear forms, viz.

(2.6)wi(β)=wiµβ
µ,

where the covectorswiµ will be given explicitly
below.

Varying the rescaled lapseN yields the Hamiltonian
constraint

(2.7)Gµν
dβµ

dτ

dβν

dτ
+ V = 0,

where we have setN = 1 (i.e., dt = −√
g dτ ) after

taking the variation, since this gauge choice simplifies
the formulas (note that this implies indeedτ ∼ − logt
since

√
g ∼ t [1,2]). The dynamics is also subject to

the spatial diffeomorphism (momentum) constraints,
but these affect the spatial gradients of the initial data
and need not concern us here.

We stress that the action (2.2) isnot obtained by
making a dimensional reduction to one dimension of
theD-dimensional Einstein–Hilbert action assuming
some internald-dimensional group manifold. Rather,
the action (2.2), or, more precisely, the sum over all
spatial points of copies of (2.2), supplemented by
the momentum constraints, is supposed to yield the
asymptotic dynamics in the limitt → 0+ for generic

1 Of course, the factor 2 in the argument ofΘ∞ in (2.5) could be
dropped (Θ∞(λx)= Θ∞(x) for λ > 0), but we keep it in order to
emphasize that the walls come with a natural normalization linked
to the fact that they initially appear as Toda walls∼ exp(−2wi(β))
[11]. These exponential walls become sharp in the Chitre–Misner
limit [15,16], generalized to higher dimensions [11,25].
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inhomogeneous solutions [1]. We should mention
that the derivation of (2.2) from the Einstein–Hilbert
action involves a number of steps that have not been
rigorously justified so far. Nevertheless, there is now
a wealth of supporting evidence for the BKL analysis,
both of analytical and of numerical type [26,27].

Let us study the dynamics of the billiard ball whose
motion is described by the functionsβµ = βµ(τ).
From (2.5) we immediately see that the interior region
of the billiard is defined by the inequalitieswi(β)� 0,
and that its walls are coincident with the hyperplanes
wi(β) = 0. Away from the walls, the Hamiltonian
constraint becomes

(2.8)Gµν

dβµ

dτ

dβν

dτ
= 0.

Thus the ball travels freely at the speed of light on
straight lines until it hits one of the walls and gets
reflected. The change of the velocityvµ ≡ β̇µ after a
collision on the wallwi(β)= 0 is given by a geometric
reflection in the corresponding wall hyperplane [5,11]

vµ → v′µ = (
Wi(v)

)µ

(2.9)

≡ vµ − 2
wiνv

ν

wiρw
ρ
i

w
µ
i (no sum overi),

wherewµ
i ≡ Gµνwiν are the contravariant compo-

nents ofwi . For a timelike wall (whose normal vec-
tor is spacelike), the reflection is an orthochronous
Lorentz transformation; hence the velocity remains
null and future-oriented. LetC+ denote the future light
cone with vertex at the origin (βµ = 0) where the walls
intersect. In the asymptotic regime under study, the
initial point from which one starts the motion has pos-
itive value of the timelike combination

∑d
µ=1β

µ of
the coordinates; therefore, since the wallswi(β) = 0
are all timelike — see below — the ball wordline re-
mains withinC+ [11].

The confinement of the billiard motion to the
forward light cone enables one to project, if one so
wishes, the piecewise linear motion of the ball in the
Minkowski spaceMd onto the upper sheetHd−1 of
the unit hyperboloid:

(2.10)Hd−1 :Gµνβ
µβν = −1,

d∑
µ=1

βµ > 0.

A projection is in fact physically necessary in or-
der to take into account the gauge redundancy (time-

reparametrization invariance) and its associated Ha-
miltonian constraint. One of theβµ’s does not corre-
spond to an independent degree of freedom. The pro-
jection to the upper hyperboloidHd−1 corresponds to
viewing thed − 1 coordinates ofHd−1 as the physical
degrees of freedom and

∑d
µ=1β

µ (or a function of it)
as the “time” (see, e.g., [28]). For practical purposes,
however, it is also convenient to keep the redundant
description in terms of which the evolution is piece-
wise linear. We shall switch back and forth between
the two descriptions. Note that the linear motion of
βµ projects to a geodesic motion on hyperbolic space
Hd−1, so the problem is equivalent, in the limit under
consideration, to a billiard in hyperbolic space.

We now wish to describe in more detail the con-
vex (half) coneW+ defined by the simultaneous ful-
fillment of all the conditionswi(β)� 0, to which the
motion of the billiard ball is also confined. There are
altogether two types of walls. Settingn≡ d − 2, they
are

1. Symmetry walls [11]

wi(β)= βi − βi−1

(2.11)(i = 2, . . . , n≡ d − 2),

(2.12)w0(β)= βd−1 − βd−2,

(2.13)w−1(β)= βd − βd−1.

2. Gravitational wall [4]

(2.14)w1(β)= 2β1 +
d−2∑
i=2

βi (d � 4)

(for d = 3, w−1 = β3 − β2, w0 = β2 − β1 and
w1 = 2β1).

There is a total ofd walls, which are all timelike
since the associated wall forms (normal vectors)wi

(i = −1,0,1, . . . , n) are spacelike in any spacetime
dimension:

Gµνwiµwiν = 2 (i fixed).

The walls therefore intersect the upper light coneC+.
The qualitative dynamics of the billiard can be

understood in terms of the relative positions ofC+ and
W+. Two cases are possible:

1. W+ is contained withinC+ (i.e., all vectors ofW+
are timelike or null);
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2. W+ is not entirely contained withinC+ (i.e., there
are not only timelike and null but also spacelike
vectors inW+).

In the first case, the walls define a generalized, finite-
volume simplex in hyperbolic spaceHd−1 (general-
ized because some vertices can be at infinity, which
occurs when some edges of the coneW+ are light-
like 2). As the walls are timelike, the ball will undergo
an infinite number of collisions because, moving at
the speed of light, it will always catch up with one of
the walls. The only exception, of measure zero, occurs
when the ball moves precisely parallel to a lightlike
edge of the billiard (there is always at least one such
edge). As we shall see in the next section, the dihedral
angles of the wall are all submultiples ofπ , so that
the reflections on the sides of the billiard generate a
discrete group of isometries of hyperbolic space. Sim-
ilarly to what happens in the superstring case [11], the
projected dynamics onHd−1 is then chaotic (Anosov
flow) according to general theorems on the geodesic
motion on finite-volume manifolds with constant neg-
ative curvature.

In the second case, some walls intersect outsideC+
and the billiard onHd−1 has infinite volume. The ball
undergoes a finite number of collisions until its motion
is directed toward a region ofW+ that lies outsideC+.
It then never catches a wall anymore because it cannot
leave C+: no “cushion” impedes its motion. The
dynamics onHd−1 is non-chaotic and the spacetime
metric asymptotically tends to a generalized Kasner
metric, corresponding to an uninterrupted geodesic
motion of the ball.

The question of chaos vs. regular motion is thereby
reduced to determining whether it is case 1 or case 2
that is realized. We discuss this in the next section by
relating the “wall cone”W+ to the fundamental Weyl
chamber of a certain indefinite Kac–Moody algebra.

3. Hyperbolic Kac–Moody algebras and chaos

In this section, we show that the reflections (2.9) can
be identified with the fundamental Weyl reflections of
the indefinite Kac–Moody algebraAEd , and therefore

2 The edges ofW+ are the (one-dimensional) intersections of
d − 1 distinct faces ofW+.

that the coneW+ can be identified with the funda-
mental Weyl chamber ofAEd . To do that, we need to
compute the dihedral angles between the walls. A di-
rect calculation shows that the Gram matrix

(3.1)Aij ≡Gµνwiµwjν for i, j = −1,0,1, . . . , n

of the scalar products of the wall forms is given by

(3.2)Aij =
( 2 −1 0

−1 2 −2
0 −2 2

)
for d = 3

and

Aij =




2 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 −1
0 −1 2 −1 · · · 0 0 0
...

0 0 0 0 · · · 2 −1 0
0 0 0 0 · · · −1 2 −1
0 −1 0 0 · · · 0 −1 2




(3.3)for d > 3.

In both cases, the wall forms have same length
√

2. As
in [11], we identify them with the simple roots of a
Kac–Moody algebra. To emphasize the identifications
“wall forms = simple roots”, we shall henceforth
switch to a new notation and denote the wall forms
wi by ri . We shall also denote the Cartan subalgebra
of the Kac–Moody algebra byH and its dual (space of
linear forms onH, i.e., the “root space”) byH∗. Thus,

(3.4)wi ≡ ri ∈ H∗.

We recall that the root spaceH∗ is endowed with a
bilinear form, which we identify with the bilinear form
defined by the (contravariant) metricGµν given above,

(3.5)ri · rj ≡Gµνriµrjν .

Since the roots have all same length squared 2, the
algebra is “simply-laced” and the Gram matrixAij

computed in (3.2) and (3.3) is also the Cartan matrix
aij ,

(3.6)aij ≡ 2ri · rj
ri · ri ,

i.e.,Aij = aij . We then recognize the first matrix as the
Cartan matrix of the Kac–Moody algebraAE3, while
the second matrix is the Cartan matrix of the Kac–
Moody algebraAEd (d > 3). This is what justifies
the identifications (3.4) and (3.5). The rootsr0, . . . , rn



328 T. Damour et al. / Physics Letters B 509 (2001) 323–330

form the closed ring of the Dynkin diagram,r0 is
the (affine) root closing the ring, andr−1 is the
overextended root connected tor0.

Once the wall forms are identified with the simple
roots of a Kac–Moody algebra, the spaceMd in
which the dynamics of the scale factors takes place
becomes identified with the Cartan subalgebraH of
AEd . The coneW+ defining the billiard is given by
the conditions

(3.7)〈ri , β〉 � 0 for all i = −1,0,1, . . . , n

where〈ri , β〉 denotes the pairing between a formri ∈
H∗ and a vectorβ ∈ H. The coneW+ is then just the
fundamental Weyl chamber [17,18], as was anticipated
by our notations. It is striking to note that the finite
dimensional germAd−2 of the hyperbolic algebraAEd
is nothing but the Ehlers symmetry of the toroidal
compactification of the original gravity fromd + 1 to
3 dimensions [29]. The reduction to two dimensions
brings the affine extension and the final elimination of
all spatial coordinates increases the rank further tod

[23].
The above Cartan matrices are indecomposable.

They are also of indefinite, Lorentzian type since the
metricGµν in H is of Lorentzian signature. A Cartan
matrix with these properties is said to be of hyperbolic
type if any subdiagram obtained by removing a node
from its Dynkin diagram is either of finite or affine
type [17]. The concept of hyperbolicity is particularly
relevant here because it is a general result that the
fundamental Weyl chamberW+ of a hyperbolic Kac–
Moody algebra is contained within the light coneC+;
the Weyl cell is then a (generalized) simplex of finite
volume. Furthermore, for hyperbolic KM algebras the
closure of the Tits cone, defined as the union of the
fundamental Weyl chamber and all its images under
the Weyl group, is justC+ ([17], Section 5.10).

As already mentioned, the Kac–Moody algebras
AEd are hyperbolic ford � 9. We will now verify by
explicit computation that their associated fundamental
Weyl chambers are indeed contained in the forward
light cone. The location of the fundamental Weyl
chambers in the general case is most conveniently (and
most easily) analyzed by means of the fundamental
weightsΛj ∈ H∗. The latter are defined by

ri ·Λj ≡GµνriµΛjν = δij ,

(3.8)i, j = −1,0,1, . . . , n≡ d − 2.

Let us also introduce the coweightsΛ∨
i ∈ H, i.e.,

the contravariant vectors associated with the forms
Λi with components(Λ∨

i )
µ ≡ GµνΛiν . Because the

fundamental Weyl chamberW+ is defined by the
conditions〈ri , β〉 � 0, we have

(3.9)

W+ =
{
β ∈ Md ≡ H

∣∣∣∣β =
n∑

i=−1

aiΛ
∨
i ,

ai ∈ R, ai � 0

}
.

The (one-dimensional) edges ofW+ are obtained by
setting all aj except one to zero, which gives the
vectorsΛ∨

i . The question of determining whether
the fundamental Weyl chamber is contained in the
forward light cone or not is thus reduced to a simple
computation of the norms of the fundamental weights.

To get the fundamental weights, we observe that if
the rootr−1 is dropped, the associated Cartan matrix
reduces to the Cartan matrix of affinesl(n + 1). The
affine null root is given by

(3.10)δ = r0 + r1 + · · · + rn.

It obeysδ2 ≡ δ · δ = 0 = rj · δ for all j = 0,1, . . . , n
(but r−1 · δ = −1). The fundamental weights for the
subalgebraAn are defined by

(3.11)ri · λj = δij for i, j = 1, . . . , n.

They are explicitly given by

λj = n− j + 1

n+ 1

[
r1 + 2r2 + · · · + jrj

]

(3.12)

+ j

n+ 1

[
(n− j)rj+1 + (n− j − 1)rj+2

+ · · · + rn
]

with norm

(3.13)λ2
j = j (n− j + 1)

n+ 1
> 0
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(note thatr0 · λj = −1 for all j = 1, . . . , n). One then
finds for the fundamental weights3 of AEd

Λ−1 = −δ, Λ0 = −r−1 − 2δ,

(3.14)Λj =Λ0 + λj for j = 1, . . . , n.

Their norms (withΛ2 ≡ Λ · Λ ≡ GµνΛµΛν) are
easily computed:

Λ2−1 = 0, Λ2
0 = −2,

(3.15)Λ2
j = −2+ j (n− j + 1)

n+ 1
.

Note thatΛ−1 is always lightlike, andΛ0 is timelike
for all n. It is furthermore elementary to check that

(3.16)Λ2
j � 0 for all j if n� 7

with equality only forn= 7 andj = 4. Forn� 8 there
is always at least onespacelike fundamental weight
Λj ; e.g., forn= 8 we have

(3.17)Λ2
4 =Λ2

5 = 2

9
> 0.

The above calculation then tells us that forn �
7 (i.e., for AEd with d � 9) the fundamental Weyl
chamber is contained in the forward light cone with
one edge touching the light cone (two edges for
n = 7). For n � 8 there is at least one spacelike
edge, so the Weyl chamber contains timelike, lightlike
and spacelike vectors. This is, then, the Kac–Moody
theoretic understanding of the fact that the asymptotic
solution of the vacuum Einstein equations in the
vicinity of a spacelike singularity exhibits the never-
ending oscillatory behaviour of the BKL type in
spacetime dimensions� 10, while this ceases to be
the case forD � 11 [4].

To conclude this Letter, we would like to stress
once more that the emergence of a Kac–Moody al-
gebra is not automatic for the gravitational systems
under consideration. For instance, the billiard associ-
ated with the Einstein–Maxwell system inD space-
time dimensions has the same symmetry walls (2.11),

3 In general case with the highest rootθ =∑
j mj rj , we have

r0 · λj = −mj and the fundamental weights are given by

Λ−1 = −δ, Λ0 = −r−1 − 2δ, Λj =mjΛ0 + λj .

An alternative representation isΛi =∑
j (a

−1)ij rj , where(a−1)ij
is the inverse Cartan matrix.

(2.12), (2.13), but the gravitational wall (2.14) is re-
placed by the (asymptotically dominant) electric wall
w1(β) = β1. This wall is orthogonal to all symmetry
walls, exceptw2 (w0 for d = 3) with which it makes
an angleα given by cosα = √

(d − 1)/2(d − 2). This
dihedral angle is generically not a submultiple ofπ

and the associated group of reflections is not a discrete
group, with two notable exceptions: (i)α is equal to
zero forD = 4, where electric and gravitational walls
coincide (though the wall forms are normalized dif-
ferently), and (ii) the angleα is equal toπ/6 for the
caseD = 5, whose study was advocated in [10] in
the context of homogeneous models. Taking into ac-
count that the wall formw1 has norm squared equal to
(d−2)/(d−1)= 2/3, one gets in that case the Cartan
matrix

(3.18)aij =



2 −1 0 0
−1 2 0 −1
0 0 2 −3
0 −1 −1 2


 .

The underlying Kac–Moody algebra is the canonical
hyperbolic extension of the exceptional Lie algebra
G2 (hyperbolic algebra number 16 in Table 2 of
[30]). One Einstein–Maxwell theory in 5 dimensions
is particularly interesting because it is the bosonic
sector of simple supergravity in 5 dimensions, which
shares many similarities withD = 11 supergravity,
such as the cubic Chern–Simons term for the vector
field [31]. The relevance of the exceptional groupG2
to that theory was pointed out in [29,32]. This system,
as well as pure gravity or superstring models and M-
theory, for which one does get the Weyl group of a
Kac–Moody algebra, are thus rather exceptional [11].
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