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Differentially Rotating Disks of Dust: Arbitrary
Rotation Law
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In this paper, solutions to the Ernst equation are investigated that depend on two
real analytic functions defined on the interval [0,1]. These solutions are introduced
by a suitable limiting process of Bäcklund transformations applied to seed solutions
of the Weyl class. It turns out that this class of solutions contains the general
relativistic gravitational field of an arbitrary differentially rotating disk of dust, for
which a continuous transition to some Newtonian disk exists. It will be shown
how for given boundary conditions (i.e. proper surface mass density or angular
velocity of the disk) the gravitational field can be approximated in terms of the above
solutions. Furthermore, particular examples will be discussed, including disks with a
realistic profile for the angular velocity and more exotic disks possessing two spatially
separated ergoregions.
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1. INTRODUCTION

Differentially rotating disks of dust have already been studied by Ansorg and
Meinel [1]. They considered the class of hyperelliptic solutions to the Ernst equa-
tion introduced by Meinel and Neugebauer [2], see also [3–6]. These hyperel-
liptic solutions depend on a number of complex parameters and a real potential
function. Ansorg and Meinel concentrated on the case in which one complex
parameter can be prescribed. They determined the real potential function in order
to satisfy a particular boundary condition valid for all disks of dust. To gener-
ate their solutions, they used Neugebauer’s and Meinel’s rigorous solution [7, 8,
9] to the boundary value problem of a rigidly rotating disk of dust which also
belongs to the hyperelliptic class.

1 Friedrich-Schiller-Universität Jena, Theoretisch-Physikalisches Institut, Max-Wien-Platz 1, 07743
Jena, Germany, E-mail: ansorg@tpi.uni-jena.de
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A subclass of Ansorg’s and Meinel’s solutions is made up of Bäcklund
transforms of seed solutions of the Weyl class.2 Solutions of this type are of
particular interest since their mathematical structure is much simpler than that
of the more general hyperelliptic solutions.

With this in mind, the following questions arise:

• Is it possible to find solutions corresponding to more general differentially
rotating disks of dust by increasing the number of prescribed complex
parameters?

• If so, is there a rapidly converging method for approximating arbitrary
differentially rotating disks of dust with given boundary conditions (i.e.
proper mass density or angular velocity)?

• Is it perhaps possible to construct such a method by restriction to the
much simpler solutions of the Bäcklund type?

To answer these questions, the paper is organized as follows. In the first section
the metric tensor, Ernst equation, and boundary conditions are introduced and
the class of solutions of the Bäcklund type is represented. As will be discussed
in the second section, the properties of these solutions can be used to obtain
more general solutions by a suitable limiting process. Since these more general
solutions depend on two real analytic functions defined on the interval [0, 1],
a rapidly converging numerical scheme to satisfy arbitrary boundary conditions
for disks of dust can be created. This is described in the third section. Finally,
the fourth section contains particular examples of differentially rotating disks of
dust, including disks with a realistic profile for the angular velocity and more
exotic disks possessing two spatially separated ergoregions.

Units are used in which the velocity of light as well as Newton’s constant
of gravitation are equal to 1.

1.1. Metric Tensor, Ernst Equation, and Boundary Conditions

The metric tensor for axisymmetric stationary and asymptotically flat space-
times reads as follows in Weyl-Papapetrou-coordinates (r, z , J, t):

ds2 c e−2U[e2k(dr2 + dz2) + r2dJ2] − e2U(dt + a dJ)2.

For this line element, the vacuum field equations are equivalent to a single com-
plex equation—the so-called Ernst equation [22, 23]

2 The construction of solutions to the Ernst equation by means of Bäcklund transformations belongs
to the powerful analytic methods developed by several authors [10–20]. For a detailed introduction
see [21].
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where the Ernst potential f is given by
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To obtain the boundary conditions for differentially rotating disks of dust, one
has to consider the field equations for an energy-momentum-tensor

T ik c euiuk c jp(r)eU − kd(z)uiuk ,

where e and jp stand for the energy-density and the invariant (proper) surface
mass-density, respectively, d is the usual Dirac delta-distribution, and ui denotes
the four-velocity of the dust material.3

Integration of the corresponding field equations from the lower to the upper
side of the disk (with coordinate radius r0) yields the conditions (see [24], pp.
81–83)

2pjp c eU − k(U , z + 1
2 Q) (3)

e4UQ2 + Q(e4U), z + (b, r)2 c 0 (4)

for z c 0+, 0 ≤ r ≤ r0 and

Q c −re−4U[b, rb, z + (e2U), r(e2U), z ]. (5)

3 ui has only J- and t-components.
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Note that boundary condition (4) for the Ernst potential f does not involve the
surface mass-density jp. This condition comes from the nature of the material the
disk is made of. Therefore, equation (4) will be referred to as the dust-condition.
Instead of prescribing the proper surface mass-density jp [which leads to the
boundary condition (3)] one can alternatively assume a given angular velocity
Q c Q (r) c uJ/ ut of the disk which results in the boundary condition (z c 0+,
0 ≤ r ≤ r0):

Q c Q
a, z − aQ

. (6)

The following requirements due to symmetry conditions and asymptotical flat-
ness complete the set of boundary conditions:

• Regularity at the rotation axis is guaranteed by

∂f
∂r

(0, z) c 0.

• At infinity asymptotical flatness is realized by U r 0 and a r 0. For
the potential b this has the consequence b r b∞ c const. Without loss of
generality, this constant can be set to 0, i.e. f r 1 at infinity.

• Finally, reflectional symmetry with respect to the plane z c 0 is assumed,
i.e. f (r, −z) c f (r, z) (with a bar denoting complex conjugation).

1.2. Solutions of the Bäcklund Type

For a given integer q ≥ 1, a set {Y1, . . . , Yq} c {Yn}q
4 of complex param-

eters, and a real analytic function g defined on the interval [0, 1], the following
expression

4 In the following, the notation {Y1, . . . , Yq} will be abbreviated by {Yn }q .
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with (a bar denotes complex conjugation)

• f 0 c exp �− ∫
1

−1

(−1)qg(x2)dx
ZD

� ,ZD c g(ix − z/ r0)2 + (r/ r0)2,R (ZD) < 0

• ln c
i

Yn − iz
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, z c 1
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(r + iz), l*
nln c 1
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1 + gn
, gn c exp �ln (Yn + iz) ∫

1

−1

(−1)qg(x2)dx
(ix − Yn )ZD

� , a*
n a n c 1

satisfies the Ernst equation. With the additional requirement that for each param-
eter Yn there is also a parameter Ym with Yn c −Ym , reflectional symmetry, f (r,−z) c f (r, z), is ensured.5 Moreover, the parameters Yn are assumed to lie outside
the imaginary interval [− i,i].

The above Ernst potential f c f (r/ r0, z/ r0; {Yn}q; g) is obtained by a
Bäcklund transformation applied to the real seed solution f 0, see [16]. On the
other hand, as demonstrated in appendix A, it can be constructed from the hyper-
elliptic solutions by a suitable limiting process (see also [4]). The particular
ansatz chosen for the seed solution f 0 guarantees a resulting Ernst potential

5 Hence, the set {iYn }q consists of real parameters and/ or pairs of complex conjugate parameters.
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which corresponds to a disk-like source of the gravitational field (see also section
1.2 of [1]).

Furthermore, f does not possess singularities at (r, z) c r0( |T [Yn ] | ,−R [Yn ]). This is due to the fact that anln is a function of l2
n , and this means

that f does not behave like a square root function near the critical points (r, z)c r0( |T [Yn ] | , −R [Yn ]), but rather like a rational function. Now, in the whole
area of physically interesting solutions that will be treated in the subsequent sec-
tions, each zero of the denominator is cancelled by a corresponding zero of the
numerator in (7) such that the resulting gravitational field is regular outside the
disk.

The real function g that enters the Ernst potential is assumed to be analytic
on [0, 1] in order to guarantee an analytic behaviour of the angular velocity Q

for all r ∈ [0, r0]. Moreover, the additional requirement

g(1) c 0

leads to a surface mass density jp of the form

jp(r) c j0wp[(r/ r0)2]
g

1 − (r/ r0)2

[with wp analytic in [0, 1],wp(0) c 1] (8)

and therefore ensures that jp vanishes at the rim of the disk.
In this article the question as to whether the above expression for the Ernst

potential is sufficiently general to approximate arbitrary differentially rotating
disks of dust is investigated. Of particular interest is a rapidly converging method
to perform this approximation. To this end, the set {Yn}q of complex parameters
will be translated into an analytic function

y : [0, 1] r R.

Thus the Ernst potential will depend on two real analytic functions defined on
[0, 1]:

f c f (r/ r0, z/ r0; y; g),

which eventually proves to be sufficient to satisfy both the dust condition (4)
and the boundary condition (3) [or alternatively (6)]. The rapid and accurate
approximation can be realized since both g and y are analytic on [0, 1] and thus
permit elegant expansions in terms of Chebyshev polynomials.
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2. GENERALIZATION OF THE BÄCKLUND TYPE SOLUTIONS BY
A LIMITING PROCESS

As demonstrated in [1] for the Bäcklund type solutions with q c 1, the dust
condition (4) can be satisfied by an appropriate choice of the function g if the
complex parameters Yn are prescribed. To fulfil a second boundary condition, (3)
or (6), the set {Yn}q of these parameters has to be translated into a real analytic
function y. To this end, consider the following equalities for the above solutions
f c f ({Yn}q; g)6 which are proved in appendix B:

f [{Y1, . . . ,Yq − 2,Yq − 1,Yq}; g] c f [{Y1, . . . ,Yq − 2}; g]

if Yq − 1 c −Yq ∈ R (9)

f [{Y1, . . . ,Yq − 2,Yq − 1,Yq}; g] c f [{Y1, . . . ,Yq − 2}; g]

if Yq − 1 c Yq (10)

lim
t r ∞

f [{Y1, . . . ,Yq − 1, it}; g] c f [{Y1, . . . ,Yq − 1}; g]

if t ∈ R (11)

lim
Yq r ∞

f [{Y1, . . . ,Yq − 2,Yq − 1,Yq}; g] c f [{Y1, . . . ,Yq − 2}; g]

if Yq − 1 c −Yq. (12)

In order to find an approximation scheme, the desired function y c y({Yn}q) is
supposed to be invariant under the modifications (9–12) of the set {Yn}q that
do not effect the Ernst potential. This property will be necessary to solve the
boundary conditions uniquely.

It is realized by the real analytic function

y(x2; {Yn}q) c 1
x

ln [ q

∏
n c 1

iYn − x
iYn + x ] , x ∈ [−1, 1], (13)

which can be proved by considering that for each parameter Yn there is also a
parameter Ym with Yn c −Ym , and that, moreover, the parameters Yn do not lie
on the imaginary interval [− i, i].

The set X of all functions y c y(x2; {Yn}q), q ∈ N, which are defined by
(13) forms a dense subset of the set A of all real analytic functions on [0, 1].
Now, for a given function g, each y ∈ X is mapped by (7) onto a uniquely
defined Ernst potential f ∈ E7:

6 In the following the Ernst potentials f given by (7) are considered as complex functions depending
on the set {Yn }q of complex parameters and on g.

7 Here, E denotes the set of all Ernst potentials corresponding to disk-like sources.
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Fg : X r E , Fg(y) c f ({Yn}q; g), (14)

where the set {Yn}q results from y by (13).
In the following, it is assumed that this mapping Fg can be extended to

form a continuous function defined on A .8 Then, given the two real functions g
and y, defined and analytic on the interval [0, 1], the Ernst potential

f (y; g) c lim
q r ∞

f ({Y (q)
n }q; g)

exists and is independent of the particular choice of the sequence {{Y (q)
n }q}∞q c q0

which serves to represent y by

y(x2) c 1
x

lim
q r ∞

ln [ q

∏
n c 1

iY (q)
n − x

iY (q)
n + x ] for x ∈ [−1, 1].

This provides the groundwork for the approximation scheme that will be devel-
oped in the next section. The treatment additionally assumes that the boundary
conditions (3) and (4) [or (4) and (6)] interpreted as functions of g and y are
invertible. The accurate and rapid convergence of the numerical methods justifies
this assumption although a rigorous proof cannot be given.

3. AN APPROXIMATION SCHEME FOR ARBITRARY
DIFFERENTIALLY ROTATING DISKS OF DUST

It is now possible to attack general boundary value problems for differen-
tially rotating disks of dust. With the above generalized solutions f c f (y; g) the
boundary conditions [see formulas (3–6, 8)] become a problem of inversion to
determine g and y from jp or Q :

(A) S(g; y) c {eU − k[U , z + 1
2 Q]/ [j0

f
1 − (r/ r0)2]}(y; g)

.c 2pwp or

(A′) O(g; y) c {Q/ [Q (0)(a, z − aQ)]}(y; g)
.c Q /Q (0) c Q * (15)

(B) D(g; y) c {r2
0[Q2e4U + Q(e4U), z + (b, r)2]}(y; g)

.c 0, g(1)
.c 0

This inversion problem is tackled in the following manner:

1. The only way to treat the complicated system (15) numerically seems

8 The mathematical aspects of this assumption will be discussed in Section 5.
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to be by restricting it to a finite, discretized version and solving this by
means of a Newton–Raphson method.

2. For this method, a good initial guess for the solution is needed. As shown
in appendix C.1, there exists a representation of the functions g and y in
terms of jp or Q in the Newtonian regime e << 1 where e c M2/ J and
the gravitational mass M and the total angular momentum J are given by

M c 2 ∫S
(Tab − 1

2 Tgab)naybd V

(16)

J c −∫S
Tabnahbd V, Tab c gabT ab.

(S is the spacelike hypersurface t c constant with the unit future-pointing
normal vector na; the Killingvectors ya and ha correspond to stationarity
and axisymmetry, respectively.)

3. This motivates the following finite version which results from expan-
sions of (15) in terms of Chebyshev-polynomials Tj(t) c cos[ j
arccos(t)]:

Fj(vk)
.c 0 (1 ≤ j, k ≤ N1 + N2 − 1) :

• Fj c Dj (1 ≤ j ≤ N1 − 1), FN1 c e(gm; yn) − e,

FN1 + j − 1 c Sj − 2pw j or FN1 + j − 1 c Oj − Q *
j (2 ≤ j ≤ N2),

vk c gk + 1 (1 ≤ k ≤ N1 − 1), vN1 + k − 1 c yk (1 ≤ k ≤ N2)

• g(x2) ≈
N1

∑
j c 1

gjTj − 1(2x2 − 1) − 1
2 g1, g(1)

.c 0e g1 c −2
N1

∑
j c 2

gj

• y(x2) ≈
N2

∑
j c 1

yjTj − 1(2x2 − 1) − 1
2 y1

• wp(x2) ≈
N2

∑
j c 1

w jTj − 1(2x2 − 1) − 1
2 w1,

wp(0)
.c 1e w1 c 2

N2

∑
j c 2

(−1) jw j + 2
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• Q *[(r/ r0)2] c Q (r)/Q (0) :

Q *(x2) ≈
N2

∑
j c 1

Q *
jTj − 1(2x2 − 1) − 1

2 Q *
1,

Q *(0)
.c 1e Q *

1 c 2
N2

∑
j c 2

(−1)jQ *
j + 2

• S(x2 c r2/ r2
0; g; y) ≈

N2

∑
j c 1

Sj(gm; yn)Tj − 1(2x2 − 1) − 1
2 S1(gm; yn)

• O(x2 c r2/ r2
0; g; y) ≈

N2

∑
j c 1

Oj(gm; yn)Tj − 1(2x2 − 1) − 1
2 O1(gm; yn)

• D(x2 c r2/ r2
0; g; y) ≈

N1 − 1

∑
j c 1

Dj(gm; yn)Tj − 1(2x2 − 1) − 1
2 D1(gm; yn)

[The function e(gm; yn) c M2/ J is determined using (16) for the above
functions g and y.]

4. For the above system, the boundary values are assumed to be given in
the form of the wk’s or Q *

k’s (k c 2, . . . , N2). Moreover, some e << 1
has to be prescribed. Then, good initial vk’s come from the Newtonian
expansion. The Newton–Raphson method improves the vk’s and yields
a very accurate solution to (15) for the chosen small e. Now, this solu-
tion serves as the initial estimate for the vk’s belonging to a marginally
increased value for e. Again, the Newton–Raphson method improves the
solution, and one continues in this manner until this procedure ceases to
converge. This occurs for some finite value e0, at the latest for e c 1. A
further discussion of this limit is given below.

5. A rather technical detail is the retranslation of the yj into a set {Yn}g

which then gives a satisfactory approximation of y in terms of (13).
There are many ways to do this. Here, the following one has been
chosen.

One rewrites equation (13) in the equivalent form

exp[xy(x2; {Yn}q)] c q

∏
n c 1

iYn − x
iYn + x

c Pq(−x)
Pq(x)

with Pq(x) c q

∑
n c 0

bnxn .
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The coefficients bn of the polynomial Pq can be determined by evalu-
ating the left hand side at q arbitrary different points xm ∈ [0, 1]9 and
solving the following linear system:

exp[xmy(x2
m; {Yn}q)]

q

∑
n c 0

bnxn
m c q

∑
n c 0

bn (−xm)n

The zeros of Pq determine the Yn .

The above scheme has been performed for many different prescribed surface
mass densities and angular velocities. This provides strong evidence for the con-
jecture that, in this manner, all Newtonian disks can be extended into the relativis-
tic regime. It has been found that the value for e0, the limiting parameter for the
convergence of this scheme, depends on the chosen profile for wp (or equivalently
for Q *). It is illustrated in appendix C.2, how the Ernst potential always tends to
the extreme Kerr solution [25] as e r 1. This supports a conjecture by Bardeen
and Wagoner [26]. But e0 c 1 does not hold for all given surface mass densities.
Even in the Newtonian regime there are surface mass densities for which a realis-
tic physical disk cannot be found since the corresponding angular velocity would
become imaginary. If one chooses a profile for jp not very different from these,
then the Newtonian limit still might exist, but some e0 < 1 turns up, beyond which
the method does not converge. In the case of prescribed angular velocity, the situ-
ation is similar. Here, for any sequence f c f (ge ; ye ) the angular velocity Q * tends
for all x2 ∈ [0, 1] to 1 as e r 1. So, each nonuniform rotation law will lead to
some e0 < 1 (see Section 4 for examples).

The above expansions in terms of Chebyshev-polynomials allow a very
accurate representation with only a small number of coefficients. However, the
retranslation of y (see the above point 5) leads to functions that are not especially
well suited for an approximation. In particular, if the boundary condition wp is
chosen to be close to those for which there is no Newtonian disk, then the accu-
racy cannot be driven particularly high by the computer program used, although
the method in principle allows arbitrary approximation (see Section 4.2).

For w i’s sufficiently far away from those critical ones, the accuracy obtained
was very high. By choosing appropriate values for N1 and N2 one can always
achieve extremly good agreement with the dust condition (4) (12 digits and
beyond) which ensures a realistic physical interpretation of the solution. The
accuracy to which the second boundary condition, (3) or (6), can be satisfied,
depends on the parameter e. It is usually around 8 digits in the weak relativistic
regime, and falls as e increases, but is still around 4 digits as e tends to e0. These

9 Here, zeros of Chebyshev-polynomials have been used.
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values arose for N1 c 30, N2 c 12, and typical wp’s (like wp’s depending linearly
on x2) and Q *’s (e.g. the realistic one considered in Section 4.1). The number
q of the parameters Yn by which y is represented, was chosen to be between 20
and 30 (independently of N2).

What remains to be discussed is the regularity of the Ernst potentials that
were obtained. For a few of the solutions, the functions e2U and b were plot-
ted over the coordinates r and z . Moreover, the agreement of the alternative
representations of M and J, as given by the behaviour of the Ernst potential at
infinity

U c − M
r

+ O(r−2), b c −2J
cos v

r2
+ O(r−3), (r c gr2 + z2, z c r cos v)

with the results from formulas (16) yields good confirmation of the regularity.
This agreement was checked for all solutions that were calculated.

4. REPRESENTATIVE EXAMPLES

From the numerous solutions obtained, three particular sets of differentially
rotating disks are discussed in more detail. The first one is an example of disks
revolving with a realistic rotation law. The second set illustrates the break down
of the numerical method for a specially prescribed surface mass density jp at
some e0 < 1. On the other hand it is demonstrated that, for the same jp, regular
solutions can be found in the highly relativistic regime. Finally, the third example
concerns the occurrence of a second ergoregion for a particular series of disks
and, moreover, the gradual merging of the two spatially separated ergoregions
as e increases.

The deviations between the boundary values obtained for particular numeri-
cal solutions and the given boundary conditions are listed in tables. The quan-
tities DD, DQ , and Dj therein are defined by

DD c max
x2 ∈ [0,1]

|Dobt(x
2; g; y) |

DQ c max
x2 ∈ [0,1]

|Q *
obt(x

2) − Q *
giv(x2) |

Dj c max
x2 ∈ [0,1]

|wobt
p (x2) − wgiv

p (x2) | ,

where the indices ‘obt’ and ‘giv’ refer to obtained and given quantities, respec-
tively. Moreover, by letters (a), . . . , (e), special examples are marked, for which
illustrative graphs have been made. Here, curves drawn in the same line style
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belong to the same solution. The graphs show the dimensionless quantities r0jp

and r0Q as well as g and y plotted against the normalized radial coordinate r/ r0

and x, respectively.

4.1. Disks Possessing a Realistic Rotation Law

As motivated by observations in astrophysics the rotation law of a galaxy
is often modelled by an equation of the form (see [27])

Q (r) c Q (0)g
1 + r2/ r2

1

. (17)

Here, the parameter r1 varies for different galaxies. In the following series of
solutions illustrated in Figure 1, r1 c 0.7r0 has been chosen. As described in
Section 3, there is a limiting parameter e0 ≈ 0.935, for which the numerical
method ceases to converge.

4.2. Disks with a Critical Surface Mass Density

For the following sequence of solutions, a surface mass density of the form

jp(r) c j0 �1 − 3
r2

r2
0

+ b
r4

r4
0
�
i

1 − r2

r2
0

(18)

has been assumed.
It turns out that for b > bN ≈ 7 no Newtonian disks with a real angular

velocity can be found. On the other hand, for b c 5.5, all relativistic solutions
for 0 ≤ e ≤ 1 exist. The table and graphs of Figure 2 refer to the case b c 6.
Starting here from the Newtonian solution, one soon recognizes a first limiting
parameter e0 ≈ 0.60 for which the method breaks down. However, by coming
from solutions with b c 5.5 and e close to 1, it is possible to create highly
relativistic solutions with b c 6. In fact, there is another limiting parameter,
e1 ≈ 0.97, above which the solutions with b c 6 exist once again. Due to the
nearness to the critical surface mass density (for b c bN), the accuracy obtained
for the boundary condition (3) is not very high.

4.3. Disks Possessing Spatially Separated Ergoregions

The particular set of disks depicted in Figure 3 demonstrates the occurrence
of a second ergoregion.10 These solutions do not satisfy a specially prescribed

10 An ergoregion is a portion of the (r, z)-space within which the function e2U is negative.
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Figure 1. Disks possessing the rotation law (17) with r1 c 0.7r0 (N1 c 30, N2 c 12).

boundary condition (3) or (6), but have been constructed in the following manner
as intermediate solutions. If one investigates solutions with surface mass den-
sities similar to those of (18), one recognizes two minima for e2U (taken as a
function of r, 0 ≤ r ≤ r0, z c 0), say at ra and rb > ra. Now, for a particular
choice of jp it is possible to get e2U(ra) > 0 and e2U(rb) < 0, whilst by another
choice one can achieve e2U(ra) < 0 and e2U(rb) > 0. This makes clear, that
disks with spatially separated ergoregions can be constructed by interpolating
between these solutions. For the chosen example, there is only a narrow interval
(ea, eb) for which the two separated ergoregions occur. As can be seen from Fig-
ure 3, after creation of the second ergoregion at ea ≈ 0.8403, both ergoregions
grow as e increases. Eventually, at eb ≈ 0.8415, the ergoregions merge into one
ergoregion.
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Figure 2. Disks possessing the surface mass density (18) with b c 6 (N1 c 30, N2 c 12).

5. DISCUSSION OF MATHEMATICAL ASPECTS

As already mentioned in Section 2, the assumption that the function Fg

introduced in (14) can be extended to form a continuous mapping defined on
A , lies at the heart of the above numerical methods. Although this assumption
seems to be intuitive, it is not trivial. Consider the following example:

For any analytic function w :[0, 1] r R one finds the equality:11

11 To verify this formula one simply expands the logarithms in the form ln(1 + e) c e + O(e2) and
notes that the resulting sum tends to the Riemann integral of the right hand side.
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Figure 3. Example for a series of disks possessing spatially separated ergoregions.
In the uppermost picture, the rims of the ergoregions in the (r/ r0, z/ r0)-space are
to be seen (N1 c 40, N2 c 9).
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lim
q r ∞

q

∑
n c 1

ln [1 +
1
q

w � n

q � ] c ∫1

0
w(t)dt.

From this it follows that

2 ∫
1

0
f(t)dt c 1

x
lim

q r ∞

q

∑
n c 1

ln
q + xf(n/ q)
q − xf(n/ q)

with w(t) c ±xf(t).

Hence, the function y(x2) ≡ 2 can be represented by any sequence of the form

Y (q)
n c i

q
f(n/ q)

with ∫
1

0
f(t)dt c 1.

Since these sequences might be quite different from each other, it is rather sur-
prising that all of them approximate the same Ernst potential given by (7). But
this follows from the above assumption.

This already indicates the difficulties which are connected with a rigorous
proof of this assumption because the Ernst potential is only given in terms of
the set {Yn}q and not directly in terms of y.

A further conjecture is strongly confirmed by extensive numerical investi-
gations:

For the hyperelliptic class of solutions represented by (19) in appendix A,
the functions y and g are given by

y(x2) c 1
2x

ln [ p

∏
n c 1

iXn − x
iXn + x ]

g(x2) c sign�
p

∏
n c 1

Xn� Ag(x2)h(x2),

Ag(x2) c
VUUT p

∏
n c 1

(ix − Xn )(ix − Xn ), Ag(x2) > 0.

In particular, in this formulation, the solution for the Neugebauer–Meinel-disk
[7, 8, 9] assumes the form f = f(y; g) where
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y(x2) c 1
2x

ln
x2 − C1(m)x + C2(m)
x2 + C1(m)x + C2(m)

,

C1(m) c f2[1 + C2(m)], C2(m) c 1
m

f
1 + m2,

g(x2) c − 1
p

arsinh[m(1 − x2)],

and the parameter m, 0 < m < m0 c 4.62966184. . . , is related to the angular
velocity by

m c 2Q 2r2
0e−2V0 , V0 c U(r c 0, z c 0).

As already mentioned, a direct proof of the above assumptions promises
to be very complicated. But there might be an alternative proof which relies on
relating a general solution of the Ernst equation to the solution of a so-called
Riemann–Hilbert problem, see [18, 21, 28, 29]. In this treatment, an appropri-
ately introduced matrix function, from which the Ernst potential can be extracted,
is supposed to be regular on a two-sheeted Riemann surface of genus zero except
for some given curve, where it possesses a well-defined jump behaviour. The
freedom of two jump functions defined on this curve corresponds to the free-
dom to choose y and g. Now, if one succeeds in finding a particular formulation
of a Riemann–Hilbert problem in which y and g are involved, then the final
solution for f proves to depend only on y (and g) and not on a particular global
representation in terms of {Yn}q. This deserves further investigation.

There is very strong numerical evidence for the validity of both assump-
tions. For various functions y (and functions g), different representations {Yn}q

have been seen to approximate the same Ernst potential. In particular, the approx-
imation of the Neugebauer–Meinel-solution in terms of Bäcklund solutions was
carried out to give an agreement up to the 12th digit with the hyperelliptic solu-
tion, which confirms both assumptions.

APPENDIX A. THE TRANSITION FROM THE HYPERELLIPTIC
SOLUTIONS TO THE BÄCKLUND TYPE SOLUTIONS

In this Section the Bäklund type solutions are derived from the hyperelliptic
class. The latter is assumed to be given in the form represented in [1]12 for an
even integer p ≥ 2:

12 The parameters Kn , the upper integration limits K (n), and the integration variable K have to be
replaced by their ‘normalized’ values Xn c Kn / r0, X (n) c K (n)/ r0, and X c K/ r0, respectively.
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f c exp�
p

∑
n c 1

∫
X(n)

Xn

X pdX
V(X )

− up� (19)

• V(X ) c
VUUT(X + iz)(X − iz)

p

∏
n c 1

(X − Xn )(X − Xn ), z c 1
r0

(r + iz)

•
p

∑
n c 1

∫
X(n)

Xn

X jdX
V(X )

c uj , 0 ≤ j < p (20)

• uj c ∫
1

−1

(ix)jh(x2)dx
ZD

, 0 ≤ j ≤ p, h : [0, 1) r R, analytic,

ZD as defined in (7)

The set {iXn}p consists of arbitrary real parameters and/ or pairs of complex con-
jugate parameters (in order to guarantee reflectional symmetry). The (z-depen-
dent) values for the X (n) as well as the integration paths on a two-sheeted Rie-
mann surface result from the Jacobian inversion problem (20).

The transition to the Bäcklund type solutions (7) can be obtained in the
limit e r 0 by the following assumptions:

• p c 2q

• X2n − 1 c Yn + ebn , X2n c Yn (1 ≤ n ≤ q), {bn}q arbitrary

• g(x2) c (−1)qh(x2)A(ix), A(X ) c ∏q
n c 1 (X − Yn ) (X − Yn ).

to this end, the above expression for f is rewritten in the equivalent form:

f c exp [ q

∑
n c 1

�∫
X(2n − 1)

X2n − 1

A(X )dX
V(X )

+ ∫
X(2n)

X2n

A(X )dX
V(X ) � − ∫

1

−1

(−1)qg(x2)dx
ZD ]

The Jacobian inversion problem (20) reads as follows in a similarly rewritten
form (1 ≤ m ≤ q):
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(1 ≤ m ≤ q) :

•
q

∑
n c 1

�∫
X(2n − 1)

X2n − 1

A(X )dX
V(X )(X − Ym)

+ ∫
X(2n)

X2n

A(X )dX
V(X )(X − Ym) �

c ∫
1

−1

(−1)qg(x2)dx
(ix − Ym)ZD

•
q

∑
n c 1

�∫
X(2n − 1)

X2n − 1

A(X )dX

V(X )(X − Ym)
+ ∫

X(2n)

X2n

A(X )dX

V(X )(X − Ym) �
c ∫

1

−1

(−1)qg(x2)dx

(ix − Ym)ZD

Furthermore

∫
X(2n − 1)

X2n − 1

A(X )dX
V(X )(X − Y )

+ ∫
X(2n)

X2n

A(X )dX
V(X )(X − Y )

c − ∫
X2n − 1

X2n

A(X )dX
V(X )(X − Y )

+ ∫
X(2n − 1)

X(2n)

A(X )dX
V(X )(X − Y )

with X (2n) now lying in the other sheet of the Riemann surface.
In the limit e r 0, one obtains

lim
e r 0 ∫

X2n − 1

X2n

A(X )dX
V(X )(X − Y )

c {± pidmn / [lm(Ym + iz)] for Y c Ym

0 for Y c Ym

with dmn being the usual Kronecker symbol and lm as defined in (7).
The second term amounts to

lim
e r 0 ∫

X(2n − 1)

X(2n)

A(X )dX
V(X )(X − Y )

c ∫
X2n − 1)

X(2n)

dX

(X − Y )
f

(X + iz)(X − iz)

c 1
l(Y )(Y + iz)

ln � [l(X (2n − 1)) − l(Y )][l(X (2n)) + l(Y )]
[l(X (2n − 1)) + l(Y )][l(X (2n)) − l(Y )] � ,
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where for evaluation of the second integral the substitution

l c l(X ) c h X − iz
X + iz

has been used.
Hence, the Jacobian inversion problem reads as follows in the limit e r 0:

•
q

∏
n c 1

[l(X (2n − 1)) − lm][l(X (2n)) + lm]
[l(X (2n − 1) + lm][l(X (2n)) − lm]

c −gm (21)

•
q

∏
n c 1

[l(X (2n − 1)) − l*
m][l(X (2n)) + l*

m]

[l(X (2n − 1)) + l*
m][l(X (2n)) − l*

m]
c gm (22)

and in an analogous manner

f c f 0

p

∏
n c 1

[l(X (2n − 1)) + 1][l(X (2n)) − 1]
[l(X (2n − 1)) − 1][l(X (2n)) + 1]

(23)

[with gm , l*
m and f 0 as defined in (7)].

Instead of evaluating the quantities l(X (n)), (1 ≤ n ≤ 2q), the coefficients
bn and cn (1 ≤ n ≤ q) of the polynomial

P(l) c p

∏
n c 1

[l − l(X (2n − 1))][l + l(X (2n))]

c l2q + l

q

∑
n c 1

bnl
2n − 2 +

q

∑
n c 1

cnl
2n − 2 (24)

are determined. Since

P(lm)
P(−lm)

c −gm ,
P(l*

m)

P(−l*
m)
c gm , f c f 0

P(−1)
P(1)

, (25)

the following system of linear equations for the quantities bn , cn , P(1), and P(−1)
emerges:
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•
q

∑
n c 1

[bnaml2n − 1
m + cnl

2n − 2
m ] c −l2q

m ,

•
q

∑
n c 1

[bna*
m(l*

m)2n − 1 + cn (l*
m)2n − 2] c − (l*

m)2q (26)

•
q

∑
n c 1

(bn − cn ) + P(−1) c 1

•
q

∑
n c 1

(bn + cn ) − P(1) c −1,

with am and a*
m as defined in (7).

Finally, if the solution of this linear system for P(±1) is expressed by means
of Cramer’s rule, the desired form (7) of the Bäcklund type is obtained.

APPENDIX B. INVARIANCE PROPERTIES OF THE ERNST
POTENTIAL

For the proof of the properties (9–12), the Ernst potential (7) is reformulated
by

f ({Yn}q; g) c f 0
D(−1; {Yn}q; g)
D(1; {Yn}q; g)

(27)

with

•D(l; {Yn}q; g)

c
|
|
|
|
|
|
|
|

a1 (a1x1) · · · (a1xq − 1
1 ) 1 x1 · · · xq

1

a2 (a2x2) · · · (a2xq − 1
2 ) 1 x2 · · · xq

2
...

...
. . .

...
...

...
. . .

...
a2q + 1 (a2q + 1x2q + 1) · · · (a2q + 1xq − 1

2q + 1) 1 x2q + 1 · · · xq
2q + 1

|
|
|
|
|
|
|
|

•a1 c l, a2n c anln , a2n + 1 c a*
nl*

n ,

•x1 c l2, x2n c l2
n , x2n + 1 c (l*

n )2.

The above expression for D(l; {Yn}q; g) is a Vandermonde-like determinant.
These determinants have been studied in detail by Steudel, Meinel and Neuge-
bauer [30]. By their reduction formula [(8) of [30]], D assumes the form:
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D(l; {Yn}q; g)

c Vq, q + 1(ar; br |xr) [with br c 1 for r c 1 . . . (2q + 1)]

c∑
P

eP



q

∏
j c 1

ar(j)



Vq[xr(1), . . . , xr(q)]Vq + 1[xr(q + 1), . . . , xr(2q + 1)]

where

• the sum runs over all permutations P c [r(1), . . . , r(2q + 1)] of

(1, 2, . . . , 2q + 1)

with r(k) < r( j) for k < j < q as well as for q ≤ k < j

• eP c { +1 for P even−1 for P odd

• the Vandermonde determinants are given by

VN[x1, . . . , xN] c∏
k > j

(xk − xj).

In this formulation the following properties can be proved:
(A) If x2q + 1 c x2q then

D(l; {Yn}q; g)

c (−1)q(a2q − a2q + 1)


2q − 1

∏
j c 1

(x2q − xj)


D(l; {Yn}q − 1; −g)

(B) If x2q c 1 + k e + O(e2), x2q + 1 c 1 − k e + O(e2), and (a2qa2q + 1) c 1 +
O(e), then

D(
±

1; {Yn}q; g)

c k e


2q − 1

∏
j c 2

(1 − xj)


(a2q + a2q + 1 ± 2)D(
±

1; {Yn}q − 1; g) + O(e2).

With (A) the equalities (9) and (10) can be derived whilst (B) serves to confirm
(11) and (12). In order to prove (A) consider the following groups of permuta-
tions separately:
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• P1 : r(q − 1) c 2q, r(q) c 2q + 1

P2 : r(2q) c 2q, r(2q + 1) c 2q + 1

P3 : r(q) c 2q, r(2q + 1) c 2q + 1

P4 : r(q) c 2q + 1, r(2q + 1) c 2q

For x2q + 1 c x2q, all terms belonging to P1 and P2 vanish while all terms be-
longing to P3 and P4 possess a common factor, [a2q ∏ 2q − 1

j c 1 (x2q − xj)] and
[a2q + 1 ∏ 2q − 1

j c 1 (x2q − xj)], respectively. After reordering (from which the factor
(−1)q results), (A) is easily obtained.

The proof for (B) works similarly. Now, eight groups of permutations have
to be considered separately:

P1a : r(1) c 1, r(q − 1) c 2q, r(q) c 2q + 1

P1b : r(q + 1) c 1, r(2q) c 2q, r(2q + 1) c 2q + 1

P2a : r(q) c 2q, r(q + 1) c 1, r(2q + 1) c 2q + 1

P2b : r(1) c 1, r(q) c 2q, r(2q + 1) c 2q + 1

P3a : r(q) c 2q + 1, r(q + 1) c 1, r(2q + 1) c 2q

P3b : r(1) c 1, r(q) c 2q + 1, r(2q + 1) c 2q

P4a : r(q − 1) c 2q, r(q) c 2q + 1, r(q + 1) c 1

P4b : r(1) c 1, r(2q) c 2q, r(2q + 1) c 2q + 1

All terms of permutations with a coinciding first index can be combined to
give:13

{P1a,P1b}e O(e3)

{P2a,P2b}e a2qF + O(e2)

{P3a,P3b}e a2q + 1F + O(e2)

{P4a,P4b}e ± 2F + O(e2)

with

F c (−1)q + 1k e

2q − 1

∏
j c 2

(1 − xj)D(±1; {Yn}q − 1; −g).

13 Here the requirements a1 c ±1, x1 c 1 are necessary. Additionally, for P4a and P4b, the constraint
a2qa2q + 1 c 1 + O(e) is needed.
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APPENDIX C. NEWTONIAN AND ULTRARELATIVISTIC LIMITS

C.1. The Newtonian Limit

In the limit of small functions g and y, i.e.

g(x2) c egg0(x2) + O(e2
g), y(x2) c eyy0(x2) + O(e2

y),

the Ernst potential f c f (y; g) as introduced in Section 2 is given by

f (y; g) c 1 − eg ∫
1

−1

g0(x2)dx
ZD

− iegey ∫
1

−1

(ix)g0(x2)y0(x2)dx
ZD

+ O(e2
g) + O(ege2

y). (28)

In this section, the above property will be proved and the functions g0 and y0

will be derived as they result from the Newtonian expansion of the boundary
conditions.

C.1.1. The Ernst Potential for Small Functions g and y

Due to the assumption that the function Fg introduced in (14) can be
extended to form a continuous mapping defined on A (see Sections 2 and 5),
the representation of y in terms of {Yn}q can be chosen arbitrarily. Here, the
following set {Yn}q is used:

• q c 4r

• { Y4n − 3 c Zn (1 + eyzn ), Y4n − 2 c −Y4n − 3

Y4n − 1 c Zn (1 − eyzn ), Y4n c −Y4n − 1 } , R (Zn ) � 0, zn ∈ R

(n c 1 · · · r)

Then, it follows from (13) that y(x2) c eyy0(x2) + O(e2
y) with

y0(x2) c −4i
r

∑
n c 1

zn (Zn − Zn )(x2 − ZnZn )

(x2 + Z2
n )(x2 + Z

2
n )

.

To evaluate the Ernst potential in this limit, the formulation (21–26) in appendix
A is used and the following steps are performed:

1. At first, it turns out that in the limit ey r 0 the coefficients bn of the
polynomial (24) vanish. This can be seen by considering the solution to
linear system (26).
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bn c Dn

D
:

• D c |
|
|
|
|
|

a2 ··· (a2x
q − 1
2 ) 1 x2 ··· x

q − 1
2

...
. . .

...
...

...
. . .

...
a2q + 1 ··· (a2q + 1x

q − 1
2q + 1) 1 x2q + 1 ··· x

q − 1
2q + 1

|
|
|
|
|
|

• a2h c ahlh , a2h + 1 c a*
hl*

h , x2h c l2
h , x2h + 1 c (l*

h )2

• Dn is derived from D by replacing the n -th column by the vector

{−xq
2, . . . , −xq

2q + 1}.

For 1 ≤ n ≤ q, Dn can be expanded in terms of Vandermonde determi-
nants

V q + 1(xr(1), . . . , xr(q + 1)), r(h ) ∈ {2, . . . , 2q+1}, r(h ) < r(m) for h < m.

In the limit ey r 0, any set {xr(h )}q + 1 contains at most q different
values, and therefore all Dn vanish. On the other hand, D remains finite
(here only Vandermonde determinants Vq are involved), and hence all
bn tend to zero.

2. Thus, with any zero l̃n of the Polynomial (24), (−l̃n ) also becomes a
zero as ey r 0. This set of zeros is ordered in the following way:

{l(X (1)), −l(X (2)), . . . ,l(X (2q − 1)), −l(X (2q))} c {l̃1, −l̃1, . . . , l̃q, −l̃q},

Suppose there is a lm different from all zeros:

lm � l(X (2n − 1)) c l(X (2n)) and lm � −l(X (2n − 1)) for all n c 1 . . . q.

Then, since gm � −1 for small g, (21) cannot be satisfied.
3. This gives rise to the following ansatz (n c 1 . . . q):

l2(X (2n − 1)) c l2
n + eyk2n − 1 + O(e2

y), l2(X (2n)) c l2
n + eyk2n + O(e2

y),

by which the system (21/ 22) can easily be solved to get the set {kn}2q.
4. Finally, if g(x2) c egg0(x2) + O(e2

g) is considered, then (28) follows from
(23) by inserting the values obtained for {l(X (n))}2q.
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C.1.2. The Functions g0 and y0 as Resulting from the Boundary Conditions
For any family of Ernst potentials f c f (ge ; ye ) describing a sequence of

differentially rotating disks of dust with the parameter e c M2/ J [M and J as
defined in (16)], the following expansion is valid (see [24], pp. 83–89):

f c 1 + e2(r, z)e2 + ib3(r, z)e3 + O(e4).

By comparison with (28) one gets

• eg c e2, ey c e,

• e2(r, z) c − ∫
1

−1

g0(x2)dx
ZD

, b3(r, z) c − ∫
1

−1

(ix)g0(x2)y0(x2)dx
ZD

.

If the boundary conditions,

• jp(r) c j0w2[(r/ r0)2]
g

1 − (r/ r0)2e2 + O(e4) (with w2(0) c 1) or

• Q (r) c Q 0Q 1[(r/ r0)2]e + O(e3) (with Q 1(0) c 1),

are given, then it follows from equations (3–6) that

• (e2), z c 4pj0w2

g
1 − (r/ r0)2 or (e2), r c 2Q 2

0Q 2
1r and

• (b3), r c 2rQ 0Q 1(e2), z .

By expressing e2 and b3 in terms of g0 and y0 in these equations, one gets
Abelian integral equations for y0 and g0. Their solutions read as follows:

g0(x2) c −4j0(1 − x2) ∫
p/ 2

0
(sin2 f)w2(cos2 f + x2 sin2 f)df

g0(x2)y0(x2) c 8j0Q 0(1 − x2) ∫
p/ 2

0
(sin2 f)Q̃ l(cos2 f + x2 sin2 f)df

[with Q̃ 1(x2) c Q 1(x2)w2(x2)].

Note that only one of the functions w2 and Q 1 can be prescribed since both rep-
resent different boundary conditions of the same Newtonian potential e2. Like-
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wise, the constants j0 and Q 2
0 depend on each other. Moreover, these constants

in terms of w2 and Q 1 are prescribed by the equation e c M2/ J.

C.2. The Ultrarelativistic Limit

It is difficult to relate the functions g and y of an Ernst potential f c f (g;
y) to its physical properties like M and J. Nevertheless, if a sequence f (ge ; ye )
can be extended to arbitrary values e < 1, then, in the limit e r 1, the universal
solution of an extreme Kerr black hole is reached. It is illustrated how this limit
results from the form (7) of the Ernst potential.

If the limit r0 r 0 is considered for finite values of r c fr2 + z2, then by
using the formulation (27) one gets (with z c r cos v):

f c �1 − r0

r ∫
1

−1
(−1)qg(x2)dx + O(r2

0)�
. [ E1r + r0[E3 cos v − (−1)qE2]

E1r + r0[E3 cos v + (−1)qE2]
+ O(r2

0)] .
The Ej do not depend on r and z but on g and y. In particular:

• E1 c |
|
|
|
|
|

b1 (b1Z1) · · · (b1Zq − 1
q ) 1 Z1 · · · Zq − 1

1
...

...
. . .

...
...

...
. . .

...
b2q (b2qZ2q) · · · (b2qZq − 1

2q ) 1 Z2q · · · Zq − 1
2q

|
|
|
|
|
|

• E2 c |
|
|
|
|
|

b1 (b1Z2) · · · (b1Zq − 2
1 ) 1 Z1 · · · Zq

1
...

...
. . .

...
...

...
. . .

...
b2q (b2qZ2q) · · · (b2qZq − 2

2q ) 1 Z2q · · · Zq
2q

|
|
|
|
|
|

• b2n − 1 c − tanh [ 1
2 ∫

1

−1

(−1)qg(x2)dx
ix − Yn

] , b2nb2n − 1 c 1

• Z2n − 1 c Yn , Z2n c Yn .

Clearly, if E1 � 0 then limr0 r 0 f c 1. The Ernst potential passes to an ultrarel-
ativistic limit if E1 and r0 tend simultaneously to zero such that14

14 It can be shown that E 2
1 ∈ R. Hence, the ultrarelativistic limit for the family f (ge ; ye ) is performed

when some function Ea c Ea(ge ; ye ) c Eb(e)E 2
1(e), which is independent of the representation

{Yn }q , vanishes.
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Q U c lim
r0 r 0

(−1)qE1

2E2r0

exists. Then one gets

f c 2Q Ur + E4 cos v − 1
2Q Ur + E4 cos v + 1

.

The only Ernst potential of this form which is asymptotically flat and regular for
r > 0 is the extreme Kerr solution. The constant Q U is then real and describes
the ‘angular velocity of the horizon’. Moreover, J c 1/ (4Q 2

U) c M2, and hence
e c 1.
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