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Abstract: We prove the existence of a large class of asymptotically flat initial data
with non-vanishing mass and angular momentum for which the metric and the extrinsic
curvature have asymptotic expansions at space-like infinity in terms of powers of a radial
coordinate.

1. Introduction

An initial data set for the Einstein vacuum equations is given by a triple(S̃, h̃ab, �̃ab),
whereS̃ is a connected 3-dimensional manifold,h̃ab a (positive definite) Riemannian
metric, and�̃ab a symmetric tensor field oñS. The data will be called “asymptotically
flat”, if the complement of a compact set iñS can be mapped by a coordinate system
x̃j diffeomorphically onto the complement of a closed ball inR3 such that we have in
these coordinates

h̃ij =
(

1 + 2m

r̃

)
δij +O

(
r̃−2

)
, (1)

�̃ij = O
(
r̃−2

)
, (2)

as r̃ = (
∑3
j=1(x̃

j )2)1/2 → ∞. Here the constantm denotes the mass of the data,
a, b, c... denote abstract indices,i, j, k..., which take values 1,2,3, denote coordinates
indices whileδij denotes the flat metric with respect to the given coordinate systemx̃j .
Tensor indices will be moved with the metrichab and its inversehab. We setxi = xi

and∂i = ∂i . Our conditions guarantee that the mass, the momentum, and the angular
momentum of the initial data set are well defined.

There exist weaker notions of asymptotic flatness (cf. [14]) but they are not useful
for our present purpose. In this article we show the existence of a class of asymptotically
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flat initial data which have a more controlled asymptotic behavior than (1), (2) in the
sense that they admit near space-like infinity asymptotic expansions of the form

h̃ij ∼ (1 + 2m

r̃
)δij +

∑
k≥2

h̃kij

r̃k
, (3)

�̃ij ∼
∑
k≥2

�̃k
ij

r̃k
, (4)

whereh̃kij and�̃k
ij are smooth functions on the unit 2-sphere (thought of as being pulled

back to the spheres̃r = const. under the map̃xj → x̃j /r̃).
We are interested in such data for two reasons. The evolution of asymptotically flat

initial data near space-like and null infinity has been studied in considerable detail in
[23]. In particular the that article a certain “regularity condition” has been derived on the
data near space-like infinity, which is expected to provide a criterion for the existence of
a smooth asymptotic structure at null infinity. To simplify the lengthy calculations, the
data considered in [23] have been assumed to be time-symmetric and to admit a smooth
conformal compactification. With these assumptions the regularity condition is given by
a surprisingly succinct expression. With the present work we want to provide data which
will allow us to perform the analysis of [23] without the assumption of time symmetry
but which are still “simple” enough to simplify the work of generalizing the regularity
condition to the case of the non-trivial second fundamental form.

Thus we will insist in the present paper on the smooth conformal compactification of
the metric but drop the time symmetry.A subsequent article will be devoted to the analysis
of a class of more general data which will include in particular stationary asymptotically
flat data.

The “regular finite initial value problem near space-like infinity”, formulated and an-
alyzed in [23], suggests how to calculate numerically entire asymptotically flat solutions
to Einstein’s vacuum field equations on finite grids. In the present article we provide
data for such numerical calculations which should allow us to study interesting situations
while keeping a certain simplicity in the handling of the initial data.

The difficulty of constructing data with the asymptotic behavior (3), (4) arises from
the fact that the fields need to satisfy the constraint equations

D̃b�̃ab − D̃a�̃ = 0,

R̃ + �̃2 − �̃ab�̃
ab = 0,

on S̃, whereD̃a is the covariant derivative,̃R is the trace of the corresponding Ricci
tensor, and̃� = h̃ab�̃ab. Part of the data, the “free data”, can be given such that they are
compatible with (3), (4). However, the remaining data are governed by elliptic equations
and we have to show that (3), (4) are in fact a consequence of the equations and the way
the free data have been prescribed.

To employ the standard techniques to provide solutions to the constraints, we assume

�̃ = 0, (5)

such that the data correspond to a hypersurface which is maximal in the solution space-
time.
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We give an outline of our results. Because of the applications indicated above, we wish
to control in detail the conformal structure of the data near space-like infinity. Therefore
we shall analyze the data in terms of the conformal compactification(S, hab,�ab) of
the “physical” asymptotically flat data. HereS denotes a smooth, connected, orientable,
compact 3-manifold. It contains a pointi such that we can writẽS = S\{i}. The point
i will represent, in a sense described in detail below, space-like infinity for the physical
initial data.

By singling out more points inS and by treating the fields near these points in the
same way as neari we could construct data with several asymptotically flat ends, since
all the following arguments equally apply to such situations. However, for convenience
we restrict ourselves to the case of a single asymptotically flat end.

We assume thathab is a positive definite metric onS with covariant derivativeDa
and�ab is a symmetric tensor field which is smooth onS̃. In agreement with (5) we
shall assume that�ab is trace free,

hab �ab = 0.

The fields above are related to the physical fields by rescaling

h̃ab = θ4 hab, �̃ab = θ−2�ab, (6)

with a conformal factorθ which is positive onS̃. For the physical fields to satisfy the
vacuum constraints we need to assume that

Da�ab = 0 on S̃, (7)

(DbD
b − 1

8
R)θ = −1

8
�ab�

abθ−7 on S̃. (8)

Equation (8) for the conformal factorθ is the Lichnerowicz equation, transferred to our
context.

Let xj beh-normal coordinates centered ati such thathkl = δkl at i and setr =
(
∑3
i=1(x

j )2)1/2. To ensure asymptotic flatness of the data (6) we require

�ab = O(r−4) as r → 0, (9)

lim
r→0

rθ = 1. (10)

In the coordinates̃xj = xj /r2 the fields (6) will then satisfy (1), (2) (cf. [22,23] for this
procedure).

Not all data as given by (6), which are derived from datahab,�ab as described above,
will satisfy conditions (3), (4). We will have to impose extra conditions and we want to
keep these conditions as simple as possible.

Since we assume the metrichab to be smooth onS, it will only depend on the behavior
of θ neari whether condition (3) will be satisfied. Via Eq. (8) this behavior depends on
�ab. What kind of condition do we have to impose on�ab in order to achieve (3)?

The following space of functions will play an important role in our discussion. Denote
byBa the open ball with centeri and radiusr = a > 0, wherea is chosen small enough
such thatBa is a convex normal neighborhood ofi. A functionf ∈ C∞(S̃) is said to be
inE∞(Ba) if onBa we can writef = f1+rf2 with f1, f2 ∈ C∞(Ba) (cf. Definition 1).
An answer to our question is given by the following theorem:
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Theorem 1. Let hab be a smooth metric on S with positive Ricci scalar R. Assume that
�ab is smooth in S̃ and satisfies on Ba ,

r8�ab�
ab ∈ E∞(Ba). (11)

Then there exists on S̃ a unique solution θ of Eq. (8), which is positive, satisfies (10),
and has in Ba the form

θ = θ̂

r
, θ̂ ∈ E∞(Ba), θ̂(i) = 1. (12)

In fact, we will get slightly more detailed information. We find thatθ̂ = u1 + r u2
onBa with u2 ∈ E∞(Ba) and a functionu1 ∈ C∞(Ba) which satisfiesu1 = 1+O(r2)

and

(
DbD

b − 1

8
R

)u1

r
= θR,

in Ba\{i}, whereθR is inC∞(Ba) and vanishes at any order ati.
If θ has the form (12) then (3) will be satisfied due to our assumptions onhab.
Note the simplicity of condition (11). To allow for later generalizations, we shall dis-

cuss below the existence of the solutionθ under weaker assumptions on the smoothness
of the metrichab and the smoothness and asymptotic behavior of�ab (cf. Theorem 12).
In fact, already the methods used in this article would allow us to deduce analogues of
all our results under weaker differentiability assumptions; however, we are particularly
interested in theC∞ case because it will be convenient in our intended applications. If
the metric is analytic onBa it can be arranged thatθR = 0 andu1 is analytic onBa (and
unique with this property, see [24] and the remark after Theorem 2). We finally note
that the requirementR > 0, which ensures the solvability of the Lichnerowicz equation,
could be reformulated in terms of a condition on the Yamabe number (cf. [29]).

It remains to be shown that condition (11) can be satisfied by tensor fields�ab which
satisfy (7), (9). A special class of such solutions, namely those which extend smoothly
to all of S, can easily be obtained by known techniques (cf. [16]). However, in that case
the initial data will have vanishing momentum and angular momentum. To obtain data
without this restriction, we have to consider fields�ab ∈ C∞(S̃) which are singular ati
in the sense that they admit, in accordance with (2), (6), (10), ati = {r = 0} asymptotic
expansions of the form

�ij ∼
∑
k≥−4

�k
ij r

k with �k
ij ∈ C∞(S2). (13)

It turns out that condition (11) excludes data with non-vanishing linear momentum,
which requires a non-vanishing leading order term of the formO(r−4). In Sect. 3.4 we
will show that such terms imply terms of the form logr in θ and thus do not admit
expansion of the form (3). However, this does not necessarily indicate that condition
(11) is overly restrictive. In the case where the metrichab is smooth it will be shown in
Sect. 3.4 that a non-vanishing linear momentum always comes with logarithmic terms,
irrespective of whether condition (11) is imposed or not.
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There remains the question whether there exist fields�ab which satisfy (11) and have
non-trivial angular momentum. The latter requires a term of the formO(r−3) in (13). It
turns out that condition (11) fixes this term to be of the form

�AJ
ij = A

r3 (3ninj − δij )+ 3

r3 (nj εkilJ
lnk + niεljkJ

knl), (14)

whereni = xi/r is the radial unit normal vector field neari andJ k, A are constants,
the three constantsJ k specifying the angular momentum of the data. The spherically
symmetric tensor which appears here with the factorAagrees with the extrinsic curvature
for a maximal (non-time symmetric) slice in the Schwarzschild solution (see for example
[10]). Note that the tensor�AJ

ij satisfies condition (11) and the equation∂i�AJ
ij = 0

on S̃ for the flat metric. In the next theorem we prove an analogous result for general
smooth metrics.

Theorem 2. Let hab be a smooth metric in S. There exist trace-free tensor fields �ab ∈
C∞(S \ {i}) satisfying (13) with the following properties:

(i) �ab = �AJ
ab + �̂ab, where �AJ

ab is given by (14) and �̂ab = O(r−2).
(ii) Da�ab = 0 on S̃.
(iii) r8�ab�

ab satisfies condition (11).

We prove a more detailed version of this theorem in Sect. (4.3). There it will be shown
how to construct such solutions from free-data by using the York splitting technique
([35]). In Sect. 4.1 the case wherehab is conformal to the Euclidean metric is studied in
all generality.

2. Preliminaries

In this section we collect some known facts from functional analysis and the theory of
linear elliptic partial differential equations.

Let Z be the set of integer numbers andN0 the set of non-negative integers. We use
multi-indicesβ = (β1, β2, . . . , βn) ∈ N

n
0 and set|β| = ∑n

i=1 βi , β! = β1!β2! . . . βn!,
xβ = (x1)β1(x2)β2 . . . (xn)βn , ∂βu = ∂

β1
x1 ∂

β2
x2 . . . ∂

βn
xn u, Dβu = D

β1
1 D

β2
2 . . . D

βn
n u,

and, forβ, γ ∈ N
n
0, β + γ = (β1 + γ1, . . . , βn + γn) andβ ≤ γ if βi ≤ γi . We denote

by( an open domain inR3 (resp. inS; quite often we will then choose( = Ba).
We shall use the following functions spaces (see [1,25] for definitions, notations,

and results): the set ofm times continuously differentiable functionsCm((), the Hölder
spaceCm,α((), where 0< α < 1, the corresponding spacesCm((̄),Cm,α((̄), the space
C∞

0 (() of smooth functions with compact support in(, the Lebesgue spaceLp((), the
Sobolev spaceWm,p((), and the local Sobolev spaceWm,p

loc ((). For a compact manifold
S we can also define analogous spacesLp(S), Cm,α(S),Wm,p(S) (cf. [6]).

We shall need the following relations between these spaces.

Theorem 3 (Sobolev imbedding). Let ( be a C0,1 domain in R3, let k, m, j be non-
negative integers and 1 ≤ p, q < ∞. Then there exist the following imbeddings:

(i) If mp < 3, then

Wj+m,p(() ⊂ Wj,q((), p ≤ q ≤ 3p/(3 −mp).
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(ii) If (m− 1)p < 3< mp, then

Wj+m,p(() ⊂ Cj,α((̄), α = m− 3/p.

Theorem 4. Let u ∈ W1,1((), and suppose there exist positive constants α ≤ 1 and K
such that∫

BR

|∂u| dµ ≤ KR2+α for all balls BR ⊂ ( of radius R > 0.

Then u ∈ Cα(().
Our existence proof for the non-linear equations relies on the following version of

the compact imbedding for compact manifolds [6]:

Theorem 5 (Rellich–Kondrakov). The following imbeddings are compact

(i) Wm,q(S) ⊂ Lp(S) if 1 ≥ 1/p > 1/q −m/3> 0.
(ii) Wm,q(S) ⊂ Cα(S) if m− α > 3/q, 0 ≤ α < 1.

A further essential tool for the existence proof is the Schauder fixed point theorem [25]:

Theorem 6 (Schauder fixed point). Let B be a closed convex set in a Banach space
V and let T be a continuous mapping of B into itself such that the image T (B) is
precompact, i.e. has compact closure in B. Then T has a fixed point.

We turn now to the theory of elliptic partial differential equations (see [12,14,25,
31]). LetL be a linear differential operator of orderm on the compact manifoldS which
acts on tensor fieldsu. In the case whereu ∼ ua1...am1 is a contravariant tensor field of
rankm1, L has in local coordinates the form

Lu =
m∑

|β|=0

aj1...jm2 i1...im1β
Dβ ui1...im1 ≡

m∑
|β|=0

aβ D
β u, (15)

where the coefficientsaj1...jm2 i1...im1β
= a(x)j1...jm2 i1...im1β

are tensor fields of a cer-
tain smoothness, andD denotes the Levi–Civita connection with respect to the met-
ric h. In the expression on the right-hand side we suppressed the indices belonging
to the unknown and the target space. Assuming the same coordinates as above, we
write for a given covectorξi at a pointx ∈ ( and multi-indexβ as usualξβ =
ξ
β1
1 . . . ξ

β4
4 and define a linear mapA(x, ξ) : Rm1 → Rm2 by setting(A(x, ξ) u)j1...jm2 =∑

|β|=m a(x)j1...jm2 i1...im1 β
ξβ ui1...im1 . The operatorL is elliptic atx if for any ξ �= 0

the mapA(x, ξ) is an isomorphism,L is elliptic onS if it is elliptic at all points ofS.
We have the followingLp regularity result [2,3,14,31].

Theorem 7 (Lp regularity). Let L be an elliptic operator of order m on ( (resp. S)
with coefficients aβ ∈ Ws|β|,p(S), where sk > 3/p + k − m + 1, and p > 1. Let s be
a natural number such that sk ≥ s − m ≥ 0. Let u ∈ W

m,p
loc (() (resp. Wm,p

loc (S)), with
p > 1, be a solution of the elliptic equation Lu = f .

(i) If f ∈ Ws−m,q
loc ((), q ≥ p, then u ∈ Ws,q

loc (().
(ii) If f ∈ Ws−m,q(S), q ≥ p, then u ∈ Ws,q(S).

Furthermore, we have the Schauder interior elliptic regularity [3,19,25,31].
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Theorem 8 (Schauder elliptic regularity). Let L be an elliptic operator of orderm on
( with coefficients aβ ∈ Ck,α((̄). Let u ∈ Wm,p((), with p > 1, be a solution of the
elliptic equation Lu = f , with f ∈ Ck,α((̄). Then u ∈ Ck+m,α((′), for all (′ ⊂⊂ (.

For linear elliptic equations we have the Fredholm alternative for elliptic operators
on compact manifolds [12].

Theorem 9 (Fredholm alternative). Let L be an elliptic operator of orderm on S whose
coefficients satisfy the hypothesis of Theorem 7. Let s be some natural number such that
sk ≥ s − m ≥ 0 and f ∈ Lp(S), p > 1. Then the equation Lu = f has a solution
u ∈ Wm,p(S) iff ∫

S

< v, f >h dµ = 0 for all v ∈ ker(L∗).

Heredµ denotes the volume element determined byh andL∗ the formal adjoint ofL,
which for the operator (15) is given by

L∗u =
m∑

|β|=0

(−1)|β|Dβ(aβu). (16)

Furthermore<,>h denotes the appropriate inner product induced by the metrichab. In
our case, whereu andf will be vector fieldsf a andua , we have< u, f >h = f aua .

Let

Lu = ∂i(a
ij ∂ju+ biu)+ ci∂iu+ du, (17)

be a linear elliptic operator of second order with principal part in divergence form on(

which acts on scalar functions. An operator of the form (17) may be written in the form
(15) provided its principal coefficientsaij are differentiable.

We shall assume thatL is strictly elliptic in(; that is, there existsλ > 0 such that

aij (x)ξiξj ≥ λ|ξ |2, ∀x ∈ (, ξ ∈ R
n. (18)

We also assume thatL has bounded coefficients; that is for some constants7 and
ν ≥ 0 we have for allx ∈ (,∑

|aij |2 ≤ 72, λ−2
∑ (

|bi |2 + |ci |2
)

+ λ−1|d| ≤ ν2. (19)

In order to formulate the maximum principle, we have to impose that the coefficient
of u satisfy the non-positivity condition∫

(

(dv − bi∂iv) dx ≤ 0 ∀v ≥ 0, v ∈ C1
0((). (20)

We have the following versions of the maximum principle [25].

Theorem 10 (Weak Maximum Principle). Assume that L given by (17) satisfies con-
ditions (18), (19) and (20). Let u ∈ W1,2(() satisfy Lu ≥ 0 (≤ 0) in (. Then

sup
(

u ≤ sup
∂(

u+
(

inf
(
u ≥ inf

∂(
u−

)
,

where u+(x) = max{u(x),0}, u−(x) = min{u(x),0}.
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Theorem 11 (Strong Maximum Principle). Assume that L given by (17) satisfies con-
ditions (18), (19) and (20). Let u ∈ W1,2(() satisfy Lu ≥ 0 in(. Then, if for some ball
B ⊂⊂ ( we have

sup
B

u = sup
(

u ≥ 0,

the function u must be constant in (.

Becauseu is assumed to be only inW1,2 the inequalityLu ≥ 0 has to be understood in
the weak sense (see [25] for details).

3. The Hamiltonian Constraint

In this section we will prove Theorem 1.

3.1. Existence. The existence of solutions to the Lichnerowicz equation has been studied
under various assumptions (cf. [15,16,28] and the reference given there). The setting
outlined above, where we have to solve (8), (10) on the compact manifoldS, has been
studied in [8,22,23].

In general the “physical” metric provided by an asymptotically flat initial data set will
not admit a smooth conformal compactification at space-like infinity. Explicit examples
for such situations can be obtained by studying space-like slices of stationary solutions
like the Kerr solution. To allow for later generalizations of the present work which
would admit also stationary solutions we shall prove the existence result of Theorem 1
for metricshab which are not necessarily smooth. In the proof we will employ Sobolev
spacesWm,p(S) and the corresponding imbeddings and elliptic estimates (in particular,
there will be no need for us to employ weighted Sobolev spaces with weights involving
the distance to the pointi). With these spaces and standardLp elliptic theory we will
also be able to handle the mildr−1-type singularity ati which occurs on the right-hand
side of Eq. (8).

The conformal Laplacian or Yamabe operator

Lh = habDaDb − 1

8
R,

which appears on the left-hand side of (8), is a linear elliptic operator of second order
whose coefficients depend on the derivatives of the metrich up to second order. The
smoothness to be required of the metrich is determined by the following considerations.
In the existence proof we need:

(i) The existence of normal coordinates. This suggests that we assumeh ∈ C1,1(S).
(ii) The maximum principle, Theorems 10 and 11. The required boundedness of the

Ricci scalarR imposes restrictions on the second derivative ofh.
(iii) The elliptic Lp estimate, Theorem 7. This requires thath ∈ W3,p(S) for p > 3/2.

Since the right-hand side of Eq. (8) is inL2 the assumption thath ∈ W3,p(S),p > 3,
would be sufficient to handle Eq. (8). However, when we will discuss the momentum
constraint in Sect. 4.2, we will wish to be able to handle cases wherep < 3/2. In these
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cases the conditions of Theorem 7 suggest that we assume thath ∈ W4,p(S). In order
to simplify our hypothesis we shall assume in the following that

hab ∈ W4,p(S), p > 3/2. (21)

The imbedding theorems then imply thathab ∈ C2,α(S), 0 < α < 1, whenceR ∈
Cα(S). We note that (21) is not the weakest possible assumption but it will be sufficient
for our future applications.

Lemma 1. Assume that h satisfies (21) and R > 0. Then:

(i) Lh : W2,q(S) → Lq(S), q > 1, defines an isomorphism.
(ii) If u ∈ W1,2(S) and Lhu ≤ 0, then u ≥ 0; if, moreover, Lhu �= 0 ∈ Lq(S), then

u > 0.

Proof. (i) To show injectivity, assume thatLhu = 0. By elliptic regularityu is smooth
enough such that we can multiply this equation withu and integrate by parts to obtain

∫
S

(
DauDau+ 1

8
Ru2

)
dµh = 0.

SinceR > 0 it follows that u = 0. Surjectivity follows then by Theorem 9 since
Lh = L∗

h. Boundedness ofLh is immediately implied by the assumptions while the
inequality

||u||W2,p(S) ≤ C||Lhu||Lp(S),
which follows from the elliptic estimates underlying Theorem 7 and the injectivity of
Lh (see e.g [12] for this well known result), implies the boundedness ofL−1

h .

(ii) If we haveu ≤ 0 in some region ofS, it follows that supS(−u) ≥ 0. Then there
is a region inS in which we can apply the maximum principle to the function−u to
conclude thatu must be a non-positive constant whenceLhu = −Ru/8 ≥ 0 in that
region. In the case whereLhu < 0 we would arrive at a contradiction. In the case where
Lhu ≤ 0 we conclude thatu = 0 in the given region and a repetition of the argument
gives the desired result.��

To construct an approximate solution we choose normal coordinatesxj centered at
i such that (after a suitable choice ofa > 0) we have in the open ballBa in these
coordinates

hij = δij + ĥij , hij = δij + ĥij (22)

with

ĥij = O(r2), ĥij = O(r2), xi ĥij = 0, xi ĥ
ij = 0.

Notice thatĥij , ĥij , defined by the equations above, are not necessarily related to each
other by the usual process of raising indices.

Denoting by9 the flat Laplacian with respect to the coordinatesxj , we write onBa

Lh = 9+ L̂h,
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with

L̂h = ĥij ∂i∂j + bi∂i − 1

8
R. (23)

We note that

bi = O(r).

Choose a functionχa ∈ C∞(S) which is non-negative and such thatχa = 1 inBa/2
andχa = 0 in S \ Ba . Denote byδi the Dirac delta distribution with source ati.

Lemma 2. Assume that h satisfies (21) and R > 0. Then, there exists a unique solution
θ0 of the equationLhθ0 = −4πδi . Moreover θ0 > 0 in S̃ and we can write θ0 = χa/r+g
with g ∈ Cα(S), 0< α < 1.

Proof. Observing that 1/r defines a fundamental solution to the flat Laplacian, we obtain

9
(χa
r

)
= −4πδi + χ̂ , (24)

whereχ̂ is a smooth function onS with support inBa \Ba/2. The ansatzθ0 = χa/r+g
translates the original equation into an equation forg,

Lhg = −L̂h
(χa
r

)
− χ̂ .

A direct calculation shows that̂Lh(χar−1) ∈ Lq(S), q < 3. By Lemma 1 there exists
a unique solutiong ∈ W2,q(S) to this equation which by the imbedding theorem is in
Cα(S).

To show thatθ0 is strictly positive, we observe that it is positive neari (becauser−1

is positive andg is bounded) and apply the strong maximum principle to−θ0. ��
We use the conformal covariance of the equation to strengthen the result on the

differentiability of the functiong. Consider a conformal factor

ω0 = ef0 with f0 ∈ C∞(S) such thatf0 = 1

2
xjxk Ljk(i) on Ba, (25)

where we use the normal coordinatesxk and the value of the tensor

Lab ≡ Rab − 1

4
Rhab, (26)

at i. Then the Ricci tensor of the metric

h′
ab = ω4

0hab (27)

vanishes at the pointi and, since we are in three dimensions, the Riemann tensor vanishes
there too. Hence the connection and metric coefficients satisfy in the coordinatesxk

?′
i
j
k = O(r2), h′

ij = δij +O(r3). (28)

Corollary 1. The function g found in Lemma 2 is in C1,α(S), 0< α < 1.
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Proof. With ω0 = ef0 andh′
ab as above, we note that

Lh′(θ ′
0) = ω−5

0 Lh(θ0), (29)

where

θ ′
0 = ω−1

0 θ0. (30)

We apply now the argument of the proof of Lemma 2 to the functionθ ′
0. Since we have by

Eq. (28) thatL̂h′(χar−1) ∈ L∞(S), it follows thatθ ′
0 = χa/r+g′, whereg′ ∈ C1,α(S).

We use Eq. (30), the fact thatω0 = 1+O(r2), and Lemma 4 to obtain the desired result.
��

We note that the function

θ−1
0 = r

χa + rg
, (31)

is inCα(S), it is non-negative and vanishes only ati. To obtainθ , we writeθ = θ0 + u

and solve onS the following equation foru:

Lhu = −1

8
θ−7

0 �ab�
ab(1 + θ−1

0 u)−7. (32)

Theorem 12. Assume that hab ∈ W4,p(S) with p > 3/2, that R > 0 on S, and that
θ−7

0 �ab�
ab ∈ Lq(S), q ≥ 2. Then there exists a unique non-negative solution u ∈

W2,q(S) of Eq. (32). We have u > 0 on S unless �ab�ab = 0 ∈ Lq(S).
We note that our assumptions on�ab impose rather mild restrictions, which are, in

particular, compatible with the fall off requirement (9). By the imbedding Theorem 3
we will haveu ∈ Cα(S), α = 2 − 3/q, for q > 3; andu ∈ C1,α(S), for q > 3.

Proof. The proof is similar to that given in [8], with the difference that we impose
weaker smoothness requirements. Making use of Lemma 1, we define a non-linear
operatorT : B → C0(S), with a subsetB of C0(S) which will be specified below, by
setting

T (u) = L−1
h f (x, u),

where

f (x, u) = −1

8
θ−7

0 �ab�
ab g(x, u) (33)

with

g(x, u) =
(
1 + θ−1

0 u
)−7

.

In the following we will suppress the dependence off andg onx. Letψ ∈ W2,q(S) ⊂
Cα(S) be the function satisfyingψ = T (0) and setB = {u ∈ C0(S) : 0 ≤ u ≤ ψ},
which is clearly a closed, convex subset of the Banach spaceC0(S).

We want to use the Schauder theorem to show the existence of a pointu ∈ B satisfying
u = T (u). This will be the solution to our equation.
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We show thatT is continuous. Observing the properties ofθ−1
0 noted above, we see

thatg defines a continuous mapg : B → L2. Using the Cauchy–Schwarz inequality,
we get

∥∥|f (u1)− f (u2)||L2 ≤∥∥ 1

8
θ−7

0 �ab�
ab

∥∥
L2||g(u1)− g(u2)

∥∥
L2 .

By Theorems 1, 3 we know that the mapL2(S) → W2,2(S) → C0(S), where the first
arrow denotes the mapL−1

h and the second arrow the natural injection, is continuous.
Together these observations give the desired result.

We show thatT mapsB into itself. If u ≥ 0 we havef ≤ 0 whence, by Lemma 1,
T (u) = L−1

h (f (u)) ≥ 0. If u1 ≥ u2 it follows thatf (u1) ≥ f (u2) whence, again by
Lemma 1,T (u2)− T (u1) = L−1

h (f (u2)− f (u1)) ≥ 0. We conclude from this that for
u ∈ B we have 0≤ T (u) ≤ T (0) = ψ .

Finally, T (B) is precompact becauseW2,2(S) is compactly embedded inC0(S) by
Theorem 5. Thus the hypotheses of Theorem 6 are satisfied and there exists a fixed point
u of T in B. By its construction we haveu ∈ Lq(S) whence, by elliptic regularity,
u ∈ W2,q(S).

To show its uniqueness, assume thatu1 andu2 are solutions to (32). Observing the
special structure ofg and the identity

a−7 − c−7 = (c − a)

6∑
j=0

aj−7c−1−j ,

which holds for positive numbersa andc, we find that we can writeLh(u1 − u2) =
c (u1−u2)with some functionc ≥ 0. The maximum principle thus allows us to conclude
thatu1 = u2. The last statement about the positivity ofu follows from Lemma 1, (ii).
��

3.2. Asymptotic expansions near i of solutions to the Lichnerowicz equation. The aim of
this section is to introduce the function spacesEm,α, to point out the simple consequences
listed in Lemma 6, and to prove Theorem 13. These are the tools needed to prove
Theorem 1.

Letm ∈ N0, and denote byPm the space of homogeneous polynomials of degreem

in the variablesxj . The elements ofPm are of the form
∑

|β|=m Cβ xβ with constant

coefficientsCβ . Note thatr2 is in P2 but r is not in P1. We denote byHm the set
of homogeneous harmonic polynomials of degreem, i.e. the set ofp ∈ Pm such that
9p = 0. Fors ∈ Z, we define the vector spacersPm as the set of functions of the form
rsp with p ∈ Pm.

Lemma 3. Assume s ∈ Z. The Laplacian defines a bijective linear map

9 : rsPm → rs−2Pm,
in either of the following cases:

(i) s > 0,
(ii) s < 0, |s| is odd and m+ s ≥ 0.
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Note that the assumptions onm ands imply that the function9(rs pm) ∈ C∞(R3 \
{0}) defines a function inL1

loc(R
3)which represents9(rs pm) in the distributional sense.

Proof. Since9 mapsPm into Pm−2, we find from

9(rsp) = rs−2
(
s(s + 1 + 2m)p + r29p

)
, (34)

that9(rsp) ∈ rs−2Pm.
We show now that the map is bijective for certain values ofs andm. BecausersPm

andrs−2Pm have the same finite dimension, we need only show that the kernel is trivial
for somes andm. The vector spacePm can be written as a direct sum

Pm = Hm ⊕ r2Hm−2 ⊕ r4Hm−4 · · · , (35)

(cf. [20]). If 9(rsp) = 0, we get from (35) that

0 = 9(rsp) =
∑

0≤k≤m/2
9(rs+2khm−2k),

with hm−2k ∈ Hm−2k. Applying (34), we obtain

0 =
∑

0≤k≤m/2
r2k(s + 2k)(s + 1 + 2(m− k))hm−2k,

which allows us to conclude by (35) that

(s + 2k) (s + 1 + 2(m− k)) hm−2k = 0.

Since by our assumptions(s+2k)(s+1+2(m−k)) �= 0, it follows that the polynomials
hm−2k vanish, whencersp = 0. ��

We will need the following technical lemma regarding Hölder functions:

Lemma 4. Suppose m ∈ N, 0 < α < 1, f ∈ Cm,α(Ba), and Tm denotes the Taylor
polynomial of orderm of f . Then fR ≡ f −Tm is inCm,α(Ba) and satisfies, if |β| ≤ m,

∂βfR = O
(
rm−|β|+α) as r → 0.

Moreover, let s be an integer such that s ≤ 1 and m+ s − 1 ≥ 0. Then fR satisfies:

(i) rs−2fR ∈ Wm+s−1,p(Bε), for p < 3/(1 − α), 0< ε < a.
(ii) If m+ s − 1 ≥ 1 then rs−2fR ∈ Cm+s−2,α(Bε).
(iii) rfR ∈ Cm,α(Bε).
Proof. The relation

|∂βfR| ≤ C|x|m−|β|+α, x ∈ B̄ε, (36)

is a consequence of Lemma 14.

(i) We have

∂β(rs−2fR) =
∑

β ′+γ ′=β
Cβ ′∂β

′
fR ∂

γ ′
(rs−2),
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with certain constantsCβ ′ , and the derivatives ofrs−2 are bounded forx ∈ B̄ε by

|∂γ ′
rs−2| ≤ Crs−2−|γ ′|.

Observing (36), we obtain

|∂β(rs−2fR)| ≤ Crm−|β|+s−2+α,

for x ∈ B̄ε , whence, by our hypothesism+ s − 1 ≥ 0,

|∂β(rs−2fR)| ≤ Cr−1+α, (37)

for |β| ≤ m + s − 1. Using thatr−1+α is in Lp(Bε) for p < 3/(1 − α), we conclude
that∂β(rs−2f ) ∈ Lp(Bε) whencers−2fR ∈ Wm+s−1,p(Bε).

(ii) From the relation above and Theorem 3 we conclude form + s − 1 ≥ 1 that
rs−2fR ∈ Cm+s−2,α′

(Bε) with α′ = 1 − 3/p < α. To show thatα′ can in fact be
chosen equal toα, we use the sharp result of Theorem 4. Setg = ∂β

′
(rs−2fR) for some

β ′ ≤ m+ s − 2. Letz be an arbitrary point ofBε andBR(z) be a ball with centerz and
radiusR such thatBR ⊂ Ba . Using the inequality (37), we obtain

∫
BR(z)

|∂g|dµ ≤ C

∫
BR(z)

rα−1dµ. ≤ C

∫
BR(0)

rα−1dµ = C′R2+α

(cf. [25] p. 159 for the second estimate). Applying now Lemma 4, we conclude that
g ∈ Cα(Bε), whencers−2fR ∈ Cm+s−2,α(Bε).

(iii) We have

∂β(rfR) = r∂βfR + f1,

where, with certain constantsCβ,β ′ ,

f1 =
∑

β �=β ′+γ ′≤β
Cβ,β ′∂β

′
fR∂

γ ′
r.

Note thatr∂βf ∈ Cα(Ba), sincer is Lipschitz continuous.
Using the bound

|∂γ ′
r| ≤ Cr−|γ ′|+1,

and the bound (36) we obtain

|∂f1| ≤ Crα.

Thusf1 ∈ W1,p for all p, whence, by Theorem 3,f1 ∈ Cα for α < 1. ��
The following function spaces will be important for us.

Definition 1. For m ∈ N0 and 0 < α < 1, we define the space Em,α(Ba) as the set
Em,α(Ba) = {f = f1 + rf2 : f1, f2 ∈ Cm,α(Ba)}. Furthermore we set E∞(Ba) =
{f = f1 + rf2 : f1, f2 ∈ C∞(Ba)}.
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Note that the decompositions above are not unique. Iff = f1 + rf2, f1, f2 ∈
Cm,α(Ba), then alsof = f1 + rfR + r(f2 − fR) with f1 + rfR, f2 − fR ∈ Cm,α(Ba)
if fR is given as in Lemma 4. Obviously,E∞(Ba) ⊂ Em,α(Ba) for all m ∈ N0. The
converse is not quite immediate.

Lemma 5. If f ∈ Em,α(Ba) for all m ∈ N0, then f ∈ E∞(Ba).

Proof. Assume thatf ∈ Em,α(Ba) for allm. Take an arbitrarym and writef = f1+rf2
with f1, f2 ∈ Cm,α(Ba). To obtain a unique representation, we writef1 andf2 as the
sum of their Taylor polynomials of orderm and their remainders,

f1 =
m∑
j=0

p1
j + f 1

R, f2 =
m∑
j=0

p2
j + f 2

R, (38)

with p1
j , p

2
j ∈ Pj andf 1

R, f
2
R = O(rm+α). From this we get the representation

f =

 m∑
j=0

p1
j + r

m−1∑
j=0

p2
j


 + fR, (39)

wherefR ≡ f 1
R + r(f 2

R + p2
m) ∈ Cm,α(Ba) andfR = O(rm+α) by Lemma 4. This

decomposition is unique: if we hadf = 0, the fast fall-off offR at the origin would
imply that the term in brackets, whence also each of the polynomials andfR, must
vanish.

Sincemwas arbitrary, we conclude that the functionf determines a unique sequence
of polynomialsp2

j , j ∈ N0 as above. By Borel’s theorem (cf. [18]) there exists a function
v2 ∈ C∞(Ba) (not unique) such that

v2 −
m∑
j=0

p2
j = O(rm+1), m ∈ N0. (40)

We show that the functionv1 ≡ f −rv2 isCm−1(Ba) for arbitrarym, i.e.v1 ∈ C∞(Ba).
Using (39), we obtain

v1 =

 m∑
j=0

p1
j + fR


 + r


m−1∑
j=0

p2
j − v2


 . (41)

The first term is inCm,α(Ba) by the observations above, the second term is inCm,α(Ba)

by (40) and Lemma 4. ��
While we cannot directly apply elliptic regularity results to these spaces, they are

nevertheless appropriate for our purposes. This follows from the following observation,
which will be extended to more general elliptic equations and more general smoothness
assumptions in Theorem 13 and in Appendix B.

If u is a solution to the Poisson equation

9u = f

r
,
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with f ∈ Em,α(Ba), m ≥ 1, thenu ∈ Em+1,α(Ba). This can be seen as follows. If we
write f = f1 + r f2 ∈ Em,α(Ba) in the form

f

r
= Tm

r
+ fR,

whereTm is the Taylor polynomial of orderm of f1, the remainderfR is seen to be in
Cm−1,α(Ba) by Lemma 4.

By Lemma 3, there exists a polynomialT̂m such that

9(rT̂m) = Tm

r
.

ThenuR ≡ u−rT̂m satisfies9uR = fR and Theorem 8 implies thatuR ∈ Cm+1,α(Ba),
whenceu ∈ Em+1,α(Ba).

To generalize these arguments to equations with non-constant coefficients and to
non-linear equations we note the following observation.

Lemma 6. For f, g ∈ Em,α(Ba) we have

(i) f + g ∈ Em,α(Ba).
(ii) fg ∈ Em,α(Ba).
(iii) If f �= 0 in Ba , then 1/f ∈ Em,α(Ba).
Analogous results hold for functions in E∞(Ba).

Proof. The first two assertions are obvious, for (iii) we need only consider a small ballBε
centered at the origin becauser is smooth elsewhere. Iff = f1+rf2,f1, f2 ∈ Cm,α(Ba),
we have 1/f = v1 + rv2 with

v1 = f1

(f1)2 − r2(f2)2
, v2 = −f2

(f1)2 − r2(f2)2
.

These functions are inCm,α(Bε) for sufficiently smallε > 0 because our assumptions
imply thatf1(0) �= 0. TheE∞(Ba) case is similar. ��

We consider now a general linear elliptic differential operatorL of second order

L = aij ∂i∂j + bi∂i + c. (42)

It will be assumed in this section that

aij , bi, c ∈ C∞(B̄a). (43)

We express the operator in normal geodesic coordinatesxi with respect toaij , cen-
tered at the origin ofBa , such that

aij (x) = δij + âij ,

with

âij = O(r2), (44)

and

xj â
ij = 0, x ∈ Ba. (45)
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For the differential operator̂L, given by

L̂u = âij (x)∂i∂ju+ bi(x)∂iu+ c(x)u,

we find

Lemma 7. Suppose p ∈ Pm. Then the function U defined by L̂(rsp) = rs−2U is C∞
and satisfies U = O(rm+1). If in addition bi = O(r) (as in the case of the Yamabe
operator Lh), then U = O(rm+2).

Proof. A direct calculation, observing (45), gives

U = âij (sδijp + r2∂j ∂ip)+ bi(sxip + r2∂ip)+ cr2p,

which guarantees our result.��
In the following we shall use the splittingL = 9+ L̂, where9 is the flat Laplacian

in the normal coordinatesxi .

Theorem 13. Let u ∈ W2,p
loc (Ba) be a solution of

Lu = rs−2f,

where L is given by (42) with (43) and s ∈ Z, p > 1.

(i) Assume s = 1 and f ∈ Em,α(Ba). Then u ∈ E1,α′
(Ba), 0< α′ < α, if m = 0 and

u ∈ Em+1,α(Ba) if m ≥ 1. If f ∈ E∞(Ba), then u ∈ E∞(Ba).
(ii) If s < 0, |s| is odd, f ∈ Cm,α(Ba) with m + s − 1 ≥ 0, and f = O(rs0), with

s0 + s ≥ 0; then u has the form

u = rs
m∑
k=s0

uk + uR,

where uk ∈ Pm, LuR = O(rm+α+s−2), and uR ∈ C1,α′
(Ba), 0 < α′ < α, if

m+ s − 1 = 0, uR ∈ Cm+s,α(Ba) if m+ s − 1 ≥ 1.

If f ∈ C∞(Ba), then u can be written in the form u = rsv1 + v2 with v1, v2 ∈
C∞(Ba), v1 = O(rs0), and

L(rsv1) = rs−2f + θR, L(v2) = −θR,
where θR ∈ C∞(Ba) and all its derivatives vanish at the origin.

Proof. In both cases we writef = Tm + fR with a polynomialTm of orderm,

Tm =
m∑

k=m0

tk, tk ∈ Pm.

Case (i): m0 = 0 andf = f1 + rf2, wheref1, f2 are inCm,α(Ba). We defineTm to be
the Taylor polynomial of orderm of f1.

Case (ii): m0 = s0 and we defineTm to be the Taylor polynomial of orderm of f .
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We show thatu has in both cases the form

u = rs
m∑

k=m0

uk + uR, (46)

withuk ∈ Pk anduR ∈ Cm+s,α(Ba). For this purpose Lemma 3 will be used to determine
the polynomialsuk in terms oftk by a recurrence relation. The differentiability ofuR
follows then from Lemma 4, elliptic regularity, and the elliptic equation satisfied byuR.

The recurrence relation is defined by

9(rsum0) = rs−2tm0, 9(rsuk) = rs−2(tk − U
(k)
k ), k = m0 + 1, . . . , m, (47)

where, givenum0, . . . , uk−1, we defineU(k)k as follows. By Lemma (7) the functions

U(k) = r−s+2 L̂


rs

k−1∑
j=m0

uj


 , (48)

which will be defined successively fork = m0 + 1, . . . , m + 1, areC∞ andU(k) =
O(rm0+1). Thus we can write by Lemma (14)

U(k) =
m∑

j=m0+1

U
(k)
j + U

(k)
R ,

whereU(k)R = O(rm+α) andU(k)j ∈ Pj denotes the homogeneous polynomial of order

j in the Taylor expansion ofU(k).
By Lemma (3) the recurrence relation (47) is well defined for the cases (i) and (ii).

Note that

U
(k′)
j = U

(k)
j , m0 + 1 ≤ j ≤ k if k < k′ ≤ m+ 1, (49)

because we have by Lemma 7,

U(k
′) − U(k) = r−s+2L̂


rs

k′−1∑
j=k

uj


 = O(rk+1).

With the definitions above and the identity (49), which allows us to replaceU
(k)
k

by U(m+1)
k , the original equation foru implies for the functionuR defined by (46) the

equation

LuR = rs−2
(
U
(m+1)
R + fR

)
. (50)

Case (i): We use Lemma (4), (i) to conclude that the right-hand side of Eq. (50) is in
Lp(Bε) if m = 0 and inCm−1,α(Bε) if m ≥ 1. Now Theorems 7 and 8 imply that
uR ∈ C1,α′

(Ba), α′ < α, if m = 0 anduR ∈ Cm+1,α(Ba) if m ≥ 1. For theE∞
case we use Lemma 5.
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Case (ii): By our procedure we have

LuR = O(rm+α+s−2).

If m + s − 1 = 0 we use part (i) of Lemma 4 to conclude that the right-hand side of
Eq. (50) is inLp(Ba)andTheorems 7, 3 to conclude thatuR ∈ C1,α′

(Ba). Ifm+s−1 ≥ 1
we use part (ii) of Lemma 4 to conclude that the right-hand side of Eq. (50) is in
Cm+s−2,α(Ba). Elliptic regularity then implies thatuR ∈ Cm+s,α(Ba). TheC∞ case
follows by an analogous argument as in the proof of Lemma 5, since the polynomials
um0, . . . , um obtained for an integerm′ with m′ > m coincide with those obtained for
m, i.e. the procedure provides a unique sequence of polynomialsuk, k = m0, . . . . ��

More general expansions, which include logarithmic terms, have been studied (in a
somewhat different setting) in [30], where results similar to those given in 13 have been
derived. Definition 1 is tailored to the case in which no logarithmic terms appear and
leads to a considerable simplification of the proofs as well as to a more concise statement
of the results as compared with those given in [30].

Corollary 2. Assume that the hypotheses on u of Theorem 13 are satisfied. Let θ0 be a
distributional solution of Lθ0 = −4πδi in Ba . Then we can write

θ0 = r−1u1 + u2, (51)

with u1, u2 ∈ C∞(Ba), u1(0) = 1, L(r−1u1) = −4πδi + θR , where θR ∈ C∞(Ba)
and all its derivatives vanish at i. In the particular case of the Yamabe operator Lh with
respect to a smooth metric h we have u1 = 1 +O(r2).

Proof. Using that9(r−1) = −4πδi in Ba , we obtain foru = θ0 − 1/r,

Lu = −L̂(r−1). (52)

By Lemma 7 we havêL(r−1) = r−3U , withU ∈ C∞(Ba) andU = O(r). Our assertion
now follows from Theorem 13. For the last assertion we use that in the case ofLh we
haveU = O(r2). ��

We note that the functionsu1, u2 are in fact analytic andθR ≡ 0 if the coefficients
of L are analytic inBa (cf. [24]).

3.3. Proof of Theorem 1. There exists a unique solutionθ = θ0 + u of Eq. (8) withθ0
as Lemma 2 andu as in Theorem 12. Since the operatorLh satisfies the hypothesis of
Corollary 2 we can write onBa ,

θ0 = u1

r
+ w, (53)

whereu1,w are smooth functions andLh(r−1u1) = θR onBa \ i, with θR as described
in Corollary 2.

Given the solutionu = u(x), we can read Eq. (32) inBa as an equation foru,

Lhu = f (x)

r
, (54)
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with f considered as a given function ofx

f (x) = − r8�ab�
ab

8(rθ0 + ru)7
.

By hypothesisr8�ab�
ab ∈ E∞(Ba), by Corollary 2 we haver θ0 ∈ E∞(Ba), and

by Theorem 12 the solutionu is in Cα(Ba) ⊂ E0,α(Ba). By Lemma 6 we thus have
f ∈ E0,α(Ba). By Theorem 13 Eq. (54) implies thatu ∈ E1,α′

(Ba), 0< α′ < α which
implies in turn thatf ∈ E1,α′

(Ba). Repeating the argument, we show inductively that
u, whencef is in Em,α

′
(Ba) for all m ≥ 0. Lemma 5 now implies thatu ∈ E∞(Ba).

��

3.4. Solution of the Hamiltonian constraint with logarithmic terms. The example

9(logrhm) = r−2hm(2m+ 1), (55)

hm ∈ Hm, shows that logarithmic terms can occur in solutions to the Poisson equation
even if the source has only terms of the formrsp with p ∈ Pm. This happens in the cases
where the Laplacian does not define a bijection betweenrs+2Pm andrsPm, cases which
are excluded in Lemma 3. We shall use this to show that logarithmic terms can occur
in the solution to the Lichnerowicz equation if the conditionr8�ab�

ab ∈ E∞(Ba) is
not satisfied. Our example will be concerned with initial data with non-vanishing linear
momentum.

We assume that in a small ballBa centered ati the tensor�ab has the form

�ab = �ab
P +�ab

R , (56)

where�ab
P is given in normal coordinates by (76) and�ab

R = O(r−3) is a tensor field
such that�ab satisfies Eq. (7). The existence of such tensors, which satisfy also

θ−7
0 �ab�

ab ∈ Lq(S), q ≥ 2, (57)

and, by Lemma 13,

r8�ab�
ab = ψ + rψR in Ba, (58)

will be shown in Sect. 4.3. Here the functionψR is inCα(Ba) andψ is given explicitly
by

ψ ≡ r8�P ij�
ij
P = c + r−2h2, (59)

with c = 15
16 P

2, P 2 = P iPi , and

h2 = 3

8
r2

(
3(P ini)

2 − P 2
)
, (60)

where, in accordance with the calculations in Sect. 4.3, the latin indices in the expressions
above are moved with the flat metric. We note thath2 ∈ H2 andψ is not continuous. The
tensor�ab satisfies condition (9) and the three constantsP i given by (76) represent the
momentum of the initial data. Since�ab

P is trace-free and divergence-free with respect
to the flat metric, we could, of course, choosehab to be the flat metric and�ab

R = 0.
This would provide one of the conformally flat initial data sets discussed in [11]. We are
interested in a more general situation.
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Lemma 8. Let hab be a smooth metric, and let�ab be given by (56) such that conditions
(57) and (58) hold. Then, there exists a unique, positive, solution to the Hamiltonian
constraint (8). In Ba it has the form

θ = w1

r
+ 1

2
m+ 1

32
r

(
(9(P ini)

2 − 33P 2
)

+ 7

16
mr2

(
5

4
P 2 + 3

5
(3(P ini)

2 − P 2) logr

)
+ uR, (61)

where the constant m is the total mass of the initial data, w1 is a smooth function with
w1 = 1 +O(r2), and uR ∈ C2,α(Ba) with uR(0) = 0.

Sincew1 is smooth anduR is in C2,α(Ba), there cannot occur a cancellation of
logarithmic terms. For non-trivial data, for whichm �= 0, the logarithmic term will
always appear. In the case wherehab is flat and�ab

R = 0 an expansion similar to (61)
has been calculated in [26].

Proof. The existence and uniqueness of the solution has been shown in Sect. 3.1. To
derive (61) we shall try to calculate each term of the expansion and to control the
remainder as we did in the proof of Theorem 13. However, Lemma 3 will not suffice
here, we will have to use Eq. (55).

By Corollary 2 we have

θ0 = w1

r
+ w,

with w,w1 ∈ C∞(Ba) andw1 = 1 +O(r2). By Theorem 12 the unique solutionu of
Eq. (54) is inCα(Ba). Equation (54) has the form

Lhu = (
ψ

r
+ ψR) f (x, u) with f (x, u) = − 1

(w1 + r(u+ w))7
.

By m ≡ 2 (u(0) + w(0)) is given the mass of the initial data. Sinceu ∈ Cα(Ba), we
find

f = −1 + 7

2
mr + fR, fR = O(r1+α). (62)

If we set

u1 = − c
2
r + 1

4r
h2 + 7

2
m

(
c

6
r2 + 1

5
logr h2

)
, (63)

we find from (34), (55) that

9u1 = ψ

r

(
−1 + 7

2
mr

)
, (64)

and thatv = u− u1 satisfies

Lhv = ψR
(

−1 + 7

2
mr

)
− L̂hu1 + ψfR

r
. (65)

We shall show that this equation implies that the functionv is inC2,α(S).
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SinceψR ∈ Cα(Ba), the first term on the right-hand side of (65) is inCα(Ba). By
a direct calculation (using that the coefficientbi of L̂h is O(r)) we find thatL̂hu1 ∈
W2,p(Ba), p < 3, which implies by the Sobolev imbedding theorem thatL̂hu1 ∈
Cα(Ba). The third term on the right-hand side of (65) is more delicate, because it depends
on the solutionv. From Theorem 12 and Eq. (63) we find thatv ∈ Cα(Ba)∩W2,p(Ba),
where, due to (63), we need to assumep < 3. However, sincefR = O(r1+α) and
ψ is bounded, the functionψfR/r is bounded and the right-hand side of (65) is in
L∞(Ba). Thus Theorem 7 implies thatv ∈ W2,p(Ba) for p > 3, whencev ∈ C1,α(Ba)

by the Sobolev imbedding theorem. It follows that we can differentiatefR, considered
as a function ofx, to find that∂i fR = O(r). It follows thatψfR/r is in W1,p(Ba),
p > 3, and thus inCα(Ba). Since the right-hand side of (65) is inCα(Ba), it follows
thatv ∈ C2,α(Ba). ��

4. The Momentum Constraint

4.1. The momentum constraint on Euclidean space. In the following we shall give an
explicit construction of the smooth solutions to the equation∂a�

ab = 0 on the 3-
dimensional Euclidean spaceE3 (in suitable coordinatesR3 endowed with the flat stan-
dard metric) or open subsets of it. Another method to obtain such solutions has been
described in [7], multipole expansions of such tensors have been studied in [9].

Let i be a point ofE3 andxk a Cartesian coordinate system with origini such that in
these coordinates the metric ofE3, denoted byδab, is given by the standard formδkl . We
denote byna the vector field onE3 \ {i} which is given in these coordinates byxk/|x|.

Denote byma and its complex conjugatēma complex vector fields, defined onE3

outside a lower dimensional subset and independent ofr = |x|, such that

mam
a = m̄am̄

a = nam
a = nam̄

a = 0, mam̄
a = 1. (66)

There remains the freedom to perform rotationsma → eif ma with functionsf which
are independent ofr.

The metric has the expansion

δab = nanb + m̄amb +mam̄b,

while an arbitrary symmetric, trace-free tensor�ab can be expended in the form

r3�ab = ξ(3nanb − δab)+ √
2η1n(am̄b) + √

2η̄1n(amb) +
µ̄2mamb + µ2m̄am̄b, (67)

with

ξ = 1

2
r3�abn

anb, η1 = √
2r3�abn

amb, µ2 = r3�abm
amb.

Since�ab is real, the functionξ is real whileη1,µ2 are complex functions of spin weight
1 and 2 respectively.

Using in the equation

∂a�
ab = 0, (68)
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the expansion (67) and contracting suitably withna andma , we obtain the following
representation of (68):

4r∂rξ + ð̄η1 + ðη̄1 = 0, (69)

r∂rη1 + ð̄µ2 − ðξ = 0. (70)

Here ∂r denotes the radial derivative andð the edth operator of the unit two-sphere
(cf. [32] for definition and properties). By our assumptions the differential operatorð

commutes with∂r .
Let sYlm denote the spin weighted spherical harmonics, which coincide with the

standard spherical harmonicsYlm for s = 0. ThesYlm are eigenfunctions of the operator
ð̄ð for each spin weights. More generally, we have

ð̄
p
ð
p(sYlm) = (−1)p

(l − s)!
(l − s − p)!

(l + s + p)!
(l + s)! sYlm. (71)

If µs denotes a smooth function on the two-sphere of integral spin weights, there
exists a functionµ of spin weight zero such thatηs = ðsη. We setηR = Re(η) and
ηI = i Im(η), such thatη = ηR + ηI , and define

ηRs = ð
sηR, ηIs = ð

sηI ,

such thatηs = ηRs + ηIs . We have

ðsηR = ð̄
sηR, ðsηI = −ð̄

sηI .

Using these decompositions now forη1 andµ2, we obtain Eq. (69) in the form

2r∂rξ = −ð̄ðηR. (72)

Applying ð̄ to both sides of Eq. (70) and decomposing into real and imaginary part yields

r∂r ð̄ðηI = −ð̄
2
ð

2µI , (73)

2r∂r (r∂rξ)+ ð̄ðξ = ð̄
2
ð

2µR. (74)

Since the right-hand side of (72) has an expansion in spherical harmonics withl ≥ 1
and the right hand sides of (73), (74) have expansions withl ≥ 2, we can determine the
expansion coefficients of the unknowns forl = 0,1. They can be given in the form

ξ = A+ rQ+ 1

r
P, ηI = iJ + const., ηR = rQ− 1

r
P + const.,

with

P = 3

2
Pana, Q = 3

2
Qana, J = 3J ana, (75)
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whereA,P a,Qa, J a are arbitrary constants. Using (67), we obtain the corresponding
tensors in the form (cf. ([11])

�ab
P = 3

2r4

(
−Panb − Pbna − (δab − 5nanb) P cnc

)
, (76)

�ab
J = 3

r3

(
naεbcdJcnd + nbεacdJcnd

)
, (77)

�ab
A = A

r3

(
3nanb − δab

)
, (78)

�ab
Q = 3

2r2

(
Qanb +Qbna − (δab − nanb)Qcnc

)
. (79)

We assume now thatξ andηI have expansions in terms of spherical harmonics with
l ≥ 2. Then there exists a smooth functionλ2 of spin weight 2 such that

ξ = ð̄
2λR2 , ηI1 = ð̄λI2.

Using these expressions in Eqs. (72)–(74) and observing that for smooth spin weighted
functionsµs with s > 0 we can havēðµs = 0 only if µs = 0, we obtain

ðηR = −2r∂r ð̄λ
R
2 , ð

2µI = −r∂rλI2,
ð

2µR = 2r∂r
(
r∂rλ

R
2

)
− 2λR2 + ðð̄λR2 .

We are thus in a position to describe the general form of the coefficients in the expression
(67)

ξ = ð̄
2λR2 + A+ r Q+ 1

r
P, (80)

η1 = −2r ∂r ð̄λR2 + ð̄λI2 + r ðQ− 1

r
ðP + i ðJ, (81)

µ2 = 2r ∂r (r ∂r λ
R
2 )− 2λR2 + ðð̄λR2 − r ∂r λ

I
2. (82)

Theorem 14. Let λ be an arbitrary complex C∞ function in Ba \ {i} ⊂ E3 with 0 <
a ≤ ∞, and set λ2 = ð2λ. Then the tensor field

�ab = �ab
P +�ab

J +�ab
A +�ab

Q +�ab
λ , (83)

where the first four terms on the right-hand side are given by (76)–(78) while �ab
λ is is

obtained by using in (67) only the part of the coefficients (80)–(82) which depends on
λ2, satisfies the equation Da�ab = 0 in Ba \ {i}. Conversely, any smooth solution in
Ba \ {i} of this equation is of the form (83).

Obviously, the smoothness requirement onλ can be relaxed since�ab
λ ∈ C1(Ba \{i})

if λ ∈ C5(Ba \ {i}). Notice, that no fall-off behaviour has been imposed onλ at i and
that it can show all kinds of bad behaviour asr → 0.

Since we are free to choose the radiusa, we also obtain an expression for the general
smooth solution onE3 \ {i}. By suitable choices ofλ we can construct solutions�ab

λ

which are smooth onE3 or which are smooth with compact support.
Given a subset S ofR3 which is compact with boundary, we can use the representation

(83) to construct hyperboloidal initial data ([21]) onS with a metrichwhich is Euclidean
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on all ofS or on a subsetU of S. In the latter case we would require�ab
λ to vanish onS\U .

In the case where the trace-free part of the second fundamental form implied byh on∂S
vanishes and the support of�ab has empty intersection with∂S the smoothness of the
corresponding hyperboloidal initial data near the boundary follows from the discussion
in ([5]). Appropriate requirements onh and�ab near∂S which ensure the smoothness
of the hyperboloidal data under more general assumptions can be found in ([4]).

There exists a 10-dimensional space of conformal Killing vector fields onE3. In the
cartesian coordinatesxi a generic conformal Killing vector fieldξa0 has components

ξ i0 = kj
(
2xj x

i − δj
i xl x

l
)

+ εi jk S
j xk + axi + qi, (84)

whereki , Si , qi are arbitrary constant vectors anda an arbitrary number. In terms of the
“physical coordinates”yi = xi/|x|2, with respect to whichi represents infinity, we see
thatki , Si , qi , anda generate translations, rotations, “special conformal transformation-
s”, and dilatations respectively.

For 0< ε < a we setSε = {|x| = ε} and denote bydSε the surface element on it.
For the tensor field�ab of (83) we obtain

1

8π

∫
Sε

�ab na ξ0b dSε = (
Paka + J aSa + Aa +Qaqa

)
. (85)

We note that the integral is independent ofε and, more importantly, independent of the
choice ofλ. Thus the functionλ neither contributes to the momentum

Pa = 1

8π
lim
ε→0

∫
Sε

r2�bc n
b (2ncna − δca) dSε, (86)

nor to the angular momentum

J a = 1

8π
lim
ε→0

∫
Sε

r �bc n
bεcad nd dSε, (87)

of the data.
If we use the coordinatesxi to identifyE3 with R3 and map the unit sphereS3 ⊂ R4

by stereographic projection through the south pole ontoR3, the pointi, i.e. xi = 0,
will correspond to the north pole, which will be denoted in the following again byi.
The south pole, denoted in the following byi′, will represent infinity with respect to the
coordinatesxi and the origin with respect to the coordinatesyi . We usexi andyi as
coordinates onS3 \ {i′} andS3 \ {i} respectively. Ifh0 is the standard metric onS3, we
have in the coordinatesxi

h0
kl = θ−2δkl, θ =

(
1 + r2

2

)1/2

. (88)

We assume that the functionλ is smooth inE3 \ {i} and set�̃ab = θ10�ab with�ab
as in (83). Then, we have by general rescaling laws (cf. (111), (112)),

Da�̃
ab = 0 in S3 \ {i, i′}, (89)

whereDa denotes the connection corresponding toh0. The smoothness of˜�ab neari
can be read off from Eqs. (67) and (80)–(82). In order to study its smoothness neari′
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we perform the inversion to obtain the tensor in the coordinatesyi . It turns out that we
obtain the same expressions as before if we make the replacements

ni → −ni, mi → mi,

r → 1/r, ξ → ξ, η1 → −η1, µ → µ,

P a → Qa, J a → −J a, A → A, Qa → Pa.

Thus the tensors (76)–(78), the first two of which are the only ones which contribute
to the momentum and angular momentum, are singular ini′ as well as ini. Observing
again the conformal covariance, we can state the following result.

Corollary 3. The general smooth solution of the equationDa�̃ab = 0on S3\{i, i′} with
respect to the metric ω4 h0, where h0 denotes the standard metric on the unit 3-sphere
and ω ∈ C∞(S3), ω > 0, is given by �̃ab = (ω−1 θ)10�ab with �ab as in (83) and
λ ∈ C∞(E3 \ {i}). If we require the solution to be bounded near i′ (in particular, if we
construct solutions with only one asymptotically flat end), the quantities Pa , J a , A,Qa

must vanish.

We can now provide tensor fields which satisfy condition (11) and thus prove a special
case of Theorem 2.

Theorem 15. Denote by�ab a tensor field of the type (83). If rλ ∈ E∞(Ba) andPa = 0,
then r8�ab�

ab ∈ E∞(Ba).

Only the part ofλ which in an expansion in terms of spherical harmonics is of order
l ≥ 2 contributes to�ab. We note that the conditionrλ ∈ E∞(Ba) entails that this part
is of orderr. The singular parts of�ab are of the form (77)–(78).

For the proof we need certain properties of theð operator. Ifma is suitably adapted
to standard spherical coordinates, theð operator, acting on functions of spin weights,
acquires the form

ðηs = −(sinθ)s
[
∂

∂θ
+ i

sinθ

∂

∂φ

] (
(sinθ)−sηs

)
. (90)

The operator̄ðð acting on functions withs = 0 is the Laplace operator on the unit
sphere, i.e. we have the identity

ð̄ðf = r29f − xixj ∂i∂jf − 2xi∂if, (91)

where9 denotes the Laplacian onR3. The commutator is given by

(ð̄ð − ðð̄)ηs = 2sηs. (92)

From this formula we obtain forq ∈ N by induction the relations

(
ð̄ð

q − ð
q
ð̄
)
ηs = (2qs + (q − 1)q)ðq−1ηs, (93)

(
ðð̄

q − ð̄
q
ð
)
ηs = (−2qs + (q − 1)q)ðq−1ηs. (94)
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In particular, it follows that the functionsη andµ, which satisfyðη = η1 andð2µ = µ2,
are given by

η = −2r∂r
(
ð̄ðλR + 2λR

)
+ ð̄ðλI + 2λI + rQ− P

r
+ iJ, (95)

µ = 2r∂r
(
r∂rλ

R
)

+ ð̄ðλR − 2r∂rλ
I . (96)

Lemma 9. Let f, g ∈ E∞ be two complex functions (spin weight zero). Then, the func-
tions ð̄qf ðqg, q ∈ N, of spin weight zero are also in E∞.

Remarkably, the statement is wrong if we replaceE∞ by C∞: the calculation in
polar coordinates, using (90), gives

ðx1
ð̄x3 = −x1 x3 + i r x2.

Proof. Forq = 1 the proof follows from two identities. The first one is a simple conse-
quence of the Leibnitz rule

ðf ð̄g + ð̄f ðg = ð̄ð(fg)− f ð̄ðg − gð̄ðf. (97)

Sinceð̄ð maps by (91) smooth functions into smooth functions, it follows that(ðf ð̄g+
ð̄f ðg) ∈ E∞ if f, g ∈ E∞ (here we can replaceE∞ byC∞).

The other identity reads

ðf ð̄g − ð̄f ðg = 2 i r εl
jk xl ∂jf ∂kg. (98)

It is obtained by expressing (90) in the Cartesian coordinatesxl . Important for us is the
appearance of the factorr. A particular case of this relation has been derived in [27]. It
follows that(ðf ð̄g − ð̄f ðg) ∈ E∞ if f, g ∈ E∞. Taking the difference of (97) and
(98) gives the desired result.

To obtain the result for arbitraryq, we proceed by induction. The Leibniz rule gives

ð
q+1f ð̄

q+1g = ð̄ð(ðqf ð̄
qg)− ð̄ð

qf ðð̄
qg − ð

qf ðð̄
q+1g − ð̄

qgðð̄ð
qf.

The induction hypothesis forq and (91) imply that the first term on the right-hand side
is inE∞. The factors appearing in the following terms can be written by (93) and (94)
in the form:

ð̄ð
qf = ð

q−1(ðð̄f + q(q − 1)f ), ðð̄
qg = ð̄

q−1(ðð̄g + q(q − 1)g),

ðð̄
q+1g = ð̄

q(ð̄ðg + q(q − 1)g), ðð̄ð
qf = ð

q(ðð̄f + q(q − 1)f ).

Since the functions in parentheses are, by (91), inE∞, the induction hypothesis implies
that each of the products is inE∞. ��
Proof of Theorem 15. In terms of the coefficients (80)–(82) we have

r8�ab�
ab = r2

(
2µ2µ̄2 + 2η1η̄1 + 3ξ2

)
. (99)

Sincerλ is inE∞(Ba), Eqs. (95) and (96) imply thatrξ, rη, rµ ∈ E∞. The conclusion
now follows from Lemma 9. ��
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4.2. The general case: Existence. The existence of solutions to the momentum constraint
for asymptotically flat initial data has been proved in weighted Sobolev spaces (cf.
[12,15–17] and the references given there) and in weighted Hölder spaces [13]. The
existence of initial data with non-trivial momentum and angular momentum and the role
of conformal symmetries have been analysed in some detail in [9]. In this section we will
prove existence of solutions to the momentum constraint with non-trivial momentum
and angular momentum following the approach of [9]. We generalize some of the results
shown in [9] to metrics in the class (21). The results of the previous section will be
important for the analysis of the general case.

We use the York splitting methods to reduce the problem of solving the momentum
constraint to solving a linear elliptic system of equations. Let the conformal metrich

on the initial hypersurfaceS be given. We use it to define the overdetermined elliptic
conformal Killing operatorLh, which maps vector fieldsva onto symmetrich-trace-free
tensor fields according to

(Lhv)ab = Davb +Dbva − 2

3
hab Dcv

c, (100)

and the underdetermined elliptic divergence operatorδh which maps symmetrich-trace-
free tensor fieldsLab onto vector fields according to

(δhL)
a = DbL

ba. (101)

LetLab be a symmetrich-trace-free tensor field and set

�ab = Lab − (Lhv)ab. (102)

Then�ab will satisfy the equationDa�ab = 0 if the vector fieldva satisfies

Lhva = DbL
ab, (103)

where the operatorLh is given by

Lhva = Db(Lhv)ab = DbD
bva + 1

3
DaDbv

b + Ra bv
b. (104)

Since�ab(Lhv)ab = 2Da(�abvb) − 2 (δh�)ava for arbitrary vector fieldsva and
symmetrich-trace-free tensor fields�ab, Lh has formal adjointL∗

h = −2δh. Thus

Lh = −1

2
L∗
h ◦ Lh, (105)

and the operator is seen to be elliptic.
Provided the given data are sufficiently smooth, we can use Theorem 9 to show the

existence of solutions to (103).

Lemma 10 (Regular case). Assume that the metric satisfies (21) andLab is an h-trace-
free symmetric tensor field in W1,p(S), p > 1. Then there exists a unique vector field
va ∈ W2,p(S) such that the tensor field �ab = Lab − (Lhv)ab satisfies the equation
Da�

ab = 0 in S.
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Proof. The well known argument that the condition of Theorem 9 will be satisfied
extends to our case. Assume that the vector fieldξa is in the kernel ofLh, i.e.

Lhξa = 0 in S. (106)

Since the metric satisfies (21), elliptic regularity gives

ξa ∈ C2,α(S). (107)

This smoothness suffices to conclude from (105), (106) that 0= −2 (ξ,Lhξ)L2 =
(Lhξ,Lhξ)L2, whence

(Lhξ)ab = 0. (108)

This implies for an arbitrary symmetric,h-trace-free tensor fieldLab ∈ W1,p(S),p > 1,
the relation 0= (Lhξ,L)L2 = −2 (ξ, δhL)L2, which shows that the Fredholm condition
will be satisfied for any choice ofLab in (103). ��

We call the case above the “regular case” because the solution still satisfies the con-
dition�ab ∈ W1,p(S). While this allows us to have solutions diverging likeO(r−1) at
given points, it excludes solutions with non-vanishing momentum or angular momentum.

We note that by (108) the kernel ofLh consists of conformal Killing fields. Letξa

be such a vector field. Using (107) and Lemma 14 we find that we can write in normal
coordinates centered at the pointi of S

ξk = ξk0 +O(r2+α), (109)

whereξk0 is the “flat” conformal Killing field (84) with coefficients given by

ka = 1

6
DaDbξ

b(i), Sa = εabcD
bξc(i), qa = ξa(i), a = 1

3
Daξ

a(i). (110)

SinceS is connected, the integrability conditions for conformal Killing fields (cf. [34])
entail that these ten “conformal Killing data ati” determine the fieldξa uniquely onS.

With a conformal rescaling of the metric with a smooth, positive, conformal factorω

hab → h′
ab = ω4hab, (111)

which implies a corresponding change of the connectionDa → D′
a , we associate the

rescalings

�ab → � ′ab = ω−10�ab, ξa → ξ ′a = ξa, (112)

for h-trace free, symmetric tensor fields�ab and Killing fieldsξa . Then the conformal
Killing operator and the divergence operator satisfy

(Lh′v)ab = ω−4(Lhv)ab, D′
a�

′ab = ω−10Da�
ab. (113)

If we writeω = ef , the conformal Killing data transform as

k′a = ka + 2aDaf (i)+ εabcSbDcf (i)+ qcD
aDcf (i), (114)

S′a = Sa + 2εabcqbDcf (i), (115)

a′ = a + qaDaf (i), (116)

q ′a = qa. (117)
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A vector fieldξ onS will be called an “asymptotically conformal Killing field” at the
point i if it satisfies in normal coordinatesxk centered ati Eq. (109) with (84). While
any conformal Killing field is an asymptotically conformal Killing field, the converse
need not be true. Letξa be an asymptotically conformal Killing field and consider the
integral

Iξ = 1

8π
lim
ε→0

∫
∂Bε

�ab na ξb dSε, (118)

where in the coordinatesxk the unit normalnk to the sphere∂Bε aroundi approaches
xk/|x| for smallε. As shown in the previous section, the integral vanishes if the tensor
�ab is of orderr−1 at i. If, however,�ab is of orderr−n, n = 2,3,4, ati, the integral
gives non-trivial results and can be understood in particular as a linear form on the
momentum and angular momentum of the data.

We recall two important properties of the integralIξ . The first is the fact that the
integralIξ is invariant under the rescalings (111), (112).The second property is concerned
with the presence of conformal symmetries. LetLab be an arbitraryh-trace-free tensor
field andva an arbitrary vector field. Using Gauss’ theorem, we obtain

2
∫
∂Bε

Lab na vb dSε = −2
∫
S−Bε

va DbL
ab dµ−

∫
S−Bε

(Lhv)abLab dµ, (119)

with the orientation ofnk as above. If we apply this equation to (118), the first term on
the right-hand side will vanish ifDa�ab = 0 in S \ {i}, while the second term on the
right-hand side need not vanish ifξa is only an asymptotically conformal Killing vector
field. However, ifξ is a conformal Killing field, we getIξ = 0. Thus the presence of
Killing fields entails restrictions on the values allowed for the momentum and angular
momentum of the data. For this reason the presence of conformal symmetries complicates
the existence proof. Note that we are dealing with vector fieldsξa which satisfy the
conformal Killing equation (108) everywhere inS; in general, a small local perturbation
of the metric will destroy this conformal symmetry.

Observing the conformal covariance (113) of the divergence equation, we perform a
rescaling of the form (25), (27) such that the metrich′ has inh′-normal coordinatesxk

in Ba centered ati local expressionh′
kl with

h′
kl − δkl = O(r3), ∂jh

′
kl = O(r2). (120)

In these coordinates let�ik
flat ∈ C∞(Ba \ {i}) be a trace free symmetric and divergence

free tensor with respect to the flat metricδkl ,

δik �
ik
flat = 0, ∂i�

ik
flat = 0 inBa \ {i}, (121)

with

�ik
flat = O(r−4), ∂j�

ik
flat = O(r−5) asr → 0. (122)

All these tensors have been described in Theorem (14). Note that the conditions (122)
are essentially conditions on the functionλ which characterizes the part�ab

λ of (83).
Denote byLabsing ∈ C∞(S \ {i}) theh′-trace free tensor which is given onBa \ {i} by

Labsing = χ

(
�ab

flat −
1

3
h′
cd �

cd
flat h

′ab
)
, (123)
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and vanishes elsewhere. Hereχ denotes a smooth function of compact support inBa
equal to 1 onBa/2. By our assumptions we have then

D′
aL

ab
sing = O(r−2) as → 0. (124)

Theorem 16 (Singular case). Assume that the metric h satisfies (21), ω0 denotes the
conformal factor (25), h′ = ω4

0 h, Labsing is the tensor field defined above, and Labreg is a

symmetric h-trace free tensor field in W1,p(S), p > 1.

i) If the metric h admits no conformal Killing fields on S, then there exists a unique
vector field va ∈ W2,q(S), with q = p if p < 3/2 and 1 < q < 3/2 if p ≥ 3/2,
such that the tensor field

�ab = ω10
0

(
Labsing +Labreg + (Lh′v)ab

)
, (125)

satisfies the equation Da�ab = 0 in S \ {i}.
ii) If the metric h admits conformal Killing fields ξa on S, a vector field va as specified

above exists if and only if the constants ka , Sa , a, qa (partly) characterizing the
tensor field Labsing (cf. (83), (76)–(79)), satisfy the equation

Pa ka + J a Sa + Aa + (
P c Lc

a(i)+Qa
)
qa = 0, (126)

for any conformal Killing field ξa of h, where the constants ka , Sa , a, qa character-
izing ξa are given by (110).

In both cases the momentum and angular momentum (cf. (86), (87)) of �ab agree
with those of the tensorLabsing. These quantities can thus be prescribed freely in case (i).

Proof. Because of (124) we can considerD′
a(L

ab
sing + Labreg) as a function inLp(S),

1< p < 3/2. In case (i) the kernel of the operatorLh′ appearing in the equation

D′
a

(
Labsing +Labreg + (Lh′v)ab

)
= 0,

is trivial and we can apply Theorem 9 to show that the equation above determines a
unique vector fieldva with the properties specified above. After the rescaling we have
Da�

ab = 0 by (113).
In case (ii) the kernel ofLh′ is generated by the conformal Killing fieldsξ ′a = ξa

of h′. If we express (119) in terms of the metrich′, the tensor fieldLabsing + Labreg, and

the vector fieldξ ′a , take the limitε → 0 and use Eq. (85), we find that the Fredholm
condition of Theorem 9 is satisfied if and only if for every conformal Killing fieldξ ′a
of h′ we have

Pa k′
a + J a S′

a + Aa′ +Qa q ′
a = 0,

where the constantsk′
a , S

′
a , a

′, q ′
a are given by Eq. (110), expressed in terms ofξ ′a and

h′. By (114)–(117) this condition is identical with (126).
As shown in the previous section, we can chooseLabsing such that the corresponding

momentum and angular momentum integrals take preassigned values, which can be
chosen freely in case (i) and need to satisfy (126) in case (ii). These values will agree with
those obtained forω−10

0 �ab due to the regularity properties ofva . After the rescaling
the values of the momentum and the angular momentum remain unchanged because
ω0 = 1 +O(r2). ��
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We note that it is the presence of the 10-dimensional space of conformal Killing fields
on the standard 3-sphere which led to the observation made in Corollary (3). The latter
generalizes as follows.

Corollary 4. IfS is an arbitrary compact manifold,h satisfies (21), and we allow forp ≥
2 asymptotic ends ik , 1 ≤ k ≤ p, we can choose the sets of constants (P ak , J

a
k , Ak,Q

a
k)

arbitrarily in the ends ik , 1 ≤ k ≤ p − 1. Which constants can be chosen at the end ip
depends on the conformal Killing fields admitted by h.

Proof. This follows from the observation that in the case ofp ends Eq. (126) generalizes
to an equation of the form

p∑
l=1

Pal k
l
a + J al S

l
a + Al a

l + (
P cl Lc

a(il)+Qa
l

)
qla = 0,

where the constants bear for givenl the same meaning with respect to the pointil as the
constants in (126) with respect toi. ��

The case of spaces conformal to the unit 3-sphere(S3, h0) is very exceptional. A
result of Obata [33], discussed in [9] in the context of the constraint equations, says
that unless the manifold(S, h) is conformal to(S3, h0) there exists a smooth conformal
factor such that in the rescaled metrich′ every conformal Killing field is in fact a Killing
field. Thus the dimension of the space of conformal Killing fields cannot exceed 6. In
fact, it has been shown in [9] that in that caseh′ can admit at most four independent
Killing fields and only one of them can be a rotation. In this situation Eq. (126), written
in terms of the metrich′, reduces by (110) to

J a S′
a +

(
Qa + Pb L′

a
b(i)

)
qa = 0,

sinceD′
aξ
a = 0 for a Killing field. The constantsPa andA can be prescribed arbitrarily.

If there does exist a rotation among the Killing fields, the equation above implies

J a S′
a = 0,

(
Qa + Pb L′

a
b(i)

)
qa = 0.

4.3. Asymptotic expansions near i of solutions to the momentum constraint. In this
section we shall prove an analogue of Theorem 13 for the operatorLh defined in (104).
It will be used to analyse the behaviour of the solutions to the momentum constraint
considered inTheorem (16) neari and to show the existence of a general class of solutions
which satisfy condition (11). Our result rests on the close relation between the operator
Lh and the Laplace operator.

We begin with a discussion onR3 and writexi = xi , ∂i = ∂i . The flat space analogue
of Lh onR3 is given by

L0v
k = 9vk + 1

3
∂k ∂l v

l, (127)

where9 denotes the flat space Laplacian andvk a vector field on some neighbourhood
of the origin inR3.

The following spaces of vector fields whose components are homogeneous polyno-
mials of degreem and smooth functions respectively will be important for us.
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Definition 2. Let m ∈ N, m ≥ 1. We define the real vector spaces Qm, Q∞(Ba) by

Qm = {v ∈ C∞(R3,R3)| vi ∈ Pm, vixi = r2v with v ∈ Pm−1},
Q∞(Ba) = {v ∈ C∞(Ba,R3)| vixi = r2v with v ∈ C∞(Ba)}.

The following lemma, an analogue of Lemma 3, rests on the conditions imposed on the
vector fields above.

Lemma 11. Suppose s ∈ Z. Then the operator L0 defines a linear, bijective mapping of
vector spaces

L0 : rsQm → rs−2Qm,

in the following cases:

(i) s > 0,
(ii) s < 0, |s| is odd and m+ s ≥ 0.

Note that the assumptions onm and s imply that the vector fieldL0(r
s pi) ∈

C∞(R3 \ {0},R3) defines a vector field inL1
loc(R

3,R3) which representsL0(r
s pi)

in the distributional sense.

Proof. For s as above andpi ∈ Qm there exists somepm−1 ∈ Pm−1 with

∂k(r
s pk) = rs qm−1 with qm−1 = s pm−1 + ∂k p

k ∈ Pm−1. (128)

With Eq. (34) it follows that

L0(r
spi) = rs−2p̂i with

p̂i = s (s + 1 + 2m)pi + r29pi + 1

3
(s xi qm−1 + r2 ∂iqm−1) ∈ Pm.

Moreover,p̂i ∈ Qm becausêpi xi = r2 p̂m−1 with

p̂m−1 = s (s + 1 + 2m)pm−1 + xi 9p
i + 1

3
(s qm−1 + xi ∂

iqm−1) ∈ Pm−1.

To show that the kernel of the map is trivial, assume thatL0(r
spi) = 0 ∈ L1

loc(R
3,R3).

Taking a (distributional) derivative we obtain

0 = ∂i L0(r
spi) = 4

3
9(∂i(r

s pi)) = 4

3
9(rs qm−1). (129)

Whens > 0 or |s| odd andm− 1+ s ≥ 0 we use Lemma 3 to conclude thatqm−1 = 0.
We insert this in the equationL0(r

spi) = 0 to obtain9(rspi) = 0 and conclude again
by Lemma 3 thatpi = 0.

There remains the cases + m = 0 with |s| odd. Expandingqm−1 in Eq. (129) in
harmonic polynomials (cf. (35)), we get

0 = 9(r−mqm−1) =
∑

0≤k≤(m−1)/2

9(r2k−mhm−1−2k),
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whence, by (34),∑
0≤k≤(m−1)/2

r2k−m−2 (m− 2k) (m− 2k − 1) hm−1−2k = 0.

Since this sum is direct each summand must vanish separately. Sincem is odd, the
only factor(m − 2k − 1) which vanishes occurs when 2k = m − 1, from which we
conclude thatqm−1 = rm−1h0 with a constanth0. Since Eq. (129), which reads now
h09(r

−1) = 0, holds in the distributional sense, it follows thath0 = 0. ��
Unless noted otherwise we shall assume in the following that the metrich is of class

C∞ and that it is chosen in its conformal class such that its Ricci tensor vanishes ati (cf.
(25), (27)). Byxi will always be denoted a system ofh-normal coordinates centered at
i and all our calculations will be done in these coordinates. Thus we have

hkl = δkl +O(r3), ∂jhkl = O(r2).

We write the operatorLh in the form

Lh = L0 + L̂h,

where, with the notation of (22),

(L̂hv)i = ĥjk∂j ∂kvi + 1

3
ĥjk∂i∂kvj + Bjk i∂j vk + Aj i vj , (130)

with

Bkj i = −2hjl ?l
k
i − 4

3
hlf ?l

j
f h

k
i + 1

3
∂i h

jk,

andAj i is a function of the metric coefficients and their first and second derivatives.
The fieldsAj i , Bkj i are smooth and satisfy

Aj i = O(r), Bkj i = O(r2), (131)

and, becausexk xi ?i k j = 0 at the point with normal coordinatesxk,

xk x
i Bkj i = −4

3
r2 hlf ?l

j
f . (132)

Similarly, we write the operatorLh in the form

Lh = L0 + L̂h.
Lemma 12. Suppose pi ∈ Qm. Then L̂h(rspi) = rs−2Ui with some Ui ∈ Q∞(Ba)
which satisfies Ui = O(rm+3).

Proof. Using (130), we calculater−s+2 L̂h(rspi) and find

Ui = ĥkj
(
sδkjp

i + r2∂k∂jpi

)
+ 1

3
ĥjk

(
sxi∂kpj + r2∂k∂ipj + δkipj

)

+ Bkj i

(
sxkpj + r2∂kpi

)
+ r2Aj i pj . (133)

ThusUi is smooth. Using (131) we obtain thatUi = O(rm+3), using (132) we find
xiUi = r2f with some smooth functionf . ��
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We are in a position now to prove form = ∞ the analogue of point (ii) of Theorem 13.

Theorem 17. Assume that h is smooth, s ∈ Z, s < 0, |s| odd, F i ∈ C∞(Ba), and
J i ∈ Q∞(Ba) with J i = O(rs0) for some s0 ≥ |s|.

Then, if vi ∈ W2,p
loc (Ba) solves

(Lhv)i = rs−2J i + F i,

it can be written in the form

vi = rsvi1 + vi2, (134)

with vi1 ∈ Q∞(Ba), vi1 = O(rs0), vi2 ∈ C∞(Ba).

Proof. The proof is similar to that of Theorem 13. For givenm ∈ N we can write by
our assumptionsJ i = T im + J iR, whereJ iR = O(rm+1) andT im denotes the Taylor
polynomial ofJ i of orderm. BecauseJ i ∈ Q∞(Ba), its Taylor polynomial can be
written in the form

T im =
m∑
k=s0

t ik with t ik ∈ Qk.

We define now a functionviR (depending onm) by

vi = rs
m∑
k=s0

vik + viR.

The quantities(vik) ∈ Qk are determined by the recurrence relation

L0(r
svis0) = rs−2t is0, L0(r

svik) = rs−2(t ik − U
(k)i
k ),

where, for givenk, the quantityU(k)ik ∈ Qk is obtained as follows. The function

U(k)i ≡ r−s+2 L̂


rs

k−1∑
j=s0

vik


 ,

has by Lemma 12 an expansion

U(k)i =
m∑

j=s0+2

U
(k)i
j + U

(k)i
R with U

(k)i
j ∈ Qj ,

from which we read offU(k)ik . By Lemma 11 the recurrence relation is well defined.
With these definitions, the remainderviR satisfies the equation

LviR = rs−2
(
U
(m+1)i
R + J iR

)
+ F i.

By Lemma 4 the right-hand side of this equation is inCm+s−2,α(Bε). By elliptic regu-
larity we haveviR ∈ Cm+s,α(Ba). Sincem was arbitrary, the conclusion follows now by
an argument similar to the one used in the proof of Lemma 5.��
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Theorem 17 will allow us to prove that the solutions of the momentum constraint
obtained in Sect. 4.2 have an expansion of the form (13), if we impose neari certain
conditions on the data which can be prescribed freely.

In definition (123) of the fieldLabsing, which enters Theorem (16), we assume that�ab
flat

is of the form (83) withλ ≡ 0, i.e. it is given by the tensor fields (76)–(79). In order to
write �ab

flat in a convenient form, we introduce vector fields which are given in normal
coordinates by

viP = −1

4
P k∂k∂

ir−1 = r−5piP , piP = 1

4
(r2P i − 3xi P k xk) ∈ Q2,

(135)

viJ = εijkJj ∂kr
−1 = r−3piJ , piJ = −εijk Jj xk ∈ Q1, (136)

viA = 1

2
A∂ir−1 = r−3piA, piA = −1

2
Axi ∈ Q1, (137)

viQ = −2Qir−1 + 1

4
Qk∂k∂

ir = r−3piQ, piQ = −7

4
r2Qi − 1

4
xi Qk xk ∈ Q2,

(138)

whereP i , J i , A,Qi are chosen such that the vector fields satisfy

(L0vP )
ab = �ab

P , (L0vJ )
ab = �ab

J , (L0vQ)
ab = �ab

Q , (L0vA)
ab = �ab

A ,

(139)

with �ab
P ,�ab

J ,�ab
A ,�ab

Q as given by (76)–(79). We have onBa \ {i},

(L0vP )
a = 0, (L0vJ )

a = 0, (L0vA)
a = 0, (L0vQ)

a = 0, (140)

and can thus write onBa/2 \ {i},

L
ij
sing = (L0(vP + vJ + vA + vQ)

)ij − 1

3
hij hkl

(L0(vP + vJ + vA + vQ)
)kl
.

(141)

Of the fieldLabreg ∈ W1,p(S), p > 1, entering Theorem 16 we assume that it can be
written neari in the form

Labreg = rs Lab1reg+Lab2reg, (142)

wheres ≤ −1 is some integer which will be fixed later on,Lab1reg, L
ab
2reg are smooth in

Ba and such thatLij1reg = O(r−s−1), andxi xj L
ij
1reg = r2L with someL ∈ C∞(Ba).

Then

J ireg ≡ Dj L
ij
reg = rs−2Ĵ i +Dj L

ij
2reg, (143)

with Ĵ i = r2Dj L
ij
1reg+ s xj L

ij
1reg ∈ Q∞ andĴ i = O(r−s).

Using Theorem 17, we obtain for the solutions of Theorem 16 (where we can set by
our present assumptionsω0 ≡ 1, h ≡ h′) the following result.
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Corollary 5. With the tensor fieldsLabsing,L
ab
reg given by (141), (142) respectively, let the

vector field va be such that

�ab = Labsing +Labreg + (Lv)ab, (144)

satisfies Da �ab = 0 in Ba \ {i}.
(i) If Pa = 0 in (141) and s = −3 in (142), the vector field va can be written in the

form

vi = r−3 vi1 + vi2, with vi1 ∈ Q∞(Ba), vi1 = O(r3), vi2 ∈ C∞(Ba).

(ii) If J a = 0, A = 0, Qa = 0 in (141) and s = −5 in (142), the vector field va can be
written in the form

vi = r−5 vi1 + vi2, with vi1 ∈ Q∞(Ba), vi1 = O(r5), vi2 ∈ C∞(Ba).

Proof. In both cases the vector fieldva satisfiesLhva = −J asing − J areg with J areg given

by (143) andJ asing = Db L
ab
sing. By Eq. (140) we have in case (i)J asing = (Lh(vJ + vA +

vQ))
a = (L̂h(vJ + vA + vQ))

a , and in case (ii)J asing = (Lh vP ))a = (L̂h vP ))a on
Ba/2 \ {i}. The results now follow from Eqs. (135)–(138), Lemma 12, and Theorem 17.
��

We are in a position now to describe the behaviour of the scalar field�ab �
ab neari.

Lemma 13. The tensor field (144) satisfies
in case (i) r8�ab �

ab ∈ E∞(Ba),
in case (ii) r8�ab �

ab = ψ + r ψR where ψR ∈ Cα(Ba) and ψ = 15
16 Pi P

i + r−2 h2

with harmonic polynomial h2 = 3
8 r

2 (3(P i ni)2 − Pi P
i).

Proof. Forwi ∈ Q∞(Ba) with xi wi = r2 ŵ, ŵ ∈ C∞(Ba) we have

(Lh(rs w))ij = rs ((Lhw)ij − 2

3
s hij ŵ)+ rs−2 2s x(i wj). (145)

We sets = −3 andwi = piJ + piA + piQ in case (i) ands = −5 andwi = piP in case

(ii) and we writexi vi1 = r2 v̂1 with v̂1 ∈ C∞(Ba). Observing the equation above we
get onBa/2 \ {i} a representation

�ij = rs H ij + rs−2Kij + Lij

with fields

Hij = (L0w)
ij − 2

3
hij hkl (L0w)

kl − 2

3
s ŵ

(
δij + 2hij (1 − 1

3
hkl δ

kl)

)

+ (Lh v1)
kl − 2

3
s hij v̂1 +L

ij
1reg,

Kij = 2s (x(i wj) + x(i v
j)
1 ), Lij = L

ij
2reg+ (Lh v2)

ij ,
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which are inC∞(Ba/2). Since a direct calculation givesKij Kij = r2K with K ∈
C∞(Ba/2), we get

�ij �
ij = r2s−2 (2Hij K

ij −K)+ r2s Hij H
ij

+ rs−2 2Kij L
ij + rs 2HijL

ij + Lij L
ij ,

from which we can immediately read off the desired result in case (i). In case (ii) it is
obtained from our assumptions by a detailed calculation ofr2s−2 (2Hij Kij − K) +
r2s Hij H

ij . ��
Combining the results above and observing the conformal invariance of the equations

involved, we obtain the following detailed version ofTheorem 2.We use here the notation
of Theorem 16.

Theorem 18. Assume that the metric h is smooth and�ab is the solution of the momen-
tum constraint determined in Theorem 16. If

(i) Labsing = �ab
J +�ab

A +�ab
Q − 2

3 h
ab hcd (�

cd
J +�cd

A +�cd
Q ) in Ba/2,

(ii) Labreg = r−3Lab1reg+Lab2reg with Lab1reg,L
ab
2reg ∈ C∞(Ba) such that Lab1reg = O(r2),

and xa xa Lab1reg = r2L with some L ∈ C∞(Ba),

then �ab satisfies condition (11).

A. On Hölder Functions

In this section we want to prove an estimate concerning Hölder continuous functions.
Let B be an open ball inRn, n ≥ 1, centered at the origin. Supposef ∈ Ck(U) for

somek ≥ 0 andm is a non-negative integer withm ≤ k. Then we can write

f =
∑

|β|<m

1

β! ∂
βf (0) xβ +m

∫ 1

0
(1 − t)m−1

∑
|β|=m

1

β! ∂
βf (t x) xβ d t

=
∑

|β|≤m

1

β! ∂
βf (0) xβ +m

∫ 1

0
(1 − t)m−1

∑
|β|=m

1

β! (∂
βf (t x)− ∂βf (0)) xβ d t,

where the first line is a standard form of Taylor’s formula and the second line a slight
modification thereof. We denote byTm(f ) the Taylor polynomial of orderm and by
Rm(f ) the modified remainder, i.e. the first and the second term of the second line
respectively.

Lemma 14. Suppose f ∈ Cm,α(U). Then f − Tm(f ) ∈ Cm,α(U) and we have for
β ∈ N

n
0, |β| ≤ m,

|∂β(f − Tm(f ))(x)| ≤ |x|m+α−|β| ∑
|γ |=m−|β|

1

γ ! cγ+β on U, (146)

where the constants cδ denote the Hölder coefficients satisfying |∂δf (x) − ∂δf (0)| ≤
cδ |x|α in U for δ ∈ N

n
0, |δ| = m.
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Proof. Applying the modified Taylor formula tof and then to its derivatives, we get

∂β(f − Tm(f )) = Tm−|β|(∂βf )+ Rm−|β|(∂βf )− ∂βTm(f ).

We show that

Tm−|β|(∂βf )− ∂βTm(f ) = 0. (147)

To prove this equation we use induction onn. Forn = 1 the result follows by a direct
calculation. To perform the induction step we assumen ≥ 2 and show that the statement
for n− 1 implies that forn.

We writex = (x′, xn) for x ∈ Rn andβ = (β ′, βn) for β ∈ N
n
0, etc. Then we find

the equalities

∂βTm(f ) = ∂β
′
∂βn


 m∑
γn=0

Tm−γn(∂γnf )
1

γn! (x
n)γn




=
m−|β|+βn∑
γn=βn

Tm−|β ′|−γn
(
∂β

′
∂γnf

) 1

(γn − βn)! (x
n)γn−βn

=
m−|β|∑
γn=0

Tm−|β|−γn
(
∂β

′
∂γn+βnf

) 1

γn! (x
n)γn = Tm−|β|(∂βf ).

Here the first line is a simple rewriting where we denote byTm−γn(∂γnf ) the Taylor
polynomial of orderm−γn of the function∂γnf (x′,0) of n−1 variables. In the second
line the derivatives are taken and the induction hypothesis is used. The third line is
obtained by redefining the indexγn and using a similar rewriting as in the first line.

With (147) the estimate (146) follows immediately by estimating the integral defining
Rm−|β|(∂βf ). ��

B. An Additional Result

In this section we prove a certain extension of Theorem 13.

Theorem 19. Let u be a distribution satisfying Lu = f , where f ∈ Em,α(Ba), and the
coefficient of the elliptic operator L are in Cm,α(Ba). Then

u = r3
m∑
k=0

uk + uR ∈ Em+2,α(Ba), (148)

with uk ∈ Pk and uR ∈ Cm+2,α(Ba).

Proof. We follow the proof of Theorem 13 using Schauder instead ofLp estimates.
Sincef = f1 + rf2 ∈ Em,α(Ba) we have

f = r Tm + fR with Tm =
m∑
k=0

tk,

whereTm is the Taylor polynomial of orderm of f2 andtk ∈ Pk.
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Consider the recurrence relation

9(r3u0) = rt0, 9(r3uk) = r
(
tk − U

(k)
k

)
, 1 ≤ k ≤ m,

which is obtained by definingUk, k = 1, . . . , m, by

L̂


r3

k−1∑
j=0

uj


 = rU(k),

and definingU(k)j andU(m+1)
j as in the proof of Theorem 13. The equation foru and

(148) then imply foruR Eq. (50) withs = 3. Since by our assumptions and Lemma 4
the right-hand side of this equation is inCm,α(Ba), the interior Schauder estimates of
Theorem 8 imply thatuR ∈ Cm+2(Ba). ��

Acknowledgement. We would like to thank N. O’Murchadha for a careful reading of the manuscript.

References

1. Adams, R.A.:Sobolev Spaces. New York: Academic Press, 1975
2. Agmon, S., Douglis, A., and Niremberg, L.: Estimates near the boundary for solutions of elliptic partial

differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math.12, 623–727
(1959)

3. Agmon, S., Douglis, A. and Niremberg, L.: Estimates near the boundary for solutions of elliptic partial
differential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math.17, 35–92
(1964)

4. Andersson, L. and Chru´sciel, P.: On hyperboloidal Cauchy data for vacuum Einstein equations and
obstructions to the smoothness of scri. Commun. Math. Phys.161, 533–568 (1994)

5. Andersson, L., Chru´sciel, P. and Friedrich, H.: On the regularity of solutions to theYamabe equation and
the existence of smooth hyperboloidal initial data for Einstein’s field equations. Commun. Math. Phys.
149, 587–612 (1992)

6. Aubin, T.:Nonlinear Analysis on Manifolds. Monge–Ampère Equation. NewYork: Springer-Verlag, 1982
7. Beig, R.: TT-tensors and conformally flat structures on 3-manifolds. In: P. Chru´sciel, editor,Mathematics

of Gravitation, Part 1., Volume41, Banach Center Publications, Polish Academy of Sciences, Institute
of Mathematics, Warszawa, 1997; gr-qc/9606055

8. Beig, R. and O’Murchadha, N.: Trapped surface in vacuum spacetimes. Class. Quantum Grav.11 (2),
419–430 (1994)

9. Beig, R. and O’Murchadha, N.: The momentum constraints of general relativity and spatial conformal
isometries. Commun. Math. Phys.176 (3), 723–738 (1996)

10. Beig, R. and O’Murchadha, N.: Late time behavior of the maximal slicing of the Schwarzschild black
hole. Phys. Rev. D57 (8), 4728–4737 (1998)

11. Bowen. J.M. and York, J.W., Jr.: Time-asymmetric initial data for black holes and black-hole collisions.
Phys. Rev. D21 (8), 2047–2055 (1980)

12. Cantor, M.: Elliptic operators and the decomposition of tensor fields. Bull.Am. Math. Soc.5 (3), 235–262
(1981)

13. Chaljub-Simon, A.: Decomposition of the space of covariant two-tensors onR
3. Gen. Rel. Grav.14,

743–749 (1982)
14. Choquet-Bruhat, Y. and Christodoulou, D.: Elliptic systems inHs,δ spaces on manifolds which are

euclidean at infinity. Acta Math.146, 129–150 (1981)
15. Choquet-Bruhat, Y., Isenberg, J. and York, J.W., Jr.: Einstein constraint on asymptotically euclidean

manifolds. gr-qc/9906095, 1999
16. Choquet-Bruhat, Y. and York, Jr., J.W.: The Cauchy problem. In: A.Held, editor,General Relativity and

Gravitation, Volume1, New York: Plenum, 1980, pp. 99–172
17. Christodoulou, D. and O’Murchadha, N.: The boost problem in general relativity. Comm. Math. Phys.

80, 271–300 (1981)
18. Dieudonné, J.:Foundation of Modern Analysis. New York: Academic Press, 1969



Asymptotically Flat Initial Data with Prescribed Regularity at Infinity 609

19. Douglis, A. and Niremberg, L.: Interior estimates for elliptic systems of partial differential equations.
Comm. Pure Appl. Math.8, 503–538 (1955)

20. Folland, G.B.:Introduction to Partial Differential Equation. Princeton, NY: Princeton University Press,
1995

21. Friedrich, H.: Cauchy problems for the conformal vacuum field equations in general relativity. Commun.
Math. Phys.91, 445–472 (1983)

22. Friedrich, H.: On static and radiative space-time. Commun. Math. Phys.119, 51–73 (1988)
23. Friedrich, H.: Gravitational fields near space-like and null infinity. J. Geom. Phys.24, 83–163 (1998)
24. Garabedian, P.R.:Partial Differential Equations. New York: John Wiley, 1964
25. Gilbarg, D. and Trudinger, N.S.:Elliptic Partial Differential Equations of Second Order. Berlin: Springer-

Verlag, 1983
26. Gleiser, R.J., Khanna, G. and Pullin, J.: Evolving the Bowen–York initial data for boosted black holes.

gr-qc/9905067, 1999
27. Held, A., Newman, E.T. and Posadas, R.: The Lorentz group and the sphere. J. Math. Phys.11 (11),

3145–3154 (1970)
28. Isenberg, J.: Constant mean curvature solution of the Einstein constraint equations on closed manifold.

Class. Quantum Grav.12, 2249–2274 (1995)
29. Lee, J.M. and Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc.17 (1), 37–91 (1987)
30. Meyers, N.: An expansion about infinity for solutions of linear elliptic equations. J. Math. Mech.12 (2),

247–264 (1963)
31. Morrey, Jr., C.B.:Multiple Integrals in the Calculus of Variations. Berlin: Springer Verlag, 1966
32. Newman, E.T. and Penrose, R.: Note on the Bondi–Metzner–Sachs group. J. Math. Phys.7 (5), 863–870

(1966)
33. Obata, M.: The conjectures on the conformal transformations of Riemannian manifolds. J. Differ. Geom.

6 (2), 247–258 (1971)
34. Yano, K.:The theory of Lie derivatives and its applications. Amsterdam: North Holland, 1957
35. York, Jr., J.W.: Conformally invariant orthogonal decomposition of symmetric tensor on Riemannian

manifolds and the initial-value problem of general relativity. J. Math. Phys.14 (4), 456–464 (1973)

Communicated by H. Nicolai


