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Abstract: We prove the existence of a large class of asymptotically flat initial data
with non-vanishing mass and angular momentum for which the metric and the extrinsic
curvature have asymptotic expansions at space-like infinity in terms of powers of aradial
coordinate.

1. Introduction

An initial data set for the Einstein vacuum equations is given by a t(iﬁléab, W),
whereS$ is a connected 3-dimensional manifoig,, a (positive definite) Riemannian
metric, and¥,;, a symmetric tensor field of. The data will be called “asymptotically
flat”, if the complement of a compact set $hcan be mapped by a coordinate system

%/ diffeomorphically onto the complement of a closed balRifisuch that we have in
these coordinates

fz,-j = <1+ ?) 5ij+0<7_2), 1)
\i‘,’j =0 (}7—2) , (2

as7 = (Z?zl(if)z)l/z — o0. Here the constaniz denotes the mass of the data,
a, b, c... denote abstract indices,j, k..., which take values,?, 3, denote coordinates
indices whiles;; denotes the flat metric with respect to the given coordinate system
Tensor indices will be moved with the metrig, and its inverseéi?. We setx; = x!
andd’ = d;. Our conditions guarantee that the mass, the momentum, and the angular
momentum of the initial data set are well defined.

There exist weaker notions of asymptotic flatness (cf. [14]) but they are not useful
for our present purpose. In this article we show the existence of a class of asymptotically
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flat initial data which have a more controlled asymptotic behavior than (1), (2) in the
sense that they admit near space-like infinity asymptotic expansions of the form

hk

. 2m
hij ~ L+ =208+ Y =L, 3)
r =2 r
B} Wk
Wij ~ Z f—,l(], 4)
k>2

wherefzfj and¥}; are smooth functions on the unit 2-sphere (thought of as being pulled

back to the sphergs= const. under the mag/ — %/ /7).

We are interested in such data for two reasons. The evolution of asymptotically flat
initial data near space-like and null infinity has been studied in considerable detail in
[23]. In particular the that article a certain “regularity condition” has been derived on the
data near space-like infinity, which is expected to provide a criterion for the existence of
a smooth asymptotic structure at null infinity. To simplify the lengthy calculations, the
data considered in [23] have been assumed to be time-symmetric and to admit a smooth
conformal compactification. With these assumptions the regularity condition is given by
a surprisingly succinct expression. With the present work we want to provide data which
will allow us to perform the analysis of [23] without the assumption of time symmetry
but which are still “simple” enough to simplify the work of generalizing the regularity
condition to the case of the non-trivial second fundamental form.

Thus we will insist in the present paper on the smooth conformal compactification of
the metric but drop the time symmetry. A subsequent article will be devoted to the analysis
of a class of more general data which will include in particular stationary asymptotically
flat data.

The “regular finite initial value problem near space-like infinity”, formulated and an-
alyzed in [23], suggests how to calculate numerically entire asymptotically flat solutions
to Einstein’s vacuum field equations on finite grids. In the present article we provide
data for such numerical calculations which should allow us to study interesting situations
while keeping a certain simplicity in the handling of the initial data.

The difficulty of constructing data with the asymptotic behavior (3), (4) arises from
the fact that the fields need to satisfy the constraint equations

DYV, — D, ¥ =0,
R+ U? -, =0,

on 8, whereD, is the covariant derivativeR is the trace of the corresponding Ricci
tensor, andl = 19?0, Part of the data, the “free data”, can be given such that they are
compatible with (3), (4). However, the remaining data are governed by elliptic equations
and we have to show that (3), (4) are in fact a consequence of the equations and the way
the free data have been prescribed.

To employ the standard techniques to provide solutions to the constraints, we assume

U =0, )

such that the data correspond to a hypersurface which is maximal in the solution space-
time.
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We give an outline of our results. Because of the applications indicated above, we wish
to control in detail the conformal structure of the data near space-like infinity. Therefore
we shall analyze the data in terms of the conformal compactificéfion,,, V,5) of
the “physical” asymptotically flat data. Hefedenotes a smooth, connected, orientable,
compact 3-manifold. It contains a poihsuch that we can writ§ = S\{i}. The point
i will represent, in a sense described in detail below, space-like infinity for the physical
initial data.

By singling out more points ir§ and by treating the fields near these points in the
same way as neame could construct data with several asymptotically flat ends, since
all the following arguments equally apply to such situations. However, for convenience
we restrict ourselves to the case of a single asymptotically flat end.

We assume thdt,;, is a positive definite metric o with covariant derivativeD,,
and W, is a symmetric tensor field which is smooth Snin agreement with (5) we
shall assume thak,, is trace free,

hab v, =0.
The fields above are related to the physical fields by rescaling
iiab = 94hab’ \ijab = 9_2 Wap, (6)

with a conformal facto® which is positive onS. For the physical fields to satisfy the
vacuum constraints we need to assume that

DV, =0 on S, (7)

1 1
(DpD? — §R)9 = —gxpabxv“beﬂ on S. (8)

Equation (8) for the conformal factéris the Lichnerowicz equation, transferred to our
context.

Let x/ be h-normal coordinates centerediasuch thatiy; = 8 ati and setr =
(Z?zl(xf)z)l/z. To ensure asymptotic flatness of the data (6) we require

U, =004 as r— 0, (9)
lim r6 = 1. (10)
r—0

In the coordinates’/ = x/ /r? the fields (6) will then satisfy (1), (2) (cf. [22, 23] for this
procedure).

Not all data as given by (6), which are derived from datg ¥, as described above,
will satisfy conditions (3), (4). We will have to impose extra conditions and we want to
keep these conditions as simple as possible.

Since we assume the mettig, to be smooth o4, it will only depend on the behavior
of 6 neari whether condition (3) will be satisfied. Via Eq. (8) this behavior depends on
v,,. What kind of condition do we have to impose g, in order to achieve (3)?

The following space of functions will play an important role in our discussion. Denote
by B, the open ball with centerand radiug = a > 0, whereu is chosen small enough
such thatB, is a convex normal neighborhoodiofA function f € C™(S) is said to be
in E°°(B,) ifon B, we canwritef = f1+rfawith f1, fo € C*(B,) (cf. Definition 1).

An answer to our question is given by the following theorem:
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Theorem 1. Let hq, be a smooth metric on S with positive Ricci scalar R. Assume that
Y, issmoothin S and satisfieson B,,

W, W ¢ E*(B,). (12)

Then there exists on § a unique solution @ of Eq. (8), which is positive, satisfies (10),
and hasin B, the form

0=

N | D

, 0 € E®(B,), H>i)=1 (12)

In fact, we will get slightly more detailed information. We find tat= u1 + r u2
on B, with ux € E®(B,) and a functioni; € C*°(B,) which satisfiesi; = 1+ 0 (r?)
and

in B,\{i}, wherefg is in C*°(B,) and vanishes at any orderiat

If 6 has the form (12) then (3) will be satisfied due to our assumptioris,an

Note the simplicity of condition (11). To allow for later generalizations, we shall dis-
cuss below the existence of the soluttbander weaker assumptions on the smoothness
of the metricz,;, and the smoothness and asymptotic behavidr gf(cf. Theorem 12).

In fact, already the methods used in this article would allow us to deduce analogues of
all our results under weaker differentiability assumptions; however, we are particularly
interested in th&>° case because it will be convenient in our intended applications. If
the metric is analytic o, it can be arranged thékg = 0 andu1 is analytic onB, (and
unigue with this property, see [24] and the remark after Theorem 2). We finally note
that the requiremerR > 0, which ensures the solvability of the Lichnerowicz equation,
could be reformulated in terms of a condition on the Yamabe number (cf. [29]).

It remains to be shown that condition (11) can be satisfied by tensor figjdahich
satisfy (7), (9). A special class of such solutions, namely those which extend smoothly
to all of S, can easily be obtained by known techniques (cf. [16]). However, in that case
the initial data will have vanishing momentum and angular momentum. To obtain data
without this restriction, we have to consider fiellg, € C*°(S) which are singular at
in the sense that they admit, in accordance with (2), (6), (1@0)=atr = 0} asymptotic
expansions of the form

Wy~ Y wh with Wl e (82, (13)
k>—4

It turns out that condition (11) excludes data with non-vanishing linear momentum,
which requires a non-vanishing leading order term of the for(n=%). In Sect. 3.4 we
will show that such terms imply terms of the form legn 6 and thus do not admit
expansion of the form (3). However, this does not necessarily indicate that condition
(11) is overly restrictive. In the case where the mefigig is smooth it will be shown in
Sect. 3.4 that a non-vanishing linear momentum always comes with logarithmic terms,
irrespective of whether condition (11) is imposed or not.
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There remains the question whether there exist filgsvhich satisfy (11) and have
non-trivial angular momentum. The latter requires a term of the foiaT3) in (13). It
turns out that condition (11) fixes this term to be of the form

A 3
\I-’;?J = r—3(3ninj — &)+ r—3(}’ljeki1.]lnk + nielijknl), (14)

wheren! = x'/r is the radial unit normal vector field neaand /¥, A are constants,

the three constantg® specifying the angular momentum of the data. The spherically
symmetric tensor which appears here with the fagtagrees with the extrinsic curvature

for amaximal (non-time symmetric) slice in the Schwarzschild solution (see for example
[10]). Note that the tenso¥/}” satisfies condition (11) and the equatin/}’ = 0

on S for the flat metric. In the next theorem we prove an analogous result for general
smooth metrics.

Theorem 2. Let h,;, be a smooth metric in S. There exist trace-free tensor fields ¥, €
C°°(S \ {i}) satisfying (13) with the following properties:

() Wap = WA + pr where WA/ isgiven by (14) and ¥, = O (r2).
(i) D*W¥, =00nS.
(iii) 8w, W satisfies condition (11).
We prove a more detailed version of this theorem in Sect. (4.3). There it will be shown
how to construct such solutions from free-data by using the York splitting technique

([35]). In Sect. 4.1 the case wheig, is conformal to the Euclidean metric is studied in
all generality.

2. Preliminaries

In this section we collect some known facts from functional analysis and the theory of
linear elliptic partial differential equations.

Let Z be the set of integer numbers alNg the set of non-negative integers. We use
multi-indicesg = (B1, B2, ..., Bn) € Ny and setp| = Yol Bi B = BBl .. Bl
= hHb e (b 8P = 97197 ol u, DPu = DY DY? .. D u,
and,forg,y e N}, B+y =(Br1+y1,---, Bn +yn) @andg < y if g; < y;. We denote
by © an open domain iiR® (resp. inS; quite often we will then choos@ = B,).

We shall use the following functions spaces (see [1,25] for definitions, notations,
and results): the set of times continuously differentiable functiod¥” (2), the Holder
space&C™*(Q), where O< o < 1,the corresponding spadgé (), C"™%(R2), the space
C°(£2) of smooth functions with compact supporth the Lebesgue spaée’ (2), the
Sobolev spac# ™ (£2), and the local Sobolev spad&” (). For a compact manifold
S we can also define analogous spatéss), C™*(S), W™ (S) (cf. [6]).

We shall need the following relations between these spaces.

Theorem 3 (Sobolev imbedding). Let Q be a €% domain in R3, let k, m, j be non-
negative integersand 1 < p, g < oo. Then there exist the following imbeddings:

(i) fmp < 3,then
WitmP(Q) ¢ Wh(Q), p<q <3p/(B—mp).
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@iy If(m—1)p <3 <mp,then
Witmr Q) c ¢/%Q), o =m—3/p.

Theorem 4. Let u € W1(2), and suppose there exist positive constants @ < 1 and K
such that

/ |uldpn < KR?>T® for all balls Br c © ofradius R > 0.
Br

Thenu € C¥(Q).

Our existence proof for the non-linear equations relies on the following version of
the compact imbedding for compact manifolds [6]:

Theorem 5 (Rellich—Kondrakov). The following imbeddings are compact

() Wma(s) c LP(S)if1>1/p > 1/qg —m/3 > O.
(i) W™a(S) c C%(S)ifm —a > 3/q,0<a < 1.

A further essential tool for the existence proof is the Schauder fixed point theorem [25]:

Theorem 6 (Schauder fixed point). Let B be a closed convex set in a Banach space
V and let T be a continuous mapping of B into itself such that the image T'(B) is
precompact, i.e. has compact closurein B. Then T has a fixed point.

We turn now to the theory of elliptic partial differential equations (see [12,14,25,
31]). LetL be alinear differential operator of ordaron the compact manifol8 which
acts on tensor fields. In the case where ~ u“%n1 is a contravariant tensor field of
rankm1, L has in local coordinates the form

m

m
Lu = Z a’tIm2 i1ewimy B DP yir-img = Z ag D# u, (15)
|81=0 |81=0

where the coefficientg/>+/m2 ;, 5 = a(x)/1n2 ir...in, p @re tensor fields of a cer-
tain smoothness, and denotes the Levi—Civita connéction with respect to the met-
ric 4. In the expression on the right-hand side we suppressed the indices belonging
to the unknown and the target space. Assuming the same coordinates as above, we
write for a given covectok; at a pointx € Q and multi-indexs as usuak? =
£l gl and define alinear map(x, £) : R™ — R™2 by setting(A (x, £) u)/t~in2 =
> ipl=m a(x)/1mz ity p EP u'tm1_ The operatot. is elliptic atx if for any £ # 0
the mapA (x, &) is an isomorphism, is elliptic on S if it is elliptic at all points of S.
We have the followind.? regularity result [2, 3,14, 31].

Theorem 7 (LP regularity). Let L be an elliptic operator of order m on Q (resp. S)
with coefficients ag € W*It1-7(S), where sy > 3/p+k—m+1,and p > 1. Let s be
anatural number suchthat s, > s —m > 0. Letu € W, 3;” () (resp. Wi’ (5)), with
p > 1, beasolution of the elliptic equation Lu = f.

() IffeWo " (Q),q = p,thenu € Wil ().
(i) If few=™4(S),q > p,thenu € WH4(S).

Furthermore, we have the Schauder interior elliptic regularity [3,19, 25, 31].
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Theorem 8 (Schauder elliptic regularity). Let L be an elliptic operator of order m on
Q with coefficients ag Ch(Q). Letu € W™P (), with p > 1, be a solution of the
eliptic equation Lu = f, with f € C5%(Q). Thenu e Ckt™(Q"), for all Q' cc Q.

For linear elliptic equations we have the Fredholm alternative for elliptic operators
on compact manifolds [12].

Theorem 9 (Fredholm alternative). Let L beanelliptic operator of order m on S whose
coefficients satisfy the hypothesis of Theorem 7. Let s be some natural number such that
stk >s—m > 0and f € LP(S), p > 1. Then the equation Lu = f has a solution
u e WmP(S) iff

/ <v, f>,du=0 foral vekerl").
S

Heredp denotes the volume element determinedilandL* the formal adjoint oL,
which for the operator (15) is given by

Lu= Y (-D"IDF (agu). (16)
|81=0

Furthermore<, >, denotes the appropriate inner product induced by the nmigfsidn
our case, where and f will be vector fieldsf¢ andu“, we have< u, f >, = f%u,.
Let

Lu = 8,~(a"j8ju +b'u) + ¢ du + du, a7)

be a linear elliptic operator of second order with principal part in divergence forfh on
which acts on scalar functions. An operator of the form (17) may be written in the form
(15) provided its principal coefficientd/ are differentiable.

We shall assume thdt is strictly elliptic in 2; that is, there exists > 0 such that

a¥(x)EE; > MER, VxeQ, E&eR. (18)

We also assume thdt has bounded coefficients; that is for some constansnd
v > 0 we have for alk € €,

Z|aij|2 < A2, A—ZZ(wi'Z_’_ |Ci|2) + a7 Yd) < v2 (19)

In order to formulate the maximum principle, we have to impose that the coefficient
of u satisfy the non-positivity condition

/ (dv—b'dv)dx <0 Yv=>0,veCiR). (20)
Q

We have the following versions of the maximum principle [25].

Theorem 10 (Weak Maximum Principle). Assume that L given by (17) satisfies con-
ditions (18), (19) and (20). Let u € W1-2(2) satisfy Lu > 0 (< 0) in Q. Then

supu < supu™ (infu >infu" |,
Q a0 Q Q2

whereu™ (x) = max{u(x), 0}, u~ (x) = min{u(x), 0}.
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Theorem 11 (Strong Maximum Principle). Assumethat L given by (17) satisfies con-
ditions (18), (19) and (20). Let u € W12(Q) satisfy Lu > 0in €. Then, if for some ball
B CccC Q wehave

supu = supu > 0,
B Q

the function u must be constant in Q.

Because: is assumed to be only iw1? the inequalityLu > 0 has to be understood in
the weak sense (see [25] for details).

3. The Hamiltonian Constraint

In this section we will prove Theorem 1.

3.1. Existence. The existence of solutions to the Lichnerowicz equation has been studied
under various assumptions (cf. [15,16,28] and the reference given there). The setting
outlined above, where we have to solve (8), (10) on the compact mauifdids been
studied in [8,22,23].

In general the “physical” metric provided by an asymptotically flat initial data set will
not admit a smooth conformal compactification at space-like infinity. Explicit examples
for such situations can be obtained by studying space-like slices of stationary solutions
like the Kerr solution. To allow for later generalizations of the present work which
would admit also stationary solutions we shall prove the existence result of Theorem 1
for metricsh,;, which are not necessarily smooth. In the proof we will employ Sobolev
spacedV™7(S) and the corresponding imbeddings and elliptic estimates (in particular,
there will be no need for us to employ weighted Sobolev spaces with weights involving
the distance to the poi}. With these spaces and standérd elliptic theory we will
also be able to handle the mitd1-type singularity ai which occurs on the right-hand
side of Eq. (8).

The conformal Laplacian or Yamabe operator

1
L, = h®D,Dy, — gk
which appears on the left-hand side of (8), is a linear elliptic operator of second order
whose coefficients depend on the derivatives of the métrip to second order. The
smoothness to be required of the metris determined by the following considerations.
In the existence proof we need:

() The existence of normal coordinates. This suggests that we agsant&-1(5).

(i) The maximum principle, Theorems 10 and 11. The required boundedness of the
Ricci scalarR imposes restrictions on the second derivativé.of

(iii) The elliptic L? estimate, Theorem 7. This requires that W37 (S) for p > 3/2.

Since the right-hand side of Eq. (8) isif the assumption that e W37(S), p > 3,
would be sufficient to handle Eq. (8). However, when we will discuss the momentum
constraint in Sect. 4.2, we will wish to be able to handle cases where/2. In these
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cases the conditions of Theorem 7 suggest that we assume ¢h&it*?(S). In order
to simplify our hypothesis we shall assume in the following that

hap € WHP(S), p > 3/2. (21)

The imbedding theorems then imply that, € C%%(S), 0 < @ < 1, whenceR €
C%(S). We note that (21) is not the weakest possible assumption but it will be sufficient
for our future applications.

Lemma 1. Assume that & satisfies (21) and R > 0. Then:

() Lp:W24(S) — L1(S), ¢ > 1, defines an isomorphism.
(i) 1fu e WH2(S)and Lyu < O, thenu > O; if, moreover, Lyu # 0 € L4(S), then
u > 0.

Proof. (i) To show injectivity, assume thdt,u = 0. By elliptic regularityu is smooth
enough such that we can multiply this equation witand integrate by parts to obtain

1
/ <DauDau + —Ru2> dup =0.
s 8

SinceR > 0 it follows thatu = 0. Surjectivity follows then by Theorem 9 since
L, = Lj. Boundedness of; is immediately implied by the assumptions while the
inequality

Nullwzrsy < ClILaullLr(s),

which follows from the elliptic estimates underlying Theorem 7 and the injectivity of
Ly, (see e.g [12] for this well known result), implies the boundedne:z%jéf

(i) If we haveu < 0 in some region of, it follows that sug(—«) > 0. Then there

is a region inS in which we can apply the maximum principle to the functien to
conclude that: must be a non-positive constant wherlgat = —Ru/8 > 0 in that
region. In the case wheig,u < 0 we would arrive at a contradiction. In the case where
Lyu < 0 we conclude that = 0 in the given region and a repetition of the argument
gives the desired result.o

To construct an approximate solution we choose normal coordinatesntered at
i such that (after a suitable choice @of> 0) we have in the open baB, in these
coordinates
hij =5ij+flij, hil =5ij+flij (22)
with
hij=04?), h'=0@?, x'hj=0, xhY=0.
Notice that; = hi/, defined by the equations above, are not necessarily related to each

other by the usual process of raising indices. ‘
Denoting byA the flat Laplacian with respect to the coordinatéswe write onB,

Ly=A+Ly,
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with

A e ) 1

Ly = h’faia,» +b'9; — §R. (23)
We note that

b= 0(r).

Choose a functiom, € C*(S) which is non-negative and such that= 1in B, >
andy, = 0in S\ B,. Denote hy; the Dirac delta distribution with source iat

Lemma 2. Assume that % satisfies (21) and R > 0. Then, there exists a unique solution

6o of theequation L ;60 = —4n ;. Moreover 6 > 0in S andwecanwritefy = x./r+g
withg € C*(5),0 < < 1L

Proof. Observingthat Ar defines afundamental solution to the flat Laplacian, we obtain

A(5) = —ams+ 7, (24)

r

wherey is a smooth function of with supportinB, \ B, 2. The ansatéy = x,/r + g
translates the original equation into an equationgfor

. X .
Lyg = —Ly (7”) -3

A direct calculation shows thefth(Xar—l) € L1(S), q < 3. By Lemma 1 there exists
a unique solutiory € W24(S) to this equation which by the imbedding theorem is in
cu(S).

To show thaty is strictly positive, we observe that it is positive négbecause —*
is positive and; is bounded) and apply the strong maximum principle-tig. O

We use the conformal covariance of the equation to strengthen the result on the
differentiability of the functiong. Consider a conformal factor

. 1 .
wo = e/ with fo € C®(S) such thatfy = Exjxk Ljk(i)on By, (25)
where we use the normal coordinai€sand the value of the tensor

1
Lap = Rap — ZRhalﬁ (26)

ati. Then the Ricci tensor of the metric
., = wghap (27)

vanishes at the pointand, since we are in three dimensions, the Riemann tensor vanishes
there too. Hence the connection and metric coefficients satisfy in the coordifiates

T/ =002, hy=8;+003. (28)

Corollary 1. The function g found in Lemma 2isin C1*(5),0 < o < 1.
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Proof. With wg = /0 andh,, as above, we note that

Ly (68) = wg Ly (6o), (29)
where
66 = g "bo. (30)

We apply now the argument of the proof of Lemma 2 to the funejoSince we have by
Eq. (28) thatl i (xor 1) € L>®(S), it follows thatd = x./r +g', whereg’ € C1¥(S).

We use Eq. (30), the fact thap = 1+ O (r2), and Lemma 4 to obtain the desired result.
|

We note that the function
,

ot = , 31
O T xatrg 1)

is in C¥(S), it is non-negative and vanishes onlyi afo obtaing, we writed = 6y + u
and solve orf the following equation for:

1
Lyt = =265 "Wap ¥ (L+ 05w 7. (32)

Theorem 12. Assume that h,, € W*P(S) with p > 3/2, that R > 0 on S, and that
90—7%,7\11&17 € L1(S), g = 2. Then there exists a unique non-negative solution u €
W24(S) of Eq. (32). Wehaveu > 0on S unless W,, W = 0 e L4(S).

We note that our assumptions @, impose rather mild restrictions, which are, in
particular, compatible with the fall off requirement (9). By the imbedding Theorem 3
we will haveu € C¥(S),a = 2 —3/q, forg > 3; andu € C1%(S), forg > 3.

Proof. The proof is similar to that given in [8], with the difference that we impose
weaker smoothness requirements. Making use of Lemma 1, we define a non-linear
operatorT : B — C9(S), with a subseB of C9(S) which will be specified below, by
setting

T(w) =L, f(x,u),
where
1 — a
) = =2 067 Wap ¥ g(x, u) (33)
with
-1 =7
glx,u)= (1+90 u) .
In the following we will suppress the dependencefaindg onx. Lety € W24(S) C
C%(S) be the function satisfyingr = 7(0) and setB = {u € C%(S) : 0 < u < v},
which is clearly a closed, convex subset of the Banach sp&¢§).

We want to use the Schauder theorem to show the existence of a poiBtsatisfying
u = T (u). This will be the solution to our equation.
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We show thafl" is continuous. Observing the propertiesﬂgpf1L noted above, we see

that g defines a continuous map: B — LZ2. Using the Cauchy—Schwarz inequality,
we get

1 -7 ab
|1/ 1) = fu)ll2 < §90 Wap U | L2l1g(u1) — gu2)] ;2 -

By Theorems 1, 3 we know that the map(s) — W22(S) — €9(S), where the first
arrow denotes the map,;l and the second arrow the natural injection, is continuous.
Together these observations give the desired result.

We show thaf” mapsB into itself. If u > 0 we havef < 0 whence, by Lemma 1,
T() = L (f(u) > 0. If ug > up it follows that f (u1) > f(uz) whence, again by
Lemma 1, (u2) — T (u1) = L;l(f(ug) — f(u1)) > 0. We conclude from this that for
ue Bwehave < T(u) < T(0) = .

Finally, T(B) is precompact becaud#?2(S) is compactly embedded i@i°(S) by
Theorem 5. Thus the hypotheses of Theorem 6 are satisfied and there exists a fixed point
u of T in B. By its construction we have € L4(S) whence, by elliptic regularity,

u e W24(S).

To show its uniqueness, assume tlgandu» are solutions to (32). Observing the

special structure of and the identity

6
a - = (c—a) Zaj_7c_l_j,
j=0

which holds for positive numbers andc, we find that we can writd., (11 — u2) =

¢ (u1—up) with some functiorr > 0. The maximum principle thus allows us to conclude
thatuy = up. The last statement about the positivityuofollows from Lemma 1, (ii).

O

3.2. Asymptotic expansionsnear i of solutionsto the Lichnerowiczequation. The aim of
this sectionis to introduce the function spa&é&s®, to point out the simple consequences
listed in Lemma 6, and to prove Theorem 13. These are the tools needed to prove
Theorem 1.

Letm € Np, and denote by, the space of homogeneous polynomials of degree
in the variablesc/. The elements oP,, are of the formd_ 5, Cp x# with constant

coefficientsCg. Note thatr2 is in P, but r is not in P;. We denote byH,, the set
of homogeneous harmonic polynomials of degrge.e. the set ofp € P, such that
Ap = 0. Fors € Z, we define the vector spae&P,, as the set of functions of the form
rSp with p € P,,.

Lemma 3. Assume s € Z. The Laplacian defines a bijective linear map
A rX,Pm - rx—ZIPm’

in either of the following cases:

(i) s=>0,
(i) s <0,|s|isoddandm + s > 0.
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Note that the assumptions enands imply that the functiomA (r* p,,) € C®(R3\
{0}) defines a function ilillloc(R3) whichrepresenta (r* p,,) inthe distributional sense.

Proof. SinceA mapspP,, into P,,_», we find from
A(r*p) = 2 (s(s +1+4+2m)p + rzAp) , (34)

thatA(r’ p) € r*=2P,,.

We show now that the map is bijective for certain values ahdm. Because*P,,
andr*~2P,, have the same finite dimension, we need only show that the kernel is trivial
for somes andm. The vector spac®@,, can be written as a direct sum

P =Hon ®r°Hm 2@ r*Hpm_a-- -, (35)

(cf. [20]). If A(r*p) = 0, we get from (35) that

0=ACp) = Y ACHhu-2),

O<k<m/2
with Ay, —or € Hy,—2r. Applying (34), we obtain
0= Y r#(s+2k)(s +1+20m — k)Dhm2.
O<k<m/2

which allows us to conclude by (35) that

(s+2k)(s+14+2m —k))hypy—o = 0.

Since by our assumptioris+ 2k) (s + 14 2(m —k)) # 0, it follows that the polynomials
hm—2r Vanish, whencep = 0. O

We will need the following technical lemma regarding Hoélder functions:
Lemmad4. Supposem € N,0 < o < 1, f € C™%(B,), and T,, denotes the Taylor
polynomial of order m of f.Then fr = f —T,, isin C"™*(B,) and satisfies, if | 8| < m,

¥rr=0 (rm_“s'“‘) as r — 0.

Moreover, let s beaninteger suchthat s < 1andm + s — 1 > 0. Then fr satisfies:

() r*2fgre Wnts—Lr(B,),for p <3/(1—a),0<e€ <a.
(i) fm+s—1>1thenr’=2fz € C"T5=2%(B,).
(iii) rfr € C™“(By).

Proof. The relation

198 frl < Clx|m~1PHe x ¢ B, (36)

is a consequence of Lemma 14.
(i) We have

aﬂ(VS72fR) — Z Cﬁ’aﬂ/fR ay/(rﬁZ),
B'+y'=p
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with certain constant€g/, and the derivatives of ~2 are bounded fox € B, by
877572 < crim2 I
Observing (36), we obtain
197 (=2 fr)| < CrmTiPrRTER
for x € B., whence, by our hypothesis+s — 1 > 0,
0P (2 fR)l < Crte, (37)

for |8] < m + s — 1. Using that-— 1t is in L?(B,) for p < 3/(1 — «), we conclude
thatd? (" ~2f) e L?(B.) whencers—2fzr € wmts—Lr(B,).

(i) From the relation above and Theorem 3 we concludenfot s — 1 > 1 that
2 fp e Cmts=2e (B )y with o' = 1 — 3/p < «. To show thatr’ can in fact be
chosen equal ta, we use the sharp result of Theorem 4. et 8#' (r*~2 fx) for some

B <m+s — 2. Letz be an arbitrary point oB. and B (z) be a ball with centet and
radiusR such thatBg C B,. Using the inequality (37), we obtain

f logldu < c/ rldu. < c/ r*~Ydu = C'R%H
Br(2) Br(2) Br(0)

(cf. [25] p. 159 for the second estimate). Applying now Lemma 4, we conclude that
g € C%(B.), whence’—2fz € C"+5—22(B,),

(i) We have

0P (rfr) = rd” fr + fu.
where, with certain constant% g/,
A=Y Cppd® fro?r
B#B' +v'<p

Note thatrd? f € C*(B,), sincer is Lipschitz continuous.
Using the bound

107" r| < crmIVIH,
and the bound (36) we obtain
[afa] < Cre.
Thus f1 € Wb? for all p, whence, by Theorem ¥; € C% fora < 1. O

The following function spaces will be important for us.

Definition 1. For m € Ngand 0 < « < 1, we define the space E"™“(B,) as the set
E™Y(B,) ={f = fi+rfo : f1, fo € C"™*(B,)}. Furthermore we set E*°(B,) =
{f=h+rfa: f1, f2€ CP¥(By)}



Asymptotically Flat Initial Data with Prescribed Regularity at Infinity 583

Note that the decompositions above are not unique’ = f1 + rf2, f1, f2 €
C™*(B,), then alsof = f1 +rfr +r(f2 — fr) With f1 +rfg, f2— fr € C"™*(By,)
if fr is given as in Lemma 4. Obviousl§>°(B,) C E™%(B,) for allm € Ng. The
converse is not quite immediate.

Lemmab. If f € E™“(B,) for all m € Ng, then f € E°(B,).

Proof. Assumethay € E™%(B,) for all m. Take an arbitrary: and writef = f1+rf2
with f1, fo € C"™*(B,). To obtain a unique representation, we writeand f> as the
sum of their Taylor polynomials of order and their remainders,

A=) _pi+fr fo=)_ pi+ fh (38)

j=0 j=0

with p}, pjz. e P; and f}, f2 = O(™*%). From this we get the representation

m m—1
=30 40> 2| + 1. (39)
j=0 j=0

where fg = f3 +r(f2 + p2) € C™*(B,) and fg = O(r"™*%) by Lemma 4. This
decomposition is unique: if we hafl = 0, the fast fall-off of fx at the origin would
imply that the term in brackets, whence also each of the polynomialsfandust
vanish.

Sincem was arbitrary, we conclude that the functiprdetermines a unique sequence
of ponnomiaISpJZ, j € Npas above. By Borel's theorem (cf. [18]) there exists a function

v2 € C*°(B,) (not unique) such that

m
vy — ijz = 0(rm+1), m € Np. (40)
j=0

We show that the functiomy = f —rv, is C™~1(B,) for arbitrarym, i.e.vy € C®(B,).
Using (39), we obtain

m m—1
vi= Y pr+se|+r| Y pi-v2]. (41)
20 2o

The first term is inC™-“(B,) by the observations above, the second term &"irf* (B,)
by (40) and Lemma 4. O

While we cannot directly apply elliptic regularity results to these spaces, they are
nevertheless appropriate for our purposes. This follows from the following observation,
which will be extended to more general elliptic equations and more general smoothness
assumptions in Theorem 13 and in Appendix B.

If u is a solution to the Poisson equation

Au:i,
,
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with f € E™*(B,), m > 1, thenu € E™t1%(B,). This can be seen as follows. If we
write f = f1+r f2 € E™®*(B,) in the form
fooT

= =" 14 fr,
r r

whereT,, is the Taylor polynomial of order of fi, the remainderfr is seen to be in
c"=Le(B,) by Lemma 4.
By Lemma 3, there exists a polynomig}, such that

. T,
AGT,) = %

Thenug = u —rT,, satisfiesAug = fr and Theorem 8 implies that € C"*1%(B,),
whenceu € E"+19(B,).

To generalize these arguments to equations with non-constant coefficients and to
non-linear equations we note the following observation.

Lemma6. For f, g € E™“(B,) we have

() f+geE™(By).

(i) fg € E™*(Ba).

(i) If f £0in By, then1/f € E™*(B,).
Analogous results hold for functionsin E*(B,).

Proof. The firsttwo assertions are obvious, for (iii) we need only consider a smaBball
centered at the origin becauss smooth elsewhere. ff = fi+rf2, f1, f2 € C"™%(B,),
we have 1f = v1 + rvp with

N SN /S
(f02 = r?(f2? (f0?2 = r2(f2)?

These functions are i@™“(B,) for sufficiently smalle > 0 because our assumptions
imply that f1(0) # 0. TheE*°(B,) case is similar. O

v1

We consider now a general linear elliptic differential operdtaf second order
L=d"93; +b'd +c. (42)
It will be assumed in this section that
a, b', c € C*(B,). (43)

We express the operator in normal geodesic coordinatesth respect ta:'/, cen-
tered at the origin oB,, such that

a'l(x) = 8" +a",
with
av = 0@r?), (44)
and

xj&ij =0, xe€B,. (45)
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For the differential operatat, given by
Lu = & (x)3;9ju + b' (x)du + c(x)u,
we find

Lemma 7. Suppose p € P,,. Then the function U defined by L(r* p) = r*~2U is C*®
and satisfiess U = O(+"*t1). If in addition b = O(r) (as in the case of the Yamabe
operator L), then U = O (+"*2).

Proof. A direct calculation, observing (45), gives
U = a" (s8ijp +r®0;0;p) + b (sxip + r?9;p) + cr’p
which guarantees our resulto

In the following we shall use the splitting = A + L, whereA is the flat Laplacian
in the normal coordinates .

Theorem 13. Letu € sz)’cp(Ba) be a solution of
Lu = rs_zf,
where L isgiven by (42) with (43) ands € Z, p > 1.

(i) Assumes =1land f € E™%(B,). Thenu € EX* (B,),0 < &' < a,ifm = 0and
u e EmtL(B)ifm > 1 If f € E®(B,), thenu € E®(B,).

(i) Ifs <O, |s|isodd, f € C"™*(B,) withm +s —1 > 0,and f = O(r'), with
so + s > 0; then u hasthe form

m

u:rsZuk—i—uR,

k=s0

where uy € Py, Lug = O™ -2y and ug € C1¥(B,),0 < o < «a, if
m+s—1=0,up € C"™*B,) ifm+s—-1>1

If f € C*°(B,), then u can be written in the formu = rfv1 + vy With vy, v2 €
C*>®(B,), v1 = O(r*0), and

L(r'vy) =r*"2f + 6, L(v2) = bk,
where g € C*°(B,) and all its derivatives vanish at the origin.
Proof. In both cases we writ¢ = T, + fr with a polynomial7,,, of orderm,

m
Tw= Y tie t€Pn.

k=mg

Case(i): mo=0andf = f1+rfo, wherefi, f> are inC™*(B,). We definet,, to be
the Taylor polynomial of ordern of f.
Case (ii): mg = sg and we defind,, to be the Taylor polynomial of ordet of f.
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We show thai: has in both cases the form

m

u=r’ Z up + ug, (46)

k=mo

withuy € Prandug € C™%(B,). Forthis purpose Lemma 3 will be used to determine

the polynomialss in terms oft;, by a recurrence relation. The differentiability of

follows then from Lemma 4, elliptic regularity, and the elliptic equation satisfiesgy
The recurrence relation is defined by

A umg) = rs_ztmo, A ug) = r* 21 — Ulgk)), k=mo+1,...,m, (47)

where, givenuy,,, ... , ux—1, we defineUlgk) as follows. By Lemma (7) the functions
k—1

UR = p=5T2f | s Z uj |, (48)
Jj=mo

which will be defined successively far= mg+1,... ,m + 1, areC® andU® =

O (r"™ot1). Thus we can write by Lemma (14)

m
k) _ (k) (k)
v = 3" uP+up,
j=mo+1

whereUg‘) = 0™ andU}k) € P; denotes the homogeneous polynomial of order

j in the Taylor expansion dff .
By Lemma (3) the recurrence relation (47) is well defined for the cases (i) and (ii).
Note that

Uj(."')zU](."), mo+1l<j<k if k<k <m+1, (49)

because we have by Lemma 7,
k-1
U(k) _ U(k) — r*S+2L rS Z M] — 0(}’k+l).
Jj=k

With the definitions above and the identity (49), which allows us to repla,(%é

by U,E’"H), the original equation for implies for the function:z defined by (46) the
equation

Lug =2 (UF™Y + fx). (50)

Case (i): We use Lemma (4), (i) to conclude that the right-hand side of Eq. (50) is in
LP(Be) if m = 0 and inC"™~1*(B,) if m > 1. Now Theorems 7 and 8 imply that
ug € CY¥(B,), o < a, if m = 0 andug € C"*L%(B,) if m > 1. For theE™®
case we use Lemma 5.
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Case (ii): By our procedure we have
LMR — O(rm—Q—cH—s—Z).

If m +s — 1 = 0 we use part (i) of Lemma 4 to conclude that the right-hand side of
Eq. (50)isinL?(B,) and Theorems 7, 3to conclude that € Cl""/(Ba). fm+s—1>1

we use part (i) of Lemma 4 to conclude that the right-hand side of Eq. (50) is in
cmts=22(B,). Elliptic regularity then implies thatg € C™1%%(B,). The C*® case
follows by an analogous argument as in the proof of Lemma 5, since the polynomials
Umg, - - - » Uy Obtained for an integen’ with m’ > m coincide with those obtained for

m, i.e. the procedure provides a unique sequence of polynomigks=myg,.... 0O

More general expansions, which include logarithmic terms, have been studied (in a
somewhat different setting) in [30], where results similar to those given in 13 have been
derived. Definition 1 is tailored to the case in which no logarithmic terms appear and
leads to a considerable simplification of the proofs as well as to a more concise statement
of the results as compared with those given in [30].

Corollary 2. Assume that the hypotheses on u of Theorem 13 are satisfied. Let 6y be a
distributional solution of L 6o = —4x§; in B,. Then we can write

6o = r~tug + uo, (51)

with u1, up € C*®(B,), u1(0) = 1, L(r_lul) = —47s; + Og, Where g € C*°(B,)
and all itsderivativesvanish at i. In the particular case of the Yamabe operator L, with
respect to a smooth metric 7 we have u1 = 1+ 0 (r2).

Proof. Using thatA(r—1) = —4x8; in B, we obtain forw = 6p — 1/r,
Lu=—L0™Y. (52)

By Lemma 7 we havé (r—1) = r—3U, withU € C*°(B,) andU = O(r). Our assertion
now follows from Theorem 13. For the last assertion we use that in the cdsewé
haveU = 0(r%). o

We note that the functions;, u are in fact analytic anéz = 0 if the coefficients
of L are analytic inB, (cf. [24]).

3.3. Proof of Theorem 1. There exists a unique solutien= 6y + u of Eq. (8) withfg
as Lemma 2 and as in Theorem 12. Since the operalgy satisfies the hypothesis of
Corollary 2 we can write o,

o= "2 4w, (53)
r

whereu1, w are smooth functions and, (r —1u1) = 6 on B, \ i, with 6% as described
in Corollary 2.
Given the solutiont = u(x), we can read Eg. (32) iB, as an equation far,

Lyu=" 5x), (54)
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with f considered as a given function of

rB\I,ab\I,ab
8(rég + ru)’’

By hypothesis-8Ww,, W ¢ E*(B,), by Corollary 2 we have 6y € E®(B,), and
by Theorem 12 the solutiom is in C*(B,) c E%%(B,). By Lemma 6 we thus have

f € E%¥(B,). By Theorem 13 Eq. (54) implies thate EL-% (B,), 0 < a’ < o Which
implies in turn thatf € E1% (B,). Repeating the argument, we show inductively that

u, whencef is in E™® (B,) for all m > 0. Lemma 5 now implies that € E*°(B,).
|

fx) =

3.4. Solution of the Hamiltonian constraint with logarithmic terms. The example
A(ogrhy) = r2h,(2m + 1), (55)

hm € H,,, shows that logarithmic terms can occur in solutions to the Poisson equation
even if the source has only terms of the forhlp with p € P,,. This happens in the cases
where the Laplacian does not define a bijection betwé&&fP,, andr*P,,, cases which
are excluded in Lemma 3. We shall use this to show that logarithmic terms can occur
in the solution to the Lichnerowicz equation if the conditisiw,, > € E®(B,) is
not satisfied. Our example will be concerned with initial data with non-vanishing linear
momentum.

We assume that in a small bdl), centered at the tenso?? has the form

Wb = e et (56)
wherew4’ is given in normal coordinates by (76) adg? = O (r~3) is a tensor field
such that?” satisfies Eq. (7). The existence of such tensors, which satisfy also

O W € L1(S), q=>2 (67)
and, by Lemma 13,
B, v =y +ryf in B, (58)

will be shown in Sect. 4.3. Here the functigif is in C%(B,) andy is given explicitly
by

U= rslllpij\lfg =c+ rizhz, (59)

with ¢ = £ P2, P2 = P P;, and
35 i \2 2
ha = (3(P ni)? — p ) (60)

where, in accordance with the calculations in Sect. 4.3, the latin indices in the expressions
above are moved with the flat metric. We note that #- andy is not continuous. The
tensor&?? satisfies condition (9) and the three constaritgiven by (76) represent the
momentum of the initial data. Sincb‘;,b is trace-free and divergence-free with respect

to the flat metric, we could, of course, chodsg to be the flat metric andfjgb = 0.

This would provide one of the conformally flat initial data sets discussed in [11]. We are
interested in a more general situation.
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Lemma 8. Let h,;, beasmooth metric, and let W4? be given by (56) such that conditions
(57) and (58) hold. Then, there exists a unique, positive, solution to the Hamiltonian
constraint (8). In B, it hasthe form

1 1 i 2 2
9_—+ m+3—2r<(9(Pn,) —33P)

7 5 3 X
+ —mr? (Z P2 4 5 (?;(P’n,-)2 — P2) |Ogr) +ug, (61)
where the constant m is the total mass of the initial data, wj is a smooth function with
w1 =1+ 0@?),andug € C>*(B,) withug(0) = 0.

Sincew; is smooth andix is in C%%(B,), there cannot occur a cancellation of
logarithmic terms. For non-trivial data, for whigh # 0, the logarithmic term will
always appear. In the case wheig is flat and\IJ?eb = 0 an expansion similar to (61)
has been calculated in [26].

Proof. The existence and uniqueness of the solution has been shown in Sect. 3.1. To
derive (61) we shall try to calculate each term of the expansion and to control the
remainder as we did in the proof of Theorem 13. However, Lemma 3 will not suffice
here, we will have to use Eq. (55).

By Corollary 2 we have

with w, w1 € C®(B,) andw; = 1+ O(r?). By Theorem 12 the unique solutianof
Eq. (54) is inC*(B,). Equation (54) has the form

1
(w1+r+w)’

Lyu = (% + 1/fR) fx,u) with f(x,u)=—

By m = 2 (0) + w(0)) is given the mass of the initial data. Sinces C*(B,), we
find

7
f=-1+ Smr+ fr,  fr=0@Y). (62)
If we set
c 1 7

u1=—§r+5h2+§m <6r + = |Ogrh2> (63)

we find from (34), (55) that
Aul_ﬁ( 1+ = mr) (64)

r 2
and thatv = u — uq satisfies
7 R
thzpr <—1+ Emr)—Lhu1+m. (65)
r

We shall show that this equation implies that the funciids in C2%(S).
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Sincey R € C*(B,), the first term on the right-hand side of (65) |sdﬁ(Ba) By
a direct calculation (using that the coefficigritof L, is O(r)) we find thatLhul €
W2P(B,), p < 3, which implies by the Sobolev imbedding theorem that,
C%(B,). The third term on the right-hand side of (65) is more delicate, because it depends
on the solutiorv. From Theorem 12 and Eq. (63) we find that C*(B,) N W27 (B,),
where, due to (63), we need to assume< 3. However, sincefz = O(r1*+*) and
¥ is bounded, the functiony fz/r is bounded and the right-hand side of (65) is in
L>®(B,). Thus Theorem 7 implies thate W27 (B,) for p > 3, whencev € C1%(B,)
by the Sobolev imbedding theorem. It follows that we can differentfateconsidered
as a function ofy, to find thatd; fx = O(r). It follows thaty fz/r is in W-?(B,),
p > 3, and thus inC¥(B,). Since the right-hand side of (65) is & (B,), it follows
thatv € C2%(B,). O

4. The Momentum Constraint

4.1. The momentum constraint on Euclidean space. In the following we shall give an
explicit construction of the smooth solutions to the equatip#“’ = 0 on the 3-
dimensional Euclidean spa&# (in suitable coordinate®&® endowed with the flat stan-
dard metric) or open subsets of it. Another method to obtain such solutions has been
described in [7], multipole expansions of such tensors have been studied in [9].
Leti be a point off® andx* a Cartesian coordinate system with origisuch that in
these coordinates the metricldt, denoted by, is given by the standard forsp;. We
denote by:“ the vector field o2 \ {i} which is given in these coordinates lo¥/|x|.
Denote bym, and its complex conjugat@, complex vector fields, defined di?
outside a lower dimensional subset and independentofx|, such that

mam® = mom® =nym® =n,m* =0, mem® =1 (66)

There remains the freedom to perform rotations — 'Y m, with functions f which
are independent of.
The metric has the expansion

Sap = Nghp + Mgmp + mgmp,
while an arbitrary symmetric, trace-free tendgy, can be expended in the form
r3Wap = EBnanp — Sap) + V2011 atip) + v 2010 @mp) +
Lomamp + pamanip,  (67)
with

1
£ = §r3\11abn”nb, n = NV2r3Wntm?, s = rPWmimb.
SinceY,; is real, the functiol is real whilen1, w2 are complex functions of spin weight
1 and 2 respectively.
Using in the equation

9, ¥ =0, (68)



Asymptotically Flat Initial Data with Prescribed Regularity at Infinity 591

the expansion (67) and contracting suitably withandm®, we obtain the following
representation of (68):

4rd,& + On1 + Oy = 0, (69)
rd,n1 + Oup — 06 = 0. (70)

Here 9, denotes the radial derivative addthe edth operator of the unit two-sphere
(cf. [32] for definition and properties). By our assumptions the differential ope@ator
commutes withp, .

Let ;Y;,, denote the spin weighted spherical harmonics, which coincide with the
standard spherical harmonikg, for s = 0. The,Y},, are eigenfunctions of the operator
00 for each spin weight. More generally, we have

=3 (+s+p)

4 = (=17
070 s Yim) = (1 G ).

sYim- (72)

If us denotes a smooth function on the two-sphere of integral spin wejghere
exists a functionu of spin weight zero such that, = 3. We setp® = Re(y) and
n! = ilm(yn), such that) = n® + »’, and define

Nk =0"n%, nl =0'n',

such thaty, = n® 4 »!. We have

Using these decompositions now fprandu, we obtain Eq. (69) in the form
2ro& = —5517R. (72)
Applying 8 to both sides of Eq. (70) and decomposing into real and imaginary part yields

ro,00n! = —9%0%u’, (73)
2r 9, (ro,£) + 00¢ = 020°ur. (74)

Since the right-hand side of (72) has an expansion in spherical harmonidsxwvith
and the right hand sides of (73), (74) have expansionsiwitl2, we can determine the
expansion coefficients of the unknowns foe 0, 1. They can be given in the form

1 1
E=A+rQ+=P, n'=iJ+const, n®=rQ— =P+ const,
r r
with

3 3
P = Epanaa 0= EQanay J =3J,, (75)
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whereA, P4, 0%, J* are arbitrary constants. Using (67), we obtain the corresponding
tensors in the form (cf. ([11])

3 .
v = 57 (—P”nb — Pbp® — (89 — 5pn?) P‘nc) , (76)
Wb — 3 (n“ethJ ng +n’e®d J.n ) (77)
J = r3 C d c d ’
A
\I’ih — r_3 (3nanh _ 8ah) , (78)
3
\IjaQb — ﬁ (Qanb + ana _ (8ab _ nanb) anc) . (79)

We assume now thgtandn’ have expansions in terms of spherical harmonics with
[ > 2. Then there exists a smooth functibnof spin weight 2 such that

OV Y

Using these expressions in Egs. (72)—(74) and observing that for smooth spin weighted
functionsu; with s > 0 we can hav@u; = 0 only if u; = 0, we obtain

ok = —2r8r5)»§, 32/11 = —rarké,
9%uR = 29, (rar)\g) — 228 + 058,

We are thus in a position to describe the general form of the coefficients in the expression
(67)

- 1
=08 +A+r0+ =P, (80)
r
_ _ 1
m=—2rd oAk +0)5 +r50 - Z0P +idJ, (81)
r
p2 =2r 3, (r 9, A5) — 228 + 88,8 — r 9, 24, (82)

Theorem 14. Let A be an arbitrary complex C* function in B, \ {i} ¢ E3with 0 <
a < 0o, and set A = 321. Then the tensor field

W = v W Wl + weh, (83)

where the first four terms on the right-hand side are given by (76)—(78) while \pgb isis
obtained by using in (67) only the part of the coefficients (80)—(82) which depends on
A2, satisfies the equation D*W,;, = 0in B, \ {i}. Conversaly, any smooth solution in
B, \ {i} of thisequation is of the form (83).

Obviously, the smoothness requirementaran be relaxed sinoéfb e CY(B,\{i})
if » € C3(B, \ {i}). Notice, that no fall-off behaviour has been imposediati and
that it can show all kinds of bad behaviourras> 0.

Since we are free to choose the radiys/e also obtain an expression for the general
smooth solution of3 \ {i}. By suitable choices of we can construct solutionSf”
which are smooth ofi® or which are smooth with compact support.

Given a subset S @3 which is compact with boundary, we can use the representation
(83) to construct hyperboloidal initial data ([21]) Srwith a metrick which is Euclidean
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onall of S oronasubsdt of S. Inthe latter case we would requilfg” tovanishors\U'.

In the case where the trace-free part of the second fundamental form impleahi®s

vanishes and the support ¥f” has empty intersection withs the smoothness of the

corresponding hyperboloidal initial data near the boundary follows from the discussion

in ([5]). Appropriate requirements dnandw“? neard S which ensure the smoothness

of the hyperboloidal data under more general assumptions can be found in ([4]).
There exists a 10-dimensional space of conformal Killing vector field&%mn the

cartesian coordinated a generic conformal Killing vector fielglf has components

£ =k (2xjxi—8jix1x1)+eiijjxk+axi+qi, (84)

wherek’, S, ¢ are arbitrary constant vectors amdn arbitrary number. In terms of the
“physical coordinates}’ = x’/|x|2, with respect to which represents infinity, we see
thatk’, 5%, ', anda generate translations, rotations, “special conformal transformation-
s”, and dilatations respectively.

For 0 < € < a we setS. = {|x| = ¢} and denote by S, the surface element on it.
For the tensor fieldr?’ of (83) we obtain

1
5 W ny &gy dSe = (Pkq + JSa + Aa + 09q,) . (85)
Se

We note that the integral is independentafnd, more importantly, independent of the
choice of. Thus the functiork neither contributes to the momentum

1 .
P = — lim / r2 Wy n® (2n°n® — 5°4) dS., (86)
87 «—0 Se
nor to the angular momentum
1 . :
J¢=—Iim / rWhen?en, ds,, (87)
87 ¢—0

of the data.

If we use the coordinates to identify E3 with R® and map the unit sphe® ¢ R*
by stereographic projection through the south pole dtpthe pointi, i.e.x’ = 0,
will correspond to the north pole, which will be denoted in the following agair.by
The south pole, denoted in the following Bywill represent infinity with respect to the
coordinatest’ and the origin with respect to the coordinatésWe usex’ andy’ as
coordinates o5 \ {i’} andS3 \ {i} respectively. If:° is the standard metric a$?, we
have in the coordinates

(88)

1472 12
)

We assume that the functiaris smooth ifE3\ {i} and setv?? = 610 w4’ with w,,,,
as in (83). Then, we have by general rescaling laws (cf. (111), (112)),
D, =0ins3\ {i, i}, (89)

where D, denotes the connection correspondingfoThe smoothness obab neari
can be read off from Eqgs. (67) and (80)—(82). In order to study its smoothness near
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we perform the inversion to obtain the tensor in the coordingitel turns out that we
obtain the same expressions as before if we make the replacements

nt > —n', m - m,
r_)l/r’ é_)és ni— —ni, M — U,
P — Q% J'— —-J% A— A, 0%%— PY

Thus the tensors (76)—(78), the first two of which are the only ones which contribute
to the momentum and angular momentum, are singuldras well as in.. Observing
again the conformal covariance, we can state the following result.

Corollary 3. Thegeneral smooth solution of theequation D, U* = 0on $3\ {i, i’} with
respect to the metric w19, where 1 denotes the standard metric on the unit 3-sphere
and w € C®(83%), v > 0, isgiven by ¥’ = (0~16)10Wwa with W’ asin (83) and
A € C®(E2\ {i}). If we require the solution to be bounded near i’ (in particular, if we
construct solutions with only one asymptotically flat end), the quantities P4, J¢, A, Q¢
must vanish.

We can now provide tensor fields which satisfy condition (11) and thus prove a special
case of Theorem 2.

Theorem 15. Denoteby W4? atensor field of thetype (83). If rA € E*(B,) and P* = 0,
then r8Ww,, W ¢ E®(B,).

Only the part of. which in an expansion in terms of spherical harmonics is of order
[ > 2 contributes tol,,;,. We note that the conditiorh € E°°(B,) entails that this part
is of orderr. The singular parts o¥,;, are of the form (77)—(78).

For the proof we need certain properties of ¢heperator. Ifm? is suitably adapted
to standard spherical coordinates, &heperator, acting on functions of spin weight
acquires the form

s = —(sing)* [ 9

39 + %%} ((Sin9)_‘vns) . (90)

The operatoidd acting on functions withk = 0 is the Laplace operator on the unit
sphere, i.e. we have the identity

Jof =r’Af —x'x/9;9; f — 2x'8; f, (91)
whereA denotes the Laplacian @&®°. The commutator is given by
(00 — )y = 2s7)5. (92)
From this formula we obtain faf € N by induction the relations

(837 — 898) ns = (245 + (q — Dg)d* n;, (93)

(03¢ — 899) 0, = (—2g5 + (g — Dg)0* . (94)
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In particular, it follows that the functionsand, which satisfydn = 1, andd?u = 2,
are given by

_ - P
= —2rd, (66,\R + 2,\R) +000 422/ 4rQ - = 4, (95)

= 2rd, (rB,AR) + 5oAR — 2r9,1 (96)

Lemma 9. Let f, g € E* betwo complex functions (spin weight zero). Then, the func-
tionsd? fd4g, q € N, of spin weight zero arealso in E*.

Remarkably, the statement is wrong if we replde® by C*°: the calculation in
polar coordinates, using (90), gives

0x10x3 = —x1x3 +irx2

Proof. Forg = 1 the proof follows from two identities. The first one is a simple conse-
guence of the Leibnitz rule

dfog +0fdg = 00(fg) — f00g — gdd f. (97)

Sincedd maps by (91) smooth functions into smooth functions, it follows ¢igg +
0f0g) € E*if f, g € E® (here we can replacé> by C*).
The other identity reads

5ff_§g—§f3g=2ireljkx18jf8kg. (98)

It is obtained by expressing (90) in the Cartesian coordindtdsportant for us is the
appearance of the facterA particular case of this relation has been derived in [27]. It
follows that(0 fog — 0fdg) € E® if f, g € E®. Taking the difference of (97) and
(98) gives the desired result.

To obtain the result for arbitrary, we proceed by induction. The Leibniz rule gives

09+ r59tle = 5007 f31g) — 007 f00g — B f909 g — 590001 f.

The induction hypothesis far and (91) imply that the first term on the right-hand side
is in E*°. The factors appearing in the following terms can be written by (93) and (94)
in the form:

007 f =397 Y@3f +q(qg — 1) f), 807g =07"1@dg +q(q — De),
909 g = 39(30g + q(qg — g), 03! f =09(Df +q(g — D f).

Since the functions in parentheses are, by (91 the induction hypothesis implies
that each of the productsis B*°. 0O

Proof of Theorem 15. In terms of the coefficients (80)—(82) we have
8w, web = 2 (2M2/12 + 2min + 3§2> : (99)

Sincera isin E°°(B,), Egs. (95) and (96) imply that, rn, ru € E*. The conclusion
now follows from Lemma 9. O
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4.2. Thegeneral case: Existence. The existence of solutions to the momentum constraint
for asymptotically flat initial data has been proved in weighted Sobolev spaces (cf.
[12,15-17] and the references given there) and in weighted Holder spaces [13]. The
existence of initial data with non-trivial momentum and angular momentum and the role
of conformal symmetries have been analysed in some detail in [9]. In this section we will
prove existence of solutions to the momentum constraint with non-trivial momentum
and angular momentum following the approach of [9]. We generalize some of the results
shown in [9] to metrics in the class (21). The results of the previous section will be
important for the analysis of the general case.

We use the York splitting methods to reduce the problem of solving the momentum
constraint to solving a linear elliptic system of equations. Let the conformal mietric
on the initial hypersurfacé be given. We use it to define the overdetermined elliptic
conformal Killing operatoi’;,, which maps vector fields® onto symmetrié:-trace-free
tensor fields according to

2 ‘
(Lypv)® = DY + Dby — 3 h D.ve, (100)

and the underdetermined elliptic divergence opergtarhich maps symmetrik-trace-
free tensor field®?® onto vector fields according to

(6, ®)* = Dpd". (101)
Let % be a symmetrig-trace-free tensor field and set
v = @ _ (£,v). (102)
Thenw* will satisfy the equatiorD, ¥’ = 0 if the vector fieldv? satisfies
Lyv = Dp®?°, (103)

where the operatdr, is given by
1
Lyv® = Dp(Lpv)*? = DDV + §D“vab + R . (104)

Since W (Lyv)ap = 2D (W%Pv,) — 2(8,W)%v, for arbitrary vector fielda® and
symmetrich-trace-free tensor fieldg?, £;, has formal adjoin} = —26;,. Thus

1
Li=—3 LhoLn. (105)

and the operator is seen to be elliptic.
Provided the given data are sufficiently smooth, we can use Theorem 9 to show the
existence of solutions to (103).

Lemma 10 (Regular case). Assumethat the metric satisfies (21) and ®“? isan h-trace-
free symmetric tensor field in W17 (S), p > 1. Then there exists a unique vector field
v? € W2P(S) such that the tensor field W = & — (£,v)?" satisfies the equation
D,V =0in .
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Proof. The well known argument that the condition of Theorem 9 will be satisfied
extends to our case. Assume that the vector fiéld in the kernel ofL,, i.e.

Ly =0inSs. (106)
Since the metric satisfies (21), elliptic regularity gives

£7 € C%U(9). (107)
This smoothness suffices to conclude from (105), (106) that 6-2(§,L,&);2 =
(LrE, LyE) 2, whence

(Ln&)ap = 0. (108)

This implies for an arbitrary symmetrik;trace-free tensor fiel#*> ¢ w7 (S), p > 1,
therelation 0= (L&, ®);2 = —2(§, 8, D)2, which shows that the Fredholm condition
will be satisfied for any choice 6b“? in (103). O

We call the case above the “regular case” because the solution still satisfies the con-
dition w*» ¢ w17 (S). While this allows us to have solutions diverging likgr—1) at
given points, it excludes solutions with non-vanishing momentum or angular momentum.
We note that by (108) the kernel bf, consists of conformal Killing fields. Let®
be such a vector field. Using (107) and Lemma 14 we find that we can write in normal
coordinates centered at the pairdf S

gk =gk + 0%, (109)

wheresg is the “flat” conformal Killing field (84) with coefficients given by

1 1
ko =3 DaDpE" (D), S*=e€"eD'E°W), ¢ =§°0), a=3DuE"0). (110)

Sinces is connected, the integrability conditions for conformal Killing fields (cf. [34])
entail that these ten “conformal Killing dataidtdetermine the field“ uniquely onS.
With a conformal rescaling of the metric with a smooth, positive, conformal factor

hap = Ly = @*hap, (111)

which implies a corresponding change of the connectign— D, we associate the
rescalings

\pab — \Ij/ab — w*lolpab, %-(l s é/a — ‘,;_.a’ (112)

for h-trace free, symmetric tensor fields”” and Killing fieldsé“. Then the conformal
Killing operator and the divergence operator satisfy

L) = o™ (Lhv)®?, DLW = » 10D, W, (113)

If we write w = e/, the conformal Killing data transform as

K" = k% +2aD £ (i) + €S, D f (i) + q. D DC £ (i), (114)
§' = 8 4+ 2¢“ 4, D, £ (i), (115)
d'=a+q"Daf(), (116)

q“ =q". (117)
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A vector field¢ on S will be called an “asymptotically conformal Killing field” at the
pointi if it satisfies in normal coordinates centered at Eq. (109) with (84). While
any conformal Killing field is an asymptotically conformal Killing field, the converse
need not be true. Lét” be an asymptotically conformal Killing field and consider the
integral

1 ab
Ie = 8 !2’10/ U n, & dSe, (118)

where in the coordinatest the unit normak* to the spheré B, aroundi approaches
x¥/|x| for smalle. As shown in the previous section, the integral vanishes if the tensor
wab s of orderr—1 ati. If, however, w4’ is of orderr ", n = 2, 3, 4, ati, the integral
gives non-trivial results and can be understood in particular as a linear form on the
momentum and angular momentum of the data.

We recall two important properties of the integdal The first is the fact that the
integrall is invariantunder the rescalings (111), (112). The second property is concerned
with the presence of conformal symmetries. et be an arbitrary:-trace-free tensor
field andv“ an arbitrary vector field. Using Gauss’ theorem, we obtain

2 / D nyvpdSe = —2 va Dpy®* dp — / (Lav)ap®Cdp, (119)
Be S—Bc

S—B.

with the orientation ofi* as above. If we apply this equation to (118), the first term on
the right-hand side will vanish ib,w¢> = 0in S \ {i}, while the second term on the
right-hand side need not vanistgff is only an asymptotically conformal Killing vector
field. However, if¢ is a conformal Killing field, we gef: = 0. Thus the presence of
Killing fields entails restrictions on the values allowed for the momentum and angular
momentum of the data. For this reason the presence of conformal symmetries complicates
the existence proof. Note that we are dealing with vector figfdsvhich satisfy the
conformal Killing equation (108) everywhere§hin general, a small local perturbation
of the metric will destroy this conformal symmetry.

Observing the conformal covariance (113) of the divergence equation, we perform a
rescaling of the form (25), (27) such that the metrihas ink’-normal coordinates*
in B, centered at local expressiot;,; with

Wy — 8 =003, 3k, = 00>, (120)

In these coordinates Idtflat € C*(B, \ {i}) be a trace free symmetric and divergence
free tensor with respect to the flat metsjg,
Six Wik, =0, d Wik, = 0in B, \ {i}, (121)
with
Wik =00, 9vik, =00 asr - 0. (122)

All these tensors have been described in Theorem (14). Note that the conditions (122)
are essentially conditions on the functidrwhich characterizes the paﬁf” of (83).

Denote byd? e (S \ {i}) theh'-trace free tensor which is given dh, \ {i} by

sing

1 d ;,ab
Cpgll;g <\I'[ﬂat 3 hcd fCIath ¢ ) ’ (123)
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and vanishes elsewhere. Heredenotes a smooth function of compact supporBin
equal to 1 onB, . By our assumptions we have then
D, = 0@~ % as — 0. (124)
Theorem 16 (Singular case). Assume that the metric /1 satisfies (21), wo denotes the
conformal factor (25), ' = wg h, P4, is the tensor field defined above, and (% isa
symmetric i-trace free tensor fieldin W2 (S), p > 1.
i) If the metric 2 admits no conformal Killing fields on S, then there exists a unique
vector fid v¢ € W24(S),withg = pif p < 3/2and1 < ¢ < 3/2if p > 3/2,
such that the tensor field

W = f? (Dl + Pl (L)), (125)

satisfies the equation D, W = 0in §\ {i}.

i) If themetric & admits conformal Killing fields&¢ on S, a vector field v* as specified
above exists if and only if the constants k¢, S%, a, ¢ (partly) characterizing the
tensor field @gf;g (cf. (83), (76)—79)), satisfy the equation

Plko+J*Sa+Aa+ (PCL:AG) + Q%) qa =0, (126)

for any conformal Killing field £¢ of i, where the constants k., S, a, ¢, character-
izing £¢ are given by (110).
In both cases the momentum and angular momentum (cf. (86), (87)) of w4’ agree
with those of the tensor @gﬁ]g. These quantities can thus be prescribed freely in case (i).
sin
1 < p < 3/2.In case (i) the kernel of the operat® appearing in the equation

Proof. Because of (124) we can considB[;(cb"bg + <I>?é’g) as a function inL?(S),

D, (®%h+ @i+ (Lyv)™) =0,

is trivial and we can apply Theorem 9 to show that the equation above determines a
unique vector field? with the properties specified above. After the rescaling we have
D,V =0 by (113).

In case (i) the kernel of; is generated by the conformal Killing fields” = &
of i’. If we express (119) in terms of the metfit the tensor fieldI)‘s‘i’?1g + d)?e”g, and
the vector fielt’”, take the limite — 0 and use Eq. (85), we find that the Fredholm
condition of Theorem 9 is satisfied if and only if for every conformal Killing fielfl
of »’ we have

Pkl +J*S, +Ad + 0%, =0,
where the constants,, S, a’, g, are given by Eq. (110), expressed in termg'6fand
h'. By (114)—(117) this condition is identical with (126).

As shown in the previous section, we can chod»gﬁg such that the corresponding
momentum and angular momentum integrals take preassigned values, which can be
chosen freely in case (i) and need to satisfy (126) in case (ii). These values will agree with
those obtained fo&)alollf"” due to the regularity properties of . After the rescaling

the values of the momentum and the angular momentum remain unchanged because
wo=1+0@?. O
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We note that it is the presence of the 10-dimensional space of conformal Killing fields
on the standard 3-sphere which led to the observation made in Corollary (3). The latter
generalizes as follows.

Corollary 4. If Sisanarbitrary compact manifold, & satisfies(21), and weallowfor p >
2 asymptotic ends iy, 1 < k < p, we can choose the sets of constants (P}, J¢, A, Q%)
arbitrarily intheends iy, 1 < k < p — 1. Which constants can be chosen at theend i,
depends on the conformal Killing fields admitted by 4.

Proof. This follows from the observation that in the casea@hnds Eq. (126) generalizes
to an equation of the form

P
> PrKL + JSh+ Ard + (P LG + QF) gl =0,
=1

where the constants bear for givisiihe same meaning with respect to the pgiits the
constants in (126) with respectto O

The case of spaces conformal to the unit 3-spti§feho) is very exceptional. A
result of Obata [33], discussed in [9] in the context of the constraint equations, says
that unless the manifol¢s, /) is conformal to(S3, ho) there exists a smooth conformal
factor such that in the rescaled mettievery conformal Killing field is in fact a Killing
field. Thus the dimension of the space of conformal Killing fields cannot exceed 6. In
fact, it has been shown in [9] that in that casecan admit at most four independent
Killing fields and only one of them can be a rotation. In this situation Eq. (126), written
in terms of the metri&’, reduces by (110) to

78+ (@ + PP L D) g0 =0,

sinceD, &% = 0 for aKilling field. The constant®“ andA can be prescribed arbitrarily.
If there does exist a rotation among the Killing fields, the equation above implies

75 =0, (04 PP L)) g0 =0,

4.3. Asymptatic expansions near i of solutions to the momentum constraint. In this
section we shall prove an analogue of Theorem 13 for the opdratdefined in (104).
It will be used to analyse the behaviour of the solutions to the momentum constraint
consideredin Theorem (16) neamnd to show the existence of a general class of solutions
which satisfy condition (11). Our result rests on the close relation between the operator
L, and the Laplace operator.

We begin with a discussion d&® and writex; = x’, 3’ = ;. The flat space analogue
of L, onRR3 is given by

1
Lovk = AvF + 3 ak o0, (127)

whereA denotes the flat space Laplacian atich vector field on some neighbourhood
of the origin inR3,

The following spaces of vector fields whose components are homogeneous polyno-
mials of degreen and smooth functions respectively will be important for us.
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Definition 2. Let m € N, m > 1. We define the real vector spaces Q,,,, Qo (B,) by
Qn ={ve C®RER3v € P, vix; =r2vwithv € P,_1),
Quo(Ba) = {v € C®(B4, R3)| v'x; = r?v withv € C®(B,)}.

The following lemma, an analogue of Lemma 3, rests on the conditions imposed on the
vector fields above.

Lemma 11. Supposes € Z. Then the operator L g defines a linear, bijective mapping of
vector spaces

Lo:r*Qm — r'2Q,,
in the following cases:

(i) s>0,
(i) s <0,]s|isoddandm + s > 0.

Note that the assumptions om and s imply that the vector field_o(r* p') €
C>®(R3\ {0}, R3) defines a vector field iy (R3, R3) which represents o(r* p)
in the distributional sense.

Proof. Fors as above ang’ € Q,, there exists somg,,_1 € P,,_1 With
W p*) =1 g1 With g—1 = s p—1+ &% p* € Pu_1. (128)
With Eq. (34) it follows that
Lo(r p') = r“zﬁi with

Al

. o1, .
Pr=sG+1+2m)p +r°Ap + 3 (s x" g1+ r2 0" gm_1) € Pp.
Moreover,p’ € Q,, because’ x; = r? p,,_1 With

. i, 1 i
Pm-1=58(+1+2m)pu_1+x; Ap' + §(S gm-1+ X 3" gm-1) € Pp-1.

To show that the kernel of the map is trivial, assume thigt* p') = 0 € LL (R3, R3).
Taking a (distributional) derivative we obtain

4 . 4
0=29;Lo(*'p") = 3 A@;(r* ph)) = 3 A gm-1). (129)

Whens > 0 or|s| odd andn — 1+ s > 0 we use Lemma 3 to conclude thgt 1 = 0.
We insert this in the equatidng(r* p') = 0 to obtainA(r* p') = 0 and conclude again
by Lemma 3 thap’ = 0.

There remains the case+ m = 0 with |s| odd. Expandingy,,—1 in EqQ. (129) in
harmonic polynomials (cf. (35)), we get

0=ACT"gn-1= Y,  ACHF"hu12),
O<k<(m-1)/2
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whence, by (34),

Z r*m=2(m — 2k) (m — 2k — 1) hyp—1_2; = O.
O<k<(m—-1)/2

Since this sum is direct each summand must vanish separately. /zilc®dd, the
only factor(m — 2k — 1) which vanishes occurs whert 2= m — 1, from which we
conclude thaty,,_1 = " 1ho with a constantg. Since Eq. (129), which reads now
ho A(r—1) = 0, holds in the distributional sense, it follows that= 0. ©

Unless noted otherwise we shall assume in the following that the nkeiof class
C* andthatitis chosen in its conformal class such that its Ricci tensor vanishs.at
(25), (27)). Byx' will always be denoted a system kfnormal coordinates centered at
i and all our calculations will be done in these coordinates. Thus we have

h =8 + 03,  djhy = 0(r?).

We write the operatak ;, in the form

Ly =Lo+ Ly,
where, with the notation of (22),
R . 1., . .
(Lhv); = h'*0; v + éhf"aiakv, + B9 v + AT v, (130)
with
kj ek Aok 1, ik
BY ;=-2h Fli—:—)’h-rl fhi+§8ih ,

and A’ ; is a function of the metric coefficients and their first and second derivatives.
The fieldsA/ ;, BY ; are smooth and satisfy

Ali=0@m, BY; =00, (131)
and, because, x' T'; ¥ ; = 0 at the point with normal coordinates,
— 4 .
xpx' BN = -3 r2nf T (132)
Similarly, we write the operatof;, in the form

Ly = Co—i—ﬁh.

Lemma 12. Suppose p' € Q. Then L (r*p’) = r*=2U" with some U’ € Quo(By)
which satisfies U = 0 (r"+3).

Proof. Using (130), we calculate 12 Eh(rspi) and find
Pkj iy 2 1ok 2
Ui = 9 (ssiip’ +r20d; i) + 3 (sxi0kp; + r20c0ipj + i) )
+ Bkj,' (sxkpj + rzakp,') + r2AJ ipj- (133)

Thus U' is smooth. Using (131) we obtain thet = O("+3), using (132) we find
x'U; = r2f with some smooth functioff. o
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We are in a position now to prove far = oo the analogue of point (ii) of Theorem 13.
Theorem 17. Assume that £ is smooth, s € Z, s < 0, |s| odd, Fi € C®(B,), and
J' € Quo(By) with J' = O(r*°) for somesg > |s|.

Then, if vi € W27 (B,) solves

(th)i — rS—2Ji + Fi,
it can be written in the form
v = rsvi + vé, (134)
With v} € Qoo (By), v} = O(r®), vh € C®(By,).

Proof. The proof is similar to that of Theorem 13. For givene N we can write by
our assumptions’ = T} + Ji, whereJi = O@™*1) and T}, denotes the Taylor
polynomial of J' of orderm. Because/! € Q.. (B,), its Taylor polynomial can be
written in the form

m
i i i i
Tm=§ t, with 7, € O.
k=so

We define now a function§e (depending omz) by

m
i__ s i i
vV=r ka+vR.

k=so

The quantities{v,i) € Qi are determined by the recurrence relation

Lo vi)) = 21, Lo(r*v)) = r*~2(f — UMD,

where, for giverk, the quantityUk(k)i € Q is obtained as follows. The function

k—1
U = p=st2[ | s Z v,i ,
Jj=s0
has by Lemma 12 an expansion

m
ywi — Z Uj(k)’ +UP" with U;k)' €Qj,
Jj=so+2

from which we read of[],fk)i. By Lemma 11 the recurrence relation is well defined.
With these definitions, the remaindey satisfies the equation

Loj=r 2 (U™ 4 T ) + F'.
By Lemma 4 the right-hand side of this equation ig#+5=2(B,). By elliptic regu-

larity we havevlk e C"-%(B,). Sincem was arbitrary, the conclusion follows now by
an argument similar to the one used in the proof of Lemmarb.
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Theorem 17 will allow us to prove that the solutions of the momentum constraint
obtained in Sect. 4.2 have an expansion of the form (13), if we impose roeatain
conditions on the data which can be prescribed freely.

In definition (123) of the fiel@g{;‘g, which enters Theorem (16), we assume ﬂn@’t
is of the form (83) withh = 0, i.e. it is given by the tensor fields (76)—(79). In order to
write Wg2 in a convenient form, we introduce vector fields which are given in normal

coordinates by

. 1 A . 1 4 :
vp = _ZPkBkB'r_l = r_SP'p» Pp = Z("Z P'—3x' Pixy) € Qo
(135)
i _ _ijk . -1_ -3 i ijk g,
v, =€ 0T =r0pY, Py =—€'"J;x; € Qu, (136)
, 1 . . . 1 :
v = > Adir 1= r73pi4, Py = ~5 Ax' € Qq, (137)
v =20 14 }Qkaka"r =r3pi, pl, = T Ly 0" x; € Qo,
0 4 e e 4 4
(138)

whereP!, Ji, A, Q' are chosen such that the vector fields satisfy

(Lovp)™ = W5, (Lov)™ =W, (Lovg)” =W, (Lova)® =Wy,
(139)

with W, w5P, Wi, Wil as given by (76)—(79). We have d \ {i},
(Lovp)* =0, (Lovy)* =0, (Lova) =0, (Lovp)* =0, (140)
and can thus write oB, 2 \ {i},

.. P 1 .. kl
q);jing = (£0(UP +vy+vq+ UQ))ZJ ~3 h' hy (Eo(vp + vy +va+ vQ)) .
(141)

Of the field g%, € Wh7(S), p > 1, entering Theorem 16 we assume that it can be
written neari in the form

b b b
Dleg = 1" Plregt Poreg (142)

wheres < —1 is some integer which will be fixed later o®?2__ ®%5 _are smooth in

lreg ~ 2reg

B, and such tha®/ ., = O(-—*1), andx; x; @, = r2 & with somed € C(B,).
Then
Jiog= D; Oy =r""2J" + D; F (143)

with Ji = r2D; @ +5xj @ g € Qoo andJ’ = 0(-).
Using Theorem 17, we obtain for the solutions of Theorem 16 (where we can set by
our present assumptiong = 1, h = 1’) the following result.
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Coroallary 5. With the tensor fields @gf;g, @?é’g given by (141), (142) respectively, let the
vector field v¢ be such that

b = ogh + gy + (Lv)*, (144)
satisfies D, W¢» = 0in B, \ {i}.

(i) If P* =0in(141) and s = —3in (142), the vector field v* can be written in the
form

vl =r%u ), with i€ Qu(By), vy =0(), vye C™(By).
(i) IfJ*=0,A=0,0%=0in(141) and s = —5in (142), the vector field v* can be
written in the form

vl =r v +vh, with v) € Qu(By), Vi =000, vhe CP(By).

Proof. In both cases the vector field satisfied v = —Jg,y — Jreg With Jigg given
by (143) and/¢,, = Dy %, By Eq. (140) we have in case (g}, = (Li(vs +va +

vo)® = (Ly(vs 4 va + vp))?, and in case (iiV&ng = Lrvp)® = (Lpvp))® on
By/2\ {i}. The results now follow from Egs. (135)—(138), Lemma 12, and Theorem 17.
O

We are in a position now to describe the behaviour of the scalardigldr“’ neari.

Lemma 13. The tensor field (144) satisfies

incase (i) r®Ww,, ¥ e E®(B,), .

incase (i) r8W,, W =y +ry R wherey® e C¥(B) andy = B P, PP +r2hy
with harmonic polynomial hz = 3 r2 (3(P' ;)2 — P; P).

2

Proof. Forw' € Qs (B,) With x; w! = r2d, w € C®(B,) we have

(Ln(r* w) = r (Lpw)'d — :—235 R D) + 9225 xEwd), (145)

We sets = —3 andw"' = pYy + P}y + ply in case (i) and = —5 andw’ = p, in case
(i) and we writex; v} = r2 91 with 91 € C*°(B,). Observing the equation above we
getonB, ., \ {i} a representation

with fields
/j ij_ 2, w2 o (i ij 1,
H”=(£0w)]—§h]hkl(ﬁow) —ésw 3j+2hj(l—§hk15)
2 iy
+(£hv1)kl—§sh” v1+q)ll]reg’

KV =25 (x@w? 4 x0 v{)), LY = Cbgreg"‘ (Lnv2)",
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which are inC*(B,2). Since a direct calculation gives;; K"/ = r? K with K €
C°(By/2), we get

W W =22 H; K'Y — K)+r® H;j HY
+ rs_z 2K,‘j Lij + 7t 2Hl‘jLij + Lij Lij,
from which we can immediately read off the desired result in case (i). In case (ii) it is

obtained from our assumptions by a detailed calculatior?of? (2 H;; K"/ — K) +
r® Hj; HY. O
ij .

Combining the results above and observing the conformal invariance of the equations
involved, we obtain the following detailed version of Theorem 2. We use here the notation
of Theorem 16.

Theorem 18. Assume that the metric / is smooth and W“? s the solution of the momen-
tum constraint determined in Theorem 16. If
() Oy =W5+ Wb +Wdh — Zh hoy (W5 + W5 + Wl in By,

sing —
(i) Offy=r—3 Dffeq+ Do With @50, D5 € C(B,) such that &P = 0(2),

and x, x, d)‘{’r’eg = r2® withsome ® € C®(By,),

then w4’ satisfies condition (11).

A. On Holder Functions

In this section we want to prove an estimate concerning Holder continuous functions.
Let B be an open ball iiR”, n > 1, centered at the origin. Suppoges C*(U) for
somek > 0 andm is a non-negative integer with < k. Then we can write

1 1 1
f=|t; 5010 —i—m/c;(l—t)m_llﬁlZ_: ot

1
= iaﬁf(O)xﬂ —i—mf Q- t Y i(aﬁf(m) — 3P Oy xPar,
hm P! 0 pzm P

where the first line is a standard form of Taylor’s formula and the second line a slight
modification thereof. We denote ¥, (f) the Taylor polynomial of ordem and by

R, (f) the modified remainder, i.e. the first and the second term of the second line
respectively.

Lemma 14. Suppose f € C™%(U). Then f — T, (f) € C™%(U) and we have for
B € Ny, IBl <m,

1
0P (f = T (M| < Ix"H P Y= =y s on U, (146)
lyl=m—|8] "~

where the constants cs denote the Hélder coefficients satisfying [3° f (x) — 8° £(0)| <
cs |x|“inU for § e N%, |8| = m.
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Proof. Applying the modified Taylor formula tg' and then to its derivatives, we get
P (f = Tu(f) = Tz (3P £) + Ru—ip (3° £) — 3P T ().
We show that
To—ip (3P f) — 3P T (f) = 0. (147)

To prove this equation we use induction mnForn = 1 the result follows by a direct
calculation. To perform the induction step we assume 2 and show that the statement
for n — 1 implies that fom.

We writex = (x, x") forx € R" andg = (8/, B,) for B € Ni, etc. Then we find
the equalities

m
, 1
B — 9B 9Bn Yn ny\Yn
0" Tn(f) =090 E Tn—y, (@™ f) yn!(x)

Vn=0
m—|B1+pn ) 1
= Z Tn—1B'1-va (3/3 g f) ﬁ(xn)y”fﬁ”
Yn=P Yn — Bn)!
m—|p| ) 1
= > Tuipi-n (3’8 8V"+ﬁ”f) — (") = Ty (37 f).
n=0 Va!

Here the first line is a simple rewriting where we denoteThy.,, (37 f) the Taylor
polynomial of ordevn — y,, of the functiona” f(x’, 0) of n — 1 variables. In the second
line the derivatives are taken and the induction hypothesis is used. The third line is
obtained by redefining the indey and using a similar rewriting as in the first line.

With (147) the estimate (146) follows immediately by estimating the integral defining

Ru_ 13 f). O

B. An Additional Result
In this section we prove a certain extension of Theorem 13.

Theorem 19. Let u bea distribution satisfying Lu = f, where f € E™%(B,), and the
coefficient of the elliptic operator L arein C"™“(B,). Then

m
u= r3Zuk +ug € E"29(B), (148)
k=0

with ux € Py andug € C"2%(B,).

Proof. We follow the proof of Theorem 13 using Schauder instead. ®festimates.
Sincef = f1 +rf2 € E™*(B,) we have

m
f=rTu+fr with T,=) g,
k=0

whereT,, is the Taylor polynomial of ordern of f, andz, € Pk.
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Consider the recurrence relation

A(Pug) =rig, AGup) =r <tk — U/gk)) , 1<k<m,

which is obtained by defining;, k = 1,... ,m, by

k-1
j=0

and definingU}k) and U](.””’l) as in the proof of Theorem 13. The equation #oand
(148) then imply foru g Eg. (50) withs = 3. Since by our assumptions and Lemma 4
the right-hand side of this equation is@{“(B,), the interior Schauder estimates of
Theorem 8 imply thak g € C"*2(B,). O
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