
Cluster Computing 4, 179–188, 2001
 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Cactus Tools for Grid Applications

GABRIELLE ALLEN a, WERNER BENGER a,b, THOMAS DRAMLITSCH a, TOM GOODALE a,
HANS-CHRISTIAN HEGE b, GERD LANFERMANN a, ANDRÉ MERZKY b, THOMAS RADKE a,

EDWARD SEIDEL a,c and JOHN SHALF c,d

a Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut (AEI), Golm, Germany
b Konrad-Zuse-Zentrum für Informationstechnik (ZIB), Berlin, Germany

c National Center for Supercomputing Applications (NCSA), Champaign, IL, USA
d Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA, USA

Abstract. Cactus is an open source problem solving environment designed for scientists and engineers. Its modular structure facilitates
parallel computation across different architectures and collaborative code development between different groups. The Cactus Code origi-
nated in the academic research community, where it has been developed and used over many years by a large international collaboration
of physicists and computational scientists. We discuss here how the intensive computing requirements of physics applications now using
the Cactus Code encourage the use of distributed and metacomputing, and detail how its design makes it an ideal application test-bed for
Grid computing. We describe the development of tools, and the experiments which have already been performed in a Grid environment
with Cactus, including distributed simulations, remote monitoring and steering, and data handling and visualization. Finally, we discuss
how Grid portals, such as those already developed for Cactus, will open the door to global computing resources for scientific users.

Keywords: Cactus, Grid computing, Grid portals

1. Introduction

Cactus [1,2] is an open source problem solving environment
designed to provide a unified modular and parallel compu-
tational framework for physicists and engineers. The Cac-
tus Code was originally developed to provide a framework
for the numerical solution of Einstein’s Equations [3], one
of the most complex sets of partial differential equations in
physics. These equations govern such cataclysmic events as
the collisions of black holes or the supernova explosions of
stars.

The solution of these equations with computers continues
to provide challenges in the fields of mathematics, physics
and computer science. The modular design of Cactus en-
ables people and institutes from all these disciplines to coor-
dinate their research, using Cactus as the collaborating and
unifying tool.

The name Cactus comes from the design of a central core
(or flesh) which connects to application modules (or thorns)
through an extensible interface. Thorns can implement cus-
tom developed scientific or engineering applications, such as
the Einstein solvers, or other applications such as computa-
tional fluid dynamics. Other thorns from a standard compu-
tational toolkit provide a range of capabilities, such as paral-
lel I/O, data distribution, or checkpointing.

Cactus runs on many architectures. Applications, devel-
oped on standard workstations or laptops, can be seamlessly
run on clusters or supercomputers. Parallelism and porta-
bility are achieved by hiding the driver layer and features
such as the I/O system and calling interface under a sim-
ple abstraction API. The Cactus API supports C/C++ and

F77/F90 programming languages for the thorns. Thus
thorn programmers can work in the language they find most
convenient, and are not required to master the latest and
greatest computing paradigms. This makes it easier for sci-
entists to turn existing codes into thorns which can then
make use of the complete Cactus infrastructure, and in turn
be used by other thorns within Cactus.

Cactus provides easy access to many cutting edge soft-
ware technologies being developed in the academic research
community, such as the Globus Metacomputing Toolkit,
HDF5 parallel file I/O, the PETSc scientific computing li-
brary, adaptive mesh refinement, web interfaces, and ad-
vanced visualization tools.

2. The need for the Grid

Of many applications using the Cactus framework, an im-
portant one which continues to drive its development is the
solution of the Einstein Equations. The large and varied
computational requirements of solving these equations for
scenarios such as black hole or neutron star collisions, make
them a good example for demonstrating the need for Grid
computing, and an ideal testbed for developing new tech-
niques. In developing the Cactus infrastructure to make full
use of the Grid for such problems these advances are then
immediately available for all applications.

Implementing the full Einstein Equations in a finite dif-
ference code amounts to a memory requirement of around
one hundred 3D arrays, and a CPU requirement of thousands
of floating point operations per grid point and timestep. Con-
sidering that a sufficiently accurate solution of a full 3D



180 ALLEN ET AL.

Figure 1. The dream of Grid computing: Grid infrastructure provides a transparent and flexible working environment providing access to global computing
resources.

black hole problem will require at least 1000 grid points in
each spatial dimension, this implies TeraByte/TeraFlop com-
puters. Further, to analyze the large data sets created during
a simulation requires advanced techniques in file manage-
ment and visualization.

To date, the resources of the individual supercomputers
available have limited simulations to around 200–300 grid
points in each spatial dimension. Even then, simulations
generate huge amounts of data, and negotiating the curiosi-
ties of different supercomputers, such as batch queues and
file systems, is not something that physicists relish.

The Grid provides a way to access the resources needed
for these simulations. It provides a uniform access layer
to supercomputers and computing resources, making these
resources far more useful to scientists who want to use
them for simulations. Given the appropriate permissions,
networks, allocations and Grid enabling software, a scien-
tist could in principle run a simulation on a set of super-
computers, all connected by the Grid, and thus be able to
run far larger problems than would be possible on a rou-
tine basis without the Grid. With proper software tools,
the Grid provides the necessary infrastructure to connect
the machines, and to deal with the resulting large data sets,
and, ultimately, the resources to analyze such volumes of
data.

The dream for physicists is that Grid computing will pro-
vide a scientific programming environment similar to that
shown in figure 1, allowing working scenarios such as:

A physicist, sitting in a cafe in Berlin has an idea for a
colliding black hole run, maybe to try a new initial data
set, or to test a new evolution method. She uses a web
portal on her PDA to select the needed Cactus thorns,
and to estimate the required computer resources. Her
Grid software takes over, selecting the most appropriate
machine or set of machines to use from those available
to her. This Grid software automatically creates or trans-
fers executables and parameter files and starts the run
on the remote resources. After several coffees, she con-
nects to the running Cactus simulation, using one of the
remote access thorns, and sees that things are going bet-
ter than expected. She rings up colleagues in the USA,
who watch the isosurfaces being streamed out from Cac-
tus. They want to save some 3D data sets to analyze later,
so they connect to the Cactus run using their web browser,
and turn on output for the grid functions they are inter-
ested in.

As futuristic as such a scenario sounds, all the pieces al-
ready exist in a prototype form, and are being further devel-
oped and integrated, as described below and in [1,4–6].

3. Grid Computing with Cactus

Cactus was designed with the Grid and Grid applications in
mind. It provides a layer on top of the Grid, giving a pro-
gramming interface which allows the user to be completely



CACTUS TOOLS FOR GRID APPLICATIONS 181

ignorant of the nature of the machine or machines that the
simulation runs on. The code provides access to Grid re-
sources such as distributed I/O and parallelization across any
number of supercomputers with precisely the same interface
as it does to the resources of a single machine [7].

Cactus thus provides a convenient laboratory for com-
puter scientists to develop metacomputing techniques, which
can then be tested with real physics applications and also by
real users without requiring changes to the physics applica-
tion code. When a new technique is perfected, it can imme-
diately be made available to the whole community of Cactus
Users.

Grid Computing developments and experiments have
been performed using Cactus for several years, some of
which are described in the sections below. Capabilities are
being further developed in connection with Cactus through
several projects. A DFN-Verein project [4] at the AEI in
Germany is funded to exploit high speed networks for col-
liding black hole simulations, and is concentrating on remote
visualization [8], remote steering and distributed I/O [9].
A project funded by the so-called KDI program of the Amer-
ican National Science Foundation (NSF) joins five institutes
to develop an Astrophysics Simulation Collaboratory [5]
which will provide an environment for physicists to utilize
Grid computing for problems such as the collisions of neu-
tron stars. The GrADs project [10], also funded by the NSF
in the USA, is using Cactus as one of its applications for
developing a Grid based computing environment. The Euro-
pean Grid Forum [11] has chosen Cactus as one of its appli-
cations running on the European Grid-TestBed. These tech-
nologies are being brought into the scientific and engineer-
ing communities as they are developed.

3.1. Distributed simulations on the Grid

We are actively working to develop techniques which al-
low researchers to harness computational resources wher-
ever they may be on the Grid. This could include a dis-
tributed set of machines connected by high speed networks,
allowing larger or faster simulations than would be possi-
ble on a single machine. At Supercomputing 98 a neutron
star collision was run with Cactus, using the Globus [6]
metacomputing toolkit to split the domain across two T3Es
on different sides of the Atlantic, one in Munich, Ger-
many and one in San Diego, California. In this simulation
the neutron stars collided somewhere in cyberspace, over
the Atlantic Ocean. The simulations were launched, visual-
ized, and steered from the show floor in Orlando. The scal-
ing across the two machines used for this simulation was
roughly 50%, which we believe is excellent considering the
large amount of communication required between the ma-
chines to solve these equations and the latencies in the trans-
atlantic link.

The latency and bandwidth are characteristic features,
which determine the speed of a network. Cactus is aware
of these features and can be fine-tuned in order to opti-
mize communication. For example, if a network has a

high latency but also a high bandwidth, many small mes-
sages can be coalesced into fewer bigger ones. When run-
ning in a metacomputing environment, one has to deal with
different types of networks (shared-memory, distributed-
memory, high-speed-network, LAN, WAN/internet) with
different latency/bandwidth characteristics. Here, we also
have the possibility to distinguish between these different
types of network-connections in one single distributed run
and tune Cactus communication patterns adequately. Partly
this is already achieved by using MPICH-G2, the next-
generation MPI-implementation, which can distinguish be-
tween processors located on one host (with native MPI in-
stalled) and processors separated by a LAN or WAN. Ac-
cording to the location, MPICH-G2 can choose different
protocols (TCP or vendor’s MPI) for communication in one
single distributed parallel run. Cactus can be used with this
new technology without problem, which was demonstrated
in many metacomputing experiments last year, including Su-
percomputing 2000 in Dallas.

A further aspect is load-balancing. Since different ar-
chitectures provide different types of processors at different
speeds, Cactus provides the ability to decompose the whole
computational problem into sub-problems of different size,
which fit the local processor power.

For running in a metacomputing environment at a real
production-level, a User Portal has been built (described in
section 5), making it possible to configure and start Cactus
runs from one machine via a special web-based GUI. This
greatly simplifies the situation for the scientist, since she
does not have to deal with every detail of the local supercom-
puter, such as batch-systems, username/password. The por-
tal provides automatic staging and compilation of the code
on the local supercomputer, the distributed machines appear-
ing as a single virtual machine.

3.2. Checkpointing distributed simulations on the Grid

Grid computing events in the past have been often under-
stood as one-time, well prepared attempts to harness several
machines at the same time. In a more realistic setting, com-
pute resources of considerable size can not be expected to
be available at a given time, instead their availability is a dy-
namic process. A true Grid application has to be capable of
dealing with such dynamic allocations of resources.

The Cactus framework addresses this challenge by pro-
viding a sophisticated cross-platform checkpointing mecha-
nism. In general, checkpointing technology allows the user
to freeze the state of an application by writing a checkpoint
file to disk, from which the application can be restored and
continued at a later time.

In Cactus the checkpoint is not just the memory im-
age of the application written to disk, as found in several
other checkpointing systems, but the total set of user de-
fined objects (variables, scalars, etc.). While memory im-
ages tend to be quite huge and are only compatible within the
same class of operating systems and architectures, this ap-
proach allows for smaller, architecture-independent check-



182 ALLEN ET AL.

Figure 2. Migration scenario for a distributed simulation: the simulation
starts on three tightly coupled supercomputers from where it is check-
pointed and migrated to a single machine. The computation migrates again

to finish on a cluster.

points. The cross-platform checkpoints of Cactus can be
transferred between arbitrary architectures, operating sys-
tems and numbers of processors for restarting and contin-
uing simulations.

The checkpointing mechanism is completely transparent
to the user, who can request a checkpoints to be written at
regular timestep intervals, at the end of the requested com-
pute time allocation, or using a steering interface immedi-
ately at the current timestep. All of the internal technicalities
of parallel I/O are hidden from the user. The user can control
checkpoint behavior (as frequency or parallel I/O) by means
of steerable parameters.

The checkpoint mechanism allows for the output of a sin-
gle, global checkpoint file as well as multiple checkpoint
files for each of the distributed machines. The mechanism
makes use of parallel I/O where possible. For restarting, the
multiple checkpoint files can be recombined into a single
file which can be used to restart on an arbitrary set of ma-
chines. The parallel restart operation from multiple files is
currently restricted to the same topology of machines. Fu-
ture developments will add intelligent components to imme-
diately restart from multiple checkpoint files across arbitrary
machine topologies.

With respect to distributed simulations, a Cactus user has
the ability to perform a distributed run and checkpoint this
simulation even though is it being run on a heterogeneous
machine set. A checkpoint file can then be transferred to
a new configuration of machines to continue the simula-
tion. The new pool of machines can differ from the previ-
ous one in type and number of machines involved as well as
the number of processors. This flexible chain of distributed
simulations is illustrated in figure 2: an initial simulation
run across three tightly coupled supercomputers is check-
pointed. The checkpoint file is transferred to a single MPP
machine and restarted. After a second checkpointing event
the third stage of the simulation is continued on a cluster
system.

4. Grid-enabled communication and I/O techniques

The parallel driver layer in Cactus, which manages the allo-
cation and domain decomposition of grid variables as well as
their synchronization between processor boundaries, is pro-
vided by a thorn. This means that different thorns can be
used to implement different parallel paradigms, such as PVM,
Pthreads, OpenMP, CORBA, etc. Cactus can be compiled
with as many driver thorns as required (subject to availabil-
ity), with the one actually used chosen by the user at run time
through the parameter file.

The current standard driver thorn is called PUGH, which
uses MPI to provide parallelism. In order to perform distrib-
uted Cactus simulations on the Grid, this PUGH thorn is sim-
ply linked against the Grid-enabled MPICH-G [12] imple-
mentation of MPIwhich is available with the Globus toolkit.
Thus, preparing a Grid-enabled version of Cactus is a compi-
lation choice, and it is completely transparent for application
thorn programmers to add their own code to a Grid-enabled
Cactus. Using the Globus job submission tools, Cactus users
can start their Cactus runs in a Grid environment just as eas-
ily as they do on a single machine.

The Cactus I/O subsystem is implemented in a similar,
generic manner: the flesh provides a runtime interface for
arbitrary I/O thorns to register their own, specific I/O meth-
ods. These methods can then in turn be invoked by the flesh
or any application thorn to read external data into Cactus
variables or dump their contents to a storage medium for
postprocessing analysis and visualization purposes.

The I/O thorns currently available in the computational
toolkit provide methods to write simulation data in dif-
ferent formats (1D traceline plots, 2D slices and JPEG
images, full N-dimensional arrays, arbitrary hyperslabs
of N-dimensional arrays, reduction scalars (e.g., mini-
mum/maximum values), isosurface geometry data, particle
trajectories, runtime standard output) also using different I/O
libraries (FlexIO [13], HDF5 [14], JPEG, ASCII). Further
methods or libraries can easily be added by thorn program-
mers.

In the following sections we will describe in more de-
tail the Grid software techniques we have developed to date
which allow Cactus users to easily perform postprocessing
analysis on data produced by a remote Cactus simulation,
and also to monitor and steer running Cactus jobs remotely.
A general overview of the final proposed architecture of our
Grid-enabled I/O system is shown in figure 3.

The Hierarchical Data Format version 5 (HDF5) plays a
key role in this overall picture. HDF5 has become a widely
accepted standard in the scientific computing community for
storing data. It defines a very flexible file format and pro-
vides an efficient software library for managing arbitrary
multidimensional datasets of various types. Raw data ac-
cess is accomplished via a generic Virtual File Driver (VFD)
layer in HDF5. Beneath this abstraction layer exists a set
of low-level I/O drivers which provide different ways of ac-
cessing the raw data of an HDF5 file, either located on a
local disk or on other storage media. We have added our



CACTUS TOOLS FOR GRID APPLICATIONS 183

Figure 3. General overview of the Grid-enabled I/O architecture.

own drivers to this layer which enable existing applications
to have the additional capability of accessing remote data
residing anywhere on the Grid.

4.1. Direct remote file access

HDF5 already has a GASS driver (Global Access to Sec-
ondary Storage) which automatically stages complete re-
mote files first to the local machine and then operates on
their local copies via standard UNIX file I/O. This method
is feasible for small or medium sized data files. However,
large-scale computer simulations often generate large-scale
data sets – single simulations may generate files containing
several hundreds of GBytes, up to the order of a TByte as
machine resources increase. Conventional postprocessing
analysis then becomes prohibitively resource-intensive when
remote simulation data must be staged for local processing.
Further, in many cases, for example for first-sight visual-
ization purposes, only a small fraction of the overall data is
really needed. For example, in a simulation of the evolution
of two colliding black holes, the output may contain a dozen
variables representing the state of the gravitational field at
perhaps 1000 time steps during the evolution. For visual-
ization one might want to analyze only the first time step of
one or two of the variables. Or, in order to perform a quick
pre-analysis of high-resolution data, it might be sufficient to
downsample the array variables and fetch data at only every
other grid point.

By enhancing the HDF5 VFD layer with a driver that
builds on top of the Data Grid software components [15]
from the Globus toolkit we enable existing I/O layers to op-

erate on remote HDF5 files directly. These are uniquely ad-
dressed by their URL, and after opening them with the ap-
propriate driver, all read and write operations are performed
as network transactions on the Grid – completely transpar-
ent to the application. Using the data selection capabilities of
HDF5 (defining so-called hyperslabs as arbitrary rectangular
subregions in the multidimensional data sets, optionally with
downsampling and type conversion applied) individual time
steps and zones of interesting data can be read and visualized
in a very efficient and convenient way.

The Data Grid client software only supports remote
partial file access to Distributed Parallel Storage Systems
(DPSS) [16]. During Supercomputing 1999 in Portland and
at CeBIT 2000 in Hannover we successfully demonstrated
the feasibility of such a DPSS Data Grid Infrastructure. In
these demonstrations, Cactus simulation data residing on re-
mote DPSS data servers was visualized by an HDF5-enabled
version of the visualization package Amira [17]. This is il-
lustrated in figure 4.

Remote access to files which are located anywhere on the
Grid will soon be provided by a GridFtp driver [18] which
supports the standard FTP protocol, enhanced with partial
file access, parallel streaming capabilities, and Grid security
mechanisms.

Another challenge occurs when simulations are carried
out on a distributed computer and generate physically dis-
tributed files. This would occur, for example, in order to ex-
ploit parallel I/O methods. It is desirable to access and trans-
fer such distributed data sets as consistent single files, using
a global address space having pointers to pieces at other lo-
cations. We plan to also tackle these problems with the Data



184 ALLEN ET AL.

Figure 4. Remote file access and visualization demo presented at CeBIT 2000.

Grid components, by organizing related files as collections
of logical file instances. The DataGrid project of the Globus
group is investigating such techniques [15].

4.2. Remote online data streaming and visualization

Cactus also provides the capability to stream online-data
from a running simulation via TCP/IP socket communica-
tions. This can be used for many purposes. To date, the
most common use for live data streaming is for remote vi-
sualization, which is our focus here. However, in our vision
of future Grid simulations, we expect running simulations
to communicate with each other, migrate from machine to
machine, spawn off additional processes on the Grid, etc.
Hence, we expect that data streaming will be a fundamental
enabling technology for future Grid simulations. We are now
exploiting the data streaming capabilities we describe here to
enable such advanced Grid simulations, as demonstrated in
our “Cactus Worm” scenario where a running Cactus sim-
ulation was able to migrate itself, using the data streaming
techniques described below, from site to site across the Eu-
ropean Egrid [19]. This is a simple example of more sophis-
ticated types of Grid simulations, based on data streaming,
that we will be developing in the future. But in the remainder
of this section we focus on data streaming for use in remote
visualization.

Multiple visualization clients can then connect to a run-
ning Cactus executable via a socket from any remote ma-
chine on the Grid, request arbitrary data from the running
simulation, and display simulation results in real-time, vi-
sualizing for example photons falling into a black hole, or

isosurfaces of gravitational waves which are emitted during
a black hole collision.

Data streaming is integrated into Cactus in several dif-
ferent ways. One method is to access Cactus output files
while they are being written by the running simulation.
Those files are registered with the HTTP control inter-
face, described in the following section, and can be down-
loaded to any web browser. For example, simple 1D
data graphs can be viewed by simply clicking on a down-
load file and firing off, for example, an xgraph program.
Two-dimensional JPEG images can be viewed directly in
a web browser, and continuous time sequences of JPEGs
can be displayed using the auto-refresh option of the capable
browsers.

Another technique implements a proprietary communi-
cation protocol for sending specific geometry data such as
isosurfaces or particle trajectories down a raw socket con-
nection to a visualization program [20]. This is illustrated in
figure 6. Precomputing such data at the simulation side not
only allows for parallel rendering of images but also reduces
the amount of data to be transferred to remote visualization
clients.

The most generic approach for streaming arbitrary data
of any type is again based on the HDF5 I/O library and its
VFD layer. We have developed a Stream driver which holds
the HDF5 data to be streamed out of the Cactus simulation
as an in-memory HDF5 file. On a flush/close operation the
entire file is sent through a socket to the connected client. In
the client application, the same driver is used to reconstruct
the in-memory file which then can be accessed as usual to
read the HDF5 datasets.



CACTUS TOOLS FOR GRID APPLICATIONS 185

Figure 5. Online visualization: The Amira visualization toolkit [17] allows a user to visualize slices through a complete 3D data set streamed from a
running Cactus simulation, and at the same time to display an isosurface obtained online for the same 3D field.

Figure 6. Trajectories of freely falling particles in the vicinity of a rotating
black hole. The particle positions are streamed to the visualization tool
in real-time during computation. This was demonstrated with Cactus and

Amira at IGrid 2000 in Yokohama [20].

Since the VFD layer hides all low-level I/O operations
from the upper layers of the HDF5 library and from the appli-
cation that builds on top of it, applications can use their exist-
ing HDF5 file-based I/O methods immediately for online re-
mote data access without changing their I/O interfaces. This
has been demonstrated using different visualization toolkits,
including Amira [17], the IBM Data Explorer [21], and LCA
Vision [22].

The Stream driver is capable of sending data simulta-
neously to multiple clients. This is one key component
for building a collaborative visualization environment where
scientists at different sites can analyze the results of a remote
simulation either by looking simultaneously at the same data
or by requesting different views of it. We are working on a
design for a more sophisticated I/O request protocol and the
implementation of an external data server which will handle
multiple clients and can also serve requests individually. By
integrating intelligent data management and caching strate-
gies, such a server would relieve the simulation from com-
munication overhead and help to reduce data traffic in gen-
eral.



186 ALLEN ET AL.

4.3. Remote monitoring and steering

The Cactus Computational Toolkit contains a thorn HTTPD
which can be added to any Cactus simulation to provide an
inbuilt HTTP server. Pointing their web browsers to a URL
identifying a running Cactus job on a remote machine, any
number of collaborators can connect to monitor and steer the
simulation online.

The provided Cactus web interface allows users to query
certain information about the run, such as the current itera-
tion step, a list of available thorns and variables, and a full
description of all parameters and their current settings. After
successful authorization a user can also interactively change
parameters which are marked as steerable. At each simula-
tion cycle these parameters are checked, and the appropri-
ate thorns may react on changes individually. Most of the
I/O parameters are steerable. This enables users to selec-
tively switch on or off specific output at runtime, dynam-
ically choosing which variables are output using which I/O
method. I/O options such as hyperslabbing or downsampling
parameters may also be modified in order to adjust online
data streaming to remote visualization clients. The web in-
terface can also be used to pause the simulation, optionally
when a chosen condition is satisfied, and to advance the sim-
ulation by single timesteps.

The Web interface provided by thorn HTTPD is dynami-
cally extensible in that any thorn can register and update its
own HTML pages at runtime. Besides a download page for
Cactus output files there is a also viewport available which
embeds dynamically generated JPEG images.

Another steering interface again builds on top of HDF5
and the Stream driver described above. For this interface the
data streaming is simply used in a bidirectional way: Cactus
writes parameters into an HDF5 file which is then streamed
to any connected steering client. After some user interaction,
this client sends back a modified version of the parameter file
which is read and evaluated by Cactus.

Because of its self-describing data format and the flex-
ibility to add additional, user-defined information, HDF5
also provides the possibility to build more advanced steer-
ing clients with graphical user interfaces. As an example,
minimum/maximum values could be assigned to numerical
parameters to create sliders for more convenient user inter-
actions. Parameters belonging to one thorn could be sorted
into a group hierarchy for building menus.

These features of HDF5 make it relatively easy to imple-
ment dynamic graphical user interfaces for arbitrary Cactus
parameter sets which adapt themselves to the current Cac-
tus configuration. We are actively working on including
such user interfaces into existing visualization clients. Their
steering capabilities would then not only be limited to ex-
changing HDF5 parameter files but could also be extended
to feed back any kind of data fields into Cactus, for instance
to add photons to a black hole simulation to locate an event
horizon.

5. Portals onto the Grid

The Grid is only useful as a concept if its services can be
used to create the illusion that all of the resources are cen-
tralized to the user’s workstation. So the most successful dis-
tributed applications on the Grid will paradoxically be those
which make the user least aware that they are in fact oper-
ating in distributed fashion. The motivation for producing a
Grid Portal interface to a PSE like Cactus is derived from the
desire to hide distributed applications and immensely com-
plex distributed/parallel software architectures behind a sin-
gle point of presence, and to make them accessible through
comparatively simple client-side interfaces.

A portal is a single point of presence (typically hosted
on the web) which can be customized for a particular user
and remembers particular aspects of the customizations re-
gardless of where the user accesses it from. Yahoo and Hot-
Mail are typical consumer-oriented examples of this capa-
bility and are in fact the originators of this new meaning for
the term portal. It doesn’t matter where you are, when you
login to the URL of these portals, you get access to the same
view of your personalized environment and data (i.e., your
email).

Placing the PSE like Cactus within a portal creates a
universally accessible interface to your scientific comput-
ing platform. The GUI is user-customizable, as if it were
a desktop application on the user’s own workstation, except
that the same customized environment is accessible from vir-
tually any location by simply connecting to the same URL
address. A science portal has the additional implied func-
tion of automating the entire workflow for a particular sci-
entific application, from initial data generation, to selecting
resources to run the application, to archival storage manage-
ment and analysis of the results of those simulations.

This replaces a series of perhaps loosely (or usually
poorly) integrated tools with a comprehensive environment
which is customized around a particular application. Finally,
a collaboratory provides additional facilities for sharing in-
formation either online or asynchronously among users of
the portal.

Cactus has several key advantages which make it very
suitable as the basis for a portal design. Its modular design
supports dynamic assembly of applications online through
a simplified GUI. Its sophisticated multiplatform compila-
tion makes it very simple to run the code on any available
Grid resource without the complexities of Imake or the per-
formance penalty of a Virtual Machine. Its centralized re-
vision control mechanism permits efficient sharing of code,
software updates, and bug fixes. Finally, the integrated vi-
sualization for remote monitoring and steering of the code
through a web interface allows seamless integration of these
capabilities with the portal’s web-GUI.

The Astrophysics Simulation Collaboratory Portal [5] is
a concrete use of Cactus within a web portal GUI which
leverages off of technology which was developed originally
for e-commerce applications. The architecture utilizes a
commercial-grade StrongHold (Apache) webserver which



CACTUS TOOLS FOR GRID APPLICATIONS 187

offers SSL encryption using a site certificate from a com-
mercial Certificate Authority. Running side-by-side with the
webserver is a TomCat JSP engine which offers a cleaner
means to manage automation in an elegant and easily main-
tainable fashion. JSP allows us to directly execute methods
of server-side Java beans rather than the typical CGI-script
methodology of parsing the state of form elements individu-
ally after an HTTP ’POST’ event. The Java beans directly
call Java CoG [6] which is a pure Java implementation of the
Globus toolkit to extend the automation to Grid resources.
The user-state within the system is maintained by a back-
end database system (OpenLDAP or mySQL) which allows
simple replication of portal state allowing the web services
to be scaled through server replication.

The science portals and collaboratories will play
an increasingly important role in HPC as the Grid evolves.
The natural point of organization for user communities in
an HPC environment is a particular field of science or a
particular application code, just as experimental laborato-
ries bring together top researchers who are interested in
the same or similar lines of research. The internet has
provided us with access to enormous remotely located re-
sources, but this has shifted the center of focus to the partic-
ular HPC site and its operating environment, batch queues
and security policies rather than the science that is com-
puted there. The single point of presence offered by an
Grid portal recreates the traditional laboratory environment
where scientists who share similar interests and applica-
tions are brought together under the umbrella of a shared
resource; a collaboratory. The portal itself is a dis-
tributed Grid application for a specific community of scien-
tists rather than a general-purpose resource. So unlike tra-
ditional web-portals where you have an implicit offer that
if you go to www.<my_portal_location>.org we’ll
do everything for you here using our compute resources, the
Grid portal’s business plan can be simply stated as go to
www.<my_portal_application>.org and we will
do everything you need for <my_application> regard-
less of your location and that of your compute resources.
This returns the focus of a scientific community to the sci-
entific application rather than the location of the HPC re-
sources.

If the Grid is really working, in another 5 years we will
no longer think of the, for example, NSF supercomputing
centers as distinct sites like SDSC, NCSA, or PSC. We will
instead think only of the particular application collaborato-
ries which have been set up to study different scientific ap-
plications. That resource will merely be a name rather than
a place.

6. Summary

The Cactus Code and Computational Toolkit and the large
scale applications which it serves provide a ideal laboratory
for developing and testing new Grid techniques and working
practices. Cactus can be very easily configured and run in

a Grid environment, and the tools developed so far already
provide many capabilities for exploiting global computing
resources. The infrastructure and tools developed are imme-
diately available to the user community for testing, and many
are already being successfully and beneficially used by col-
laborations researching computationally intensive problems
such as black hole and neutron star collisions.

Acknowledgements

The development of the Cactus Code is a highly collabora-
tive effort, and we are indebted to a great many experts at
different institutions for their advice, visions and support.
The original design of Cactus was by Joan Massó and Paul
Walker, since when it has been extensively developed at the
AEI, NCSA and Washington University.

It is a pleasure for us to thank lan Foster, Steve Tuecke,
Warren Smith, Brian Toonen and Joe Bester from the Globus
team at Argonne National Labs (ANL) for their Globus and
Data Grid work; Mike Folk and his HDF5 development
group at NCSA who helped us in implementing the require-
ments of remote file access into their HDF5 code; Brian Tier-
ney from Lawrence Berkeley Labs for his DPSS support; Ja-
son Novotny at NLANR for his help with Globus and graph-
ical user interfaces; and Michael Russell at the University
of Chicago for his Portal work. Computing resources and
technical support have been provided by AEI, ANL, NCSA,
Rechenzentrum Garching/Germany, and ZIB.

We greatly acknowledge financial support for André
Merzky and Thomas Radke as well as provision of a gigabit
network infrastructure in the course of the TIKSL research
project by DFN (German Research Network).

References

[1] Cactus Code, http://www.cactuscode.org
[2] G. Allen, T. Goodale, G. Lanfermann, E. Seidel, W. Benger, H.-

C. Hege, A. Merzky, J. Massó, T. Radke and J. Shalf, Solving
Einstein’s Equation on supercomputers, IEEE Computer (Decem-
ber 1999) 52–59, http://www.computer.org/computer/
articles/einstein_1299_l.htm

[3] E. Seidel and W.M. Suen, Numerical relativity as a tool for computa-
tional astrophysics, J. Comp. Appl. Math. 109 (1999) 493–525.

[4] DFN Gigabit Project, Tele-Immersion: Collision of Black Holes,
http://www.zib.de/Visual/projects/TIKSL/

[5] Astrophysics Simulation Collaboratory, http://www.
ascportal.org/ASC

[6] Globus Metacomputing Toolkit, http://www.globus.org
[7] W. Benger, I. Foster, J. Novotny, E. Seidel, J. Shalf, W. Smith and P.

Walker, Numerical relativity in a distributed environment, in: Proc. of
the 9th SIAM Conf. on Parallel Processing for Scientific Computing,
March, 1999.

[8] W. Benger, H.-C. Hege, A. Merzky, T. Radke and E. Seidel, Schwarze
Löcher sehen, DFN-Mitteilungen, Bd. 52 2000.

[9] W. Benger, H.-C. Hege, A. Merzky, T. Radke and E. Seidel, Efficient
distributed file I/O for visualization in Grid environments, in: Simu-
lation and Visualization on the Grid, Lecture Notes in Computational
Science and Engineering, Vol. 13, eds. B. Engquist, L. Johnsson, M.
Hammill and F. Short (Springer, 2000) pp. 1–16.



188 ALLEN ET AL.

[10] Grid Adaptive Development Software (GrADS), http://www.
isi.edu/grads/

[11] The European Grid-Forum, http://www.egrid.org
[12] Grid-enabled MPICH Implementation, http://www.globus.

org/mpi
[13] FlexIO, http://zeus.ncsa.uiuc.edu/∼jshalf/

FlexIO/
[14] Hierachical Data Format Version 5, http://hdf.ncsa.uiuc.

edu/HDF5
[15] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury and S. Tuecke,

The data Grid: towards an architecture for the distributed management
and analysis of large scientific datasets (1999), submitted to NetStore
’99.

[16] Distributed Parallel Storage System, http://www-didc.lbl.
gov/DPSS

[17] Amira – Users Guide and Reference Manual, AmiraDev – Program-
mers Guide, Konrad-Zuse-Zentrum für Informationstechnik Berlin

(ZIB) and Indeed-Visual Concepts, Berlin, http://amira.zib.
de

[18] The Globus Project: GridFTP: Universal Data Transfer for the
Grid, White Paper, http://www.globus.org/datagrid/
deliverables/C2WPdrafts.pdf

[19] G. Allen, T. Dramlitsch, T. Goodale, G. Lanfermann, T. Radke, E.
Seidel, T. Kielmann, K. Verstoep, Z. Balaton, P. Kacsuk, F. Szalai,
J. Gehring, A. Keller, A. Streit, L. Matyska, M. Ruda, A. Krenek,
H. Frese, H. Knipp, A. Merzky, A. Reinefeld, F. Schintke, B. Lud-
wiczak, J. Nabrzyski, J. Pukacki, H.-P. Kersken and M. Russell, Early
experiences with the Egrid testbed, in: IEEE Int. Symp. on Cluster
Computing and the Grid, 2001.

[20] Geodesies in Kerr Space-Time, Presentation at the IGrid 2000 confer-
ence in Yokohama, Japan, http://www.zib.de/geodesics

[21] IBM Data Explorer, http://www.research.ibm.com/dx
[22] LCA Vision, http://zeus.ncsa.uiuc.edu/∼miksa/

LCAVision.html


