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Abstract: We present a nonlinear realization ofE8(8) on a space of 57 dimensions, which
is quasiconformal in the sense that it leaves invariant a suitably defined “light cone” in
R

57.This realization, which is related to the Freudenthal triple system associated with the
unique exceptional Jordan algebra over the split octonions, contains previous conformal
realizations of the lower rank exceptional Lie groups on generalized space times, and in
particular a conformal realization ofE7(7) onR

27 which we exhibit explicitly. Possible
applications of our results to supergravity and M-Theory are briefly mentioned.

1. Introduction

It is an old idea to define generalized space-times by association with Jordan algebras
J , in such a way that the space-time is coordinatized by the elements ofJ , and that
its rotation, Lorentz, and conformal group can be identified with the automorphism, re-
duced structure, and the linear fractional group ofJ , respectively [11–13]. The aesthetic
appeal of this idea rests to a large extent on the fact that key ingredients for formulating
relativistic quantum field theories over four dimensional Minkowski space extend natu-
rally to these generalized space times; in particular, the well-known connection between
the positive energy unitary representations of the four dimensional conformal group
SU(2,2) and the covariant fields transforming in finite dimensional representations of
the Lorentz groupSL(2,C) [29,28] extends to all generalized space-times defined by
Jordan algebras [16]. The appearance of exceptional Lie groups and algebras in extended
supergravities and their relevance to understanding the non-perturbative regime of string
theory have provided new impetus; indeed, possible applications to string and M-Theory
constitute the main motivation for the present investigation.
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In this paper, we will present a novel construction involving the maximally extended
Lie groupE8(8). This construction ofE8(8) together with the corresponding construction
of E8(−24) contain all previous examples of generalized space-times based on excep-
tional Lie groups, and at the same time goes beyond the framework of Jordan algebras.
More precisely, we show that there exists a quasiconformal nonlinear realization ofE8(8)

on a space of 57 dimensions1. This space may be viewed as the quotient ofE8(8) by
its maximal parabolic subgroup [18,19]; there is no Jordan algebra directly associated
with it, but it can be related to a certain Freudenthal triple system which itself is as-
sociated with the “split” exceptional Jordan algebraJ

OS

3 , whereOS denote the split
real form of the octonionsO. It furthermore admits anE7(7) invariant norm formN4,
which gets multiplied by a (coordinate dependent) factor under the nonlinearly realized
“special conformal” transformations. Therefore the light cone, defined by the condi-
tion N4 = 0, is actually invariant under the fullE8(8), which thus plays the role of a
generalized conformal group. By truncation we obtain quasiconformal realizations of
other exceptional Lie groups. Furthermore, we recover previous conformal realizations
of the lower rank exceptional groups (some of which correspond to Jordan algebras). In
particular, we give a completely explicit conformal Möbius-like nonlinear realization of
E7(7) on the 27-dimensional space associated with the exceptional Jordan algebraJ

OS

3 ,
with linearly realized subgroupsF4(4) (the “rotation group”) andE6(6) (the “Lorentz
group”). Although in part this result is implicitly contained in the existing literature on
Jordan algebras, the relevant transformations have not been exhibited explicitly so far,
and are here presented in the basis that is also used in maximal supergravity theories.

The basic concepts are best illustrated in terms of a simple and familiar example,
namely the conformal group in four dimensions [29], and its realization via the Jordan
algebraJC

2 of hermitian 2× 2 matrices with the hermiticity preserving commutative
(but non-associative) product

a ◦ b := 1
2(ab + ba) (1)

(basic properties of Jordan algebras are summarized in Appendix A). As is well known,
these matrices are in one-to-one correspondence with four-vectorsxµ in Minkowski
space via the formulax ≡ xµσ

µ, whereσµ := (1, σ ). The “norm form” on this algebra
is just the ordinary determinant, i.e.

N2(x) := detx = xµx
µ (2)

(it will be a higher order polynomial in the general case). Definingx̄ := xµσ̄
µ (where

σ̄ µ := (1,−σ )) we introduce the Jordan triple product onJC

2 :

{a b c} := (a ◦ b̄) ◦ c + (c ◦ b̄) ◦ a − (a ◦ c) ◦ b̄
= 1

2(ab̄c + cb̄a) = 〈a, b〉c + 〈c, b〉a − 〈a, c〉b (3)

with the standard Lorentz invariant bilinear form〈a, b〉 := aµb
µ. However, it is not

generally true that the Jordan triple product can be thus expressed in terms of a bilinear
form.

The automorphism group ofJC

2 , which is by definition compatible with the Jordan
product, is just the rotation groupSU(2); the structure group, defined as the invariance

1 A nonlinear realization will be referred to as “quasiconformal” if it is based on a five graded decomposition
of the underlying Lie algebra (as forE8(8)); it will be called “conformal” if it is based on a three graded
decomposition (as e.g. forE7(7)).
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of the norm form up to a constant factor, is the productSL(2,C) × D, i.e. the Lorentz
group and dilatations. The conformal group associated withJC

2 is the group leaving
invariant the light-coneN2(x) = 0. As is well known, the associated Lie algebra is
su(2,2), and possesses a three-graded structure

g = g−1 ⊕ g0 ⊕ g+1, (4)

where the grade−1 and grade+1 spaces correspond to generators of translationsPµ

and special conformal transformationsKµ, respectively, while the grade 0 subspace is
spanned by the Lorentz generatorsMµν and the dilatation generatorD. The subspaces
g1 andg−1 can each be associated with the Jordan algebraJC

2 , such that their elements
are labeled by elementsa = aµσ

µ of JC

2 . The precise correspondence is

Ua := aµP
µ ∈ g−1 and Ũa := aµK

µ ∈ g+1. (5)

By contrast, the generators ing0 are labeled bytwo elementsa, b ∈ JC

2 , viz.

Sab := aµbν(M
µν + ηµνD). (6)

The conformal group is realized non-linearly on the space of four-vectorsx ∈ JC

2 , with
a Möbius-like infinitesimal action of the special conformal transformations

δxµ = 2〈c, x〉xµ − 〈x, x〉cµ (7)

with parametercµ. All variations acquire a very simple form when expressed in terms
of the above generators: we have

Ua(x) = a,

Sab(x) = {a b x},
Ũc(x) = −1

2{x c x},
(8)

where{. . . } is the Jordan triple product introduced above. From these transformations
it is elementary to deduce the commutation relations

[Ua, Ũb] = Sab,

[Sab, Uc] = U{abc}
[Sab, Ũc] = Ũ{bac},
[Sab, Scd ] = S{abc} d − S{bad} c

(9)

(of course, these could have been derived directly from those of the conformal group).
As one can also see, the Lie algebrag admits an involutive automorphismι exchanging
g−1 andg+1 (hence,ι(Kµ) = Pµ).

The above transformation rules and commutation relations exemplify the structure
that we will encounter again in Sect. 3 of this paper: the conformal realization ofE7(7)

onR
27 presented there has the same form, except thatJC

2 is replaced by the exceptional

Jordan algebraJOS

3 over the split octonionsOS . While our form of the nonlinear varia-
tions appears to be new, the concomitant construction of the Lie algebra itself by means
of the Jordan triple product has been known in the literature as the Tits–Kantor–Koecher
construction [32,21,25], and as such generalizes to other Jordan algebras. The general-
ized linear fractional (Möbius) groups of Jordan algebras can be abstractly defined in an
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analogous manner [26], and shown to leave invariant certain generalizedp-angles de-
fined by the norm form of degreep of the underlying Jordan algebra [22,14]. However,
to our knowledge, explicit formulas of the type derived here have not appeared in the
literature before.

While this construction works for the exceptional Lie algebrasE6(6) , andE7(7) , as
well as other Lie algebras admitting a three graded structure, it fails forE8(8), F4(4) ,
andG2(2) , for which a three grading does not exist. These algebras possess only a five
graded structure

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2. (10)

Our main result, to be described in Sect. 2, states that a “quasiconformal” realization
is still possible on a space of dimension dim(g1) + 1 if the top grade spacesg±2 are
one-dimensional. Five graded Lie algebras with this property are closely related to the
so-called Freudenthal Triple Systems [9,30], which were originally invented to provide
alternative constructions of the exceptional Lie groups2. This relation will be made very
explicit in the present paper. The novel realization ofE8(8) which we will arrive at,
together with its natural extension toE8(−24), contains various other constructions of
exceptional Lie algebras by truncation, including the conformal realizations based on a
three graded structure. For this reason, we describe it first in Sect. 2, and then show how
the other cases can be obtained from it.

Whereas previous attempts to construct generalized space-times mainly focused on
generalizing Minkowski space-time and its symmetries, the physical applications that we
have in mind here are of a somewhat different nature, and inspired by recent developments
in superstring and M-Theory. Namely, the generalized “space-times” presented here
could conceivably be identified with certain internal spaces arising in supergravity and
superstring theory, which are related to the appearance of central charges in the associated
superalgebras. Central charges and their solitonic carriers have been much discussed in
the recent literature because it is hoped that they may provide a window on M-Theory
and its non-perturbative degrees of freedom. More specifically, it has been argued in [5]
that a proper description of the non-perturbative M-Theory degrees of freedom might
require supplementing ordinary space-time coordinates by central charge coordinates.
Solitonic charges also play an important role in the microscopic description of black
hole entropy: for maximally extendedN=8 supergravity, the latter is conjectured to be
given by anE7(7) invariant formula [20,8]. The corresponding formula for the entropy
in maximally extended supergravity in five dimensions isE6(6) invariant and involves a
cubic form. In [7] an invariant classification of orbits ofE7(7) andE6(6) actions on their
fundamental representations that classify BPS states ind = 4 andd = 5 was given.

The entropy formula in [20,8] is identical to the equation for a vector with vanishing
norm in 57 dimensions (see Eq. (27)), provided we use the SL(8,R)form of the quartic
E7(7) invariant. This suggests that the 57th component of ourE8(8) realization should
be interpreted as the entropy. However, we should stress that the quartic invariant can
assume both positive and negative values, cf. the simple examples given inAppendix B. In
order to avoid imaginary entropy, one must therefore restrict oneself to the positive semi-
definite values of the quartic invariant, corresponding to the “time-like” and “light-like”
orbits ofE7(7) in the language of [7]. With the 57th coordinate interpreted as the entropy
and the remaining 56 coordinates as the electric and magnetic charges, it is natural from
our point of view to define a distance in this “entropy-charge space” between any two

2 The more general Kantor–Triple-Systems for whichg±2 have more than one dimension, will not be
discussed in this paper.
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black hole solutions using our Eqs. (25), (26). If two black hole solutions are light-like
separated in this space, they will remain so under the action ofE8(8).3 We should also
point out that it is not entirely clear from the existing black hole literature whether it is
the SU(8) or the SL(8,R) form of the invariant that should be used here (the detailed
relation between the two is worked out in Appendix B). The SU(8) basis is relevant
for the central charges, which appear in the superalgebra via surface integrals at spatial
infinity and determine the structure (and length) of BPS multiplets. By contrast, the 28
electric and 28 magnetic charges carried by the solitons ofd = 4, N = 8 supergravity
transform separately under SL(8,R) [4], and therefore the SL(8,R) form of the invariant
appears more appropriate in this context.

For applications to M-Theory it would be important to obtain the exponentiated
version of our realization. One might reasonably expect that modular forms with respect
to a fractional linear realization of the arithmetic groupE8(8) (Z)will have a role to play.
We expect that our results will pave the way for the explicit construction of such modular
forms. According to [19] these would depend on 28+1 = 29 variables, such that the 57-
dimensional Heisenberg subalgebra ofE8(8) exhibited here would be realized in terms
of 28 “coordinates” and 28 “momenta”. Consequently, the 57 dimensions in whichE8(8)
acts might alternatively be interpreted as a generalized Heisenberg group, in which case
the 57th component would play the role of a variable parameterh̄. The action ofE8(8) (Z)

on the 57 dimensional Heisenberg group would then constitute the invariance group of a
generalized Dirac quantization condition. This observation is also in accord with the fact
that the term modifying the vector space addition inR

57 (cf. Eq.(25)), which is required
byE8(8) invariance, is just the cocycle induced by the standard canonical commutation
relations on an (28+28)-dimensional phase space.

2. Quasiconformal Realization of E8(8)

2.1. E7(7) decomposition of E8(8) . We will start with the maximal case, the exceptional
Lie groupE8(8), and its quasiconformal realization onR57, because this realization
contains all others by truncation. Our results are based on the following five graded
decomposition ofE8(8) with respect to itsE7(7) × D subgroup

g−2 ⊕ g−1 ⊕ g0 ⊕ g+1 ⊕ g+2

1 ⊕ 56 ⊕ (133 ⊕ 1) ⊕ 56 ⊕ 1
(11)

with the one-dimensional groupD consisting of dilatations.D itself is part of an
SL(2,R) group, and the above decomposition thus corresponds to the decomposition
248 → (133, 1)⊕ (56, 2)⊕ (1, 3) of E8(8) under its subgroupE7(7) × SL(2,R).

In order to write out theE7(7) generators, it is convenient to further decompose them
w.r.t. the subgroup SL(8,R) of E7(7) . In this basis, the Lie algebra ofE7(7) is spanned
by the SL(8,R) generatorsGi

j , and the antisymmetric generatorsGijkl , transforming
in the63 and70 representations of SL(8,R), respectively. We also define

Gijkl := 1
24εijklmnpq G

mnpq

3 For the exceptionalN = 2 Maxwell–Einstein supergravity [17] defined by the exceptional Jordan algebra
the U-duality groups in five and four dimensions areE6(−26) andE7(−25), respectively. The quasi-conformal
symmetry of the exceptional supergravity in four dimensions is henceE8(−24), with the maximal compact
subgroupE7 × SU(2).
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with SL(8,R) indices 1≤ i, j, . . . ≤ 8. The commutation relations are

[Gi
j , G

k
l] = δkj G

i
l − δil G

k
j ,

[Gi
j , G

klmn] = −4δ[k
j G

lmn]i − 1
2 δ

i
jG

klmn,

[Gijkl , Gmnpq ] = 1
36 ε

ijkls[mnp Gq]
s .

The fundamental56 representation ofE7(7) is spanned by the two antisymmetric real
tensorsXij andXij and the action ofE7(7) is given by4

δXij = *i
kX

kj −*j
kX

ki ++ijklXkl,

δXij = *k
iXjk −*k

jXik ++ijklX
kl,

(12)

where

+ijkl = 1
24εijklmnpq+

mnpq. (13)

In order to extendE7(7) × D to the fullE8(8) , we must enlargeD to anSL(2,R)

with generators(E, F,H) in the standard Chevalley basis, together with 2× 56 further
real generators(Eij , E

ij ) and(Fij , F ij ). Under hermitian conjugation, we have

Eij = F
†
ij , F ij = −E

†
ij , and E = −F †.

The grade−2,−1,1 and 2 subspaces in the above decomposition correspond to the
subspacesg−2, g−1, g1, andg2 in (11), respectively:

E ⊕ {Eij , Eij } ⊕ {Gijkl, Gi
j ; H } ⊕ {F ij , Fij } ⊕ F. (14)

The grading may be read off from the commutators withH

[H , E] = −2E, [H , F ] = 2F,

[H , Eij ] = −Eij , [H , F ij ] = F ij ,

[H , Eij ] = −Eij , [H , Fij ] = Fij .

The new generators(Eij , E
ij ) and(Fij , F ij ) form two (maximal) Heisenberg subalge-

bras of dimension 28

[Eij , Ekl] = 2δijkl E, [F ij , Fkl] = 2δijkl F,

and they transform under SL(8,R) as

[Gi
j , E

kl] = δkj E
il − δlj E

ik − 1
4δ

i
j E

kl,

[Gi
j , Ekl] = δik Elj − δil Ekj + 1

4δ
i
j Ekl,

[Gi
j , F

kl] = δkj F
il − δlj F

ik − 1
4δ

i
j F

kl,

[Gi
j , Fkl] = δik Flj − δil Fkj + 1

4δ
i
j Fkl.

4 We emphasize thatXij andXij are independent. This convention differs from the one used for the SU(8)
basis in the appendix.
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The remaining non-vanishing commutation relations are given by

[E,F ] = H

and

[Gijkl , Emn] = −δ
[ij
mn E

kl], [Gijkl , Emn] = − 1
24 ε

ijklmnpq Epq,

[Gijkl , Fmn] = −δ
[ij
mn F

kl], [Gijkl , Fmn] = − 1
24 ε

ijklmnpq Fpq,

[Eij , F kl] = 12Gijkl, [Eij , Fkl] = −12Gijkl,

[Eij , Fkl] = 4δ[i
[kG

j ]
l] − δ

ij
kl H, [Eij , F

kl] = 4δ[k
[i G

l]
j ] + δklij H,

[E , F ij ] = −Eij , [E , Fij ] = −Eij ,

[F , Eij ] = F ij , [F , Eij ] = Fij .

To see that we are really dealing with the maximally split form ofE8(8), let us count
the number of compact generators: The antisymmetric part(Gi

j − Gj
i) of Gi

j and
(Gijkl − Gijkl) correspond to the 63 generators of the maximal compact subalgebra
SU(8) ofE7(7) [4]. The remaining compact generators are the 28+28+1 anti-hermitian
generators(Eij +F ij ), (Eij −Fij ), and(E+F) giving a total of 120 generators which
close into the maximal compact subgroup SO(16) ⊃ SU(8) of E8(8).

An important role is played by the symplectic invariant of two56 representations. It
is given by

〈X, Y 〉 := XijYij −XijY
ij . (15)

The second structure which we need to introduce is the triple product. This is a trilinear
map56 × 56 × 56 −→ 56, which associates to three elementsX, Y andZ another
element transforming in the56 representation, denoted by(X, Y, Z), and defined by

(X, Y, Z)ij := − 8XikYklZ
lj −8Y ikXklZ

lj −8Y ikZklX
lj

− 2Y ijXklZkl − 2XijY klZkl − 2ZijY klXkl

+ 1
2 ε

ijklmnpqXklYmnZpq,

(X, Y,Z)ij := 8XikY
klZlj + 8Y ikX

klZlj + 8Y ikZ
klXlj

+ 2YijZ
klXkl + 2XijZ

klYkl + 2ZijX
klYkl

− 1
2 εijklmnpqX

klYmnZpq.

(16)

A somewhat tedious calculation5 shows that this triple product obeys the relations

(X, Y, Z) = (Y,X,Z) + 2 〈X, Y 〉Z,
(X, Y,Z) = (Z, Y,X) − 2 〈X,Z〉Y,

〈(X, Y, Z) ,W 〉 = 〈(X,W,Z) , Y 〉 − 2 〈X,Z〉 〈Y,W 〉 ,
(X, Y, (V,W,Z)) = (V ,W, (X, Y,Z)) + ((X, Y, V ) ,W,Z)

+ (V , (Y,X,W) ,Z) .

(17)

5 Which relies heavily on the Schouten identityε[ijklmnpqXr]s = 0.
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We note that the triple product (16) could be modified by terms involving the symplectic
invariant, such as〈X, Y 〉Z; the above choice has been made in order to obtain agreement
with the formulas of [6].

While there is no (symmetric) quadratic invariant ofE7(7) in the56 representation,
a real quartic invariantI4 can be constructed by means of the above triple product and
the bilinear form; it reads

I4(X
ij , Xij ) := 1

48 〈(X,X,X) ,X〉
≡ XijXjkX

klXli − 1
4X

ijXijX
klXkl

+ 1
96 ε

ijklmnpqXijXklXmnXpq

+ 1
96 εijklmnpqX

ijXklXmnXpq.

(18)

2.2. Quasiconformal nonlinear realization of E8(8). We will now exhibit a nonlinear
realization ofE8(8) on the 57-dimensional real vector space with coordinates

X := (Xij , Xij , x),

wherex is also real. Whilex is aE7(7) singlet, the remaining 56 variables transform
linearly underE7(7). ThusX forms the56 ⊕ 1 representation ofE7(7) . In writing the
transformation rules we will omit the transformation parameters in order not to make
the formulas (and notation) too cumbersome. To recover the infinitesimal variations, one
must simply contract the formulas with the appropriate transformation parameters. The
E7(7) subalgebra acts linearly by

Gi
j (X

kl) = 2δkjX
il −1

4δ
i
jX

kl, Gijkl(Xmn) = 1
24ε

ijklmnpqXpq,

Gi
j (Xkl) = −2δikXjl + 1

4δ
i
jXkl, Gijkl(Xmn) = δ

[ij
mnX

kl],

Gi
j (x) = 0, Gijkl(x) = 0,

(19)

H generates scale transformations

H(Xij ) = Xij , H(Xij ) = Xij , H(x) = 2x, (20)

and theE generators act as translations; we have

E(Xij ) = 0, E(Xij ) = 0, E(x) = 1 (21)

and

Eij (Xkl) = 0, Eij (Xkl) = δ
ij
kl, Eij (x) = −Xij ,

Eij (X
kl) = δklij , Eij (Xkl) = 0, Eij (x) = Xij .

(22)
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By contrast, theF generators are realized nonlinearly:

F(Xij ) = − 1
6 (X,X,X)

ij +Xij x

≡ 4XikXklX
lj +XijXklXkl

− 1
12ε

ijklmnpqXklXmnXpq +Xij x,

F (Xij ) = − 1
6 (X,X,X)ij +Xij x

≡ − 4XikX
klXlj −XijX

klXkl

+ 1
12εijklmnpqX

klXmnXpq +Xij x,

F (x) = 4I4(X
ij , Xij )+ x2

≡ 4XijXjkX
klXli −XijXijX

klXkl

+ 1
24 ε

ijklmnpqXijXklXmnXpq

+ 1
24 εijklmnpqX

ijXklXmnXpq + x2.

(23)

Observe that the form of the r.h.s. is dictated by the requirement ofE7(7) covariance:
(F (Xij ), F (Xij )) andF(x) must still transform as the56 and1 of E7(7), respectively.
The action of the remaining generators is likewiseE7(7) covariant:

F ij (Xkl) = − 4Xi[kXl]j +1
4 ε

ijklmnpqXmnXpq,

F ij (Xkl) = + 8δ[i
k X

j ]m
Xml + δ

ij
kl X

mnXmn + 2XijXkl − δ
ij
kl x,

Fij (X
kl) = − 8δk[iXj ]mX

ml +δklij X
mnXmn − 2XijX

kl − δklij x,

Fij (Xkl) = 4XkiXjl − 1
4 εijklmnpqX

mnXpq,

F ij (x) = 4XikXklX
lj +XijXklXkl

− 1
12 ε

ijklmnpqXklXmnXpq +Xij x,

Fij (x) = 4XikX
klXlj +XijX

klXkl

− 1
12 εijklmnpqX

klXmnXpq −Xij x.

(24)

AlthoughE7(7) covariance considerably constrains the expressions that can appear on
the r.h.s., it does not fix them uniquely: as for the triple product (16) one could add
further terms involving the symplectic invariant. However, all ambiguities are removed
by imposing closure of the algebra, and we have checked by explicit computation that
the above variations do close into the fullE8(8) algebra in the basis given in the previous
section. This is the crucial consistency check.

The term “quasiconformal realization” is motivated by the existence of a norm form
that is left invariant up to a (possibly coordinate dependent) factor under all transfor-
mations. To write it down we must first define a nonlinear “difference” between two
pointsX ≡ (Xij , Xij ; x) andY ≡ (Y ij , Yij ; y); curiously, the standard difference is
not invariant under the translations(Eij , Eij ). Rather, we must choose

δ(X , Y) := (Xij − Y ij , Xij − Yij ; x − y + 〈X, Y 〉). (25)
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This difference still obeysδ(X ,Y) = −δ(Y,X ) and thusδ(X ,X ) = 0, and is now
invariant under(Eij , Eij ) as well asE; however, it is no longer additive. In fact, with
the sum of two vectors being defined asδ(X ,−Y), the extra term involving〈X, Y 〉 can
be interpreted as the cocycle induced by the standard canonical commutation relations.

The relevant invariant is a linear combination ofx2 and the quarticE7(7) invariant
I4, viz.

N4(X ) ≡ N4(X
ij , Xij ; x) := 4I4(X)− x2, (26)

In order to ensure invariance under the translation generators, we consider the expression
N4(δ(X ,Y)), which is manifestly invariant under the linearly realized subgroupE7(7).
Remarkably, it also transforms into itself up to an overall factor under the action of the
nonlinearly realized generators. More specifically, we find

F
(
N4(δ(X ,Y))

)
= 2 (x + y)N4(δ(X ,Y)),

F ij
(
N4(δ(X ,Y))

)
= 2 (Xij + Y ij )N4(δ(X ,Y)),

H
(
N4(δ(X ,Y))

)
= 4N4(δ(X ,Y)).

Therefore, for everyY ∈ R
57 the “light cone” with base pointY, defined by the set of

X ∈ R
57 obeying

N4(δ(X ,Y)) = 0, (27)

is preserved by the fullE8(8) group, and in this sense,N4 is a “conformal invariant” of
E8(8). We note that the light cones defined by the above equation are not only curved
hypersufaces inR57, but get deformed as one varies the base pointY. As we will show
in Appendix B, the quartic invariantI4 can take both positive and negative values, but
in the latter case Eq. (27) does not have real solutions. However, we can remedy this
problem by extending the representation space toC

57 and using the same formulas to
get a realization of the complexified Lie algebraE8(C) onC

57.
The existence of a fourth order conformal invariant ofE8(8) is noteworthy in view

of the fact that no irreducible fourth order invariant exists for the linearly realizedE8(8)
group (the next invariant after the quadratic Casimir being of order eight).

2.3. Relation with Freudenthal Triple Systems. We will now rewrite the nonlinear trans-
formation rules in another form in order to establish contact with mathematical literature.
Both the bilinear form (15) and the triple product (16) already appear in [6], albeit in a
very different guise. That work starts from 2× 2 “matrices” of the form

A =
(
α1 x1
x2 α2

)
, (28)

whereα1, α2 are real numbers andx1, x2 are elements of a simple Jordan algebraJ

of degree three. There are only four simple Jordan algebrasJ of this type, namely the
3×3 hermitian matrices over the four division algebras,R, C, H andO. The associated
matrices are then related to non-compact forms of the exceptional Lie algebrasF4, E6,
E7, andE8, respectively. For simplicity, let us concentrate on the maximal caseJ

OS

3 ,
when the matrixA carries 1+1+27+27 = 56 degrees of freedom. This counting suggests
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an obvious relation with the56 ofE7(7) and its decomposition underE6(6), but more work
is required to make the connection precise. To this aim, [6] defines a symplectic invariant
〈A,B〉, and a trilinear product mapping three such matricesA,B andC to another one,
denoted by(A,B,C). This triple system differs from a Jordan triple system in that it is
not derivable from a binary product. The formulas for the triple product in terms of the
matricesA,B andC given in [6] are somewhat cumbersome, lacking manifestE7(7)
covariance. For this reason, instead of directly verifying that our prescription (16) and
the one of [6] coincide, we have checked that they satisfy identical relations: a quick
glance shows that the relations (T1)–(T4) [6] are indeed the same as our relations (17),
which are manifestlyE7(7) covariant.

To rewrite the transformation formulas we introduce Lie algebra generatorsUA and
ŨA labeled by the above matrices, as well as generatorsSAB labeled by a pair of such
matrices. For the grade±2 subspaces we would in general need another set of generators
KAB andK̃AB labeled by two matrices, but since these subspaces are one-dimensional
in the present case, we have only two more generatorsKa andK̃a labelled by one real
numbera. In the same vein, we reinterpret the 57 coordinatesX as a pair(X, x), where
X is a 2× 2 matrix of the type defined above. The variations then take the simple form

Ka(X) = 0, Ka(x) = 2a,

UA(X) = A, UA(x) = 〈A,X〉 ,
SAB(X) = (A,B,X) , SAB(x) = 2 〈A,B〉 x, (29)

ŨA(X) = 1
2 (X,A,X) − Ax, ŨA(x) = −1

6 〈(X,X,X) ,A〉 + 〈X,A〉 x,
K̃a(X) = −1

6 a (X,X,X) + aXx, K̃a(x) = 1
6 a 〈(X,X,X) ,X〉 + 2ax2.

From these formulas it is straightforward to determine the commutation relations
of the transformations. To expose the connection with the more general Kantor triple
systems we write

KAB ≡ K〈A,B〉 (30)

in the formulas below. The consistency of this specialization is ensured by the relations
(17). By explicit computation one finds

[UA, ŨB ] = SAB,

[UA,UB ] = −KAB,

[ŨA, ŨB ] = −K̃AB,

[SAB,UC] = −U(A,B,C),

[SAB, ŨC] = −Ũ(B,A,C),

[KAB, ŨC] = U(A,C,B) − U(B,C,A),

[K̃AB,UC] = Ũ(B,C,A) − Ũ(A,C,B),

[SAB, SCD] = −S(A,B,C)D − SC(B,A,D),

[SAB,KCD] = KA(C,B,D) −KA(D,B,C),

[SAB, K̃CD] = K̃(D,A,C)B − K̃(C,A,D)B,

[KAB, K̃CD] = S(B,C,A)D − S(A,C,B)D − S(B,D,A)C + S(A,D,B)C.

(31)
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For generalKAB , these are the defining commutation relations of a Kantor triple sys-
tem, and, with the further specification (30), those of a Freudenthal triple system (FTS).
Freudenthal introduced these triple systems in his study of the metasymplectic geome-
tries associated with exceptional groups [10]; these geometries were further studied in [1,
6,30,24]6. A classification of FTS’s may be found in [24], where it is also shown that
there is a one-to-one correspondence between simple Lie algebras and simple FTS’s with
a non-degenerate bilinear form. Hence there is a quasiconformal realization of every Lie
group acting on a generalized lightcone.

3. Truncations of E8(8)

For the lower rank exceptional groups contained inE8(8), we can derive similar conformal
or quasiconformal realizations by truncation. In this section, we will first give the list
of quasiconformal realizations contained inE8(8). In the second part of this section, we
consider truncations to a three graded structure, which will yield conformal realizations.
In particular, we will work out the conformal realization ofE7(7) on a space of 27
dimensions as an example, which is again the maximal example of its kind.

3.1. More quasiconformal realizations. All simple Lie algebras (except forSU(2)) can
be given a five graded structure (10) with respect to some subalgebra of maximal rank
and one can associate a triple system with the grade+1 subspace [23,2]. Conversely,
one can construct every simple Lie algebra over the corresponding triple system.

The realization ofE8over the FTS defined by the exceptional Jordan algebra can
be truncated to the realizations ofE7, E6, andF4by restricting oneself to subalgebras
defined by quaternionic, complex, and real Hermitian 3× 3 matrices. Analogously the
non-linear realization ofE8(8) given in the previous section can be truncated to non-
linear realizations ofE7(7) ,E6(6) , andF4(4) . These truncations preserve the five grading.
More specifically we find that the Lie algebra ofE7(7) has a five grading of the form:

E7(7) = 1 ⊕ 32 ⊕ (SO(6,6)⊕ D)⊕ 32 ⊕ 1. (32)

Hence this truncation leads to a nonlinear realization ofE7(7) on a 33 dimensional
space. Note that this is not a minimal realization ofE7(7) . Further truncation to theE6(6)
subgroup preserving the five grading leads to:

E6(6) = 1 ⊕ 20 ⊕ (SL(6,R)⊕ D)⊕ 20 ⊕ 1. (33)

This yields a nonlinear realization ofE6(6) on a21 dimensional space, which again is
not the minimal realization. Further reduction toF4(4) preserving the five grading

F4(4) = 1 ⊕ 14 ⊕ (Sp(6,R)⊕ D)⊕ 14 ⊕ 1 (34)

leads to a minimal realization ofF4(4) on a fifteen dimensional space. One can further
truncateF4to a subalgebraG2(2) while preserving the five grading

G2(2) = 1 ⊕ 4 ⊕ (SL(2,R)⊕ D)⊕ 4 ⊕ 1, (35)

6 FTS’s have also been used in [3] to give a classification and a unified realization of non-linear quasi-
superconformal algebras and in the realizations of nonlinearN = 4 superconformal algebras in two dimensions
[15].
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which then yields a nonlinear realization over a five dimensional space. One can go even
futher and truncateG2to its subalgebraSL(3,R)

SL(3,R) = 1 ⊕ 2 ⊕ (SO(1,1)⊕ D)⊕ 2 ⊕ 1, (36)

which is the smallest simple Lie algebra admitting a five grading. We should perhaps
stress that the nonlinear realizations given above are minimal forG2(2) ,F4(4) , andE8(8)
which are the only simple Lie algebras that do not admit a three grading and hence do
not have unitary representations of the lowest weight type.

The above nonlinear realizations of the exceptional Lie algebras can also be truncated
to subalgebras with a three graded structure, in which case our nonlinear realization
reduces to the standard nonlinear realization over a JTS. This truncation we will describe
in Sect. 3.2 in more detail.

With respect toE6(6) the quasiconformal realization ofE8(8) (11) decomposes as
follows:

1 ⊕ 56 ⊕ (133 ⊕ 1) ⊕ 56 ⊕ 1

1
1 ⊕ 1

⊕ 27 ⊕
27 ⊕ 27

1 ⊕ 78 ⊕ 1

27 ⊕ 27

⊕ 27 ⊕
1 ⊕ 1

1

✧✧✧

✧✧✧ ❜❜❜

❜❜❜

The numbers in the first line are the dimensions ofE7(7), whereas the remaining numbers
correspond to representations of USp(8) which is the maximal compact subgroup of
E6(6). The 27 of grade−1 subspace and the27 of grade+1 subspace close into the
E6(6) ⊕ D subalgebra of grade zero subspace and generate the Lie algebra ofE7(7).
Similarly 27 of grade−1 subspace together with the27 of grade+1 subspace form
anotherE7(7) subalgebra ofE8(8). Hence we have four differentE7(7) subalgebras of
E8(8):

i) E7(7) subalgebra of grade zero subspace which is realized linearly.
ii) E7(7) subalgebra preserving the 5-grading, which is realized nonlinearly over a 33

dimensional space
iii) E7(7) subalgebra that acts on the27 dimensional subspace as the generalized con-

formal generators.
iv) E7(7) subalgebra that acts on the27 dimensional subspace as the generalized con-

formal generators.
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Similarly forE7(7) under theSL(6,R) subalgebra of the grade zero subspace the32
dimensional grade+1 subspace decomposes as

32 = 1 + 15 + 15 + 1.

The15 from grade+1(−1) subspace together with15 (15) of grade−1(+1) sub-
space generate a nonlinearly realizedSO(6,6) subalgebra that acts as the generalized
conformal algebra on the15 (15) dimensional subspace.

For E6(6) , F4(4) , G2(2) , andSL(3,R) the analogous truncations lead to nonlinear
conformal subalgebrasSL(6,R), Sp(6,R), SO(2,2), andSL(2,R), respectively.

3.2. Conformal Realization of E7(7). As a special truncation the quasiconformal real-
ization ofE8(8) contains a conformal realization ofE7(7) on a space of 27 dimensions, on
which theE6(6) subgroup ofE7(7) acts linearly. The main difference is that the construc-
tion is now based on a three-graded decomposition (4) ofE7(7) rather than (10) – hence
the realization is “conformal” rather than “quasiconformal”. The relevant decomposition
can be directly read off from the figure: we simply truncate to anE7(7) subalgebra in
such a way that the grade±2 subspace can no longer be reached by commutation. This
requirement is met only by the two truncations corresponding to the diagonal lines in
the figure; adding a singlet we arrive at the desired three graded decomposition ofE7(7)

133 = 27 ⊕ (78 ⊕ 1)⊕ 27 (37)

under itsE6(6) × D subgroup.
The Lie algebraE6(6) has USp(8) as its maximal compact subalgebra. It is spanned

by a symmetric tensor̃Gij in the adjoint representation36 of USp(8)and a fully antisym-
metric symplectic traceless tensorG̃ijkl transforming under the42 of USp(8); indices
1 ≤ i, j, . . . ≤ 8 are now USp(8) indices and all tensors with a tilde transform under
USp(8)rather than SL(8,R). G̃ijkl is traceless with respect to the real symplectic metric
9ij =−9ji =−9ij (thus9ik9

kj = δ
j
i ). The symplectic metric also serves to pull up

and down indices, with the convention that this is always to be done from the left.
The remaining part ofE7(7) is spanned by an extra dilatation generatorH̃ , translation

generatorsẼij and the nonlinearly realized generatorsF̃ ij , transforming as27 and27,
respectively. Unlike forE8(8), there is no need here to distinguish the generators by
the position of their indices, since the corresponding generators are linearly related by
means of the symplectic metric.

The fundamental27 of E6(6) (on which we are going to realize a nonlinear action of
E7(7) ) is given by the traceless antisymmetric tensorZ̃ij transforming as

G̃i
j (Z̃

kl) = 2δkj Z̃
il ,

G̃ijkl(Z̃mn) = 1
24ε

ijklmnpq Z̃pq,
(38)

where

Z̃ij := 9ik9jl Z̃
kl = (Z̃ij )∗ and 9ij Z̃

ij = 0.
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Likewise, the27 representation transforms as

G̃i
j (Z̄

kl) = 2δkj Z̄
il ,

G̃ijkl(Z̄mn) = − 1
24ε

ijklmnpq Z̄pq .
(39)

Because the product of two27’s contains no singlet, there exists no quadratic invariant
of E6(6); however, there is a cubic invariant given by

N3(Z̃) := Z̃ij Z̃jkZ̃
kl9il . (40)

We are now ready to give the conformal realization ofE7(7) on the 27 dimensional
space spanned by theZ̃ij .As the action of the linearly realizedE6(6) subgroup has already
been given, we list only the remaining variations. As beforeẼij acts by translations:

Ẽij (Z̃kl) = −9i[k9l]j − 1
89

ij 9kl (41)

andH̃ by dilatations

H̃ (Z̃ij ) = Z̃ij . (42)

The27 generatorsF̃ ij are realized nonlinearly:

F̃ ij (Z̃kl) := − 2 Z̃ij (Z̃kl)+9i[k9l]j (Z̃mnZ̃mn)+ 1
8 9

ij 9kl (Z̃mnZ̃mn)

+ 8 Z̃kmZ̃mn9
n[i9j ]l −9kl (Z̃im9mnZ̃

nj ).
(43)

The norm form needed to define theE7(7) invariant “light cones” is now constructed
from the cubic invariant ofE6(6). ThenN3(X̃ − Ỹ ) is manifestly invariant underE6(6)

and under the translations̃Eij (observe that there is no need to introduce a nonlinear
difference unlike forE8(8)). UnderH̃ it transforms by a constant factor, whereas under
the action ofF̃ ij we have

F̃ ij
(
N3(X̃ − Ỹ )

)
= (X̃ij + Ỹ ij )N (X̃ − Ỹ ). (44)

Thus the light cones inR27 with base pointỸ

N3(X̃ − Ỹ ) = 0 (45)

are indeed invariant underE7(7). They are still curved hypersurfaces, but in contrast to
theE8(8) light-cones constructed before, they are no longer deformed as one varies the
base pointỸ .

The connection to the Jordan Triple Systems of Appendix A can now be made quite
explicit, and the formulas that we arrive at in this way are completely analogous to the
ones given in the introduction. We first of all notice that we can again define a triple
product in terms of theE6(6) representations; it reads

{X̃ Ỹ Z̃}ij = 16X̃ikZ̃kl Ỹ
lj +16Z̃ikX̃kl Ỹ

lj +49ij (X̃kl ỸlmZ̃
mn9kn)

+ 4X̃ij Ỹ klZ̃kl + 4 Ỹ ij X̃klZ̃kl + 2 Z̃ij X̃kl Ỹkl .
(46)
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This triple product can be used to rewrite the conformal realization. Recalling that a triple
product with identical properties exists for the 27-dimensional Jordan algebraJ

OS

3 , we

now consider̃Z as an element ofJOS

3 . Next we introduce generators labeled by elements

of JOS

3 , and define the variations

Ua(Z̃) = a,

Sab(Z̃) = {a b Z̃},
Ũc(Z̃) = −1

2{Z̃ c Z̃},
(47)

for a, b, c ∈ J
OS

3 . It is straightforward to check that these reproduce the commutation
relations listed in the introduction with the only difference thatJC

2 has been replaced by

J
OS

3 .
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Appendix A. Jordan Triple Systems

Let us first recall the defining properties of a Jordan algebra. By definition these are
algebras equipped with a commutative (but non-associative) binary producta◦b = b◦a
satisfying the Jordan identity

(a ◦ b) ◦ a2 = a ◦ (b ◦ a2). (A.1)

A Jordan algebra with such a product defines a so-called Jordan triple system (JTS)
under the Jordan triple product

{a b c} = a ◦ (b̃ ◦ c)+ (a ◦ b̃) ◦ c − b̃ ◦ (a ◦ c),
where ˜ denotes a conjugation inJ corresponding to the operation † ing. The triple
product satisfies the identities (which can alternatively be taken as the defining identities
of the triple system)

{a b c} = {c b a},
{a b {c d x}} − {c d {a b x}} − {a {d c b} x} + {{c d a} b x} = 0.

(A.2)

The Tits–Kantor–Koecher (TKK) construction [32,21,25] associates every JTS with
a 3-graded Lie algebra

g = g−1 ⊕ g0 ⊕ g+1, (A.3)

satsifying the formal commutation relations:

[g+1 , g−1] = g0,

[g+1 , g+1] = 0,

[g−1 , g−1] = 0.

With the exception of the Lie algebrasG2,F4, andE8every simple Lie algebrag can be
given a three graded decomposition with respect to a subalgebrag0 of maximal rank.
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By the TKK construction the elementsUa of the g+1 subspace of the Lie algebra
are labelled by the elementsa ∈ J . Furthermore every such Lie algebrag admits an
involutive automorphismι, which maps the elements of the grade+1 space onto the
elements of the subspace of grade−1:

ι(Ua) =: Ũa ∈ g−1. (A.4)

To get a complete set of generators ofg we define

[Ua, Ũb] = Sab,

[Sab, Uc] = U{abc}
(A.5)

whereSab ∈ g0 and{abc} is the Jordan triple product under which the spaceJ is closed.
The remaining commutation relations are

[Sab, Ũc] = Ũ{bac},
[Sab, Scd ] = S{abc}d − Sc{bad},

(A.6)

and the closure of the algebra under commutation follows from the defining identities
of a JTS given above.

The Lie algebra generated bySab is called the structure algebra of theJTS J , under
which the elements ofJ transform linearly. The traceless elements of this action ofSab
generate the reduced structure algebra ofJ . There exist four infinite families of hermitian
JTS’s and two exceptional ones [31,27]. The latter are listed in the table below (where
M1,2(O) denotes 1× 2 matrices over the octonions, i.e. the octonionic plane)

J G H

M1,2(OS) E6(6) SO(5,5)

M1,2(O) E6(−14) SO(8,2)

J
OS

3 E7(7) E6(6)

J
O

3 E7(−25) E6(−26)

Here we are mainly interested in the real formJOS

3 , which corresponds to the split
octonionsOS and hasE7(7) andE6(6) as its conformal and reduced structure group,
respectively.

Appendix B. The Quartic E7(7) Invariant

In the SL(8,R) basisE7(7) the quartic invariant is given by (18), which we here repeat
for convenience

ISL(8,R)
4 = XijXjkX

klXli − 1
4X

ijXijX
klXkl

+ 1
96 ε

ijklmnpqXijXklXmnXpq

+ 1
96 εijklmnpqX

ijXklXmnXpq.

(B.1)
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Another very useful form ofE7(7) makes the maximal compact subgroup SU(8)
manifest. The fundamental56 representation then is spanned by the complex tensors
ZAB which are related to the SL(8,R) basis by [4]

ZAB = (ZAB)
∗ = 1

4
√

2
(Xij − i Xij ):

ij
AB, (B.2)

where:ij
AB are the SO(8) gamma matrices. In this basis the quartic invariant takes the

form

ISU(8)
4 = ZABZBCZ

CDZDA − 1
4Z

ABZABZ
CDZCD

+ 1
96 ε

ABCDEFGHZABZCDZEFZGH

+ 1
96 εABCDEFGHZ

ABZCDZEFZGH .

(B.3)

The precise relaton betweenISU(8)
4 and ISL(8,R)

4 has never been spelled out in the
literature although it is claimed in [4] that they should be proportional. In fact, we have

ISU(8)
4 = −ISL(8,R)

4 . (B.4)

To prove this claim, one needs the identities

Tr(:ij:kl:mn:pq) = − 128δijp[kδ
mn
l ] q + 128δijp[mδ

kl
n]q + 128δijk[mδ

pq
n]l

+ 96(δijkl δ
mn
pq )sym ∓ 8εijklmnpq,

(B.5)

and

εABCDEFGH:
ij
AB:

kl
CD:

mn
EF:

pq
GH = − 128(12δijkl δ

mn
pq + 48δijp[kδ

mn
l ] q)sym

∓ εijklmnpq,
(B.6)

where(. . . )sym denotes symmetrization w.r.t. the pairs of indices(ij), (kl), (mn), (pq),
and the signs∓ depend on whether the spinor representation or the conjugate spinor
representation of the gamma matrices is used:

:ijklmnpq = ∓εijklmnpq.

To see thatI4 can assume both positive and negative values it is sufficient to consider
configurations in the SU(8) basis of the form [8]

ZAB =:


z1

. . .

z4


 ⊗

(
0 1

−1 0

)
, (B.7)

with complex parametersz1, . . . , z4. For this configuration the quartic invariant becomes

ISU(8)
4 =

∑
α

|zα|4 − 2
∑
β>α

|zα|2|zβ |2 + 4z1z2z3z4 + 4z∗1z∗2z∗3z∗4. (B.8)

Using this formula, one can easily see that both positive and negative values are possible
for I4:
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i) We find positive values forI4 when all but one parameter vanish:

ISU(8)
4 = |z1|4 > 0 for z1 �= 0, z2 = z3 = z4 = 0

ii) I4 vanishes when all parameters take the same real (electric) or imaginary (magnetic)
value:

ISU(8)
4 = 0 for z1 = z2 = z3 = z4 = M or iM, M ∈ R.

This is the example considered in [20] corresponding to maximally BPS black hole
solutions ind = 4,N = 8 supergravity with vanishing entropy and vanishing area
of the horizon.

iii) I4 is negative when all parameters take the same complex “dyonic” value. For
instance,

ISU(8)
4 < 0 for z1 = z2 = z3 = z4 = 1+i√

2
M, M ∈ R,

corresponding to a maximally BPS multiplet with both electricand magnetic
charges.
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