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Abstract: We presentanonlinear realizationfyg) on a space of 57 dimensions, which

is quasiconformal in the sense that it leaves invariant a suitably defined “light cone” in
R’ Thisrealization, which is related to the Freudenthal triple system associated with the
unique exceptional Jordan algebra over the split octonions, contains previous conformal
realizations of the lower rank exceptional Lie groups on generalized space times, and in
particular a conformal realization @7, on R2” which we exhibit explicitly. Possible
applications of our results to supergravity and M-Theory are briefly mentioned.

1. Introduction

It is an old idea to define generalized space-times by association with Jordan algebras
J, in such a way that the space-time is coordinatized by the elementsad that

its rotation, Lorentz, and conformal group can be identified with the automorphism, re-
duced structure, and the linear fractional groug pfespectively [11-13]. The aesthetic
appeal of this idea rests to a large extent on the fact that key ingredients for formulating
relativistic quantum field theories over four dimensional Minkowski space extend natu-
rally to these generalized space times; in particular, the well-known connection between
the positive energy unitary representations of the four dimensional conformal group
SU (2, 2) and the covariant fields transforming in finite dimensional representations of
the Lorentz grous L (2, C) [29, 28] extends to all generalized space-times defined by
Jordan algebras [16]. The appearance of exceptional Lie groups and algebras in extended
supergravities and their relevance to understanding the non-perturbative regime of string
theory have provided new impetus; indeed, possible applications to string and M-Theory
constitute the main motivation for the present investigation.
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In this paper, we will present a novel construction involving the maximally extended
Lie groupEgg,. This construction oEgg, together with the corresponding construction
of Eg—24y contain all previous examples of generalized space-times based on excep-
tional Lie groups, and at the same time goes beyond the framework of Jordan algebras.
More precisely, we show that there exists a quasiconformal nonlinear realizafigggpf
on a space of 57 dimensidnsThis space may be viewed as the quotientgfg, by
its maximal parabolic subgroup [18,19]; there is no Jordan algebra directly associated
with it, but it can be related to a certain Freudenthal triple system which itself is as-
sociated with the “split” exceptional Jordan algebﬂgs, whereQg denote the split
real form of the octonion§). It furthermore admits att'7(7) invariant norm form\a,
which gets multiplied by a (coordinate dependent) factor under the nonlinearly realized
“special conformal” transformations. Therefore the light cone, defined by the condi-
tion N4 = 0, is actually invariant under the fuligg), which thus plays the role of a
generalized conformal group. By truncation we obtain quasiconformal realizations of
other exceptional Lie groups. Furthermore, we recover previous conformal realizations
of the lower rank exceptional groups (some of which correspond to Jordan algebras). In
particular, we give a completely explicit conformal Mébius-like nonlinear realization of

E7(7) on the 27-dimensional space associated with the exceptional Jordan alg)ébra
with linearly realized subgroupBaa) (the “rotation group”) andEees) (the “Lorentz
group”). Although in part this result is implicitly contained in the existing literature on
Jordan algebras, the relevant transformations have not been exhibited explicitly so far,
and are here presented in the basis that is also used in maximal supergravity theories.
The basic concepts are best illustrated in terms of a simple and familiar example,
namely the conformal group in four dimensions [29], and its realization via the Jordan
aIgebraJéC of hermitian 2x 2 matrices with the hermiticity preserving commutative
(but non-associative) product

aob:= %(ab—i—ba) 1)

(basic properties of Jordan algebras are summarized in Appendix A). As is well known,
these matrices are in one-to-one correspondence with four-vectoirs Minkowski
space via the formula = x,0*, wherec* := (1, o). The “norm form” on this algebra

is just the ordinary determinant, i.e.

No(x) := detx = x,x* (2)

(it will be a higher order polynomial in the general case). Defining= x,6" (where
ot .= (1, —o)) we introduce the Jordan triple productdiﬁ:

{abc):=(aob)oc+ (cob)oa—(aoc)ob

Lo ©)
= 5(abc + cba) = {(a, b)c + {(c, b)a — {(a, c)b
with the standard Lorentz invariant bilinear form, b) := a,b". However, it is not
generally true that the Jordan triple product can be thus expressed in terms of a bilinear
form.
The automorphism group dgc which is by definition compatible with the Jordan
product, is just the rotation grougl/ (2); the structure group, defined as the invariance

1 Anonlinear realization will be referred to as “quasiconformal” if it is based on a five graded decomposition
of the underlying Lie algebra (as fdfgg)); it will be called “conformal” if it is based on a three graded
decomposition (as e.qg. fdi7(7)).
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of the norm form up to a constant factor, is the prodiict2, C) x D, i.e. the Lorentz
group and dilatations. The conformal group associated \Kéih's the group leaving
invariant the light-coneV,(x) = 0. As is well known, the associated Lie algebra is
su(2, 2), and possesses a three-graded structure

g=gtegeg™, (4)

where the grade-1 and gradet-1 spaces correspond to generators of translatiths
and special conformal transformatiokid', respectively, while the grade 0 subspace is
spanned by the Lorentz generatdf$’ and the dilatation generat@r. The subspaces
g! andg~?! can each be associated with the Jordan algéprasuch that their elements

are labeled by elements= a, " of Jéc. The precise correspondence is

' and U, :=a,k* egth. (5)

Uy, :=a,P* eg”
By contrast, the generators §f are labeled bywo elements:, b € Jéc, viz.
Sap = aub,(M"" + "' D). (6)

The conformal group is realized non-linearly on the space of four-vextarsléc, with
a Mobius-like infinitesimal action of the special conformal transformations

Sx" = 2(c, x)x"* — (x, x)c" (7

with parameter*. All variations acquire a very simple form when expressed in terms
of the above generators: we have

Us(x) =a,
Sap(x) = {abx}, (8)
Ue(x) = —3{x cx},

where{. ..} is the Jordan triple product introduced above. From these transformations
it is elementary to deduce the commutation relations
[Ua> Upl = Sab,
[Sap, Ucl = Uaiey
[Sab> Uel = Upacy
[Sabs Scal = Stabeyd — Sipadyc

9)

(of course, these could have been derived directly from those of the conformal group).
As one can also see, the Lie algehradmits an involutive automorphisnexchanging
g~ landg*?! (hence;(K*) = PH).

The above transformation rules and commutation relations exemplify the structure
that we will encounter again in Sect. 3 of this paper: the conformal realizatiéh gf
onR?’ presented there has the same form, excepﬂﬂ%éﬁ; replaced by the exceptional

Jordan algebrdgs over the split octonion®s. While our form of the nonlinear varia-

tions appears to be new, the concomitant construction of the Lie algebra itself by means
of the Jordan triple product has been known in the literature as the Tits—Kantor—Koecher
construction [32,21,25], and as such generalizes to other Jordan algebras. The general-
ized linear fractional (Mdbius) groups of Jordan algebras can be abstractly defined in an
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analogous manner [26], and shown to leave invariant certain generaliaadles de-
fined by the norm form of degreeof the underlying Jordan algebra [22, 14]. However,
to our knowledge, explicit formulas of the type derived here have not appeared in the
literature before.
While this construction works for the exceptional Lie algebEgs), and E77), as
well as other Lie algebras admitting a three graded structure, it failEd@§, Faa),
andG (), for which a three grading does not exist. These algebras possess only a five
graded structure

g=g’0gteodegtogh (10)

Our main result, to be described in Sect. 2, states that a “quasiconformal” realization
is still possible on a space of dimension digh + 1 if the top grade spacegg™ are
one-dimensional. Five graded Lie algebras with this property are closely related to the
so-called Freudenthal Triple Systems [9, 30], which were originally invented to provide
alternative constructions of the exceptional Lie grdufis relation will be made very
explicit in the present paper. The novel realizationHgfg, which we will arrive at,
together with its natural extension fg(_»4), contains various other constructions of
exceptional Lie algebras by truncation, including the conformal realizations based on a
three graded structure. For this reason, we describe it first in Sect. 2, and then show how
the other cases can be obtained from it.

Whereas previous attempts to construct generalized space-times mainly focused on
generalizing Minkowski space-time and its symmetries, the physical applications that we
have in mind here are of a somewhat different nature, and inspired by recent developments
in superstring and M-Theory. Namely, the generalized “space-times” presented here
could conceivably be identified with certain internal spaces arising in supergravity and
superstring theory, which are related to the appearance of central charges in the associated
superalgebras. Central charges and their solitonic carriers have been much discussed in
the recent literature because it is hoped that they may provide a window on M-Theory
and its non-perturbative degrees of freedom. More specifically, it has been argued in [5]
that a proper description of the non-perturbative M-Theory degrees of freedom might
require supplementing ordinary space-time coordinates by central charge coordinates.
Solitonic charges also play an important role in the microscopic description of black
hole entropy: for maximally extended =8 supergravity, the latter is conjectured to be
given by anE+7, invariant formula [20, 8]. The corresponding formula for the entropy
in maximally extended supergravity in five dimension&igs, invariant and involves a
cubic form. In [7] an invariant classification of orbits Bf7) and Eg) actions on their
fundamental representations that classify BPS statés4r andd = 5 was given.

The entropy formula in [20, 8] is identical to the equation for a vector with vanishing
norm in 57 dimensions (see Eq. (27)), provided we use th&3®)form of the quartic
E7(7) invariant. This suggests that the'S¢omponent of outEgg, realization should
be interpreted as the entropy. However, we should stress that the quartic invariant can
assume both positive and negative values, cf. the simple examples givenin Appendix B. In
order to avoid imaginary entropy, one must therefore restrict oneself to the positive semi-
definite values of the quartic invariant, corresponding to the “time-like” and “light-like”
orbits of E7(7 in the language of [7]. With the #7coordinate interpreted as the entropy
and the remaining 56 coordinates as the electric and magnetic charges, it is natural from
our point of view to define a distance in this “entropy-charge space” between any two

2 The more general Kantor—Triple-Systems for whgc‘hz have more than one dimension, will not be
discussed in this paper.
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black hole solutions using our Egs. (25), (26). If two black hole solutions are light-like
separated in this space, they will remain so under the actidiz@f.> We should also

point out that it is not entirely clear from the existing black hole literature whether it is
the SU@8) or the SL(8, R) form of the invariant that should be used here (the detailed
relation between the two is worked out in Appendix B). The(8lbasis is relevant

for the central charges, which appear in the superalgebra via surface integrals at spatial
infinity and determine the structure (and length) of BPS multiplets. By contrast, the 28
electric and 28 magnetic charges carried by the solitons-6#, N = 8 supergravity
transform separately under 8, R) [4], and therefore the S18, R) form of the invariant
appears more appropriate in this context.

For applications to M-Theory it would be important to obtain the exponentiated
version of our realization. One might reasonably expect that modular forms with respect
to a fractional linear realization of the arithmetic graiyg) (Z) will have arole to play.

We expect that our results will pave the way for the explicit construction of such modular
forms. According to [19] these would depend ont28= 29 variables, such that the 57-
dimensional Heisenberg subalgebrakfs) exhibited here would be realized in terms

of 28 “coordinates” and 28 “momenta”. Consequently, the 57 dimensions in viligigh

acts might alternatively be interpreted as a generalized Heisenberg group, in which case
the 57" component would play the role of a variable paramgtdihe action ofEgg) (Z)

on the 57 dimensional Heisenberg group would then constitute the invariance group of a
generalized Dirac quantization condition. This observation is also in accord with the fact
that the term modifying the vector space additio®R# (cf. Eq.(25)), which is required

by Egg) invariance, is just the cocycle induced by the standard canonical commutation
relations on an (28+28)-dimensional phase space.

2. Quasiconformal Realization of Eg,

2.1. E7(7) decomposition of Egg). We will start with the maximal case, the exceptional
Lie group Egg, and its quasiconformal realization @vr’, because this realization
contains all others by truncation. Our results are based on the following five graded
decomposition ofgg) with respect to its77) x D subgroup

g 2agle g° @ gt @ g+? an
1 &5 © (1331 d 56 @ 1

with the one-dimensional group consisting of dilatationsD itself is part of an
SL(2,R) group, and the above decomposition thus corresponds to the decomposition
248 — (133,1) @ (56, 2) @ (1, 3) of Egg under its subgroufz7) x SL(2, R).

In order to write out th&7(7) generators, it is convenient to further decompose them
w.r.t. the subgroup S8, R) of E7(7. In this basis, the Lie algebra @77 is spanned
by the SL(8, R) generators;' ;, and the antisymmetric generat@§*, transforming
in the 63 and70 representations of SB, R), respectively. We also define

1
Gijkl ‘= 24€ijklmnpq G"rd

3 Forthe exceptionaV = 2 Maxwell-Einstein supergravity [17] defined by the exceptional Jordan algebra
the U-duality groups in five and four dimensions &lg_»e and E7(_os), respectively. The quasi-conformal
symmetry of the exceptional supergravity in four dimensions is hénge,4), with the maximal compact
subgroupE7 x SU(2).
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with SL(8, R) indices 1< i, j, ... < 8. The commutation relations are
[G';, GM1=085G1 -8 G},
i klmny __ [k ~Imnli 1 qi ~kl
[G'j. G ””]_—45J.G —is;G mn
[Gijkl , Gmnpq] — 3_166ijkls[mnp Gq]s'

The fundamentab6 representation of(7) is spanned by the two antisymmetric real
tensorsX”/ andX;; and the action oE77, is given byt

5X'7 = A XN — A XM 4 2R X, (12)
8Xij = ANiXjk — A Xk + Ziju X",

where
1
Tijkl = g€ijkimnpg 21 (13)

In order to extendt7(7, x D to the full Egg), we must enlarg® to anSL(2, R)
with generatorsE, F, H) in the standard Chevalley basis, together with 26 further
real generator§E;;, E') and(F;;, F'/). Under hermitian conjugation, we have

EV=F)  Fi=-E] and E=-F"

The grade-2, —1, 1 and 2 subspaces in the above decomposition correspond to the
subspaceg 2, g1, g, andg? in (11), respectively:

E®{EY, Ej)®{G'M G';; HY® {F, F;j}®F. (14)
The grading may be read off from the commutators with

[HvE]:_ZEa [HvF]=2F7
[H.EV]=—EY, [H,F/]=F",
[H, Eij]l=—E;j, [H, Fj]l=Fj.

The new generator&;;, EV/) and(F;;, F'/) form two (maximal) Heisenberg subalge-
bras of dimension 28

[EV, Eul =28} E, [F, Fyl =25} F.
and they transform under $8, R) as
G, E¥] = 31; gil _ 3zj pik _ %33 BN,
(G, Enl=8% Eij — 80 Exj + %53 Ey,
G, FN = 51; Fil _ 31,' Fik _ %185. P
[Gij , Frl = 8;{ Fj — 8; Frj + %51] Fy.

4 We emphasize that’/ andX;; are independent. This convention differs from the one used for t8)SU
basis in the appendix.
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The remaining non-vanishing commutation relations are given by

[E, F]=
and
[Gijkl  Epn] = lj Ekl] [Gijkl , EMn) = _2i4€ijklmnpq qu
[Gijkl . Fpn] = —8 lj Fkl] [Gijkl , an] — _2%1€ijklmnpq qu’
[EY, F¥]=12G67M, [Eij, Ful = ~12Giju,
i [i ~Jl kl [k ~I1] kl
[E” 1]= BIGJ n- ;(lea [Eija F ]248[1G j]+8le
[E, F']= [E, Fij]=—Ejj,
[F, EU] [F, E,'j] = F,

To see that we are really dealing with the maximally split formgfg), let us count

the number of compact generators: The antisymmetric (@t — G/;) of G'; and
(GU* — G;jx) correspond to the 63 generators of the maximal compact subalgebra
SU (8) of E7(7) [4]. The remaining compact generators are the-28+ 1 anti-hermitian
generatorgE;; + Fiy, (EV — F;;), and(E + F) giving a total of 120 generators which
close into the maximal compact subgroup@6 > SU(8) of Egg,.

An important role is played by the symplectic invariant of tsrepresentations. It
is given by

(X,Y):=XVY;; — X;; Y. (15)

The second structure which we need to introduce is the triple product. This is a trilinear
map56 x 56 x 56 —> 56, which associates to three elemefitsY and Z another
element transforming in the6 representation, denoted b¥, Y, Z), and defined by

(X,Y, 2)7 .= —8Xx'*y,zl —8Yy'*x,,Z —8Y* 7}, X"
—2YUxKz, —2xiiyMz, —27Uiy" xy,
+ :—ZL Gijklmnpq Xki Yinn qu >

kl kl kl (16)
(X,Y,Z)ij =8X;Y Z[j+8Y,'.kX ZIJ;+8Y1.](Z le;

+ 2Y,'./'Zk1Xkl + 2X,‘jZlekl + 2Z,‘ijlYk1
- % €ijklmnpq Xlengpq-
A somewhat tedious calculatidshows that this triple product obeys the relations
(X,Y,2) = (¥,X,Z2) +2(X,Y) Z,
(Xa Y’ Z) = (Z, Y’ X) - 2 (X’ Z) Y7

X, Y,(V,W,Z2))=(V,.W,(X,Y,Z2)) + ((X,Y,V), W, Z)
+ WV, Y, X, W),Z).

5 Which relies heavily on the Schouten identity;kimnpg Xr1s = O
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We note that the triple product (16) could be modified by terms involving the symplectic
invariant, such agX, Y) Z; the above choice has been made in order to obtain agreement
with the formulas of [6].

While there is no (symmetric) quadratic invariantifz) in the 56 representation,
a real quartic invariarif, can be constructed by means of the above triple product and
the bilinear form; it reads

Ta(X7, X;j) i= 75 (X, X, X), X)
= Xinijle” — %Xinink[Xkl
+ 9iseijklmnpq Xinlemnqu

1 ij ykl
+%€ijklmnqu”X xmnxrd,

(18)

2.2. Quasiconformal nonlinear realization of Egg,. We will now exhibit a nonlinear
realization ofEgeg on the 57-dimensional real vector space with coordinates

X = (XY, X, x),

wherex is also real. Whilex is a E7(7, singlet, the remaining 56 variables transform
linearly underE7(7. Thus X’ forms the56 & 1 representation of7(7). In writing the
transformation rules we will omit the transformation parameters in order not to make
the formulas (and notation) too cumbersome. To recover the infinitesimal variations, one
must simply contract the formulas with the appropriate transformation parameters. The
E7¢7) subalgebra acts linearly by

Gij(Xkl) — Z(Sk»Xil —l'(Si»Xkl z/kl(an) zjklmnqu
G (Xu) = =28, X1 + 38 X, GH (X)) = ai,iﬁxk”, (19)
G j(x) =0, G (x) =0,

H generates scale transformations
H(XY)=X", H(X;j) =X, Hx) =2x, (20)
and theE generators act as translations; we have
E(XYy=0, E(X;j)=0, Ex)=1 (21)
and

EV(xMy = EV(Xy) =68y, EY(x)=-xY,

y (22)
Eijj(X™) = 5,,, Eij(Xu) =0,  Eijjx) =
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By contrast, the&F generators are realized nonlinearly:
F(XUy= - 3X, X, X) + X" x

4X"W +X9 x* X,

— 25 TMmIPe X X X pg + X' x,

F(Xij) = — (X, X, X);; + X;ij x

— XXXy - X XM Xy

(23)
+ %Zeijklmnpq Xlemnqu + Xij X,

F(x) = 4T4(XY, Xij) + x°
=4XVX 3 XM Xy — XU XXM X
+ 2i4 eijklmnpq Xinlemnqu
+ 2 €ijkmnpg XU XK XM X P9 4 X2,
Observe that the form of the r.h.s. is dictated by the requiremeBt@f covariance:

(F(X1), F(X;;)) and F(x) must still transform as th86 and1 of E77), respectively.
The action of the remaining generators is likewigy, covariant:

Fii(xHy = — axikxl 4 1 ciikimpa ey

FU(Xp) = + 88U X Xy + 80 X X + 2 X1 Xpy — 87 x,

Fiy(xHy = — SSW +8M X K — 2 X5 XM — 88,
Fij(Xu) = 4XxiXj1 — L i kimnpg X" X, o
Fi(x) = 4Xim XXM X,

L MR XX+ X x,
Fij(x) = 4X,-L1XU + XXM Xy

— o €ijkimnpg XXM XPD — X x.

Although E7(7, covariance considerably constrains the expressions that can appear on
the r.h.s., it does not fix them uniquely: as for the triple product (16) one could add
further terms involving the symplectic invariant. However, all ambiguities are removed
by imposing closure of the algebra, and we have checked by explicit computation that
the above variations do close into the fHlg) algebra in the basis given in the previous
section. This is the crucial consistency check.

The term “quasiconformal realization” is motivated by the existence of a norm form
that is left invariant up to a (possibly coordinate dependent) factor under all transfor-
mations. To write it down we must first define a nonlinear “difference” between two
pointsX = (X/, X;;; x) andY = (Y, Y;; ; y); curiously, the standard difference is
not invariant under the translatioig’/, E;;). Rather, we must choose

S(X, V)= (XU =YY X;j — Yij s x —y+ (X, 7). (25)
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This difference still obeys$(X, Y) = —§(), X) and thuss(X, X) = 0, and is now

invariant under E¥/ E;;) as well asE; however, it is no longer additive. In fact, with

the sum of two vectors being defined&s’, —))), the extra term involvingX, Y) can

be interpreted as the cocycle induced by the standard canonical commutation relations.
The relevant invariant is a linear combinationi@fand the quartict7(7) invariant

Ia, Vviz.

Na(X) = Na(XY, X;j5 x) == 4T4(X) — x2, (26)

In order to ensure invariance under the translation generators, we consider the expression
Na(8(X,))), which is manifestly invariant under the linearly realized subgraug, .
Remarkably, it also transforms into itself up to an overall factor under the action of the
nonlinearly realized generators. More specifically, we find

F(NaG@, 1)) = 2 +3) Nad(X, V),

Fii (/\/4(8(26, y))) =2(X7 + Y)Y NY(8(X, D)),
H(N4(a<x, y))) = ANK(B(X, V).

Therefore, for every € R the “light cone” with base poiny, defined by the set of
X € R% obeying

Na(3(X,Y)) =0, (27)

is preserved by the fulEgs, group, and in this sensd/s is a “conformal invariant” of
Eg@g). We note that the light cones defined by the above equation are not only curved
hypersufaces ifR%’, but get deformed as one varies the base goirfts we will show
in Appendix B, the quartic invariarfy can take both positive and negative values, but
in the latter case Eq. (27) does not have real solutions. However, we can remedy this
problem by extending the representation spac&¥band using the same formulas to
get a realization of the complexified Lie algetizg(C) on C>”.
The existence of a fourth order conformal invariantHgfg is noteworthy in view
of the fact that no irreducible fourth order invariant exists for the linearly realtzgg
group (the next invariant after the quadratic Casimir being of order eight).

2.3. Relation with Freudenthal Triple Systems. We will now rewrite the nonlinear trans-
formation rules in another form in order to establish contact with mathematical literature.
Both the bilinear form (15) and the triple product (16) already appear in [6], albeit in a
very different guise. That work starts from22 “matrices” of the form

= (‘;‘; éii) : (28)

whereas, ap are real numbers and, xo are elements of a simple Jordan algelira

of degree three. There are only four simple Jordan algebm@shis type, namely the

3 x 3 hermitian matrices over the four division algebf&sC, H andQ. The associated
matrices are then related to non-compact forms of the exceptional Lie algéhras,

E7, and Eg, respectively. For simplicity, let us concentrate on the maximal d%e
when the matriXA carries 1+1+27+27 = 56 degrees of freedom. This counting suggests
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an obvious relation with the6 of E7(7) and its decomposition undékg), but more work
is required to make the connection precise. To this aim, [6] defines a symplectic invariant
(A, B), and a trilinear product mapping three such matrike® andC to another one,
denoted by(A, B, C). This triple system differs from a Jordan triple system in that it is
not derivable from a binary product. The formulas for the triple product in terms of the
matricesA, B and C given in [6] are somewhat cumbersome, lacking manitegt,
covariance. For this reason, instead of directly verifying that our prescription (16) and
the one of [6] coincide, we have checked that they satisfy identical relations: a quick
glance shows that the relations (T1)—(T4) [6] are indeed the same as our relations (17),
which are manifestlyE77) covariant.

To rewrite the transformation formulas we introduce Lie algebra generé@tpend
U, labeled by the above matrices, as well as generatpgslabeled by a pair of such
matrices. For the grade2 subspaces we would in general need another set of generators
K g andK 4 5 labeled by two matrices, but since these subspaces are one-dimensional
in the present case, we have only two more generdgrandK,, labelled by one real
numbera. In the same vein, we reinterpret the 57 coordinadtess a pain X, x), where
X is a 2x 2 matrix of the type defined above. The variations then take the simple form

K.(X) =0, K,(x) = 2a,

Ua(X) = A, Ua(x) = (A, X),

Sap(X) = (A, B, X) Sap(x) = 2(A, B) x, (29)
Ua(X) = 3 (X, A, X) — Ax, Ua(x) = =3 (X, X, X), A) + (X, A) x,

6
Ka(X)=—ga (X, X, X) +aXx, K,x)=ga(X,X,X),X)+2ax%

From these formulas it is straightforward to determine the commutation relations
of the transformations. To expose the connection with the more general Kantor triple
systems we write

Kap = K ) (30)

in the formulas below. The consistency of this specialization is ensured by the relations
(17). By explicit computation one finds
[Ua, U] = Sas,
[Ua,Upl = —Kas,
(U, Upl = —Kag,
[Sag, Ucl = —Ua,B,c),
[Sas, Ucl = U a0,
[Kag, Ucl=U.c.py — Un.c.a), (31)
[Kap, Ucl = Up.c.ay — Ua.c.p)»
[SaB, Scpl = —S,B,c)p — Sc(B,A,D) >
[SaB, Kcpl = Kawc,B,p) — Kap,B.C)>
[Sas, Kcpl = k(D,A,C)B - Ig(C,A,D)B,

[Kag, Kcpl = S,c,A)p — Sca,c,ByD — S(B,D,A)C + S(A,D,B)C-
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For generalk 4 5, these are the defining commutation relations of a Kantor triple sys-
tem, and, with the further specification (30), those of a Freudenthal triple system (FTS).
Freudenthal introduced these triple systems in his study of the metasymplectic geome-
tries associated with exceptional groups [10]; these geometries were further studied in [1,
6,30, 249. A classification of FTS’s may be found in [24], where it is also shown that
there is a one-to-one correspondence between simple Lie algebras and simple FTS’s with
a non-degenerate bilinear form. Hence there is a quasiconformal realization of every Lie
group acting on a generalized lightcone.

3. Truncations of Eg)

For the lower rank exceptional groups containefgs, , we can derive similar conformal

or quasiconformal realizations by truncation. In this section, we will first give the list
of quasiconformal realizations containedHEg,. In the second part of this section, we
consider truncations to a three graded structure, which will yield conformal realizations.
In particular, we will work out the conformal realization &7 on a space of 27
dimensions as an example, which is again the maximal example of its kind.

3.1. More quasiconformal realizations. All simple Lie algebras (except f&#U (2)) can

be given a five graded structure (10) with respect to some subalgebra of maximal rank
and one can associate a triple system with the gratisubspace [23,2]. Conversely,
one can construct every simple Lie algebra over the corresponding triple system.

The realization ofEgover the FTS defined by the exceptional Jordan algebra can
be truncated to the realizations Bf, Eg, and F4by restricting oneself to subalgebras
defined by quaternionic, complex, and real Hermitiarn 3 matrices. Analogously the
non-linear realization ofgg, given in the previous section can be truncated to non-
linear realizations oE7(7), Ess), andFas) . These truncations preserve the five grading.
More specifically we find that the Lie algebra Bf7, has a five grading of the form:

En=1032 (506,60 D)o R L (32)

Hence this truncation leads to a nonlinear realizatiorEqf;) on a33 dimensional
space. Note that this is not a minimal realizatiorEgf;, . Further truncation to thEg)
subgroup preserving the five grading leads to:

Eoe) =1@20@® (SL(6,R) D) D20 1. (33)

This yields a nonlinear realization &g on a2l dimensional space, which again is
not the minimal realization. Further reductionfa4) preserving the five grading

Fasy =10140 (Sp6,R) D)@ 1401 (34)

leads to a minimal realization df4) on a fifteen dimensional space. One can further
truncateF4to a subalgebr& o) while preserving the five grading

G =104® (SLR)®D)4® 1, (35)

6 FTS's have also been used in [3] to give a classification and a unified realization of non-linear quasi-
superconformal algebras and in the realizations of nonliNear4 superconformal algebras in two dimensions
[15].
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which then yields a nonlinear realization over a five dimensional space. One can go even
futher and truncaté&»to its subalgebra L (3, R)

SLBR)=162® (S0L1)eD)®2a1, (36)

which is the smallest simple Lie algebra admitting a five grading. We should perhaps
stress that the nonlinear realizations given above are minimalfey, Fa4), andEgs)

which are the only simple Lie algebras that do not admit a three grading and hence do
not have unitary representations of the lowest weight type.

The above nonlinear realizations of the exceptional Lie algebras can also be truncated
to subalgebras with a three graded structure, in which case our nonlinear realization
reduces to the standard nonlinear realization over a JTS. This truncation we will describe
in Sect. 3.2 in more detail.

With respect toEge the quasiconformal realization dfgg) (11) decomposes as
follows:

1 & 5 & (13841 & 56 & 1

1
1 @ 1
® 27 o
27 ® 27
1 ® \ 78 / & 1
27 / ) \2_7
® 27 -
1 ® 1

The numbersinthe firstline are the dimensionggf,, whereas the remaining numbers
correspond to representations of U8pwhich is the maximal compact subgroup of
Eg). The 27 of grade—1 subspace and tH@¥ of grade+1 subspace close into the
Eg@) @ D subalgebra of grade zero subspace and generate the Lie algeBfg,of
Similarly 27 of grade—1 subspace together with t18& of grade+1 subspace form
anotherE7(7, subalgebra oEgg). Hence we have four differerfiz(7, subalgebras of
Egs):

i) E77) subalgebra of grade zero subspace which is realized linearly.

i) E7(7) subalgebra preserving the 5-grading, which is realized nonlinearly over a 33
dimensional space

i) E7¢7) subalgebra that acts on tB& dimensional subspace as the generalized con-
formal generators.

iv) E7(7) subalgebra that acts on tB& dimensional subspace as the generalized con-
formal generators.



70 M. Guinaydin, K. Koepsell, H. Nicolai

Similarly for E7(7) under theSL (6, R) subalgebra of the grade zero subspace&the
dimensional grade-1 subspace decomposes as

32=1+15+15+1.

The 15 from grade+1 (—1) subspace together wittb (15) of grade—1 (+1) sub-
space generate a nonlinearly realizsd (6, 6) subalgebra that acts as the generalized
conformal algebra on thts (15) dimensional subspace.

For Eew), Faay, G22), andSL(3, R) the analogous truncations lead to nonlinear
conformal subalgebra®L (6, R), Sp(6, R), SO (2, 2), andSL(2, R), respectively.

3.2. Conformal Realization of E7). As a special truncation the quasiconformal real-
ization of Eg(g) contains a conformal realization %7y on a space of 27 dimensions, on
which theEg g subgroup off77) acts linearly. The main difference is that the construc-
tion is now based on a three-graded decomposition (£),g4 rather than (10) — hence

the realization is “conformal” rather than “quasiconformal”. The relevant decomposition
can be directly read off from the figure: we simply truncate taFagy, subalgebra in
such a way that the grade2 subspace can no longer be reached by commutation. This
requirement is met only by the two truncations corresponding to the diagonal lines in
the figure; adding a singlet we arrive at the desired three graded decomposifign, of

133=27® (780 1) @ 27 (37)

under itsEg) x D subgroup.

The Lie algebraEge has USE8) as its maximal compact subalgebra. It is spanned
by a symmetric tensdk/ in the adjoint representati@® of USp(8) and a fully antisym-
metric symplectic traceless tens6f/* transforming under thd2 of USp(8); indices
1<i,j,... <8arenow US@) indices and all tensors with a tilde transform under
USp(8)rather than SK8, R). G/¥ is traceless with respect to the real symplectic metric
Qij =—Qj; =—Q (thusQ; Q% =4/). The symplectic metric also serves to pull up
and down indices, with the convention that this is always to be done from the left.

The remaining part of7(7) is spanned by an extra dilatation generaotranslation

generatorsz’/ and the nonlinearly realized generatdié, transforming a€7 and27,
respectively. Unlike forEggg,, there is no need here to distinguish the generators by
the position of their indices, since the corresponding generators are linearly related by
means of the symplectic metric.

The fundamenta7 of Eg(s (on which we are going to realize a nonlinear action of

E7(7)) is given by the traceless antisymmetric teng6r transforming as

G (M) = 25570
A ‘ ) (38)
Gt]kl(Zmn) — 2&461‘)klmn[7q Zpqs

where

Z,’j = Qiijlel = (ZU)* and Q,‘j ZU = U.
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Likewise, the27 representation transforms as

G'j(ZM) =2852",

o o (39)
Gl (Zmn) — _ﬂelj mnqupq.

Because the product of tw&Y’s contains no singlet, there exists no quadratic invariant
of Egs); however, there is a cubic invariant given by

N3(Z):=ZVZ 3 ZM . (40)

We are now ready to give the conformal realization¥ef;) on the 27 dimensional
space spanned by tié . As the action of the linearly realizeth ) subgroup has already
been given, we list only the remaining variations. As befbteacts by translations:

EU(ZHM) = —QilkQlli — 1qii gt (41)
andH by dilatations

H(ZVy =71, (42)
The27 generatorg’/ are realized nonlinearly:

ﬁ'l](zkl) = — Zle(Zkl) + Qi[k Ql]] (Zmnzmn) + % Qlj le (Zmnzmn)
~r - . J o . (43)
+8zkmz, il _Qk(zimQ, . 7).
The norm form needed to define tl#& 7, invariant “light cones” is now constructed
from the cubic invariant oFEg ). ThenN3(X — Y) is manifestly invariant undeEe e,

and under the translations”/ (observe that there is no need to introduce a nonlinear
difference unlike forEg)). UnderH it transforms by a constant factor, whereas under

the action ofF/ we have
FiI(Na(R = 1)) = (R + PHN X = 7). (44)
Thus the light cones iiR?” with base point’
N3(X —Y)=0 (45)

are indeed invariant undd#; 7. They are still curved hypersurfaces, but in contrast to
the Egg light-cones constructed before, they are no longer deformed as one varies the
base point’.

The connection to the Jordan Triple Systems of Appendix A can how be made quite
explicit, and the formulas that we arrive at in this way are completely analogous to the
ones given in the introduction. We first of all notice that we can again define a triple
product in terms of thése) representations; it reads

(X7 2)7 = 16X 2y 7Y 416 2% Ry VY +4 Q11 (RH Ty 27 Q)

46
vij vkl vij vkl Fij vkl ( )
+AXTTM 7 + 4V XM 74y + 2 70 XM,
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This triple product can be used to rewrite the conformal realization. Recalling that a triple
product with identical properties exists for the 27-dimensional Jordan algé)o“r,aNe

now consideZ as an element oIéDS. Next we introduce generators labeled by elements
of Jé@S, and define the variations

Ua(Z) = a,
San(Z) = {ab Z}, (47)
Ue(Z) =—-3{Zc 7},

fora,b,c € JéDS. It is straightforward to check that these reproduce the commutation

relations listed in the introduction with the only difference t}7i§thas been replaced by
Os
J3 k.

Acknowledgements. We are very grateful to R. Kallosh for poignant questions and comments on the first
version of this paper. We would also like to thank B. de Wit and B. Pioline for enlightening discussions.

Appendix A. Jordan Triple Systems

Let us first recall the defining properties of a Jordan algebra. By definition these are
algebras equipped with a commutative (but non-associative) binary prwdbct boa
satisfying the Jordan identity

(aob)oa’?=ao (bod?). (A.1)

A Jordan algebra with such a product defines a so-called Jordan triple system (JTS)
under the Jordan triple product

{abcy=ao(oc)+(@ob)oc—bo(aoc),

where ™ denotes a conjugation i corresponding to the operation T dgnThe triple
product satisfies the identities (which can alternatively be taken as the defining identities
of the triple system)

{abc} ={cba}l,

{abl{cdx}} —{cdf{abx}} —{a{dcb}x}+ {{cda}bx} =0. A-2)

The Tits—Kantor—Koecher (TKK) construction [32,21, 25] associates every JTS with
a 3-graded Lie algebra

g=glogog™, (A.3)
satsifying the formal commutation relations:
o™, o7 =2g°
™. g*'1=0,
[, g7'1=0.

With the exception of the Lie algebrés, F4, andEgevery simple Lie algebrgcan be
given a three graded decomposition with respect to a subalg@fanaximal rank.
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By the TKK construction the elements, of the g*1 subspace of the Lie algebra
are labelled by the elemendse J. Furthermore every such Lie algebgaadmits an
involutive automorphism which maps the elements of the gra¢lé space onto the
elements of the subspace of gradé:

(U, = U, e g~ L. (A.4)
To get a complete set of generatorgjafie define

[Ua, Upl = Sap,

(A.5)
[Sab: Uc] = U{abc}
whereS,;, € g° and{abc} is the Jordan triple product under which the spadeclosed.
The remaining commutation relations are

[Sab, Uc] = f]{bacb

(A.6)
[Sab, Scal = S{abc}d - Sc{bad}a

and the closure of the algebra under commutation follows from the defining identities
of a JTS given above.

The Lie algebra generated By, is called the structure algebra of thgS J, under
which the elements af transform linearly. The traceless elements of this actia$},pf
generate the reduced structure algebra. dthere exist four infinite families of hermitian
JTS’s and two exceptional ones [31,27]. The latter are listed in the table below (where
M; 2(0) denotes Ix 2 matrices over the octonions, i.e. the octonionic plane)

J G H
Mi12(Qs5) | Ege |SO(5,5)

M12(0) | Eg—14) | SO(8,2)
Jgs E7) Ee(6)

0
J3 E7(-25 | E6(-26)

Here we are mainly interested in the real fomﬁs, which corresponds to the split
octonionsO¢ and hasE77) and Ege) as its conformal and reduced structure group,
respectively.

Appendix B. The Quartic E77) Invariant

In the SL(8, R) basisE77y the quartic invariant is given by (18), which we here repeat
for convenience

TR = XUX XM Xy — FXT XXM X
+ %Eijklmnpqxijxklxmnqu (Bl)

1 ij vkl
+%€ijklmnpqxljx xmxed,
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Another very useful form ofE77) makes the maximal compact subgroup (8J
manifest. The fundament&b representation then is spanned by the complex tensors
Z 4 Which are related to the SB, R) basis by [4]

ZA = (Zap)* = r\l/i(Xij — i X))l p. (B-2)
WhereFi{B are the S@3) gamma matrices. In this basis the quartic invariant takes the
form

+ g5 eABCPEECH 7y 7D ZEF ZGH (B.3)

1 AB ,CD 7EF »GH
+ 96 €ABCDEFGHZ""Z-"Z"" Z7".

The precise relaton betwedfo(B) andIf"(g’R) has never been spelled out in the
literature although it is claimed in [4] that they should be proportional. In fact, we have

VO = MR, (B.4)
To prove this claim, one needs the identities

Tr(e Tk ey = — 12887 o7 + 1288 8+ 1286y, 801

— - (B.5)
+96(8) 8" sym F 8e'KImnPa
and
ABCPEFGH Y [l P rle, = — 128125500 + 4857, 8" sym 56
F Eijklmnpq '

where(. . . )sym denotes symmetrization w.r.t. the pairs of indi¢gs3, (i), (mn), (pq),
and the signsg depend on whether the spinor representation or the conjugate spinor
representation of the gamma matrices is used:

l—wijklmnpq — :Feijklmnpq

To see thaf, can assume both positive and negative values it is sufficient to consider
configurations in the S(8) basis of the form [8]

21 0 1
ZAB = ®<_1 O)v (B7)
24

with complex parametets, .. . , z4. For this configuration the quartic invariant becomes
90 =3 (2ol =2 IzalPlzpl? + Az1z0z32a + Ai2hhes. (B.8)
o B>a

Using this formula, one can easily see that both positive and negative values are possible
for Zy:
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i)

i)

ii)

We find positive values fof, when all but one parameter vanish:

IfU(B) = Izll4 >0 for z1#40,z2=23=24=0

Zavanishes when all parameters take the same real (electric) orimaginary (magnetic)
value:

7399 =0 for zy=zp=z23=z4=MoriM, M cR.

This is the example considered in [20] corresponding to maximally BPS black hole
solutions ind = 4, N = 8 supergravity with vanishing entropy and vanishing area
of the horizon.
74 is negative when all parameters take the same complex “dyonic” value. For
instance,

Ifu(s) <0 for 11=Z2=Z3=Z4=1—}2iM, M e R,
corresponding to a maximally BPS multiplet with both eleciimd magnetic
charges.
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