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We investigate the phase diagram of non-perturbative three-dimensional Lorentzian quantum gravity with the

help of Monte Carlo simulations. The system has a first-order phase transition at a critical value k
c

0 of the

bare inverse gravitational coupling constant k0. For k0 > k
c

0 the system reduces to a product of uncorrelated

Euclidean 2d gravity models and has no intrinsic interest as a model of 3d gravity. For k0 < k
c

0, extended three-

dimensional geometries dominate the functional integral despite the fact that we perform a sum over geometries

and no particular background is distinguished at the outset. Furthermore, all systems with k0 < k
c

0 have the same

continuum limit. A different choice of k0 corresponds merely to a redefinition of the overall length scale.

1. INTRODUCTION

We still need to find the theory of quantum

gravity. In [1,2] we have proposed a dynamically
triangulated model of two, three and four dimen-
sional quantum gravity with the following prop-
erties:
(a) Lorentzian space-time geometries (histories)
are obtained by causally gluing sets of Lorentzian
building blocks, i.e. d-dimensional simplices with
simple length assignments;
(b) all histories have a preferred discrete notion
of proper time t; t counts the number of evolution
steps of a transfer matrix between adjacent spa-
tial slices, the latter given by (d−1)-dimensional
triangulations of equilateral Euclidean simplices;
(c) each Lorentzian discrete geometry can be
“Wick-rotated” to a Euclidean one, defined on
the same (topological) triangulation;
(d) at the level of the discretized action, the
“Wick rotation” is achieved by an analytic con-
tinuation in the dimensionless ratio α=−l2t/l2s of
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Research Foundation.
†Supported by KBN grants 2P03B 019 17 and 008 14.
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the squared time- and space-like link length; for
α=−1 one obtains the usual Euclidean action of
dynamically triangulated gravity;
(e) the extreme phases of degenerate geometries
found in the Euclidean models cannot be realized
in the Lorentzian case.

A metric space-time is constructed by “filling
in” for all t the d-dimensional sandwich between
the pair of spatial slices at integer times t and
t + 1. We only consider regular gluings which
lead to simplicial manifolds. In the case of three-
dimensional quantum gravity the basic building
blocks are three types of Lorentzian tetrahedra,
(1): (3,1)-tetrahedra (three vertices contained in
slice t and one vertex in slice t + 1): they have
three space- and three time-like edges; their num-
ber in the sandwich [t, t+1] will be denoted by
N31(t); (2): (1,3)-tetrahedra: the same as above,
but upside-down; the tip of the tetrahedron is at t
and its base lies in the slice t+1; notation N13(t);
(3): (2,2)-tetrahedra: one edge (and therefore two
vertices) at each t and t+1; they have two space-
and four time-like edges; notation N22(t).

Each of these triangulated space-times carries
a causal structure defined by the piecewise flat
Lorentzian metric. Each time-like link is given a
future-orientation in the positive t-direction, so
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that two lattice vertices connected by a sequence
of positively oriented links are causally related.

As mentioned in (d) above, after rotating to
Euclidean signature and choosing α = −1, the
Einstein action becomes identical to the action

SE(N0, N3, T ) = −k0N0 + k3N3 (1)

used in Euclidean dynamical triangulations [3],
where N0 and N3 denote the total numbers of
vertices and tetrahedra in the triangulation. The
dimensionless couplings k0 and k3 have been in-
troduced to conform with the conventions used in
3d Euclidean simplicial quantum gravity. Here k0

is proportional to the bare inverse gravitational
coupling constant, while k3 is a linear combina-
tion of the bare cosmological and inverse gravi-
tational constants. In a slight abuse of language,
we will still refer to k3 as the (bare) cosmologi-
cal constant. We fix the space-time topology to
S1 × S2, where the periodic identification in the
t-direction has been chosen entirely for practical
convenience. The total length of the space-time
in the compactified S1-direction (i.e. the num-
ber of proper-time steps) is denoted by T . The
partition function is thus

Z(k0, k3, T ) =
∑

TT (S1×S2)

e−SE(N0,N3,T ), (2)

where the sum is taken over the class TT (S1×S2)
of triangulations of S1 × S2 specified earlier, for
fixed T . While (2) is similar in structure to the
standard partition function of dynamically tri-
angulated Euclidean gravity, one should bear in
mind that the set of triangulations contributing
in (2) is quite different.

2. THE MONTE CARLO SIMULATION

We explore the phase diagram of the theory de-
fined by the state sum (2) using Monte Carlo sim-
ulations. A 3d triangulation in the sum (2) con-
sists of t successive 2d triangulations. These spa-
tial slices are glued together by filling the space-
time gaps between them with the three types of
building blocks described in the introduction.

A local updating algorithm consisting of five
basic moves changes one such triangulation into
another one, while preserving the constant-time

slice structure. A successive application of these
moves will take us around in the class of trian-
gulation with fixed T . The moves are (see [4] for
more details):
(1): consider two neighbouring triangles in the
spatial t-plane such that the two associated pairs
of tetrahedra above and below the t-plane each
share one triangle. We can perform a standard
“flip” move of the link common to the two tri-
angles in the t-plane and make a corresponding
reassignment of tetrahedra. (2&3): Consider a
triangle in the spatial t-plane and insert a vertex
at its centre. In this way the two neighbouring
tetrahedra sharing the triangle are replaced by six
tetrahedra, three above and three below. There is
an obvious inverse move. (4&5): The fourth move
is the standard Alexander move performed on a
(2,2)-tetrahedron and a (3,1)-tetrahedron shar-
ing a triangle, replacing it by two (2,2)- and one
(3,1)-tetrahedra, and the fifth move is its inverse.
Obviously the (3,1)-tetrahedron could have been
replaced by a (1,3)-tetrahedron in (4&5).

The strategy for the simulations is the usual
one from dynamical triangulations: fine-tune the
cosmological constant to its critical value kc

3(k0)
(which depends on the bare inverse gravitational
coupling constant k0) and keep the fluctuations
of space-time volume bounded within a certain
range. Then measure expectation values of suit-
able observables for these quantum universes.

3. RESULTS

In order to explore the phase diagram of our
regularized model we have to identify an order
parameter, and explore how it changes with the
coupling constant, in this case k0. We have found
that the ratio τ between the total number N22 of
(2,2)-tetrahedra and the total space-time volume

N3 ≡ Ntot = N22 + N31 + N13

serves as an efficient order parameter. In Fig. 1
we show τ as a function of k0. One observes a
rapid drop to zero of τ(k0) around k0 ≈ 6.64.
Increasing N3, the drop becomes a jump, typi-
cal for a first-order phase transition. A detailed
study of the neighbourhood of k0 =6.64 reveals a
hysteresis as one performs a cycle, moving above
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and below the critical value kc
0, again as expected

from a first-order transition.
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Figure 1. The order parameter τ = N22/Ntot

for configurations with T = 64, and N3 = 16, 000
(black curve) and 64,000 (red curve), plotted as
a function of k0.

The phase above kc
0 is of no interest for contin-

uum 3d quantum gravity since one can show that
it is equivalent to an uncorrelated product of 2d
Euclidean gravity models [4].

We now turn to the interesting phase of k0 <
kc
0. Remarkably, we observe here the emergence

of well-defined three-dimensional configurations.
In Fig. 2 we present a snapshot of a configura-
tion of 16,000 tetrahedra for k0 =5.0 and of total
proper-time extent T = 32. It shows the 2d spa-
tial volume as a function of the time t. Follow-
ing the computer-time history of this extended
object, it is clear that although it does indeed
fluctuate, the fluctuations take place around a
three-dimensional object of a well-defined linear
extension. The emergence of a ground state of

extended geometry is a very non-trivial property

of the model, since we never put in any preferred

background geometry by hand. No structures of
this kind have ever been observed in dynamically
triangulated models of Euclidean quantum grav-
ity. It underscores the fact that the Lorentzian
models are genuinely different and affirms our
conjecture that in d ≥ 3 they are less patholog-
ical than their Euclidean counterparts. Let us
denote the typical time-extent of our extended
“universe” by Tu. We will always choose the total

0 5 10 15 20 25 30

Figure 2. Snapshot of the distribution of 2d vol-
umes N31(t) of spatial slices at times t ∈ [0, T ],
with T =32 and k0 =5.0 (kc

0 =6.64).

proper time T sufficiently large, such that Tu < T
for the range of N3 under consideration. Since
both the shape of the universe and its location
along the t-direction fluctuate, we have found it
convenient to measure the correlation function

C(∆) =
1

T 2

T∑

t=1

〈N2s(t)N2s(t + ∆)〉, (3)

where N2s(t)=N13(t)+N31(t)+N22(t), as a func-
tion of the displacement ∆ to determine the scal-
ing of Tu with the space-time volume N3. This
correlator has the advantage of being translation-
invariant in t and allows for a precise measure-
ment by averaging over many independent con-
figurations. From the typical shape of the space-
time configurations we expect C(∆) to be of the
order of the spatial cut-off if ∆ ≫ 2Tb. Fig. 3 il-
lustrates the result of our measurements of C(∆),
with the dots representing the measured values.
The theoretical curve to which we are fitting cor-
responds to a sphere S3 with the radius as a free
parameter. (By S3 we mean the 3d geometry
of constant positive curvature which is a classi-

cal solution of Euclidean gravity with a positive
cosmological constant.) In order to “adapt” the
S3-solution to the topology S1 × S2, we assume
that the standard S3-solution is valid until the
radius r of the S2-slice reaches the spatial cut-
off scale. Beyond this point, the value of r is
frozen to the cut-off value, which we also take
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Figure 3. The correlator C(∆) with T = 64 and
N3 =32, 000. Dots are the measured values (error
bars less than dots), and the curve is fitted from
the sphere solution described in the text.

as a free parameter. For this “spherical” geom-
etry we then perform the integral (the sum) in
(3), without the average 〈·〉. As is evident from
Fig. 3, the volume distribution associated with
this fixed geometry gives a rather good fit to our
data. This provides some evidence that we can
ignore the quantum average implied by 〈·〉, and
that our universes behave semi-classically, at least

as far as their macroscopic geometric properties

are concerned. We should mention that our “S3-
solution” is not singled out uniquely, since the
choice of a Gaussian shape in the t-direction gives
a fit of comparable quality.

For various space-time volumes N3 (typically
8, 16, 32 and 64k) we have determined the radius
RS3 of S3 from the fits to the measured C(∆).
From this, we have finally found α = 0.34 ± 0.02
as the best exponent in the scaling relation

RS3(N3) = Nα
3 . (4)

The same value is obtained using other ways to
extract Tu, lending additional support to the gen-
uinely three-dimensional nature of our universes.

Another important result concerns the relation
between the geometries of different k0, in the
phase where k0 < kc

0. In the numerical simu-
lations we have observed the following: (i) the
distributions as functions of t can be made to
coincide for different k0 by rescaling the time,

t → fti(k0)t or at → fti(k0)at, where at is the
link length in time direction. (ii) The distribu-
tions measured in the spatial slices from inside

the universe can be made to coincide for dif-
ferent k0 by rescaling the spatial link distance
as → fsp(k0)as, where as is the length of the
spatial links. This is illustrated in Fig. 4 for the
distributions of 2d volumes V (l) of spatial spher-
ical shells of (link) radius l, measured for various
values of k0. (iii) Within the numerical accuracy
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Figure 4. The 2d volume V (l) of spatial spherical
shells, measured only on slices inside the spherical
universe, for various k0 and rescaled, using the
seemingly unrelated scaling obtained by applying
the same philosophy to the correlator C(∆).

we find that fti(k0) = fsp(k0).
We conclude that apart from the overall length

scale of the universe, set by the bare inverse grav-
itational coupling k0, the physics is the same for

all values k0 below kc
0.
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These pages provide you with an example of the layout and style for 100% reproduction which we wish you to

adopt during the preparation of your paper. This is the output from the LATEX document class you requested.

1. FORMAT

Text should be produced within the dimensions
shown on these pages: each column 7.5 cm wide
with 1 cm middle margin, total width of 16 cm
and a maximum length of 20.2 cm on first pages
and 21 cm on second and following pages. The
LATEX document class uses the maximal stipu-
lated length apart from the following two excep-
tions (i) LATEX does not begin a new section di-
rectly at the bottom of a page, but transfers the
heading to the top of the next page; (ii) LATEX
never (well, hardly ever) exceeds the length of the
text area in order to complete a section of text or
a paragraph. Here are some references: [1,2].

1.1. Spacing

We normally recommend the use of 1.0 (sin-
gle) line spacing. However, when typing com-
plicated mathematical text LATEX automatically
increases the space between text lines in order
to prevent sub- and superscript fonts overlapping
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one another and making your printed matter il-
legible.

1.2. Fonts

These instructions have been produced using
a 10 point Computer Modern Roman. Other
recommended fonts are 10 point Times Roman,
New Century Schoolbook, Bookman Light and
Palatino.

2. PRINTOUT

The most suitable printer is a laser printer. A
dot matrix printer should only be used if it pos-
sesses an 18 or 24 pin printhead (“letter-quality”).

The printout submitted should be an original;
a photocopy is not acceptable. Please make use
of good quality plain white A4 (or US Letter)
paper size. The dimensions shown here should be

strictly adhered to: do not make changes to these

dimensions, which are determined by the docu-

ment class. The document class leaves at least
3 cm at the top of the page before the head, which
contains the page number.

Printers sometimes produce text which con-
tains light and dark streaks, or has considerable
lighting variation either between left-hand and
right-hand margins or between text heads and
bottoms. To achieve optimal reproduction qual-
ity, the contrast of text lettering must be uniform,
sharp and dark over the whole page and through-
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out the article.
If corrections are made to the text, print com-

pletely new replacement pages. The contrast on
these pages should be consistent with the rest
of the paper as should text dimensions and font
sizes.

3. TABLES AND ILLUSTRATIONS

Tables should be made with LATEX; illustra-
tions should be originals or sharp prints. They
should be arranged throughout the text and
preferably be included on the same page as they

are first discussed. They should have a self-
contained caption and be positioned in flush-
left alignment with the text margin within the
column. If they do not fit into one column
they may be placed across both columns (us-
ing \begin{table*} or \begin{figure*} so that
they appear at the top of a page).

3.1. Tables

Tables should be presented in the form shown
in Table 1. Their layout should be consistent
throughout.

Horizontal lines should be placed above and be-
low table headings, above the subheadings and at
the end of the table above any notes. Vertical
lines should be avoided.

If a table is too long to fit onto one page,
the table number and headings should be re-
peated above the continuation of the table. For
this you have to reset the table counter with
\addtocounter{table}{-1}. Alternatively, the
table can be turned by 90◦ (‘landscape mode’)
and spread over two consecutive pages (first
an even-numbered, then an odd-numbered one)
created by means of \begin{table}[h] without
a caption. To do this, you prepare the table as
a separate LATEX document and attach the tables
to the empty pages with a few spots of suitable
glue.

3.2. Useful table packages

Modern LATEX comes with several packages for
tables that provide additional functionality. Be-
low we mention a few. See the documentation
of the individual packages for more details. The
packages can be found in LATEX’s tools directory.
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Table 1
The next-to-leading order (NLO) results without the pion field.

Λ (MeV) 140 150 175 200

rd (fm) 1.973 1.972 1.974 1.978

Qd (fm2) 0.259 0.268 0.287 0.302

PD (%) 2.32 2.83 4.34 6.14

µd 0.867 0.864 0.855 0.845

MM1 (fm) 3.995 3.989 3.973 3.955

MGT (fm) 4.887 4.881 4.864 4.846

δVP
1B (%) −0.45 −0.45 −0.45 −0.45

δC2:C
1B (%) 0.03 0.03 0.03 0.03

δC2:N
1B (%) −0.19 −0.19 −0.18 −0.15

The experimental values are given in ref. [4].

array Various extensions to LATEX’s array and
tabular environments.

longtable Automatically break tables over sev-
eral pages. Put the table in the longtable

environment instead of the table environ-
ment.

dcolumn Define your own type of column.
Among others, this is one way to obtain
alignment on the decimal point.

tabularx Smart column width calculation
within a specified table width.

rotating Print a page with a wide table or
figure in landscape orientation using the
sidewaystable or sidewaysfigure envi-
ronments, and many other rotating tricks.
Use the package with the figuresright op-
tion to make all tables and figures rotate
in clockwise. Use the starred form of the
sideways environments to obtain full-width
tables or figures in a two-column article.

3.3. Line drawings

Line drawings should be drawn in India ink
on tracing paper with the aid of a stencil or
should be glossy prints of the same; computer pre-
pared drawings are also acceptable. They should
be attached to your manuscript page, correctly
aligned, using suitable glue and not transparent

tape. When placing a figure at the top of a page,

the top of the figure should be at the same level
as the bottom of the first text line.

All notations and lettering should be no less
than 2 mm high. The use of heavy black, bold
lettering should be avoided as this will look un-
pleasantly dark when printed.

3.4. PostScript figures

Instead of providing separate drawings or
prints of the figures you may also use Post-
Script files which are included into your LATEX
file and printed together with the text. Use
one of the packages from LATEX’s graphics di-
rectory: graphics, graphicx or epsfig, with
the \usepackage command, and then use the
appropriate commands (\includegraphics or
\epsfig) to include your PostScript file.

The simplest command is:
\includegraphics{file}, which inserts the
PostScript file file at its own size. The starred
version of this command:
\includegraphics*{file}, does the same, but
clips the figure to its bounding box.

With the graphicx package one may spec-
ify a series of options as a key–value list, e.g.:
\includegraphics[width=15pc]{file}

\includegraphics[height=5pc]{file}

\includegraphics[scale=0.6]{file}

\includegraphics[angle=90,width=20pc]{file}

See the file grfguide, section “Including
Graphics Files”, of the graphics distribution for
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all options and a detailed description.
The epsfig package mimicks the commands fa-

miliar from the package with the same name in
LATEX2.09. A PostScript file file is included with
the command \psfig{file=file}.

Grey-scale and colour photographs cannot be
included in this way, since reproduction from the
printed CRC article would give insufficient typo-
graphical quality. See the following subsections.

Figure 1. Good sharp prints should be used and
not (distorted) photocopies.

Figure 2. Remember to keep details clear and
large enough.

3.5. Black and white photographs

Photographs must always be sharp originals
(not screened versions) and rich in contrast.
They will undergo the same reduction as the text
and should be pasted on your page in the same
way as line drawings.

3.6. Colour photographs

Sharp originals (not transparencies or slides)
should be submitted close to the size expected
in publication. Charges for the processing and
printing of colour will be passed on to the
author(s) of the paper. As costs involved are per
page, care should be taken in the selection of size
and shape so that two or more illustrations may
be fitted together on one page. Please contact
the Technical Editor in the Camera-Ready Pub-
lications Department at Elsevier for a price quo-
tation and layout instructions before producing
your paper in its final form.

4. EQUATIONS

Equations should be flush-left with the text
margin; LATEX ensures that the equation is pre-
ceded and followed by one line of white space.
LATEX provides the package fleqn to get the
flush-left effect.

Hαβ(ω) = E(0)
α (ω)δαβ + 〈α|Wπ |β〉 (1)

You need not put in equation numbers, since
this is taken care of automatically. The equation
numbers are always consecutive and are printed
in parentheses flush with the right-hand margin
of the text and level with the last line of the equa-
tion. For multi-line equations, use the eqnarray

environment. For complex mathematics, use the
AMS-LATEX package.
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