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Abstract

Fruitful ideas on how to quantize gravity are few and far between. In this
paper, we give a complete description of a recently introduced non-perturbative
gravitational path integral whose continuum limit has already been investigated
extensively in d < 4, with promising results. It is based on a simplicial regulari-
zation of Lorentzian space-times and, most importantly, possesses a well-defined,
non-perturbative Wick rotation. We present a detailed analysis of the geometric
and mathematical properties of the discretized model in d = 3, 4. This includes
a derivation of Lorentzian simplicial manifold constraints, the gravitational actions
and their Wick rotation. We define a transfer matrix for the system and show that
it leads to a well-defined self-adjoint Hamiltonian. In view of numerical simulations,
we also suggest sets of Lorentzian Monte Carlo moves. We demonstrate that certain
pathological phases found previously in Euclidean models of dynamical triangula-
tions cannot be realized in the Lorentzian case.

1address from Sept ‘01: Institute for Theoretical Physics, Utrecht University, Minnaertgebouw,
Leuvenlaan 4, NL-3584 CE Utrecht
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1 Introduction

Despite an ever-increasing arsenal of sophisticated mathematical machinery, the non-
perturbative quantization of gravity remains an elusive goal to theorists. Although
seemingly negligible in most physical situations, quantum-gravitational phenomena
may well provide a key to a more profound understanding of nature. Unfortunately,
the entanglement of technical problems with more fundamental issues concerning
the structure of a theory of quantum gravity often makes it difficult to pinpoint why
any particular quantization program has not been successful.

The failure of perturbative methods to define a fundamental theory that includes
gravity has led to alternative, non-perturbative approaches which seek to describe
the quantum dynamics of gravity on the mother of all spaces, the “space of geome-
tries”. By a “geometry” we mean a space-time with Lorentzian metric properties.
Classically, such space-times usually come as smooth manifolds M equipped with a
metric tensor field gµν(x). Since any two such metrics are physically equivalent if
they can be mapped onto each other by a diffeomorphism of M , the physical degrees
of freedom are precisely the “geometries”, namely, the equivalence classes of metrics
with respect to the action of Diff(M).

In what follows, we will describe a path-integral approach to quantum gravity
that works much more directly with the “geometries” themselves, without using
coordinates2. It is related in spirit to other constructions based on simplicial “Regge”
geometries [3], in particular, the method of dynamical triangulations [4, 5] (see [6]
for a comparison and critical appraisal of various discrete approaches to 4d quantum
gravity). Its main aim is to construct an interacting quantum theory of gravity in
four dimensions as the continuum limit of a well-defined statistical mechanics model
of regularized gravitational field configurations. The formal continuum path integral
for gravity is represented by a discrete sum over inequivalent triangulations T ,

Z =

∫

Metrics
Diff

Dg eiS[g] →֒ Z =
∑

T

m(T ) eiS(T ), (1)

where m(T ) is a measure on the space of discrete geometries. Unlike previous
approaches, we use a space of piecewise linear Lorentzian space-times as our starting
point. That this procedure is in general inequivalent to path integrals over bona
fide Euclidean geometries has already been demonstrated in two dimensions [7, 8].

The reason why previous discrete path-integral approaches have been formu-
lated for Euclidean gravity3 is often a technical one, rather than the conviction that
Euclidean space-times are more fundamental physical quantities than Lorentzian

2There is no residual gauge invariance since the state sum is taken over inequivalent discretized
geometries. In this sense, the formalism is manifestly diffeomorphism-invariant. In Euclidean
2d quantum gravity, there is ample evidence that this procedure is equivalent to a gauge-fixed
continuum formulation, see [1, 2] for reviews.

3Euclidean gravity is the theory with (minus the) action (2) below, where the Lorentz metric
gµν has been substituted by a Riemannian metric geucl

µν
with positive-definite signature.
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ones (after all, a phenomenon like black holes is intimately related to the causal,
Lorentzian structure). The corresponding real weight factors e−Seucl

are then used
in Monte Carlo simulations, and also usually necessary (though not sufficient) for a
convergence of the non-perturbative state sums.

The problem with nonperturbative Euclidean quantum gravity is two-fold. First,
to our knowledge and aside from our own proposal, no Wick rotation on the space of
all geometries has ever been constructed in a path-integral context, leaving unclear
its relation with the physical theory of Lorentzian gravity. Although it is logically
possible that a natural Wick rotation may suggest itself once the Euclidean quantum
theory has been solved, there is so far no convincing evidence (in dimension four)
that a non-trivial continuum theory exists. This is the second problem of Euclidean
quantum gravity. These conclusions seem to hold for a wide variety of approaches,
including those based on gauge-theoretic instead of geometric variables [6].

Our alternative proposal consists in taking the Lorentzian structure seriously
from the outset, using a well-defined Wick rotation on the full, regularized path
integral (1), performing all calculations, simulations and continuum limits in the
“Euclidean sector”, and finally rotating back the results. As mentioned above, this
program has been carried out successfully and completely explicitly in d = 2 [7].
Another lesson from two-dimensional quantum gravity is that the Lorentzian and
Euclidean theories will in general be inequivalent, even if one can Wick-rotate the
final propagator of the Euclidean theory, in this case, of the Euclidean Liouville
theory (see [9] for an overview of 2d Lorentzian results). Although we do not wish
to exclude the possibility that interesting theories of Euclidean quantum gravity in
higher dimensions exist, there seems to be a shortage of ideas of how to modify
current models to lead to an interesting continuum behaviour [10].

The apparent inequivalence of our Lorentzian proposal makes it a promising and
genuinely new candidate for a theory of quantum gravity. More concretely, the
geometric constraints which are a natural consequence of the causal structure act
as a “regulator” for the path integral, suppressing the types of highly degenerate
geometries that seem to be related to the failure to date of the Euclidean approaches,
be they gauge-theoretic [11], of Regge type [12], or dynamically triangulated [13],
to produce any convincing evidence of interesting continuum physics4. This issue is
discussed further in Sec. 8 below.

In our construction, we mostly use conventional tools from quantum field theory
and the theory of critical phenomena applied to a diffeomorphism-invariant theory.
However, it does not take much to realize that general coordinate invariance cannot
be accomodated by merely making minor changes in the standard QFT formalism.
Almost all methods of regularizing and renormalizing make use of a fixed metric
background structure (usually that of flat Minkowski space), albeit often in an im-
plicit way. By contrast, in a non-perturbative formulation of quantum gravity the

4In Euclidean quantum Regge calculus, an unusual prescription has recently been suggested
to work around the problem of degenerate geometries at weak gravitational coupling [14]: the
continuum limit is to be reached by an analytic continuation from the strong-coupling phase.
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metric degrees of freedom are dynamical and initially all on the same footing. A
“ground state of geometry” should only emerge as a solution to the quantum equa-
tions of motion, much in the same way as a classical physical space-time is the result
of solving the classical Einstein equations.

As indicated in (1), our path integral will be given as a sum over discretized
Lorentzian geometries (for given boundary data), each weighed with eiS, where S
is the Regge version of the classical Lorentzian gravitational action in d space-time
dimensions (d = 3, 4),

S[gµν ] =
k

2

∫

M

ddx
√

− det g (R − 2Λ) + k

∫

∂M

dd−1x
√

det h K, (2)

with k−1 = 8πGNewton and the cosmological constant Λ. We have included a stan-
dard boundary term depending on the induced metric hij on the boundary and its
extrinsic curvature Kij . In order to make the state sum well-defined, we use a non-
perturbative Wick rotation on the discretized geometries to convert the oscillating
amplitudes into real Boltzmann factors e−Seucl

. It can then be shown that the en-
tire non-perturbative state sum converges for suitable choices of the bare coupling
constants, even in the infinite-volume limit.

It should be emphasized that our construction is intrinsically quantum. The
formalism of dynamical triangulations is not well suited for approximating smooth
classical space-times, because it lacks the notion of an infinitesimal smooth variation
of its field variables5. This would be required if we wanted to evolve the classical
Einstein equations numerically, say. It by no means disqualifies the method from
use in the quantum theory. There, one is faced with the problem of having to ap-
proximate “ergodically” the space of all geometries, whereas in classical applications
one is usually interested in approximating individual, smooth geometries (often so-
lutions to the equations of motion). One can compare this situation to the Feynman
path integral for a non-relativistic particle, which can be obtained as the continuum
limit of a sum over piecewise linear trajectories. Although the final state sum is
dominated by nowhere differentiable (and therefore highly non-classical) paths, this
is no obstacle to retrieving (semi-)classical information about the system from the
expectation values of suitable observables.

Most of the results presented below were already announced in [15], where also
some of the 3d formulas were given explicitly. Our account here is comprehensive
in that we give all relevant calculations in both three and four dimensions.

We start by a brief description of how to obtain Lorentzian space-times by gluing
together flat simplicial Minkowskian building blocks. We compute their volumes and
dihedral angles as functions of α, where −α denotes the squared (geodesic) length
of one-dimensional time-like edges, and the space-like edge lengths are fixed to 1.
In the next section, we derive some topological identities among the bulk numbers

5This is different from the situation in (quantum) Regge calculus, where continuous changes in
the edge length variables are allowed.
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Ni, i = 1, . . . , d of simplices of dimension i. These generalize the Euler and Dehn-
Sommerville identities to the Lorentzian situation where we distinguish between the
space- and time-like character of the building blocks. These identities are used in
the next section, where the gravitational actions are computed as functions of α,
and where we demonstrate how the corresponding Euclidean actions are obtained
by a suitable analytic continuation of α to negative real values.

With these ingredients in hand, we define the transfer matrix of the regularized
model in Sec. 5, together with the Hilbert space it acts on. Some important prop-
erties of the transfer matrix are proved in Sec. 6, which ensure the existence of a
well-defined Hamiltonian. Paving the way for numerical simulations of the model, we
discuss possible sets of geometric Monte Carlo moves in Sec. 7. Using these moves,
one can understand certain “extreme” regions of the kinematical phase space. We
show in Sec. 8 that the regions of highly degenerate geometries of Euclidean quan-
tum gravity cannot be reached by Lorentzian dynamical triangulations. We end
with a summary of current achievements and an outlook on the potential applica-
tions of discrete Lorentzian gravity. The two appendices contain a brief reminder of
some properties of Lorentzian angles and a proof of link-reflection positivity of 2d
Lorentzian gravity.

2 Discrete Lorentzian space-times

Our first task will be to define which discrete Lorentzian geometries T contribute to
the sum in the path integral (1). They are a straightforward generalization of the
space-time histories used in two dimensions, and have already been described [15]
and used [16] in three dimensions.

Briefly, they can be characterized as “globally hyperbolic” d-dimensional sim-
plicial manifolds with a sliced structure, where (d−1)-dimensional “spatial hyper-
surfaces” (i.e. Euclidean (d−1)-dimensional equilaterally triangulated manifolds)
of fixed topology are connected by suitable sets of d-dimensional simplices. As a
concession to causality, we do not allow the spatial slices to change topology. There
is a preferred notion of a discrete “time”, namely, the parameter labelling successive
spatial slices. Note that this has nothing to do with a gauge choice, since we were
not using coordinates in the first place. This “proper time” is simply part of the
invariant geometric data common to each of the Lorentzian geometries.

We choose particular sets of simplicial building blocks in three and four dimen-
sions. Unlike in the Euclidean case, we cannot make the simplest possible choice of
making all d-simplices equilateral. Instead, we fix all spatial (squared) link lengths
to 1, l2space = 1, and all time-like links to have a squared length l2time = −α, α > 0.
Keeping α variable allows for a relative scaling of space- and time-like lengths and
is convenient when discussing the Wick rotation later. As usual, the simplices are
taken to be pieces of flat Minkowski space, and a simplicial manifold acquires non-
trivial curvature through the way the individual building blocks are glued together.
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For simplicity, we have set the “lattice spacing” a, which defines a diffeomorphism-
invariant cutoff for our model, equal to 1. (In general, we should have written
l2space =a2 and l2time =−αa2. The correct dependence on a in the formulae below can
be inferred from dimensional considerations.)

As usual in the study of critical phenomena, we expect the final continuum the-
ory (if it exists) to be largely independent of the details of the chosen discretization6.
Our choice of building blocks is simple and allows for a straightforward Wick rota-
tion. However, other types of fundamental building blocks may sometimes be more
convenient. For example, a combination of pyramids and tetrahedra is used in [19]
in a three-dimensional context. In general, one should be careful not to restrict the
local curvature degrees of freedom too much. With our choice of building blocks,
the (discretized) local curvatures around given bones (simplices of dimension d−2)
can always take both positive and negative values.

We will now go on to compute the volumes and dihedral angles of the d-dimen-
sional Minkowskian simplices, because they are needed in the gravitational Regge
action in dimension d. All (Lorentzian) volumes in any dimension we will be using
are by definition real and positive. Formulas for Euclidean volumes and dihedral
angles can be derived from elementary geometric arguments and may be found in
many places in the literature [20]. They may be continued to Lorentzian geometries
by taking suitable care of factors of i and −1. We will follow Sorkin’s treatment
and conventions for the Lorentzian case [21]. (Some basic facts about Lorentzian
angles are summarized in Appendix 1). The dihedral angles Θ are chosen such that
0 ≤ ReΘ ≤ π, so giving sin Θ and cos Θ fixes them uniquely. The angles are in
general complex, but everything can be arranged so that the action comes out real
in the end, as we shall see.

A further ingredient needed in the calculations are the volumes of lower-dimen-
sional simplices. By convention, we have Vol(point)= 1. For the one-dimensional
links,

Vol(space-like link) = 1 and Vol(time-like link) =
√

α. (3)

Also for the triangles, we must distinguish between space- and time-like. The former
lie entirely in planes t=const whereas the latter extrapolate between two such slices.
Their respective volumes are

Vol(space-like triangle) =
√

3
4

and Vol(time-like triangle) = 1
4

√
4α + 1. (4)

2.1 Geometry of three-simplices

The simplices of top-dimension are tetrahedra, of which (up to reflection symmetry)
there are two types, (3,1) and (2,2). Starting with the former (Fig. 1a), one computes

Vol(3, 1) =
1

12

√
3α + 1. (5)

6In dimension two, this has already been shown for both the Euclidean [17] and the Lorentzian
[18] theories.

6



(a) (b)

Figure 1: A (3,1)- and a (2,2)-tetrahedron in three dimensions.

The dihedral angle around any of the space-like bones is given by

cos Θ(3,1) = − i√
3
√

4α + 1
, sin Θ(3,1) =

2
√

3α + 1√
3
√

4α + 1
, (6)

and around a time-like bone by

cos Θ(3,1) =
2α + 1

4α + 1
, sin Θ(3,1) =

2
√

α
√

3α + 1

4α + 1
. (7)

For the (2,2)-tetrahedra (Fig. 1b) one finds

Vol(2, 2) =
1

6
√

2

√
2α + 1. (8)

The dihedral angle around a space-like bone is fixed by

cos Θ(2,2) =
4α + 3

4α + 1
, sin Θ(2,2) = −i

2
√

2
√

2α + 1

4α + 1
, (9)

and that around a time-like bone by

cos Θ(2,2) = − 1

4α + 1
, sin Θ(2,2) =

2
√

2α
√

2α + 1

4α + 1
. (10)

2.2 Geometry of four-simplices

In d = 4 there are up to reflection symmetry two types of four-simplices, (4,1) and
(3,2). In addition to the volumes computed above, we now also need the volumes
of equilateral tetrahedra that lie entirely in slices t = const, given by Vol(space-
like tetrahedron)= 1

6
√

2
. For the volume of the simplices of type (4,1), Fig. 2a, one

computes

Vol(4, 1) =
1

96

√
8α + 3. (11)

A (4,1)-simplex contributes to the curvature with two types of dihedral angles
(of which there are a total of 10 per simplex), depending on whether the parallel
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(a) (b)

Figure 2: A (4,1)- and a (3,2)-tetrahedron in four dimensions.

transport is taken around a space- or a time-like triangle. There are six of the
former, each contributing a dihedral angle determined by

cos Θ(4,1) = − i

2
√

2
√

3α + 1
, sin Θ(4,1) =

√

3(8α + 3)

8(3α + 1)
, (12)

and similarly for the angle around time-like triangles,

cos Θ(4,1) =
2α + 1

2(3α + 1)
, sin Θ(4,1) =

√
4α + 1

√
8α + 3

2(3α + 1)
. (13)

As in the three-dimensional case (6) above, the trigonometric functions (12) are
complex, with a constant real part equal to π/2, whereas (13) for the Euclidean
angles are real.

The other type of four-simplex is the (3,2)-simplex, see Fig. 2b. Its volume is
given by

Vol(3, 2) =
1

96

√
12α + 7. (14)

As for the dihedral angles, the situation is slightly more involved. Of the ten angles
contributing per four-simplex there is exactly one around a space-like triangle, with

cos Θ(3,2) =
6α + 5

2(3α + 1)
, sin Θ(3,2) = −i

√
3
√

12α + 7

2(3α + 1)
, (15)

which are purely imaginary. There are two varieties of angles around time-like
triangles. If the angle Θ is formed by two three-dimensional “faces” that are both
tetrahedra of type (2,2), one has

cos Θ(3,2) =
4α + 3

4(2α + 1)
, sin Θ(3,2) =

√

(4α + 1)(12α + 7)

4(2α + 1)
. (16)

By contrast, if the two tetrahedra involved are a pair of a (3,1) and a (2,2), the
angle between them is defined by

cos Θ(3,2) =
−1

2
√

2
√

2α + 1
√

3α + 1
, sin Θ(3,2) =

√

(4α + 1)(12α + 7)

2
√

2
√

2α + 1
√

3α + 1
. (17)
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3 Topological identities for Lorentzian triangula-

tions

In this section we derive some important linear relations among the “bulk” variables
Ni, i = 0, . . . , d which count the numbers of i-dimensional simplices in a given d-
dimensional Lorentzian triangulation. Such identities are familiar from Euclidean
dynamically triangulated manifolds (see, for example, [22, 23]). The best-known of
them is the Euler identity

χ = N0 − N1 + N2 − N3 + . . . , (18)

for the Euler characteristic χ of a simplicial manifold with or without boundary. For
our purposes, we will need refined versions where the simplices are distinguished by
their Lorentzian properties. The origin of these relations lies in the simplicial mani-
fold structure. They can be derived in a systematic way by establishing relations
among simplicial building blocks in local neighbourhoods and by summing them
over the entire triangulation. Our notation for the numbers Ni is

N0 = number of vertices

NTL
1 = number of time-like links

NSL
1 = number of space-like links

NTL
2 = number of time-like triangles

NSL
2 = number of space-like triangles

NTL1
3 ≡ N

(3,1)
3 = number of time-like (3,1)- and (1,3)-tetrahedra

NTL2
3 ≡ N

(2,2)
3 = number of time-like (2,2)-tetrahedra

NSL
3 = number of space-like tetrahedra

NTL1
4 ≡ N

(4,1)
4 = number of time-like (4,1)- and (1,4)-simplices

NTL2
4 ≡ N

(3,2)
4 = number of time-like (3,2)- and (2,3)-simplices. (19)

3.1 Identities in 2+1 dimensions

We will be considering compact spatial slices (2)Σ, and either open or periodic bound-
ary conditions in time-direction. The relevant space-time topologies are therefore
I × (2)Σ (with an initial and a final spatial surface) and S1 × (2)Σ. Since the latter
results in a closed three-manifold, its Euler characteristic vanishes. From this we
derive immediately that

χ(I × (2)Σ) = χ((2)Σ). (20)

(Recall also that for closed two-manifolds with g handles, we have χ = 2 − 2g, for
example, χ(S2) = 2 for the two-sphere.)

Let us for simplicity consider the case of periodic boundary conditions. A three-
dimensional closed triangulation is characterized by the seven numbers N0, NSL

1 ,
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NTL
1 , NSL

2 , NTL
2 , N

(3,1)
3 and N

(2,2)
3 . Two relations among them are directly inherited

from the Euclidean case, namely,

N0 − NSL
1 − NTL

1 + NSL
2 + NTL

2 − N
(3,1)
3 − N

(2,2)
3 = 0, (21)

NSL
2 + NTL

2 = 2(N
(3,1)
3 + N

(2,2)
3 ). (22)

Next, since each space-like triangle is shared by two (3,1)-tetrahedra, we have

N
(3,1)
3 =

4

3
NSL

1 . (23)

Lastly, from identities satisfied by the two-dimensional spatial slices, one derives

NSL
1 =

3

2
NSL

2 , (24)

N0 = χ((2)Σ)t +
1

2
NSL

2 , (25)

where we have introduced the notation t for the number of time-slices in the trian-
gulation.

We therefore have five linearly independent conditions on the seven variables Ni,
leaving us with two “bulk” degrees of freedom, a situation identical to the case of
Euclidean dynamical triangulations. (The variable t does not have the same status
as the Ni, since it scales (canonically) only like a length, and not like a volume.)

3.2 Identities in 3+1 dimensions

Here we are interested in four-manifolds which are of the form of a product of a
compact three-manifold (3)Σ with either an open interval or a circle, that is I × (3)Σ
or S1 × (3)Σ. (Note that because of χ((3)Σ) = 0, we have χ(I × (3)Σ) = χ(S1 × (3)Σ).
An example is χ(S1 × T 3) ≡ χ(T 4) = 0.) In four dimensions, we need the entire
set (19) of ten bulk variables Ni. Let us again discuss the linear constraints among
them for the case of periodic boundary conditions in time.

There are three constraints which are inherited from the Dehn-Sommerville con-
ditions for general four-dimensional triangulations [22, 23],

N0 − NSL
1 − NTL

1 + NSL
2 + NTL

2 − NSL
3 − NTL1

3 − NTL2
3 + NTL1

4 + NTL2
4 = χ,

2(NSL
1 +NTL

1 ) − 3(NSL
2 +NTL

2 ) + 4(NSL
3 +NTL1

3 +NTL2
3 ) − 5(NTL1

4 +NTL2
4 ) = 0,

5(NTL1
4 + NTL2

4 ) = 2(NSL
3 + NTL1

3 + NTL2
3 ). (26)

The remaining constraints are special to the sliced, Lorentzian space-times we are
using. There are two which arise from conditions on the space-like geometries alone
(cf. (21), (22)),

N0 − NSL
1 + NSL

2 − NSL
3 = 0,

NSL
2 = 2NSL

3 . (27)

10



Furthermore, since each space-like tetrahedron is shared by a pair of a (4,1)- and a
(1,4)-simplex,

2NSL
3 = N

(4,1)
4 , (28)

and since each time-like tetrahedron of type (2,2) is shared by a pair of (3,2)-
simplices, we have

2NTL2
3 = 3N

(3,2)
4 . (29)

In total, these are seven constraints for ten variables. This is to be contrasted
with the case of Euclidean triangulations, where there are only two bulk variables.
With the help of the results of Sec. 8 below, one can convince oneself that there are
no further linear constraints in the Lorentzian case. Taking NTL

2 , N
(4,1)
4 and N

(3,2)
4

as the three remaining variables, it is straightforward to verify that a relation of the
form

αNTL
2 + βN

(4,1)
4 + γN

(3,2)
4 + δ = 0 (30)

is not compatible with the Monte Carlo moves, (82)-(85), unless α=β =γ=δ=0.

4 Actions and the Wick rotation

We are now ready to construct the gravitational actions of Lorentzian dynamical
triangulations explicitly. We will investigate their behaviour in the complex α-plane
and show that – subject to a dimension-dependent lower bound on α – the map

α 7→ −α, α >
1

2
(d = 3), α >

7

12
(d = 4), (31)

where α is continued through the lower half of the complex plane, defines a non-
perturbative Wick rotation from Lorentzian to Euclidean discrete geometries. Under
this map, the weights in the partition function transform according to

eiS 7→ e−Seucl

. (32)

For the special case α = −1, the usual expressions for the actions used in equilateral
Euclidean dynamical triangulations are reproduced.

4.1 Gravitational action in three dimensions

The Regge analogue of the continuum action (2) in d=3 is given by (c.f. [21])

S(3) = k
∑

space−like

l

Vol(l)
1

i
(2π −

∑

tetrahedra
at l

Θ) + k
∑

time−like
l

Vol(l) (2π −
∑

tetrahedra
at l

Θ)

−λ
∑

(3,1)&(1,3)−

tetrahedra

Vol(3, 1) − λ
∑

(2,2)−

tetrahedra

Vol(2, 2), (33)
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where we have now set λ = kΛ. Performing the sums, and taking into account how
many tetrahedra meet at the individual links, one can re-express the action as a
function of the bulk variables N1 and N3, namely,

S(3) = k

(

2π

i
NSL

1 − 2

i
N

(2,2)
3 arcsin

−i 2
√

2
√

2α + 1

4α + 1
− 3

i
N

(3,1)
3 arccos

−i√
3
√

4α + 1

)

+k
√

α

(

2πNTL
1 − 4N

(2,2)
3 arccos

−1

4α + 1
− 3N

(3,1)
3 arccos

2α + 1

4α + 1

)

−λ

(

N
(2,2)
3

1

12

√
4α + 2 + N

(3,1)
3

1

12

√
3α + 1

)

. (34)

Our choice for the inverse trigonometric functions with imaginary argument from
(6), (9), avoids branch-cut ambiguities for real, positive α. Despite its appearance,
the action (34) is real in the relevant range α > 0, as can be seen by applying
elementary trigonometric identities and the relation (23). The final result for the
Lorentzian action can be written as a function of three bulk variables (c.f. Sec. 3),

for example, NTL
1 , N

(3,1)
3 and N

(2,2)
3 , as

S(3) = 2πk
√

αNTL
1

+ N
(3,1)
3

(

−3k arcsinh
1√

3
√

4α + 1
− 3k

√
α arccos

2α + 1

4α + 1
− λ

12

√
3α + 1

)

+ N
(2,2)
3

(

2k arcsinh
2
√

2
√

2α + 1

4α + 1
− 4k

√
α arccos

−1

4α + 1
− λ

12

√
4α + 2

)

.

(35)

Since we are interested in continuing this action to the Euclidean sector where
α is real and negative, we need to understand the properties of (35) in the complex
α-plane. For general α (and assuming k and λ real and arbitrary), S(3)(α) takes
complex values. There are two special cases: (i) for α ∈ IR, α ≥ 0, the entire action
is real – this is simply the Lorentzian case considered above; (ii) for α ∈ IR, α ≤ −1

2
,

the expression (35) is purely imaginary and we will see that it coincides with iSeucl.
The reason for the non-trivial upper bound of −1

2
are the triangle inequalities for

Euclidean signature. It is easy to verify that as the positive Euclidean squared
length −α becomes shorter, the (2,2)-tetrahedral building blocks degenerate first,
at −α = 1

2
, followed by the (3,1)-tetrahedra at −α = 1

3
. Therefore, if for fixed α we

adopt α 7→ −α as prescription for a Wick rotation, we should confine ourselves to
values |α| > 1

2
.

Because of the appearance of square roots in the action (35), there is a two-fold
ambiguity in what we mean by S(3)(−α). It turns out that the correct Euclidean
expression is obtained by continuing α through the lower-half complex plane such
that the branch cuts along the negative real axis are approached from below. In
other words, if the argument of an expression of the form

√
α + c becomes negative

as a result of the Wick rotation, we interpret it as −i
√

−(α + c).
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Let us now consider the special case α = 1, together with its Wick rotation. The
Lorentzian action becomes

S(3)(α = 1) = 2πkNTL
1 + N

(3,1)
3 (−3.548k − 0.167λ) + N

(2,2)
3 (−5.355k − 0.204λ)

= 2πkχT + N
(3,1)
3 (−0.407k − 0.167λ) + N

(2,2)
3 (0.929k − 0.204λ),

(36)

where in the last step we have used the Lorentzian manifold identities derived in
Sec. 3. Its Wick-rotated Euclidean counterpart is given by

S(3)(α =−1) = −2πikNTL
1 + N

(3,1)
3 (2.673ik + 0.118iλ) + N

(2,2)
3 (7.386ik + 0.118iλ)

= −2πik(NTL
1 + NSL

1 ) + (N
(3,1)
3 + N

(2,2)
3 )(7.386ik + 0.118iλ)

≡ −2πikN1 + N3(6ik arccos
1

3
+

i

6
√

2
λ) ≡ iS

(3)
EDT, (37)

where in the last step we have identified the well-known expression for the action of
Euclidean dynamically triangulated gravity in three dimensions.

4.2 Gravitational action in four dimensions

The form of the discrete action in four dimensions is completely analogous to (33),
that is,

S(4) = k
∑

space−like

△

Vol(△)
1

i
(2π −

∑

4−simplices

at △

Θ) + k
∑

time−like
△

Vol(△) (2π −
∑

4−simplices

at △

Θ)

−λ
∑

(4,1)&(1,4)−

tetrahedra

Vol(4, 1) − λ
∑

(3,2)&(2,3)−

tetrahedra

Vol(3, 2). (38)

Expressed in terms of the bulk variables N2 and N4, the action reads

S(4) = k
(2π

i

√
3

4
NSL

2 −
√

3

4i
N

(3,2)
4 arcsin

−i
√

3
√

12α + 7

2(3α + 1)

−
√

3

i
N

(4,1)
4 arccos

−i

2
√

2
√

3α + 1

)

+
k

4

√
4α + 1

(

2πNTL
2 −

−N
(3,2)
4

(

6 arccos
−1

2
√

2
√

2α + 1
√

3α + 1
+ 3 arccos

4α + 3

4(2α + 1)

)

−6N
(4,1)
4 arccos

2α + 1

2(3α + 1)

)

− λ
(

N
(4,1)
4

√
8α + 3

96
+ N

(3,2)
4

√
12α + 7

96

)

. (39)

We have again taken care in choosing the inverse functions of the Lorentzian angles
in (12) and (15) that make the expression (39) unambiguous. Using the manifold
identities for four-dimensional simplicial Lorentzian triangulations derived in Sec. 3,
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the action can be rewritten as a function of the three bulk variables NTL
2 , N

(3,2)
4 and

N
(4,1)
4 , in a way that makes its real nature explicit,

S(4) =
kπ

2

√
4α + 1 NTL

2 + N
(4,1)
4 ·

(

−
√

3k arcsinh
1

2
√

2
√

3α + 1
− 3k

2

√
4α + 1arccos

2α + 1

2(3α + 1)
− λ

√
8α + 3

96

)

+ N
(3,2)
4

(

√
3k

4
arcsinh

√
3
√

12α + 7

2(3α + 1)
− 3k

4

√
4α + 1

(

2 arccos
−1

2
√

2
√

2α + 1
√

3α + 1
+ arccos

4α + 3

4(2α + 1)

)

− λ

√
12α + 7

96

)

. (40)

It is straightforward to verify that this action is real for real α ≥ −1
4
, and purely

imaginary for α ∈ IR, α ≤ − 7
12

. Note that this implies that we could in the
Lorentzian case choose to work with building blocks possessing light-like (null) edges
(α = 0) instead of time-like edges, or even work entirely with building blocks whose
edges are all space-like. However, if we want to stick to our simple prescription (31)
for the Wick rotation, we should choose only values |α| > 7

12
. Only in this case will

we avoid degeneracies in the Euclidean regime in the form of violations of triangle
inequalities. (Coming from large positive length-squared −α, it is the (3,2)-simplices
that degenerate first, at −α = 7

12
, followed by the (4,1)-simplices at −α = 3

8
.)

As in three dimensions, in order to obtain the Euclidean version of the action,
we continue the square roots in (40) in the lower half of the complex α-plane. Let
us again consider the two special cases α = ±1. Evaluating (40) numerically for the
Lorentzian case, we obtain

S(4)(α=1) = 3.512kNTL
2 + N

(4,1)
4 (−4.284k − 0.035λ) + N

(3,2)
4 (−6.837k − 0.045λ)

≡ 7.025kN0 + N
(4,1)
4 (−0.772k − 0.035λ) + N

(3,2)
4 (0.188k − 0.045λ),

(41)

where we have used some topological identities from Sec. 3. Its Wick-rotated version
is given by

S(4)(α=−1) = −2.721ikNTL
2 + N

(4,1)
4 (2.987ik + 0.023iλ) +

N
(3,2)
4 (5.708ik + 0.023iλ)

= −2.721ik(NTL
2 + NSL

2 ) + (N
(4,1)
4 + N

(3,2)
4 )(5.708ik + 0.023iλ)

≡ −
√

3

2
πikN2 + N4(

5
√

3

2
ik arccos

1

4
+

i
√

5

96
λ) ≡ iS

(4)
EDT, (42)

where the expression in the last line is recognized as the standard form of the action
for Euclidean dynamical triangulations in four dimensions.
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5 The transfer matrix

We have now all the necessary prerequisites to study the full partition function or
amplitude for pure gravity in the dynamically triangulated model,

Z =
∑

triangulations T

1

C(T )
eiS(T ), (43)

where the sum is taken over inequivalent Lorentzian triangulations, corresponding
to inequivalent discretized space-time geometries. We have chosen the measure
factor to have the standard form in dynamical triangulations, m(T ) = 1/C(T ).
The combinatorial weight of each geometry is therefore not 1, but the inverse of
the order C(T ) of the symmetry (or automorphism) group of the triangulation T .
One may think of this factor as the remnant of the division by the volume of the
diffeomorphism group Diff(M) that would occur in a formal gauge-fixed continuum
expression for Z. Its effect is to suppress geometries possessing special symmetries.
This is analogous to what happens in the continuum where the diffeomorphism
orbits through metrics with special isometries are smaller than the “typical” orbits,
and are therefore of measure zero in the quotient space Metrics/Diff(M).

Again, we expect the final result to be independent of the details of the dynamical
and combinatorial weights in (43). The sparseness of critical points and universality
usually ensure that the same continuum limit (if existent) is obtained for a wide
variety of initial regularized models.

The most natural boundary conditions for Z in our discretized Lorentzian model
are given by specifying spatial discretized geometries g at given initial and finite
proper times t. The slices at constant t are by construction space-like and of fixed
topology, and are given by (unlabelled) Euclidean triangulations in terms of (d−1)-
dimensional building blocks (equilateral Euclidean triangles in d = 3 and equilateral
Euclidean tetrahedra in d = 4).

Given an initial and a final geometry g1 and g2, we may think of the corre-
sponding amplitude Z as the matrix element of the quantum propagator of the
system, evaluated between two states |g1〉 and |g2〉. Since we regard distinct spatial
triangulations gi as physically inequivalent, a natural scalar product is given by

〈g1|g2〉 =
1

C(g1)
δg1,g2,

∑

g

C(g) |g〉〈g| = 1̂. (44)

In line with our previous reasoning, we have included a symmetry factor C(g) for
the spatial triangulations.

In the regularized context, it is natural to have a cutoff on the allowed size
of the spatial slices so that their volume is ≤ N . The spatial discrete volume
Vol(g) is simply the number of (d− 1)-simplices in a slice of constant integer t. We
define the finite-dimensional Hilbert space H(N) as the space spanned by the vectors
{|g〉, Nmin ≤ Vol(g) ≤ N}, endowed with the scalar product (44). The lower bound
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Nmin is the minimal size of a spatial triangulation of the given topology satisfying
the simplicial manifold conditions. It is well-known that the number of states in
H(N) is exponentially bounded as a function of N [24].

For given volume-cutoff N , we can now associate with each time-step ∆t = 1 a
transfer matrix T̂N describing the evolution of the system from t to t+1, with matrix
elements

〈g2|T̂N(α)|g1〉 ≡ Gα(g1, g2; 1) =
∑

T : g1→g2

1

C(T )
ei∆Sα(T ). (45)

The sum is taken over all distinct interpolating d-dimensional triangulations g1 → g2

of the “sandwich” with boundary geometries g1 and g2, contributing ∆S to the
action, according to (35), (40). The propagator GN(g1, g2; t) for arbitrary time
intervals t is obtained by iterating the transfer matrix t times,

GN(g1, g2; t) = 〈g2|T̂ t
N |g1〉, (46)

and satisfies the semigroup property

GN(g1, g2; t1 + t2) =
∑

g

C(g) GN(g1, g; t1) GN(g, g2; t2), (47)

where the sum is over all spatial geometries (of bounded volume) at some interme-
diate time. Because of the appearance of different symmetry factors in (45) and
(47) it is at first not obvious why the composition property (47) should hold. In
order to understand that it does, one has to realize that by continuity and by virtue
of the manifold property there are no non-trivial automorphisms of a sandwich
T = g1 → g2 that leave its boundary invariant. It immediately follows that the
(finite) automorphism group of T must be a subgroup of the automorphism groups
of both of the boundaries, and that therefore C(T ) must be a divisor of both C(g1)
and C(g2). It is then straightforward to verify that the factor C(g) appearing in the
composition law (47) ensures that the resulting geometries appear exactly with the
symmetry factor they should have according to (45).

Our construction of the propagator obeying (47) parallels the two-dimensional
treatment of [7]. Also in higher dimensions one may use the trick of introducing
“markings” on the boundary geometries to absorb some of the symmetry factors C.
However, note that unlike in d = 2 the number of possible locations for the marking
does not in general coincide with the order C(g) of the boundary’s symmetry group.

6 Properties of the transfer matrix

In this section we will establish some desirable properties of the transfer matrix
T̂N(α), defined in (45), which will enable us to define a self-adjoint Hamiltonian op-
erator. Since the name “transfer matrix” in statistical mechanical models is usually
reserved for the Euclidean expression T̂ = e−aĥ, where a denotes the lattice spacing
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in time-direction, we will from now on work with the Wick-rotated matrix T̂N (−1).
A set of sufficient conditions on T̂N guaranteeing the existence of a well-defined
quantum Hamiltonian ĥ are that the transfer matrix should satisfy

(a) symmetry, that is, T̂ †
N = T̂N . This is the same as self-adjointness since the

Hilbert space H(N) which T̂N acts on is finite-dimensional. It is necessary if
the Hamiltonian is to have real eigenvalues.

(b) Strict positivity is required in addition to (a), that is, all eigenvalues must be
greater than zero; otherwise, ĥN = −a−1 log T̂N does not exist.

(c) Boundedness, that is, in addition to (a) and (b), T̂N should be bounded above
to ensure that the eigenvalues of the Hamiltonian are bounded below, thus
defining a stable physical system.

Establishing (a)-(c) suffices to show that our discretized systems are well-defined as
regularized statistical models. This of course does not imply that they will possess
interesting continuum limits and that these properties will necessarily persist in the
limit (as would be desirable). On the other hand, it is difficult to imagine how
the continuum limit could have such properties unless also the limiting sequence of
regularized models did.

All of the above properties are indeed satisfied for the Lorentzian model in d=2
[7], where moreover the quantum Hamiltonian and its complete spectrum in the
continuum limit are known explicitly [25, 18]. Note that self-adjointness of the

continuum Hamiltonian Ĥ implies a unitary time evolution operator e−iĤT if the
continuum proper time T is analytically continued. In d > 2 we are able to prove
a slightly weaker statement than the above, namely, we can verify (a)-(c) for the
two-step transfer matrix T̂ 2

N .7 This is still sufficient to guarantee the existence of a
well-defined Hamiltonian.

One verifies the symmetry of the transfer matrix by inspection of the explicit
form of the matrix elements (45). The “sandwich actions” ∆Sα as functions of the
boundary geometries g1, g2 in three and four dimensions can be read off from (35)
and (40). To make the symmetry explicit, one may simply rewrite these actions as
separate functions of the simplicial building blocks and their mirror images under
time-reflection (in case they are different). Likewise, the symmetry factor C(T )
and the counting of interpolating geometries in the sum over T are invariant under
exchange of the in- and out-states, |g1〉 and |g2〉.

Next, we will discuss the reflection (or Osterwalder-Schrader) positivity [26, 27]
of our model, with respect to reflection at planes of constant integer and half-integer
time (see also [28] and references therein). These notions can be defined in a straight-
forward way in the Lorentzian model because it possesses a distinguished notion of
(discrete proper) time. Reflection positivity implies the positivity of the transfer
matrix, T̂N ≥ 0.

7This corrects a claim in [15] where we stated that (b) holds for the one-step transfer matrix.
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“Site reflection” denotes the reflection θs with respect to a spatial hypersurface
of constant integer-t (containing “sites”, i.e. vertices), for example, t = 0, where it
takes the form

θs : t → −t. (48)

Let us accordingly split any triangulation T along this hypersurface, so that T− is
the triangulation with t ≤ 0 and T+ the one with t ≥ 0, and T−∩T+ = g(t=0) ≡ g0,
where g0 denotes a spatial triangulation at t = 0. Consider now functions F that
depend only on T+ (that is, on all the connectivity data specifying T+ uniquely, in
some parametrization of our choice). Site-reflection positivity means the positivity
of the Euclidean expectation value

〈(θsF )F 〉 ≥ 0, (49)

for all such functions F . The action of θs on a function F (T+) is defined by anti-
linearity, (θsF )(T−) := F̄ (θs(T

−)). By virtue of the composition property (47), we
can write

〈(θsF )F 〉 = Z−1
∑

T

1

C(T )
(θsF )F e−S(T )

= Z−1
∑

g0

C(g0)
∑

T−

T−(t=0)=g0

(θsF )(T−)

C(T−)
e−S(T−)

∑

T+

T+(t=0)=g0

F (T+)

C(T+)
e−S(T+)

= Z−1
∑

g0

C(g0)F̄(g0)F(g0) ≥ 0. (50)

The equality in going to the last line holds because both the action and the symmetry
factor C depend on “outgoing” and “incoming” data in the same way (for example,
on (m,n)-simplices in the same way as on (n,m)-simplices). Note that the standard
procedure of extracting a scalar product and a Hilbert space from (50) is consistent
with our earlier definition (44). One associates (in a many-to-one fashion) functions
F (T+) with elements ΨF of a Hilbert space at fixed time t with scalar product 〈·, ·〉,
where 〈ΨF , ΨG〉 = 〈(θsF )G〉 [26]. A set of representative functions which reproduces
the states and orthogonality relations (44) is given by

Fg(T
+) =

{

1/
√

C(g), T+(t = 0) = g

0 otherwise,
(51)

as can be verified by explicitly computing the expectation values 〈(θsFg′)Fg′′〉.
We have therefore proved site-reflection positivity of our model. This is already

enough to construct a Hamiltonian from the square of the transfer matrix T̂N (see
eq. (55) below), since it implies the positivity of T̂ 2

N [28].
Proving in addition link-reflection positivity (which would imply positivity of the

“elementary” transfer matrix, and not only of T̂ 2
N) turns out to be more involved. A
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“link reflection” is the reflection θl at a hypersurface of constant half-integer-t, for
example, t=1/2,

θl : t → 1 − t. (52)

To show link-reflection positivity in our model we would need to demonstrate that

〈(θlF )F 〉 ≥ 0, (53)

where F is now any function that depends only on the part T+ of the triangulation
T at times later or equal to 1. We can again write down the expectation value,

〈(θlF )F 〉 = Z−1
∑

g0

∑

g1

C(g0)C(g1)GN(g0, g1; 1) ×

∑

T−

T−(t=0)=g0

(θsF )(T−)

C(T−)
e−S(T−)

∑

T+

T+(t=1)=g1

F (T+)

C(T+)
e−S(T+). (54)

In order to show that this is positive, one should try to rewrite the right-hand side as
a sum of positive terms. The proof of this is straightforward in d = 2 (see App. 2 for
details), but it is considerably more difficult to understand what happens in higher
dimensions. The reason for this is the non-trivial way in which the various types
of simplicial building blocks fit together in between slices of constant integer-t. In
a way, this is a desirable situation since it means that there is a more complicated
“interaction” among the simplices. It is perfectly possible that T̂N itself is not
positive for d = 3, 4. This may depend both on the values of the bare couplings and
on the detailed choices we have made as part of our discretization. (By contrast,
it is clear from our proof of site-reflection positivity that this property is largely
independent of the choice of building blocks.)

Nevertheless, as already mentioned above, site-reflection positivity is perfectly
sufficient for the construction of a well-defined Hamiltonian. So far, we have only
shown that the eigenvalues of the squared transfer matrix are positive. In order for
the Hamiltonian

ĥ′
N := − 1

2a
log T̂ 2

N (55)

to exist, we must achieve strict positivity. We do not expect that the Hilbert space
H(N) contains any zero-eigenvectors of T̂N since this would entail a “hidden” sym-
metry of the discretized theory. It is straightforward to see that none of the basis
vectors |g〉 can be zero-eigenvectors. However, we cannot in principle exclude “acci-
dental” zero-eigenvectors of the form of linear combinations

∑

i αi|gi〉. In case such
vectors exist, we will simply adopt the standard procedure of defining our physical
Hilbert space as the quotient space H

(N)
ph = H(N)/N (N), where N (N) denotes the

span of all zero-eigenvectors.
Lastly, the boundedness of the transfer matrix (and therefore also of T̂ 2

N) for
finite spatial volumes N follows from the fact that (i) there is only a finite number
of eigenvalues since the Hilbert space H(N) is finite-dimensional, and (ii) each matrix
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element 〈g2|T̂N |g1〉 has a finite value, because it has the form of a finite sum of terms
e−S/C(T ). (Note that this need not be true in general if we abandoned the simplicial
manifold restrictions, because then the number of interpolating geometries for given,
fixed boundary geometries would not necessarily be finite.)

7 Monte Carlo moves

In numerical simulations of the discrete Lorentzian model, as well as for some the-
oretical considerations, one needs so-called “moves”, that is, a set of basic (and
usually local) manipulations of a triangulation, resulting in a different triangulation
within the class under consideration. The relevant class of geometries for our pur-
poses is that of Lorentzian (three- or four-dimensional) triangulations with a fixed
number t of time-slices, with finite space-time volume, and obeying simplicial man-
ifold constraints. The set of basic moves should be ergodic, that is, one should be
able to get from any triangulation to any other by a repeated application of moves
from the set.

The Monte Carlo moves used in Euclidean dynamical triangulations [29, 5] are
not directly applicable since in general they do not respect the sliced structure of
the Lorentzian discrete geometries. Our strategy for constructing suitable sets of
moves is to first select moves that are ergodic within the spatial slices t = const
(this is clearly a necessary condition for ergodicity in the full triangulations), and
then supplement them by moves that act within the sandwiches ∆t = 1. In d = 3,
this results in a set of five basic moves which has already been used in numerical
simulations [16, 30], and which we believe is ergodic. For completeness, we will
describe them again below. We will also propose an analogous set of moves in
four dimensions, which are somewhat more difficult to visualize. In manipulating
triangulations, especially in four dimensions, a useful mental aid are the numbers of
simplicial building blocks of type A contained in a given building block of type B of
equal or larger dimension (Table 1).

As usual, if the moves are used as part of a Monte Carlo updating algorithm,
they will be rejected in instances when the resulting triangulation would violate the
simplicial manifold constraints. The latter are restrictions on the possible gluings
(the pair-wise identifications of sub-simplices of dimension d− 1) to make sure that
the boundary of the neighbourhood of each vertex has the topology of a Sd−1-sphere
[23]. In dimension three, “forbidden” configurations are conveniently characterized
in terms of the intersection pattern of the triangulation at half-integer times (see
[16], Appendix 2). This is given by a two-dimensional tesselation in terms of squares
and triangles or, alternatively, its dual graph with three- and four-valent crossings.
Also in four dimensions, one may characterize sandwich geometries by the three-
dimensional geometry obtained when cutting them at height 1/2. It is formed by
two types of three-dimensional building blocks, a tetrahedron and a “thickened”
triangle.
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contains N0 NTL
1 NSL

1 NTL
2 NSL

2 N
(3,1)
3 N

(2,2)
3 NSL

3 N
(4,1)
4 N

(3,2)
4

N0 1 2 2 3 3 4 4 4 5 5

NTL
1 1 0 2 0 3 4 0 4 6

NSL
1 1 1 3 3 2 6 6 4

NTL
2 1 0 3 4 0 6 9

NSL
2 1 1 0 4 4 1

N
(3,1)
3 1 0 0 4 2

N
(2,2)
3 1 0 0 3

NSL
3 1 1 0

N
(4,1)
4 1 0

N
(3,2)
4 1

Table 1: Numbers of simplicial building blocks contained in simplices of equal or
higher dimension.

7.1 Moves in three dimensions

As already described in [16], there are five basic moves (counting inverse moves as
separate). They map one 3d Lorentzian triangulation into another, while preserving
the constant-time slice structure, as well as the total proper time t. We label the
moves by how they affect the number of simplices of top-dimension, i.e. d = 3. A
(m, n)-move is one that operates on a local sub-complex of m tetrahedra and replaces
it by a different one with n tetrahedra. The tetrahedra themselves are characterized
by 4-tuples of vertex labels. Throughout, we will not distinguish moves that are
mirror images of each other under time reflection. In detail, the moves are

(2,6): this move operates on a pair of a (1,3)- and a (3,1)-tetrahedron (with vertex
labels 1345 and 2345) sharing a spatial triangle (with vertex labels 345). A
vertex (with label 6) is then inserted at the centre of the triangle and connected
by new edges to the vertices 1, 2, 3, 4 and 5. The final configuration consists
of six tetrahedra, three below and three above the spatial slice containing the
triangles (Fig. 3). This operation may be encoded by writing

1345 + 2345 → 1346 + 2346 + 1356 + 2356 + 1456 + 2456, (56)

where the underlines indicate simplices shared by several tetrahedra (not nec-
essarily all, in order not to clutter the notation). The inverse move (6,2)
corresponds to a reversal of the arrow in (56). Obviously, it can only be per-
formed if the triangulation contains a suitable sub-complex of six tetrahedra.
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Figure 3: The (2,6)-move in three dimensions.
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Figure 4: The (4,4)-move in three dimensions.

(4,4): This move can be performed on a sub-complex of two (1,3)- and two (3,1)-
tetrahedra forming a “diamond” (see Fig. 4), with one neighbouring pair each
above and below a spatial slice. The move is then

1235 + 2356 + 1345 + 3456 → 1234 + 2346 + 1245 + 2456. (57)

From the point of view of the spatial “square” (double triangle) 2345, the move
(57) corresponds to a flip of its diagonal. It is accompanied by a corresponding
reassignment of the tetrahedra constituting the diamond. The (2,6)- and (6,2)-
moves, together with the (4,4)-move (which is its own inverse) induce moves
within the spatial slices that are known to be ergodic for two-dimensional
triangulations.

(2,3): The last move, together with its inverse, affects the sandwich geometry without
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Figure 5: The (2,3)-move in three dimensions.

changing the spatial slices at integer-t. It is performed on a pair of a (3,1)-
and a (2,2)-tetrahedron which share a triangle 345 in common (see Fig. 5),
and consists in substituting this triangle by the one-dimensional edge 12 dual
to it,

1345 + 2345 → 1234 + 1235 + 1245. (58)

The resulting configuration consists of one (3,1)- and two (2,2)-tetrahedra,
sharing the link 12. Again, there is an obvious inverse.

7.2 Moves in four dimensions

If we distinguish between the space- and time-like character of all of the four-
dimensional moves, there is a total of ten moves (including inverses). We will again
characterize simplices in terms of their vertex labels. The first two types of moves,
(2,8) and (4,6), reproduce a set of ergodic moves in three dimensions when restricted
to spatial slices. We will describe each of the moves in turn.

(2,8): The initial configuration for this move is a pair of a (1,4)- and a (4,1)-simplex,
sharing a purely space-like tetrahedron 3456 (Fig. 6). The move consists in
inserting an additional vertex 7 at the centre of this tetrahedron and subdiving
the entire sub-complex so as to obtain eight four-simplices,

13456+23456 → 13457+23457+13467+23467+13567+23567+14567+24567,
(59)

with an obvious inverse.

(4,6): In this configuration, we start from a pair (2345,3456) of spatial tetrahedra
sharing a common triangle 345, which are connected to a vertex 1 at time
t−1 and another vertex 7 at time t+1, forming together a sub-complex of size
six (Fig. 7). The move consists in swapping the triangle 345 with its (spa-
tially) dual edge 26, during which the two spatial tetrahedra are substituted
by three, and the geometry above and below the spatial slice at time t changed
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Figure 6: The (2,8)-move in four dimensions.

accordingly. In our by now familiar notation, this amounts to

12345+23457+13456+34567 → 12346+23467+12356+23567+12456+24567,
(60)

with the arrow reversed for the corresponding inverse move.

(2,4): This type of move comes in two varieties. Its general structure is as follows:
the initial configuration is a pair of 4-simplices with a common tetrahedron.
During the move, this tetrahedron is “deleted” and substituted by its (in a
four-dimensional sense) dual edge. The end result is a sub-complex consisting
of four 4-simplices. From a Lorentzian point of view, there are two situations
where the application of this move does not interfere with the slice-structure
or the manifold constraints. In the first one, a (4,1)- and a (3,2)-tetrahedron
from the same sandwich share a (3,1)-tetrahedron 3456 (Fig. 8). The dual edge
12 is time-like and shared in the final configuration by one (4,1)- and three
(3,2)-simplices. The second possibility is that of two (3,2)-simplices sharing
a (2,2)-tetrahedron. One of the (3,2)-simplices is “upside-down”, such that
the entire sub-complex has spatial triangles in both the slices at t and at t+1
(134 and 256, see Fig. 9). After the move, the total number of (3,2)-simplices
has again increased by two. (Note that the changes of the bulk variables are
encoded in the f -vectors of Sec. 8.) Both types of moves are described by the
relation

13456 + 23456 → 12345 + 12346 + 12456 + 12356, (61)

and their inverses by the converse relation.

(3,3): The initial sub-complex in this type of move is made up of three 4-simplices
which share a triangle in common. In the course of the move, this triangle is
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Figure 7: The (4,6)-move in four dimensions.
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Figure 8: The (2,4)-move in four dimensions, first version.

“deleted” and substituted by its dual (in a four-dimensional sense), which is
again a triangle. It is straightforward to verify that this move can only occur in
Lorentzian gravity if both of the triangles involved are time-like. Again, there
are two allowed variations of the move. In the first one, both the initial and
final sub-complex consist of one (4,1)- and two (3,2)-simplices, and the space-
like edge of each of the triangles 123 and 456 lies in the same slice t = const
(Fig. 10). The 4-simplices are rearranged according to

12456 + 13456 + 23456 → 12345 + 12346 + 12356. (62)

The other initial configuration for which (62) can be performed involves only
(3,2)-simplices of both orientations, as illustrated in Fig. 11. The “swapped”
triangle 123 now has its space-like edge in the opposite spatial slice from that
of the original triangle 456. As in the (4,4)-move in three dimensions, this
type of move is its own inverse.
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Figure 9: The (2,4)-move in four dimensions, second version.
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Figure 10: The (3,3)-move in four dimensions, first version.

8 Kinematic bounds

Without solving the combinatorics of the Lorentzian gravity models explicitly, some
qualitative insights can be gained by studying the behaviour of their partition func-
tions for either very small or very large values of the inverse Newton’s constant k. By
comparing our results with those of Euclidean dynamical triangulations in 3 and 4d
[31, 32], we will see that significant differences arise already at this kinematic level.
Since the partition function for Lorentzian gravity is evaluated after Wick-rotating,
we will in the following set α=−1, and work in the Euclidean sector of our models.
We will perform the analysis for d = 3 and d = 4 in turn.

8.1 Analysis in three dimensions

For ease of comparison with the Euclidean results, we write the Regge action in
standard form (c.f. (37)), namely, as

S
(3)
EDT = k3N3 − k1N1, (63)
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Figure 11: The (3,3)-move in four dimensions, second version.

with the couplings

k1 = 2πk, k3 = 6 k arccos
1

3
+ λ

1

6
√

2
. (64)

Lorentzian triangulations T are conveniently characterized by their f -vectors f(T ),
which keep track of the numbers (19) of simplicial building blocks. In three dimen-
sions, we have

f (3) = (N0, N
SL
1 , NTL

1 , NSL
2 , NTL

2 , N
(3,1)
3 , N

(2,2)
3 ). (65)

Rewriting the action as

S
(3)
EDT = N3(k3 − k1

N1

N3

) =: N3(k3 − k1ξ), (66)

we see that for large coupling k1 and at fixed space-time volume, configurations with
a large value of ξ will be energetically preferred. In the Euclidean case, it can be
shown that in the thermodynamic limit N3 → ∞, the ratio ξ obeys the kinematic
bounds

1 ≤ ξ ≤ 4

3
, Euclidean 3d triangulations. (67)

The upper bound is saturated for so-called branched-polymer (or “stacked-sphere”)
configurations. Geometrically degenerate configurations of this type dominate the
partition function in the continuum limit and seem to be responsible for the failure
of the Euclidean model to lead to an interesting continuum theory, both in three
and four dimensions.

Obviously, the geometries of the Lorentzian model must satisfy (67), which is
valid for all 3d simplicial manifolds. However, it turns out that the Lorentzian
dynamical triangulations satisfy a more stringent upper bound. Using identities
from Sec. 3, we can write

N3 = N
(2,2)
3 + N

(3,1)
3 = N

(2,2)
3 + 4N0 − 4χt ≥ N

(2,2)
3,min + 4N0 − 4χt. (68)
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The minimal N
(2,2)
3 is given by N

(2,2)
3,min = cmint, where cmin > 0 is an integer counting

the minimal possible number of (2,2)-tetrahedra per time-step ∆t=1. Using further
identities, (68) therefore becomes

4N1 ≤ 5N3 − (cmin − 4χ)t. (69)

From this we deduce that in the large-volume limit (where t/N3 → 0) the upper
bound for ξ is lowered to 5/4, so that the Euclidean relation (67) is substituted by

1 ≤ ξ ≤ 5

4
, Lorentzian 3d triangulations. (70)

We conclude that the branched-polymer regime of Euclidean gravity cannot be real-
ized in the Lorentzian case. The upper bound in (70) is saturated when the number
of (2,2)-simplices is minimal.

There is an alternative way of deriving (70), which also sheds some light on
the nature of the lower bound. Here, one asks whether the bounds on ξ can be
approached by a successive application of the Monte Carlo moves described in Sec.
7. In three dimensions, the effect of the Monte Carlo moves on the f -vector is

∆(2,6)f
(3) = (1, 3, 2, 2, 6, 4, 0), (71)

∆(4,4)f
(3) = (0, 0, 0, 0, 0, 0, 0), (72)

∆(2,3)f
(3) = (0, 0, 1, 0, 2, 0, 1), (73)

with obvious expressions for the inverse moves. Let us now choose some initial
configuration f

(3)
0 , for example, a t-translation-invariant geometry of minimal volume

of the form f
(3)
0 = ~c t, where ~c is a constant seven-vector characterizing a sandwich

geometry. Any triangulation that is reached from the initial one by a sequence of
allowed Monte Carlo moves has an f -vector

f (3) = (c1t + x, c2t + 3x, c3t + 2x + y, c4t + 2x, c5t + 6x + 2y, c6t + 4x, c7t + y). (74)

The integers x = n(2,6)−n(6,2) and y = n(2,3)−n(3,2) count the “excess” of applications
of a move over its inverse. From (74) we can read off the value of ξ as

ξ =
N1

N3
=

(c2 + c3)t + 5x + y

(c6 + c7)t + 4x + y
. (75)

It is obvious that for large triangulations this ratio is maximized by applying only
(2,6)-moves. This is always possible, since this Monte Carlo move is a subdivision
move that can always be performed. In the infinite-volume limit (this also implies
x ≫ t), ξ approaches 5/4, in accordance with our earlier result. Alternatively,
a triangulation can be enlarged by applying (2,3)-moves, which according to (73)
increase the number of (2,2)-tetrahedra. It is not immediately clear that we can
saturate the lower bound in (70) by taking y → ∞ since y is not entirely inde-
pendent of x (the applicability of the (2,3)-move is related to the availability of
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(3,1)-tetrahedra, which in turn is governed by x). Nevertheless, in the large-volume
limit such configurations do actually exist, as we will demonstrate below.

Another type of degenerate geometry that was observed to dominate the state
sums of Euclidean dynamical triangulations at small k [33, 34] is characterized by
an inequality which is non-linear in the bulk variables, namely,

N1 ≤
1

2
N0(N0 − 1). (76)

A triangulation saturating (76) is called “2-neighbourly” [32] since any of its vertices
is connected by an edge to any other vertex. The resulting space is of maximal
Hausdorff dimension, because “one can get anywhere in a single step”. Such singular
structures have indeed been observed in the so-called crumpled phase of Euclidean
quantum gravity in three and four dimensions.

Again, it is impossible to come anywhere near this phase in the continuum limit
of the Lorentzian model. This has to do with the fact that by construction of the
Lorentzian geometries, two vertices can only be connected by a link if they lie in
the same or in successive spatial slices. Instead of (76), we therefore have separate
relations for the numbers NSL

1 and NTL
1 of space- and time-like edges,

NSL
1 =

t−1
∑

τ=0

(3N0(τ) − 6) = 3N0 − 6t, NTL
1 ≤

t−1
∑

τ=0

N0(τ)N0(τ + 1). (77)

Assuming canonical scaling, the right-hand side of the inequality (76) behaves like
(length)6, whereas the second relation in (77) scales only like (length)5, proving our
earlier statement.

The inequality in (77) can indeed be saturated by certain regular Lorentzian
geometries in the large-volume limit, as one can show by explicit construction. For
ease of visualization, let us assume that the two-dimensional slices have the topology
of two-tori T 2. Consider a sandwich where the initial two-geometry at time τ is a
“strip” of discrete length l1 and width c1 = 2, consisting of 2l1 + 4 triangles8, with
opposite sides identified to give a torus. Similarly, at time τ + 1, take a strip of
length l2 and width c2 = 2 with 2l2 +4 triangles. Choose the interpolating geometry
between the two tori such that the (2,2)-tetrahedra when viewed at time τ+1/2 form
two rectangular blocks, of size l1l2 and of size c1c2 (Fig. 12). Consider now a sequence
of such configurations where both of the li become large, but the integers ci remain
unchanged. Because of N0(τ) = NSL

1 (τ)/3 = l1 +2 and N0(τ +1) = NSL
1 (τ +1)/3 =

l2 + 2, we find that in the large-volume limit the bulk variables associated with the
sandwich are given by N1 ≈ NTL

1 ≈ l1l2, and by N3 = NSL
2 (τ)+NSL

2 (τ +1)+N
(2,2)
3 ≈

l1l2. For the vertex numbers, we have N0(τ)N0(τ +1) ≈ l1l2. This verifies our earlier
claims that both the inequality (77) and the lower bound in (70) are saturated by this

8The +4 comes from the fact that the minimal length of the intermediate layer of the two-torus
must be l = 2, to give a simplicial 2d manifold under gluing.
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Figure 12: One of a sequence of toroidal sandwich configurations at τ + 1/2 which
saturate the inequality in (77) in the large-volume limit (opposite sides to be identi-
fied). Light links correspond to triangle edges at time τ , dark links to triangle edges
at time τ + 1.

class of configurations. Of course, we achieved this by a “fine-tuning” of geometry,
and the configurations thus obtained are highly non-generic.

The above considerations show that the phase structure of three-dimensional
Lorentzian gravity must be quite different from that of the Euclidean theory since
already at a kinematic level, the extreme branched-polymer and crumpled configu-
rations cannot be realized. Obviously it does not exclude the possibility that milder
pathologies prevail in the continuum limit, but it is clearly a step in the right direc-
tion. Hopes that the Lorentzian model is therefore better-behaved than its Euclidean
counterpart have been boosted by recent numerical investigations in three dimen-
sions [16, 30]. There it was found that for a large range of the gravitational coupling
constant k1, the partition function is dominated by a phase of extended geometry
(and the parameter ξ stays well away from its extremal bounds (70)), whose global
scaling properties are those of a three-dimensional object. Compared with the Eu-
clidean case, this is a completely new and very promising phenomenon. It reiterates
the finding in d = 2 [7] that the causal structure of the Lorentzian space-times acts
effectively as a regulator for the quantum geometry.

8.2 Analysis in four dimensions

The analysis of the kinematic bounds in four dimensions is completely analogous to
that of the previous subsection, and we will refrain from spelling out all the details.
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We start from the action in the form (c.f. (42))

S
(4)
EDT = k4N4 − k2N2 = N4(k4 − k2

N2

N4

) =: N4(k4 − k2ξ
′), (78)

with the coupling constants

k2 =

√
3

2
πk, k4 =

5
√

3

2
k arccos

1

4
+ λ

√
5

96
. (79)

In (78) we have already anticipated that a convenient order parameter in four di-
mensions is the quotient ξ′ = N2/N4. The f -vector has now length 10, and is given
by

f (4) = (N0, N
SL
1 , NTL

1 , NSL
2 , NTL

2 , NSL
3 , N

(3,1)
3 , N

(2,2)
3 , N

(4,1)
4 , N

(3,2)
4 ). (80)

The discussion parallels closely the three-dimensional case, with the relevant Eu-
clidean inequalities [31, 32]

2 ≤ ξ′ ≤ 5

2
, Euclidean 4d triangulations. (81)

Let us derive their Lorentzian analogues by analyzing the effect of the Monte Carlo
moves of Sec. 7 on the f -vector (80), which is

∆(2,8)f
(4) = (1, 4, 2, 6, 8, 3, 12, 0, 6, 0), (82)

∆(4,6)f
(4) = (0, 1, 0, 2, 2, 1, 4, 0, 2, 0), (83)

∆(2,4)f
(4) = (0, 0, 1, 0, 4, 0, 2, 3, 0, 2), (84)

∆(3,3)f
(4) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). (85)

Starting from a minimal initial configuration f
(4)
0 , and defining x = n(2,8) − n(8,2),

y = n(4,6) − n(6,4) and z = n(2,4) −n(4,2), and dropping terms proportional to t in the
large-volume limit, one obtains

ξ′ =
N2

N4

−→ 7x + 2(y + z)

3x + y + z
. (86)

Again, ξ′ is maximized by applying the subdivision move (2,8) only. Note also that –
like in three dimensions – this corresponds to creating stacked-sphere configurations
within the spatial slices of constant integer-t. (We are using the expression “stacked
spheres” in a loose sense, and only require that the triangulations look like stacked
spheres almost everywhere.) For the purposes of relation (86), the moves (4,6) and
(2,4) play an equivalent role, although they generate different types of four-simplices.
It is clear that a lower bound for the ratio is given by 2, although again it is not
immediately clear that this value can actually be attained by any triangulation in the
thermodynamic limit. Like in 3d, we can conclude that the range for the parameter
ξ′ in Lorentzian gravity is reduced, such that

2 ≤ ξ′ ≤ 7

3
, Lorentzian 4d triangulations. (87)

31



We leave it as an exercise to the reader to prove this relation directly from (67) and
the identities in Sec. 3, as well as to construct explicit triangulations that saturate the
lower bound. Again, our analysis implies the absence of the polymeric geometries
found in the Euclidean theory. (Note that a polymeric behaviour is in principle
allowed both in three- and four-dimensional Lorentzian triangulations, as long as it
takes place in the spatial directions only. In fact, this corresponds precisely to the
limit x → ∞ in both (75) and (86).) Likewise, there is no crumpled phase. The
argument of d = 3 carries over to four dimensions, with the only difference that the
right-hand side of (76) scales like (length)8, whereas the corresponding relation in
(77) scales like (length)7.

9 Summary and outlook

In this paper, we have presented a comprehensive analysis of a regularized path
integral for gravity in terms of Lorentzian dynamical triangulations. We have shown
that for a finite space-time volume N the model is well-defined as a statistical system
of geometry, with a finite state sum.

Having established these properties, our main interest is the behaviour of the
system in a suitable continuum limit. For this, we must take the lattice volume
N → ∞ and the invariant lattice spacing a → 0, and allow for a renormalization of
both the bare coupling constants and the propagator itself. Although the discretized
set-up of our model looks rather similar in different dimensions, we expect the details
of the renormalization and the resulting physics to depend strongly on d.

The continuum theory in d = 2 is already explicitly known, since the Lorentzian
model has been solved exactly [7, 8]. It is obtained by simply taking N → ∞ or,
equivalently, tuning the bare cosmological constant λ to its critical value. The theory
describes a one-dimensional spatial “quantum universe” whose volume fluctuates in
time. Obviously the physical significance of this model is somewhat obscure, since
there is no classical theory of 2d Einstein gravity, and therefore no well-defined
classical limit. Nevertheless, it provides a beautiful example of the inequivalence of
path integrals of Euclidean and Lorentzian geometries. What is more, we understand
in a very explicit manner [7, 35] that the origin of the difference lies in the presence
and absence of “baby universes” branching off in the time-direction (which in the
Lorentzian case are incompatible with the “micro-causality” of the path-integral
histories).

“Solving the path integral” in our formulation amounts to solving the combina-
torics of the Lorentzian triangulations in a given dimension and for given boundary
data, at least asymptotically. Although this counting problem is mathematically
well-defined, it is not simple when d ≥ 3. In three space-time dimensions, where
the problem is presently under investigation, an interesting relation with an already
known matrix model with ABAB-interaction has been uncovered [19].

A potentially powerful feature of our models is the fact that they can also be
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studied numerically. Using Monte Carlo methods, it was shown that 2d Lorentzian
gravity coupled to matter has no barrier at c = 1 [36], and that pure 3d Lorentzian
gravity possesses a ground state of extended geometry, with the global scaling prop-
erties of a three-dimensional space-time universe [16, 30]. Both of these findings are
highly significant, because they show that these models lie in different universality
classes from their Euclidean counterparts.

Let us recapitulate how this difference with the purely Euclidean formulation
came about. Our physical premise was to take the space of Lorentzian space-times
as our starting point. This enabled us to impose certain causality constraints on
the individual histories contributing to the path integral. As a consequence, like in
classical relativity, “time”- and “space”-directions are not interchangeable, a feature
that persists in the continuum quantum theory. In order for this philosophy to lead
anywhere (i.e. to yield convergent mathematical expressions) we crucially needed a
Wick rotation on the space of Lorentzian geometries. The fact that such a map exists
in our formulation is by no means trivial. For example, if a similar construction were
attempted in Regge calculus, one would immediately run into trouble with triangular
inequalities.

Being familiar with the pitfalls of Euclidean gravitational path integrals, one
may now wonder whether our path integrals after the Wick rotation to Euclidean
signature do not also suffer from pathologies, in the limit as N → ∞. In particular,
one may worry about the presence of a conformal divergence in d ≥ 3 associated
with the unboundedness of the gravitational action. Remarkably, although such a
divergence is potentially present in our formulation, since configurations with large
negative action exist, these are entropically suppressed in the continuum limit, at
least in d = 3 [16]. It has been demonstrated in [37] how this phenomenon can be
understood from the point of view of the continuum gravitational path integral: a
careful analysis of various Faddeev-Popov determinants reveals how the resulting
path-integral measure can lead to a non-perturbative cancellation of the conformal
divergence9.

To summarize, we have constructed a new and powerful calculational tool for
quantum gravity that in the best of all worlds will lead to a non-perturbative defini-
tion of an interacting quantum theory of gravity in four dimensions. An inclusion of
other matter degrees of freedom is in principle straightforward. At the discretized
level, our models are as well-defined as one could hope for. An investigation in
dimension 3, both analytically and numerically, is well under way. It remains a ma-
jor challenge to set up sufficiently large numerical simulations in four dimensions.
Clearly, because of the anisotropy between time and spatial directions, larger lattice
sizes than in the Euclidean dynamically triangulated models will be needed. On the
analytic front, tackling the full combinatorics in four dimensions will be difficult, as
one would expect from any fully-fledged formulation of quantum gravity. In order to
approach the problem, we are currently studying both the three-dimensional theory

9Note that the use of proper-time gauge in [37] made it possible to define a non-perturbative
Wick rotation analogous to the one used in the present work.
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and its relation to other formulations of 3d quantum gravity, as well as gravitational
models with extra symmetries.
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Figure 13: Positive (a) and negative (b) Euclidean deficit angles δ.

Appendix 1: Lorentzian angles

For the sake of completeness, we will describe some properties of Lorentzian an-
gles (or “boosts”) which appear in the Regge scalar curvature as rotations about
space-like bones (that is, space-like links in 3d and space-like triangles in 4d). This
summarizes the treatment and conventions of [21]. The familiar form of a contribu-
tion of a single bone b to the total curvature and therefore the action is

∆bS = volume(b)δb, δb = 2π −
∑

i

Θbi, (88)

where the volume of the bone is by definition real and positive and δb is the deficit
angle around b. For the case of Euclidean angles this is conveniently illustrated by a
two-dimensional example, where the bone is simply a point with volume 1. A pos-
itive deficit angle δ (Fig. 13a) implies a positive Gaussian curvature and therefore
a positive contribution to the action, whereas an “excess” angle δ contributes neg-
atively (Fig. 13b). Lorentzian angles are also defined to be additive, in such a way
that a complete rotation around a space-like bone gives 2π in the flat case. However,
note that the angles are in general complex, and can become arbitrarily large in the
vicinity of the light cone. In their contribution to the action, we have to distinguish
between two cases. If the Lorentzian deficit angle δ ≡ η is space-like (Fig. 14a), it
contributes as ∆bS = volume(b)ηb, just like in the Euclidean case. By contrast, if it
is time-like (Fig. 14b), the deficit angle contributes with the opposite sign, that is,
as ∆bS = −volume(b)ηb. Therefore, both a space-like defect and a time-like excess
increase the action, where as a time-like defect or a space-like excess decrease it.

The deficit angles in Sections 2.1 and 2.2 were calculated using

cos Θ =
〈~v1, ~v2〉

〈~v1, ~v1〉
1
2 〈~v2, ~v2〉

1
2

, sin Θ =

√

〈~v1, ~v1〉〈~v2, ~v2〉 − 〈~v1, ~v2〉2
〈~v1, ~v1〉

1
2 〈~v2, ~v2〉

1
2

, (89)

for pairs of vectors ~v1, ~v2, and the flat Minkowskian scalar product 〈·, ·〉. By defini-
tion, the square roots are positive imaginary for negative arguments.
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Figure 14: Positive space-like (a) and time-like (b) Lorentzian deficit angles η.

Appendix 2: Link-reflection positivity in 2d

In this appendix we will demonstrate the link-reflection positivity of the discrete
model of two-dimensional Lorentzian quantum gravity introduced in [7]. Recall
that link reflection is the reflection at a plane of half-integer t. We choose it to lie
at t = 1/2 and fix the boundary spatial lengths at the initial time t = −T + 1 and
the final time t = T to l−T+1 = lT = l. In order to describe a two-dimensional
Lorentzian universe with these boundary conditions, we must not only specify the
geometry of the spatial sections (simply given by lt, −T + 1 ≤ t ≤ T ), but the
connectivity of the entire 2d triangulation.

A convenient way of parametrizing the connectivity that is symmetric with re-
spect to incoming and outgoing triangles at any given slice of constant t is as follows.
For any spatial slice at some integer time t, each of the lt spatial edges forms the base
of one incoming and one outgoing triangle. The geometry of the adjoining sand-
wiches is determined by how these triangles are glued together pairwise along their
time-like edges. These gluing patterns correspond to distinct ordered partitions of
the lt triangles (either above or below t) into k groups, 1 ≤ k ≤ lt. We denote the
partitions collectively by m(t) = {mr(t), r = 1, . . . , k} for the incoming triangles
and by n(t) = {nr(t), r = 1, . . . , k′} for the outgoing triangles. The constraints on

these variables are obviously
∑k

r=1 mr(t) =
∑k′

r=1 nr(t) = lt and a matching condi-
tion for adjacent slices, namely, k′(t) = k(t + 1).10 In terms of these variables, the

10 This parametrization is closely related to the description of 2d Lorentzian gravity in terms of
“half-edges” [18].
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(unmarked) one-step propagator is given by

Gg(l1, l2) = gl1+l2
∑

k≥1

1

k

∑

nr,mr≥1, r=1,...,k
∑k

q=1
nq=l1,

∑k
p=1

mp=l2

1 = gl1+l2
∑

k≥1

1

k

(

l1 − 1

l1 − k

)(

l2 − 1

l2 − k

)

,

(90)
where g = e−λ depends on the two-dimensional cosmological constant λ. It is obvious
from (90) that the propagator depends symmetrically on the local variables m and
n. The partition function for the entire system is

Z2d(g) = Gg(l−T+1, l−T+2)

T−1
∏

t=−T+2

∑

lt≥1

lt Gg(lt, lt+1), (91)

in accordance with (47).
Following the discussion of link reflection in Sec. 6, we consider now functions

F ({m, n}) that depend only on the geometry above the reflecting plane at t = 1/2,
i.e. on m(t), n(t), t ≥ 1. The reflection (52) acts on the partition data according
to θl(m(t)) = n(−t + 1) and θl(n(t)) = m(−t + 1). Without loss of generality, we
can assume that F depends symmetrically on m(t) and n(t), ∀t. Computing the
expectation value (54), we obtain

〈(θlF )F 〉

= Z−1
2d

∑

l0,l1≥1

l0l1Gg(l0, l1)
(

Gg(l−T+1, l−T+2)

−1
∏

t=−T+2

∑

lt≥1

ltGg(lt, lt+1)(θlF )
)

×

(

T−2
∏

t=1

∑

lt+1≥1

Gg(lt, lt+1)lt+1Gg(lT−1, lT )F
)

= Z−1
2d

∑

l0,l1≥1

l0l1
∑

k≥1

1

k
gl0+l1

(

l0 − 1

l0 − k

)(

l1 − 1

l1 − k

)

F(l0)F(l1)

= Z−1
2d

∑

k≥1

1

k
F(k)F(k). (92)

Since the last expression is a sum of positive terms, we have hereby shown that 2d
Lorentzian gravity is link-reflection positive.
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