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Abstract

In the present paper we review in a fibre bundle context the covariant and massless canon-

ical representations of the Poincaré group as well as certain unitary representations of the

conformal group (in 4 dimensions). We give a simplified proof of the well–known fact that

massless canonical representations with discrete helicity extend to unitary and irreducible

representations of the conformal group mentioned before. Further we give a simple new proof

that massless free nets for any helicity value are covariant under the conformal group. Free

nets are the result of a direct (i.e. independent of any explicit use of quantum fields) and nat-

ural way of constructing nets of abstract C*–algebras indexed by open and bounded regions

in Minkowski space that satisfy standard axioms of local quantum physics. We also give a

group theoretical interpretation of the embedding I that completely characterizes the free

net: it reduces the (algebraically) reducible covariant representation in terms of the unitary

canonical ones. Finally, as a consequence of the conformal covariance we also mention for

these models some of the expected algebraic properties that are a direct consequence of the

conformal covariance (essential duality, PCT–symmetry etc.).

∗On leave from Mathematical Institute, University of Potsdam, Am Neuen Palais 10, Postfach 601 553, D–14415

Potsdam, Germany.
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1 Introduction

The birth of massless particles can be traced back to the seminal paper [19] as well as to the

most remarkable part of Einstein’s famous principle of special relativity also published in 1905

[20] (cf. also [21]): “Wir wollen diese Vermutung (deren Inhalt im folgenden ,,Prinzip der Rela-

tivität” genannt werden wird) zur Voraussetzung erheben und außerdem die mit ihm nur scheinbar

unverträgliche Voraussetzung einführen, daß sich das Licht im leeren Raume stets mit einer bes-

timmten, vom Bewegungszustande des emittierenden Körpers unabhängigen Geschwindigkeit V

fortpflanze.” Despite their short history (in comparison with the deeply rooted notion of mass

in the physical literature [34]) massless particles are related to several peculiarities in the anal-

ysis of the different branches in physics where they enter. For example, extrapolating from the

principle above, massless particles inherit a characteristic kinematical behaviour. This aspect of

masslessness is used for instance in the corresponding collision theory in quantum field theory

(henceforth denoted by QFT): indeed, it is an essential feature of this theory the fact that a

massless particle (say at the origin) will be for suitable t 6= 0 space–like separated from any point

in the interior of the light–cone (cf. [14, 15] and see also [11] for further consequences of the pos-

tulate of maximal speed in classical and quantum physics). A different characteristic aspect of

masslessness that will be important in this paper appears in Wigner’s analysis of the unitary irre-

ducible representations of the Poincaré group [59] (which is the symmetry group of 4–dimensional

Minkowski spacetime). Indeed, in this analysis one obtains that the massless little group E(2)

(see (12)) is noncompact, solvable and has a semi–direct product structure, while the massive

little group, SU(2), satisfies the complementary properties of being compact and simple. Conse-

quences of these differences will obviously only appear for nonscalar models, i.e. in those cases

where the corresponding little group is nontrivially represented. For example, in order to get dis-

crete helicity values the solvability and connectedness of E(2) forces to consider only nonfaithful

one–dimensional representations of it, and this fact is related to the physical picture characteris-

tic for m = 0 that the helicity is relativistic invariant. On the quantum field theoretical side this

aspect appears through the need to reduce the degrees of freedom of the fibre of the covariant

representation (cf. Section 2 for the group theoretical definitions and the begining of Section 3

for the description of three equivalent ways of performing the reduction). A further characteristic

feature of free massless quantum field theoretical models with discrete helicity is that they are

covariant w.r.t. the conformal group, i.e. a bigger symmetry group containing as a subgroup the

original Poincaré group with which one starts the analysis. In the scalar case (cf. e.g. [36, 32])

one can argue formally that the space of solutions of the wave–equation is invariant under the
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transformation f → Rf , (Rf)(x) := − 1
x2 f( − x

x2 ), where the relativistic ray inversion x → − x
x2

is one of the generating elements of the conformal group. For higher helicities the conformal

covariance of the massless quantum fields still remains true [45, 31] and due to the uniqueness

result in [1, 2] (only the unitary irreducible representations of the Poincaré group with m = 0 and

discrete helicity extend within the same Hilbert space to certain unitary representations of the

conformal group) it is clear that the reduction of the degrees of freedom mentioned above is an

essential feature of the nonscalar models in order to preserve the conformal group as a symmetry

group. The conformal covariance will have in its turn remarkable structural consequences for the

models. (For a physical interpretation as well as a historical survey on physical applications of

the conformal group we refer to [35, 55]).

The intention of the present paper is twofold. On the one hand we review in a fibre bundle

context some of the mathematical peculiarities of the unitary and irreducible representations

corresponding to m = 0 and discrete helicity (including a simplified proof of the extension result

to a unitary representation of the conformal group). On the other hand we want to give a

simple new proof of the fact that in QFT massless models with arbitrary helicity are covariant

under the conformal group as well as to apply to these models the important consequences of

this covariance. (Here we treat the helicity values as a parameter and no special emphasis is

laid on the scalar case.) The simplicity of the proofs mentioned before is partially based on

the choice of the notion of a free net in the axiomatic context of ‘local quantum physics’ (also

called algebraic QFT [26, 27]). Free nets as considered in [9, 43] are the result of a direct

and natural way of constructing nets of abstract C*–algebras indexed by open and bounded

regions in Minkowski space and satisfying Haag–Kastler axioms. The construction is based on

group theoretical arguments (concretely on the covariant and canonical representations of the

Poincaré group to be introduced in the following section) and standard CAR– or CCR–theory

[4, 47]. In the construction no representation of the C*–algebra is used and no quantum fields

are explicitly needed and this agrees with the point of view in local quantum physics that the

abstract algebraic structure should be a primary definition of the theory and the corresponding

Hilbert space representation a secondary [17, Section 4]. In the context of massless models and

in particular in gauge quantum field theory this position is not only an esthetic one. Indeed, if

constraints are present in the context of bosonic models the use of nonregular representations is

sometimes unavoidable at certain stages of the constraint reduction procedure, so that in this

frame one is not always allowed to think of the Weyl elements a ‘some sort of exponentiated

quantum fields’ (cf. [24, 22, 25]). Further, the choice of free nets particularly pays off in the
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massless case, since here the use of quantum fields unnecessarily complicates the construction

(recall the definition of Weinberg’s 2j + 1–fields that must satisfy the corresponding first–order

constraint equation [57, 58, 31]; the necessity of introducing constraints is related to the reduction

of the degrees of freedom of the covariant representation mentioned above). Finally, we hope that

the study of the mathematical aspects characteristic for massless models will be useful in the

analysis of open problems in mathematical physics, where masslessness and nontrivial helicity

plays a significant role (e.g. in the context of superselection theory, cf. [16]).

The present paper is structured in 5 sections: in the following section we review in the general

frame of induced representations on fibre bundles the covariant and canonical representations of

the Poincaré group. We will also point out some of the mathematical differences that appear

between the massive and massless canonical representations. Further, we also consider in this

context a method to obtain certain unitary representations of the conformal group that will be

needed later. In Section 3 we present the definition of a massless free net and state some of its

properties, for example they satisfy the Haag–Kastler axioms. The construction is particularly

transparent, because of the use of certain reference spaces, where the corresponding sesquilinear

form is characterized by positive semidefinite operator–valued functions β(·) on the mantle of the

forward light–cone C+. The corresponding factor Hilbert spaces (w.r.t. the degenerate subspace)

will carry a representation equivalent to the unitary irreducible canonical representation withm =

0 and helicities ±n
2 . In the following section we give a simplified proof of the well–known fact that

the massless Wigner representations mentioned before extend to certain unitary representations

of the conformal group. For the proof the factor space notation of the previous section will

be useful. Finally, Section 5 shows the covariance under the conformal group of the massless

free nets for any helicity value. Further, using certain natural Fock states and considering the

corresponding net of von Neumann algebras we are able to apply the general results stated in [13]

for conformal quantum field theories to obtain standard algebraic statements (essential duality,

Bisognano–Wichmann Theorem etc.) for these models.

2 Induced representations: the Poincaré and the conformal

group

In the present section we will summarize some results concerning the theory of induced rep-

resentations in the context of fibre bundles. For details and further generalizations we refer to

[5, 52, 53] and [56, Section 5.1]. We will see below that this general theory beautifully includes

all representations of the Poincaré and the conformal group needed in this paper. For further
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aspects of the role played by induced representations in classical and quantum theory see [39]

and references cited therein.

Let G be a Lie group that acts transitively on a C∞–manifold M . Let u0 ∈ M and K0 :=

{g ∈ G | gu0 = u0} the corresponding little group w.r.t. this action. Then by [29, Theorem 3.2

and Proposition 4.3] we have that gK0 7→ gu0 characterizes the diffeomorphism

G/K0
∼= D := {gu0 | g ∈ G} .

In this context we may consider the following principal K0–bundle,

B1 :=
(
G, pr1, D

)
. (1)

pr1: G → D denotes the canonical projection onto the base space D. Given a representation

τ : K0 → GL(H) on the finite–dimensional Hilbert space H, one can construct the associated

vector bundle

B2(τ) :=
(
G ×K0

H, pr2, D

)
. (2)

The action of G on M specifies the following further actions on D and on G ×K0
H: for g, g0 ∈ G,

v ∈ H, put

G × D −→ D, g0 pr1(g) := pr1(g0g)

G ×
(
G ×K0

H
)

−→ G ×K0
H, g0 [g, v] := [g0g, v] ,





(3)

where [g, v] = [gk−1, τ(k)v], k ∈ K0, denotes the equivalence class characterizing a point in the

total space of the associated bundle. Finally we define the (from τ) induced representation of G
on the space of sections of the vector bundle B2, which we denote by Γ(G ×K0

H): let ψ be such

a section and for g ∈ G, p ∈ D:

(
T (g)ψ

)
(p) := g ψ

(
g−1p

)
. (4)

2.1 Remark We will now present two ways of rewriting the preceding induced representation in

(for physicists more usual) terms of vector–valued functions.

(i) The more standard one consists of choosing a section s: D → G of the principal K0–bundle

B1. Now for ψ ∈ Γ(G ×K0
H) we put ψ(p) = [s(p), ϕ(p)], p ∈ D, for a suitable function

ϕ: D → H and we may rewrite the induced representation as

(
T (g)ϕ

)
(p) = τ

(
s(p)−1g s

(
g−1p

))
ϕ
(
g−1p

)
, (5)

where it can be easily seen that s(p)−1g s
(
g−1p

)
∈ K0.
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(ii) A second less well known way of transcribing the induced representation (4) is done by

means of a mapping J : G × D → GL(H) that satisfies

J(g1g2, p) = J(g1, g2p)J(g2, p) , g1, g2 ∈ G , p ∈ D (6)

J(e, p) = 1l , where e is the unit in G (7)

J(k, u0) = τ(k) , k ∈ K0 . (8)

Note that by (6) the l.h.s. of Eq. (8) is indeed a representation of K0. Now for ψ ∈ Γ(G×K0
H)

and a suitable function ϕ: D → H we may put ψ(p) = [g, J(g, u0)
−1 ϕ(p)], g ∈ G and

pr1(g) = p ∈ D, which is a consistent expression w.r.t. the equivalence classes in G ×K0
H:

indeed, using (6) and (8) above we have for any k ∈ K0

ψ(p) = [g, J(g, u0)
−1 ϕ(p)] = [gk−1, τ(k)J(g, u0)

−1 ϕ(p)] = [gk−1, J(gk−1, u0)
−1 ϕ(p)] .

From this we may rewrite the induced representation as

(
T (g0)ϕ

)
(p) = J

(
g−1
0 , p

)−1
ϕ(g−1

0 p) , g0 ∈ G , p ∈ D . (9)

Using for example (6)–(8) above it can be directly checked that T is indeed a representation.

The present analysis in terms of the mapping J will be useful later in the context of the

conformal group (cf. [33, Section I.4]).

Note that till now we have not specified any structure on the sections Γ(G ×K0
H) (or on

the set of H–valued functions). In the following we will apply the preceding general scheme to

the Poincaré and the conformal group and will completely fix the structure of the corresponding

representation spaces. We will also give regularity conditions on the section s considered in part

(i) above.

2.1 The Poincaré group:

We will specify next the so–called covariant and canonical representations of the Poincaré group.

They will play a fundamental role in the definition of the free net in the next section. Besides

the references mentioned at the begining of this section we refer also to [6, 7, 46, 59] as well as

[40, Section 2.1].

Covariant representations: In the general analysis considered above let G := SL(2,C)⋉R
4 =

P̃↑
+ be the universal covering of the proper orthocronous component of the Poincaré group. It

acts on M := R
4 in the usual way (A, a)x := ΛAx + a, (A, a) ∈ SL(2,C)⋉R

4, x ∈ R
4, where
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ΛA is the Lorentz transformation associated to ±A ∈ SL(2,C) which describes the action of

SL(2,C) on R
4 in the last semidirect product. Putting now u0 := 0 gives K0 = SL(2,C)⋉{0},

G/
(
SL(2,C)⋉{0}

)
∼= R

4, and the principal SL(2,C)–bundle is in this case B1 := (G, pr1, R
4).

As inducing representation we use the finite–dimensional irreducible representations of SL(2,C)

acting on the spinor space H(
j

2
, k

2
) := Sym

( j
⊗C

2
)
⊗ Sym

( k
⊗C

2
)

(cf. [54]): i.e. τ (cov)(A, 0) :=

D(
j

2
, k

2
)(A) =

( j
⊗A

)
⊗
( k
⊗A

)
, (A, 0) ∈ SL(2,C)⋉{0}. From this we have (if no confusion arises

we will omit in the following the index ( j
2
, k

2
) in D(·) and in H),

B2

(
τ (cov)

)
:=
(
G ×SL(2, C) H, pr2, R

4
)
. (10)

Recalling Remark 2.1 (i) we specify a global continuous section s of B1 (i.e. B1 is a trivial bundle):

s: R
4 −→ G, s(x) := (1l , x) ∈ SL(2,C)⋉R

4 = G .

Note that since τ (cov) is not a unitary representation and since we want to relate the following so–

called covariant representation with the irreducible and unitary canonical ones presented below,

it is enough to define T on the space of H–valued Schwartz functions S
(
R

4,H
)

(
T (g)f

)
(x) := D(A) f

(
Λ−1

A (x− a)
)
, f ∈ S

(
R

4,H
)
, (11)

where we have used that s(x)−1 (A, a) s
(
(A, a)−1x

)
= (A, 0), (A, a) ∈ G. T is an algebraically

reducible representation even if the inducing representation τ (cov) is irreducible.

2.2 Remark In [43, 44] it is shown that the covariant representation is related with the covariant

transformation character of quantum fields. Thus a further reason for considering this representa-

tion space is the fact that in the heuristic picture we want to smear free quantum fields with test

functions in S
(
R

4,H
)
.

Canonical representations: Next we will consider unitary and irreducible canonical repre-

sentations of P̃↑
+ and in particular specify the massless ones with discrete helicity. We will apply

in this case Mackey’s theory of induced representations of regular semidirect products, where

each subgroup is locally compact and one of them abelian [46, 52, 7].

First note that in the general context of the begining of this section if τ is a unitary rep-

resentation of K0 on H, then Γ(G ×K0
H) turns naturally into a Hilbert space. Indeed, the

fibres pr−1
2 (p), p ∈ D, inherit a unique (modulo unitary equivalence) Hilbert space structure from

H. Assume further that D allows a G–invariant measure µ. (The following construction goes

also through with little modifications if we only require the existence on D of a quasi–invariant
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measure w.r.t. G.) Then Γ(G ×K0
H) is the Hilbert space of all measurable sections ψ of B2(τ)

that satisfy,
〈
ψ, ψ

〉
=

∫

D

〈
ψ(p), ψ(p)

〉
p
µ(dp) <∞,

where 〈·, ·〉p denotes the scalar product on the Hilbert space pr−1
2 (p), p ∈ D, and the induced

representation given in Eq. (4) is unitary on it.

Put now G := SL(2,C) which acts on R̂
4 by means of the dual action canonically given by

the semidirect product structure of P̃↑
+. It is defined by γ̃: SL(2,C) → Aut R̂

4, χ ∈ R̂
4, and

(γ̃Aχ)(a) := χ(Λ−1
A (a)), A ∈ SL(2,C), a ∈ R

4. For χ ∈ R̂
4 fixed the corresponding little and

isotropy subgroups are defined respectively by

Gχ :=
{
A ∈ SL(2,C) | γ̃Aχ = χ

}
, Iχ := Gχ ⋉R

4 and note that P̃↑
+/Iχ

∼= G/Gχ
∼= D .

We have now the principal Iχ–bundle and the associated bundle given respectively by

B1 :=

(
P̃↑

+, pr1, D

)
and B2

(
τ (can)

)
:=

(
P̃↑

+ ×Iχ
H, pr2, D

)
,

where τ (can) is a unitary representation of Iχ on H. If τ (can) is irreducible, then the corresponding

induced representation, which is called the canonical representation, is irreducible. Even more,

every irreducible representation of G is obtained (modulo unitary equivalence) in this way. Recall

also that the canonical representation is unitary iff τ (can) is unitary.

To specify massless representations with discrete helicity we choose a character χp̆, p̆ :=

(1, 0, 0, 1) ∈ C+ (the mantle of the forward light cone), i.e. χp̆(a) = e−ip̆a, a ∈ R
4 and p̆ a means

the Minkowski scalar product. A straightforward computation shows that the isotropy subgroup

is given by Iχp̆
= E(2)⋉R

4, where

E(2) :=







e

i
2
θ e−

i
2
θ z

0 e−
i
2
θ


 ∈ SL(2,C) | θ ∈ [0, 4π), z ∈ C




. (12)

The little group E(2) is noncompact and since its commutator subgroup is already abelian it

follows that E(2) is solvable. Further, it has again the structure of a semidirect product. (In

contrast with this fact we have that the massive little group SU(2) is compact and simple.)

Since E(2) is a connected and solvable Lie group we know from Lie’s Theorem (cf. [7]) that the

only finite–dimensional irreducible representations are 1–dimensional, i.e. H := C. Therefore in

order to induce irreducible and unitary representations of the whole group that describe discrete

helicity values we define

τ (can)(L, a) := e−ip̆a

(
e

i
2
θ

)n

, (13)
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where (L, a) ∈ E(2)⋉R
4 = Iχp̆

, n ∈ N. Note that this representation is not faithful. Indeed,

the normal subgroup








1 z

0 1


 | z ∈ C





is trivially represented (see also [57, Section II]). Some

authors associate this subgroup to certain gauge degrees of freedom of the system (e.g. [28, 37,

51]). We consider next the bundles,

B(can)

1 :=

(
P̃↑

+, pr1, C+

)
and B2

(
τ (can)

)
:=

(
P̃↑

+ ×Iχp̆
C, pr2, C+

)
,

where we have used the diffeomorphism P̃↑
+/Iχp̆

∼= C+ between the factor space and the mantle

of the forward light–cone. We denote by µ0(dp) the corresponding invariant measure on C+.

In contrast with the massive case the bundle B(can)

1 has no global continuous section. This fact

is based on the comparison of different homotopy groups that can be associated with the bundle

B(can)

1 [12]. Nevertheless, we can specify a measurable section considering a continuous one in a

chart that does not include the set {p ∈ C+ | p3 = −p0} (which is of measure zero w.r.t. µ0(dp)).

Putting C◦
+ := C+ \ {p ∈ C+ | p3 = −p0} a (local) continuous section is given explicitly by

s: C◦
+ −→ P̃↑

+, s(p) := (Hp, 0) ∈ SL(2,C)⋉R
4 = P̃↑

+, (14)

where

Hp :=
1√

2p0(p0 + p3)




−√
p0 (p0 + p3)

p1 − ip2√
p0

−√
p0 (p1 + ip2) −p0 + p3√

p0


 . (15)

Recall that the Hp–matrices satisfy the equation

Hp




2 0

0 0


H∗

p = P, where P =



p0 + p3 p1 − ip2

p1 + ip2 p0 − p3


 = p0σ0 +

3∑

i=1

piσi, (16)

where σµ, µ = 0, 1, 2, 3, are the unit and the Pauli matrices and we have used the vec-

tor space isomorphism between R
4 and H(2,C) := {P ∈ Mat2(C) | P ∗ = P} given by

R
4 ∋ p := (p0, p1, p2, p3) 7→ P .

If we consider the section in Eq. (14) fixed, then we have on L2(C+,C, µ0(dp)) the canonical

massless representations (cf. Eq. (5))

(
U±(g)ϕ

)
(p) = e−ipa

(
e±

i
2
θ(A,p)

)n

ϕ(q), (17)

where g = (A, a) ∈ SL(2,C)⋉R
4, n ∈ N, q := Λ−1

A p and for A =



a b

c d


 ∈ SL(2,C) we compute

e−
i
2
θ(A,p) :=

(
H−1

p AHq

)
22

=
−b(p1 + ip2) + d(p0 + p3)

| − b(p1 + ip2) + d(p0 + p3)|
.

U± are unitary w.r.t. usual L2–scalar product, satisfy the spectrum condition and the helicity of

the model carrying one of these representations is ±n
2 .
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2.2 The conformal group:

We will consider first some standard facts concerning the conformal group [30, Appendix],[50, 55,

33]. We will describe later a technique to define a unitary representation of SU(2, 2), by means

of the mapping J considered in Remark 2.1 (ii). These results are a variation of the notion of

reproducing kernel for which we refer to [38, 33, 18] and will be useful in order to extend the

massless canonical representations to unitary representations of the conformal group.

The group

SU(2, 2) := {g ∈ Mat4(C) | det g = 1 and g ζ g∗ = ζ} , where ζ :=




0 −i1l
i1l 0


 , (18)

is the fourfold covering of the conformal group in Minkowski space. Using A,B,C,D ∈ Mat2(C)

we have that g =



A B

C D


 ∈ SU(2, 2) iff det g = 1 and

AB∗ = BA∗ C∗A = A∗C

CD∗ = DC∗ or equivalently B∗D = D∗B

AD∗ −BC∗ = 1l A∗D − C∗B = 1l .





(19)

Further, we write the natural action of SU(2, 2) on the forward tube

T+ := H(2,C) + iH+(2,C) ∼= R
4 + iV+ , H+(2,C) := {P ∈ H(2,C) | detP > 0 , TrP > 0}

as follows:

gZ := (AZ +B) (CZ +D)−1 , Z = X + iY ∈ T+ . (20)

Finally, the Poincaré group, the dilations and the special conformal transformations can be

recovered as subgroups of SU(2, 2). In particular we will need later

P̃↑
+ =







A B(A∗)−1

0 (A∗)−1


 | A ∈ SL(2,C) , B ∈ H(2,C)





⊂ SU(2, 2) . (21)

With this action in mind recall the general situation concerning induced representations at

the begininng of this section and put now G := SU(2, 2), M := T+ and u0 := i1l ∈ T+, so that

from the action given in Eq. (20) we get [33, Section 3]

K0 := {g ∈ SU(2, 2) | gi1l = i1l} =







A B

−B A


 ∈ SU(2, 2)





and SU(2, 2)/K0
∼= T+ .
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Suppose now that there exists a Hilbert space H with scalar product 〈·, ·〉 (we will identify

later H with the representation Hilbert space of the massless canonical representations) and that

we may use T+ and H to parametrize a total set

Htot := {Kz,v | z ∈ T+, v ∈ H} ⊂ H .

2.3 Lemma If the scalar product satisfies on Htot the property

〈
Kgz1,v1, Kgz2,v2

〉
=
〈
Kz1, J(g,z1)∗v1

, Kz2, J(g,z2)∗v2

〉
, z1, z2 ∈ T+ , v1, v2 ∈ H, (22)

for all g ∈ SU(2, 2), then the representation defined on Htot by

V (g)Kz,v := Kgz, (J(g,z)−1)∗v ∈ Htot

extends to a unitary representation within H.

Proof: First of all note that on Htot the relation V (g1g2) = V (g1)V (g2), g1, g2 ∈ SU(2, 2), holds.

Indeed, using Eq. (6) we have

V (g1g2)Kz,v = Kg1g2z, (J(g1g2,z)−1)∗v = Kg1g2z, (J(g1,g2z)−1)∗ (J(g2,z)−1)∗v = V (g1) (V (g2)Kz,v).

We can also easily check the isometry property on span Htot, which by assumption is dense in H.

For
L∑

l=1
λlKzl,vl

,
M∑

m=1
λ′mKz′m,v′m

∈ span Htot and extending by linearity the above definition we

have

〈
V (g)

(
L∑

l=1
λlKzl,vl

)
, V (g)

(
M∑

m=1
λ′mKz′m,v′m

)〉

=
∑

l,m

λl λ
′
m

〈
Kgzl,(J(g,zl)−1)∗vl

, Kgz′m,(J(g,z′m)−1)∗v′m

〉

=
∑

l,m

λl λ
′
m

〈
Kzl,J(g,zl)∗(J(g,zl)−1)∗vl

, Kz′m,J(g,z′m)∗(J(g,z′m)−1)∗v′m

〉

=

〈
L∑

l=1
λlKzl,vl

,
M∑

m=1
λ′mKz′m,v′m

〉
.

We can therefore extend isometrically V (g) to a unitary representation on the whole H.

3 Massless free nets

In the following we will briefly review with some modifications and improvements the massless

free net construction presented in [9, Part B]. The fundamental object that characterizes a free
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net is the linear embedding I that intertwines between the covariant and the canonical represen-

tation. The free net will be called massive or massless depending if the canonical representation

corresponds to m > 0 resp. m = 0. Now a typical feature of massless models with helicity 6= 0 is

the fact that the embeddings must reduce the degrees of freedom on the fibres of the correspond-

ing associated bundles. Indeed, as a consequence of the fact that E(2) is solvable we have that the

fibres of B2(τ
(can)) are 1–dimensional, while the fibres of B2(τ

(cov)) are at least 2–dimensional if

one chooses a nontrivial inducing representation τ (cov). With other words, if the models describe

nontrivial helicity, then some further restriction must be performed on the fibres in order to re-

duce the covariant representation to the unitary and irreducible canonical one. There are at least

three ways to perform the mentioned reduction that will produce isomorphic nets of C*–algebras:

(i) One possibility that will be considered next is to rewrite the massless canonical represen-

tation in a for us much more convenient way. Using certain natural reference spaces with

a semidefinite sesquilinear form characterized by an positive semidefinite operator–valued

function β(·), the reduction is done passing to the factor spaces that can be canonically

constructed from the degeneracy subspaces of the sesquilinear form.

(ii) A second possibility is to consider other type of embeddings that map the Schwartz test

functions to the space of solutions of the corresponding massless relativistic wave equations.

Here the reduction is done by means of certain invariant (but not reducing) projections on

the spinor space H (cf. [43, 44]).

(iii) Finally, one can also perform the mentioned reduction for the bosonic models at the C*–

level by the constraint reduction procedure of Grundling and Hurst [23]. In this context

the constraints can be defined as the Weyl elements associated to the degenerate subspace

of part (i) (cf. [42]) and the constraint reduction here is similar to the second stage of

reduction of the Gupta–Bleuler model considered in [25, Theorem 5.14].

The essence of the following construction is the fact that for each p ∈ C+ the nonnegative,

selfadjoint matrix P † = 1
2




p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3


 has the eigenvalues p0 and 0:

P †



−p1 + ip2

p0 + p3


 = p0



−p1 + ip2

p0 + p3


 and P †



p1 − ip2

p0 − p3


 = 0



p1 − ip2

p0 − p3


 . (23)

That P † has the eigenvalue 0 is a typical feature of massless representations, since for the massive

ones the corresponding matrix P † is strictly positive for any p on the positive mass shell (see [9,
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Part A]). Now each function ϕ: C+ \ {p ∈ C+ | |p3| = p0} −→ C
2 can be decomposed pointwise

into a sum of the eigenvectors above (recall that {p ∈ C+ | |p3| = p0} is of measure 0 w.r.t µ0),

ϕ(p) =



−p1 + ip2

p0 + p3


 α+(p) +



p1 − ip2

p0 − p3


 α0(p) , (24)

for suitable C–valued functions α+, α0. Further, the matrix P † is a natural object from the

point of view of representation theory of the Poincaré group. It is straightforward to show that

P † =
(
H−1

p

)∗



0 0

0 1


H−1

p = 1
2

(
p0σ0 −

3∑
i=1

piσi

)
, where the matrices Hp ∈ SL(2,C), p ∈ C◦

+, are

given in Eq. (15).

The sesquilinear forms to be defined next are characterized by the following positive semidef-

inite operator–valued functions: put for p ∈ C+ and n ∈ N,

β+(p) := D(0, n
2

)(P †) =
n
⊗P † and β−(p) := D( n

2
, 0)(P †) =

n
⊗P † .

β±(p) act on H(0, n
2

) resp. H( n
2

, 0). Define then for ϕ,ψ a pair of H–valued measurable functions

the sesquilinear forms

〈
ϕ, ψ

〉
β±

:=

∫

C+

(
ϕ(p), β±(p) ψ(p)

)
H
µ0(dp), (25)

and from this consider the sets

Hn,± :=
{
ϕ: C◦

+ −→ H | ϕ is measurable and 〈ϕ,ϕ〉β±
<∞

}
. (26)

For ϕ± ∈ Hn,± we define also the representations:

(
V1(g) ϕ+

)
(p) := e−ipa D(0, n

2
)(A) ϕ+(q), (27)

(
V2(g) ϕ−

)
(p) := e−ipa D( n

2
, 0)(A) ϕ−(q), (28)

where g = (A, a) ∈ P̃↑
+ = SL(2,C)⋉R

4 and q := Λ−1
A p ∈ C+. Since

β+(q) = D(0, n
2

)(A)∗ β+(p)D(0, n
2

)(A) and β−(q) = D( n
2

, 0)(A)∗ β−(p)D( n
2

, 0)(A) ,

for p, q as before we have that the representations V1,2 leave the sesquilinear forms 〈·, ·〉β±
in-

variant. From the comments made at the beginning of this section about the eigenvalues of P †

it is clear that the sesquilinear forms 〈·, ·〉β±
are only semidefinite. This observation is in agree-

ment with the general theorem in [6, p. 113]. We can thus select in a natural way the following

subspaces of Hn,±:
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3.1 Definition With respect to the sesquilinear form defined above we can naturally define:

H
(>)
n,+ :=




ϕ ∈ Hn,+ | ϕ(p) =

n
⊗



−p1 − ip2

p0 + p3


χ+(p), for suitable scalar χ+





(29)

H
(>)
n,− :=




ϕ ∈ Hn,− | ϕ(p) =

n
⊗



−p1 + ip2

p0 + p3


χ−(p), for suitable scalar χ−





(30)

H
(0)
n,± :=

{
ϕ ∈ Hn,± | 〈ϕ,ϕ〉β±

= 0
}

(31)

H′
n,± := Hn,±/H

(0)
n,± (32)

3.2 Lemma Using the preceding definitions we have that for n > 0

(i) Hn,± = H
(>)
n,± ⊕ H

(0)
n,±.

(ii) The representations V1,2 leave the spaces H
(0)
n,± invariant. On the contrary, the subspaces

H
(>)
n,± are not invariant under the mentioned representations.

(iii) For any non zero ϕ ∈ H
(>)
n,± we have ‖ϕ‖β±

= ‖V1,2(g)ϕ‖β±
> 0 for all g ∈ P̃↑

+.

Proof: Part (i) follows directly from the analysis of the eigenvalues of the matrix P † given at the

beginning of this section. That H
(0)
n,± are V1,2–invariant subspaces and part (iii) are a consequence

of the fact that the representations V1,2 leave the sesquilinear forms 〈·, ·〉β±
invariant. To prove

the rest of part (ii) note that e.g. for f ∈ S
(
R

4,H
)

we have

ϕ(>)

+ (p) := D(0, n
2

)

(
Hp

(
0 0

0 1

))
f̂(p) ∈ H

(>)
n,+ and ϕ(0)

+ (p) := D(0, n
2

)

(
Hp

(
1 0

0 0

))
f̂(p) ∈ H

(0)
n,+ .

Thus for a general g = (A, 0) ∈ P̃↑
+ and since H−1

p AHq ∈ E(2), q := Λ−1
A p,

(V1(g)ϕ
(>)

+ )(p) = D(0, n
2

)

(
AHq

(
0 0

0 1

))
f̂(q) = D(0, n

2
)(Hp)D

(0, n
2

)

(
H−1

p AHq

(
0 0

0 1

))
f̂(q) = ψ(>)

+ + ψ(0)

+ ,

where ψ
(>)
+ ∈ H

(>)
n,+, ψ

(0)
+ ∈ H

(0)
n,+ (similar arguments for the spaces with opposite helicity indexed

with a ‘−’). This implies that the representations V1,2 restricted to H
(>)
n,± produce in general

further ‘zero norm vectors’.

From the preceding lemma we can lift the representations V to the factor spaces H′
n,±. We

denote the lift by V ′ and the equivalence classes in H′
n,± by [·]±.

3.3 Theorem The representations V ′
1,2 defined on H′

n,± are equivalent to the irreducible and uni-

tary Wigner representations U± defined in Eq. (17).
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Proof: We will give the proof for the spaces with index ‘+’. For the spaces with opposite

helicity similar arguments can be used just interchanging D(0, n
2

)(·) with D( n
2

, 0)(·). For χ ∈
L2(C+,C, µ0(dp)) the linear mapping given by

(Φ+ χ)(p) :=


D

(0, n
2

)(Hp)




n
⊗




0

1





χ(p)




+

is easily seen to be an isometry between L2(C+,C, µ0(dp)) and H′
n,+ with the corresponding scalar

products. Note that D(0, n
2

)(Hp)




n
⊗




0

1





χ(p) is the representant in H

(>)
n,+ of the equivalence

class. Now the intertwining equation Φ+ U+(g) = V1(g)Φ+, g ∈ P̃↑
+, is also a straightforward

calculation if one recalls that

e
i
2
θ(A,p) =




0 0

0 1


H−1

p AHq




0 0

0 1


 and that D(0, n

2
)


Hp




1 0

0 0





ϕ(p) ∈ H

(0)
n,+ ,

for any suitable H–valued function ϕ.

3.4 Remark The representations V1,2 on the spaces Hn,± are the analogue of the massive repre-

sentations that avoid the use of so–called ‘Wigner rotations’ (see e.g. [48, 49] or [9, Part A]). The

price for the masslessness here are the degenerate subspaces H
(0)
n,±. The advantage of using these

spaces is the fact that one can more naturally reduce the covariant representation (11) in terms

of V ′
1,2 than in terms of U± given in eq. (17). This reduction is done by means of the embedding

I, which is the essential essential object for the construction of the free net (see also [41]).

Recall next the covariant and massless canonical representations (the latter written in the

more convenient factor space notation) considered before:

(
T (g) f

)
(x) := D(0, n

2
)(A) f

(
Λ−1

A (x− a)
)
, g = (A, a) ∈ P̃↑

+ , f ∈ S
(
R

4,H(0, n
2

)
)
,

(
V ′

1(g) [ϕ]+
)
(p) :=

[
e−ipaD(0, n

2
)(A)ϕ

(
Λ−1

A p
)]

+
,
(
V ′

3(g) [ϕ]+
)
(p) :=

[
eipaD(0, n

2
)(A)ϕ

(
Λ−1

A p
)]

+
,

(
V ′

2(g) [ψ]−
)
(p) :=

[
e−ipaD( n

2
, 0)(A)ψ

(
Λ−1

A p
)]

−

,
(
V ′

4(g) [ψ]−
)
(p) :=

[
eipaD( n

2
, 0)(A)ψ

(
Λ−1

A p
)]

−

,

where ϕ ∈ Hn,+ and ψ ∈ Hn,−. V ′
1 and V ′

2 satisfy the spectrality condition.

The following definition will be the essential ingredient for the massless free net construction:

3.5 Definition Reference spaces and embeddings for the bosonic and fermionic cases:
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(i) In the Bose case (n even) take hn := H′
n,+ ⊕ H′

n,− (considered as a real space) and the

symplectic form σn := Im 〈·, ·〉β+ ⊕ Im 〈·, ·〉β−
. As symplectic representation of P̃↑

+ choose

Vn := V ′
1 ⊕ V ′

2 . The embedding In:S
(
R

4,H(0, n
2

)
)
→ hn is given here by

(Inf)(p) := [f̂(p)]+ ⊕ [Γ̂0f(p)]− , p ∈ C+ ,

where Γ0: H(0, n
2

) → H( n
2

, 0) is an antiunitary involution and f̂(p) :=
∫
R4 e−ipxf(x) d4x is

the Fourier transform.

(ii) In the Fermi case (n odd) take hn := H′
n,+ ⊕ H′

n,− ⊕ H′
n,+ ⊕ H′

n,− with the natural scalar

product and the antilinear involution given by

Γn

(
[ϕ+]+ ⊕ [ϕ−]− ⊕ [ψ+]+ ⊕ [ψ−]−

)
:= [Γ0 ψ−]+ ⊕ [Γ0 ψ+]− ⊕ [Γ0 ϕ−]+ ⊕ [Γ0 ϕ+]−

As unitary representation of P̃↑
+ that intertwines with Γn choose Vn := V ′

1 ⊕ V ′
2 ⊕ V ′

3 ⊕ V ′
4 .

In the present case the embedding In:S
(
R

4,H(0, n
2

)
)
→ hn is given by

(Inf)(p) := [f̂(p)]+ ⊕ [Γ̂0f(p)]− ⊕ [f̂(−p)]+ ⊕ [Γ̂0f(−p)]− , p ∈ C+ .

The preceding embeddings characterize in a canonical way nets of C*–subalgebras of the

CAR– and CCR–algebras associated to the corresponding reference space hn (cf. [10, Chapter 8]

and references cited therein). The explicit construction of the net and the verification of some of

the main axioms of algebraic QFT is the content of the following theorem.

3.6 Theorem Denoting by B(R4) the set of open and bounded regions in Minkowski space we

have

(i) Fermionic case (n odd):

B(R4) ∋ O 7−→ An(O) := C∗
(
{A(Inf) | suppf ⊂ O}

)
Z2 ⊂ CAR(hn,Γn) .

Here A(·) are the generators of the CAR–algebra CAR(hn,Γn) and A Z2 denotes the fixed

point subalgebra of the C*–algebra A w.r.t. Bogoljubov automorphism associated to the

unitarity −1l .

(ii) Bosonic case (n even):

B(R4) ∋ O 7−→ An(O) := C∗
(
{δInf | suppf ⊂ O}

)
⊂ CCR(hn, σn) .

Here δ(·) denote the Weyl elements that generate the CCR–algebra CCR(hn, σn).
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Finally, the net B(R4) ∋ O 7→ An(O) characterized by the corresponding embeddings In, n ∈ N,

satisfies the properties of

(i) (Isotony) If O1 ⊆ O2, then An(O1) ⊆ An(O2), O1,O2 ∈ B(R4).

(ii) (Causality) If O1 and O2 are causaly separated, then [An(O1),An(O2)] = 0.

(iii) (Additivity) For any {Oλ}λ∈Λ ⊂ B(R4) with ∪λOλ ∈ B(R4). Then

An(∪λOλ) = C∗
(
∪λ An(Oλ)

)
.

(iv) (Covariance) There exists a representation P̃↑
+ ∋ g 7→ αg in terms of automorphisms of the

CAR–resp. CCR–algebras such that αg(An(O)) = A(gO), g ∈ P̃↑
+, O ∈ B(R4).

Proof: Since in this paper the covariance axiom plays a distinguished role we will show only this

property here. For the other properties and further details we refer to [9, 43, 44]. We will show

that the covariance relation is based on the following intertwining property of the embeddings

In w.r.t. the covariant and the canonical representations:

InT (g) = Vn(g)In , g ∈ P̃↑
+ .

Indeed, let αg be the Bogoljubov automorphisms associated to the Bogoljubov unitaries Vn(g).

Further note also that the covariant representation T shifts the space time regions in the correct

way, i.e. if f ∈ S
(
R

4,H
)

and suppf ⊂ O, then supp(T (g)f) ⊂ gO, g ∈ P̃↑
+. Now in the bosonic

case (n even) we have for any O ∈ B(R4), g ∈ P̃↑
+,

αg

(
A(O)

)
= αg

(
C∗
(
{δInf | suppf ⊂ O}

))

= C∗
(
{αg(δInf ) | suppf ⊂ O}

)

= C∗
(
{δVn(g)(Inf) | suppf ⊂ O}

)

= C∗
(
{δIn(T (g)f) | suppf ⊂ O}

)

= C∗
(
{δInf ′ | suppf ′ ⊂ gO}

)

= A(gO) .

One can argue similarly for the fermionic nets.

3.7 Remark Note that for the free nets constructed previously the one particle Hilbert space

corresponding to the canonical Fock states (to be specified in Section 5) is H′
n,+ ⊕ H′

n,−, n ∈ N.

It carries a representation V ′
1 ⊕ V ′

2 which by Theorem 3.3 is equivalent to the reducible Wigner
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massless representations U+⊕U− with helicities n
2 and −n

2 . This Hilbert space and representation

coincide with the one–particle Hilbert space used in more standard quantum field theoretical

construction of massless free fields (cf. e.g. [31]).

We will show later that the covariance property of the massless free nets can be extended to

the fourfold coverning of the conformal group SU(2, 2).

4 Extension of the massless representations

The first step to show that the massless free nets contructed in the previous theorem are also

covariant w.r.t. the conformal group is to show that the massless canonical representations V ′
k,

k = 1, 2, 3, 4, extend within H′
± to a unitary representation of SU(2, 2). This fact has been

shown considering different mathematical contexts (see e.g. [45, 18, 33, 2]). We will give next

a simplified proof of this result due to the nice properties the functions β±(·) introduced in the

previous section.

In the context of Subsection 2.2 we consider as inducing representation of the little group K0

on H(0, n
2

)

τ(K) := det(A− iB)D(0, n
2

)(A− iB) , K =



A B

−B A


 ∈ K0 ,

which is unitary because from Eqs. (19) we have in this case AA∗ +BB∗ = 1l , AB∗ = −BA∗ etc.

The first step will be to define a mapping J that satisfies the properties required in Remark 2.1 (ii).

4.1 Lemma For g =



A1 A2

A3 A4


 ∈ SU(2, 2), Z ∈ T+, the mapping

J (0, n
2

)(g, Z) := det(A3Z +A4)D
(0, n

2
)(A3Z +A4)

satisfies the properties

J (0, n
2

)(g1g2, Z) = J (0, n
2

)(g1, g2Z)J (0, n
2

)(g2, Z) , g1, g2 ∈ SU(2, 2) , Z ∈ T+ ,

J (0, n
2

)(1l , Z) = 1l ,

J (0, n
2

)(K, i1l ) = τ(K) , K ∈ K0 .

Proof: The second property is trivial since J (0, n
2

)(1l , Z) = det(1l )D(0, n
2

)(1l ) = 1lH. Further,

the third eq. follows also directly from the choices of τ and J . To prove the first property

put J1(g, Z) := A3Z + A4 (which acts on C
2) and note that it already satisfies the con-

dition J1(g1g2, Z) = J1(g1, g2Z)J1(g2, Z) as can be immediately checked. Therefore, since
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D(·) is a representation and from the product rule for determinants it follows that J(g, Z) =

det(J1(g, Z))D(J1(g, Z)) satisfies the required condition.

4.2 Remark The following results will be close to those in [33, Section IV]. The main difference

w.r.t. Jakobsen and Vergne’s approach lies in the fact the we are working with Minkowski scalar

products in the arguments of the exponentials that appear, while in the cited reference mainly

euclidean scalar products are considered. This variation will have no consequence for the absolute

convergence of the integrals studied next and it will considerably simplify some proofs later

on, e.g. the extension result for the massless canonical representation of the Poincaré group

(cf. Theorem 4.6). Note that we can write xp = x0p0 −
∑

i xipi = Tr(P †X) and x0p0 +
∑

i xipi =

1
2
Tr(PX), where P,P † are given in Section 3. The following two technical lemmas will be essential

for the proof of the conformal covariance of massless free nets.

4.3 Lemma For Y ∈ H+(2,C) we have

∫

C+

e−Tr(P†Y )β+(p) µ0(dp) = Cn (detY )−1D(0, n
2

)(Y )−1 , Cn > 0 ,

where the l.h.s. is an absolutely convergent integral.

Proof: First note that with the notation above P † = 1
2

(
0 −1

1 0

)
P
(

0 1

−1 0

)
so that

∫

C+

e−Tr(P†Y )β+(p) µ0(dp)

=
(

1
2

)n
D(0, n

2
)

((
0 −1

1 0

))




∫

C+

e

−Tr

(
P

(
0 1

−1 0

)
( 1

2
Y t)

(
0 −1

1 0

))

D( n
2

, 0)(P ) µ0(dp)



D(0, n

2
)

((
0 1

−1 0

))
, (33)

where the index t means matrix transposition. But from [33, Proposition IV.1.1] the integral on

the r.h.s. of the preceding equation is absolutely convergent for Y ∈ H+(2,C) and even more we

also have from the mentioned proposition that for some C ′
n > 0

∫

C+

e

−Tr

(
P

(
0 1

−1 0

)
( 1

2
Y t)

(
0 −1

1 0

))

D( n
2

, 0)(P ) µ0(dp) = C ′
n (detY )−1D( n

2
, 0)

(
1
2

(
0 1

−1 0

)
Y t
(

0 −1

1 0

))−1

.

Inserting this result on the r.h.s. of Eq. (33) and using D( n
2

, 0)(Y t) = D(0, n
2

)(Y ) we get the eq. of

the lemma.
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4.4 Lemma For Z1, Z2 ∈ T+ we have

K+(Z1, Z2) := Cn

(
det

(
Z1−Z∗

2

2i

))−1

D(0, n
2

)

(
Z1−Z∗

2

2i

)−1

=

∫

C+

e
i Tr
(

P†(Z1 − Z∗
2
)
)
β+(p) µ0(dp) ,

where the integral is absolutely convergent. Further, for any g ∈ SU(2, 2) we have

K+(gZ1, gZ2) = J (0, n
2

)(g, Z1)K+(Z1, Z2)
(
J (0, n

2
)(g, Z2)

)∗

Proof: Note first that if Z1, Z2 ∈ T+, then Z1 − Z∗
2 ∈ T+, which implies det(Z1 − Z∗

2 ) 6= 0.

Applying now Lemma 4.3 as well as [33, Proposition IV.1.2] we get the first part of the statement.

To prove the last equation take g =



A1 A2

A3 A4


 ∈ SU(2, 2) and consider first

1

2i

(
gZ1 − (gZ2)

∗
)−1

=
1

2i

(
(A1Z1 +A2)(A3Z1 +A4)

−1 − ((A1Z2 +A2)(A3Z2 +A4)
−1)∗

)−1

=
1

2i
(A3Z1 +A4) ·

(
(Z∗

2A
∗
3+A∗

4)(A1Z1+A2) − (Z∗
2A

∗
1+A∗

2)(A3Z1+A4)
)−1

· (A3Z2 +A4)
∗

=(A3Z1 +A4) ·
1

2i
(Z1 − Z∗

2 )−1 · (A3Z2 +A4)
∗ ,

where for the last eq. we have used the relations (19). Now recalling the definition of J in

Lemma 4.1 we have that

K+(gZ1, gZ2) = Cn

(
det

(
gZ1−(gZ2)∗

2i

))−1

D(0, n
2

)

(
gZ1−(gZ2)∗

2i

)−1

= J (0, n
2

)(g, Z1)K+(Z1, Z2)
(
J (0, n

2
)(g, Z2)

)∗

and the proof is concluded.

We will explicitly give next a parametrization in terms of the sets T+ and H of a total set

H′
tot ⊂ H′

n,+ that will satisfy the properties required in Subsection 2.2.

4.5 Lemma The set H′
tot := { [KZ,v]+ | KZ,v(p) := e−iTr(P†Z∗)v , p ∈ C+ , Z ∈ T+ , v ∈ H} is total

in H′
n,+. Further the following equation holds for all g ∈ SU(2, 2):

〈
KgZ1,v1, KgZ2,v2

〉
β+

=
〈
KZ1, J(g,Z1)∗v1

, KZ2, J(g,Z2)∗v2

〉
β+

, Z1, Z2 ∈ T+ , v1, v2 ∈ H .

Proof: First from Lemma 4.3 we have for any Z = X + iY ∈ T+, v ∈ H, that

〈
KZ,v, KZ,v

〉
β+

=

∫

C+

e−Tr(2P†Y )
〈
v, β+(p)v

〉
H
µ0(dp) <∞
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and spanH′
tot is dense in H′

n,+ by Lemmas 4.2.2 and 4.2.3 in [18].

Finally, recalling the properties of K+ in Lemma 4.4 we have

〈
KgZ1,v1, KgZ2,v2

〉
β+

=

∫

C+

〈
e−iTr(P†(gZ1)∗) v1, β+(p) e−iTr(P†(gZ2)∗) v2

〉
H
µ0(dp)

=

〈
v1 ,



∫

C+

e
i Tr
(

P†(gZ1 − (gZ2)∗)
)
β+(p) µ0(dp)




︸ ︷︷ ︸
K+(gZ1,gZ2)

v2

〉

H

=

∫

C+

〈
e−iTr(P†Z∗

1
) J(g, Z1)

∗v1, β+(p) e−iTr(P†Z∗
2
) J(g, Z2)

∗v2
〉
H
µ0(dp)

=
〈
KZ1, J(g,Z1)∗v1

, KZ2, J(g,Z2)∗v2

〉
β+

,

and the proof is concluded.

4.6 Theorem The following representation of the conformal group defined on H′
tot by

W ′
1(g) [KZ,v ]+(p) :=

[
KgZ, (J(g,Z)−1)∗v

]
+

(p) , g ∈ SU(2, 2) ,

extends to a unitary and irreducible representation within H′
n,+. Further, the restriction of W ′

1 to

the Poincaré subgroup coincides with V ′
1 defined in Section 3, which is equivalent to the massless

canonical representation of helicity n
2 .

Proof: First of all note that by the proof of Lemma 4.5 we have that KZ,v 7→ KgZ, (J(g,Z)−1)∗v

leaves the sesquilinear form 〈·, ·〉β+ invariant and therefore the definition of W ′
1 on the factor

space is consistent with the corresponding equivalence classes. Now again by Lemma 4.5 we can

apply Lemma 2.3 to the present situation to conclude that W ′
1 extends to a unitary representation

within H′
n,+.

Consider next the Poincaré subgroup of SU(2, 2) given in Eq. (21), i.e.

SU(2, 2) ⊃ P̃↑
+ ∋ g0 =



A C(A∗)−1

0 (A∗)−1


 , A ∈ SL(2,C) , C = C∗ ∈ H(2,C) .

For this subgroup and recalling the action in Eq. (20) as well as Remark 4.2 we have

e−iTr(P† (g0Z)∗) = e−iTr(P†C) e
−iTr

(
P† AZ∗A∗

)
= e−iTr(P†C) e

−iTr
(
(A−1P (A−1)∗)† Z∗

)

and also J (0, n
2

)(g0, Z) = D(0, n
2

)(A−1)∗. From this we get

W ′
1(g0) [KZ,v]+(p) =

[
e−iTr(P†C) D(0, n

2
)(A)KZ,v

(
Λ−1

A p
)]

+
.
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Thus the unitary representations W ′
1↾P̃↑

+ and V ′
1 coincide on a total set and therefore they must

be equal. Now, V ′
1 is equivalent to massless canonical representation with helicity n

2 and since

V ′
1 = W ′

1↾P̃↑
+ is already irreducible, then W ′

1 is certainly irreducible for the whole SU(2, 2).

4.7 Remark (i) Note that the representation W ′
1 is just the transcription of the induced rep-

resentation considered Remark 2.1 (ii) in terms of the more useful set of functions H′
tot.

Indeed, recalling the kernels introduced in Lemma 4.4 consider the following functions

ϕZ0,v: T+ → H, Z0 ∈ T+, v ∈ H,

ϕZ0,v(Z) := K+(Z0, Z) v =

∫

C+

e
i Tr
(

P†Z0

)
β+(p)KZ,v(p) µ0(dp) .

Using again Lemma 4.4 it is now straightforward to rewrite the induced representation (9)

for the functions ϕZ0,v in terms of the functions KZ,v.

(ii) We can argue similarly as in this section for the spaces with opposite helicity. Indeed, use the

mapping J ( n
2

, 0)(g, Z) := Γ0 J
(0, n

2
)(g, Z) Γ0 and the kernel K−(Z1, Z2) = Γ0 K+(Z1, Z2) Γ0. It

can be easily seen now that we can extend as in the preceding theorem the representations

V ′
i needed in the previous section to the define the free nets to corresponding representations

W ′
i , i = 2, 3, 4.

5 Conformal covariance and its consequences

One of the characteristic facts about the conformal group is that it acts quasi–globaly on

Minkowski space. This behaviour is due to the fact that the subgroup of the special confor-

mal transformations has always singularities on certain hypersurfaces of R
4. We will therefore

restrict in this section to g ∈ SU(2, 2), f ∈ C∞
0 (R4,H) and double cones O ∈ B(R4), where

g suppf and gO ⊂ R
4 are well defined. We denote the family of double cones in R

4 by K. These

are standard assumptions in order to understand the axiom of covariance in the general setting

of conformal quantum field theory (cf. [13, Section 1], [55, I.4]).

To apply next the explicit formulas concerning the representations of SU(2, 2) considered in

the preceding section, we will need to introduce first a suitable y–dependent embedding (y ∈ V+,

i.e. Y ∈ H+(2,C)) which can be related to the embedding needed in Section 3 to the define the

free net.

22



5.1 Definition Putting Z = X + iY ∈ T+ we define Iy,+: C∞
0 (R4,H(0, n

2
)) → H′

n,+ by

(
Iy,+f

)
(p) :=



∫

R4

e
−i Tr

(
P†Z∗

)
f(x)d4x




+

=



∫

R4

e
−i Tr

(
P†(X − iY )

)
f(x)d4x




+

.

5.2 Lemma The y–dependent embedding satisfies Iy,+f ∈ H′
n,+ and lim

V+∋y→0
Iy,+f = [ f̂ ]+, where

the limit exists in the Hilbert space norm ‖ · ‖β+ .

Proof: For any f ∈ C∞
0 (R4,H(0, n

2
)) it follows from Lemma 4.3 that Iy,+f ∈ H′

n,+. Further

‖Iy,+f − [ f̂ ]+‖2
β+

=

∫

C+

〈(
Iy,+f(p) − f̂(p)

)
, β+(p)

(
Iy,+f(p) − f̂(p)

)〉

H

µ0(dp)

=

∫

R4

∫

R4

∫

C+

|e−Tr(P†Y ) − 1|2
〈
f(x), β+(p) f(x′)

〉
µ0(dp) d4xd4x′

and the last expression tends to zero as V+ ∋ y → 0 by Lebesgue’s dominated convergence

theorem (note that for y ∈ V+ we have 1 ≥ |e−Tr(P†Y ) − 1|2 → 0 as V+ ∋ y → 0).

Now inspired by Theorem 4.6 we can consider the following representation on the set of

embedded test functions.

5.3 Definition For f ∈ C∞
0 (R4,H(0, n

2
)), g ∈ SU(2, 2) and Y ∈ H+(2,C) we define

(
W1(g)(Iy,+f)

)
(p) :=



∫

R4

e
−i Tr

(
P†(gZ)∗

) (
J (0, n

2
)(g, Z)−1

)∗
f(x)d4x




+

.

5.4 Lemma The representation defined before satisfies for f, k ∈ C∞
0 (R4,H(0, n

2
))

〈
W1(g)Iy,+f , W1(g)Iy,+k

〉
β+

=
〈
Iy,+f , Iy,+k

〉
β+

, g ∈ SU(2, 2) , Z = X + iY ∈ T+ .

Further we have W1(g) (Iy,+f) = Igy,+ (Ty(g)f), where

(Ty(g)f) (gx) :=
(
J (0, n

2
)(g, Z)−1

)∗
f(x)

satisfies the relation Ty(g1g2) = Tg2y(g1)Ty(g2), g1, g2 ∈ SU(2, 2).

Proof: The unitarity property is based on Lemma 4.4 (cf. with the proof of Theorem 4.6). The

other relations follow immediately from the definition of Ty.

23



5.5 Theorem Consider for suitable f ∈ C∞
0 (R4,H(0, n

2
)) and g ∈ SU(2, 2) the representation

(
W1(g)[ f̂ ]+

)
(p) := lim

V+∋gy→0

(
W1(g)(Iy,+f)

)
(p) =

[( ̂T0(g)f
)
(p)

]

+
,

where (T0(g)f)(gx) :=
(
J (0, n

2
)(g,X)−1

)∗
f(x). Further W1↾P̃↑

+ = V ′
1 on the set { [ f̂ ]+ | f ∈

C∞
0 (R4,H(0, n

2
))} and T0 is a representation of SU(2, 2) on the test functions that satisfies

supp(T0(g)f) ⊆ g suppf . Finally, T0↾P̃↑
+ coincides with the covariant representation T defined

in Subsection 2.1.

Proof: From Definition 5.1, Lemma 5.2 and noting that J(g, Z)−1 = J(g−1, gZ) (use Eqs. (6)

and (7)) we have that

lim
V+∋gy→0



∫

R4

e
−i Tr

(
P†(gZ)∗

)
J (0, n

2
)(g−1, g(X + iY ))∗f(x) d4x




+

=

[( ̂T0(g)f
)

(p)

]

+
.

That W1↾P̃↑
+ = V ′

1 follows by the same arguments as in the proof of Theorem 4.6. Note also that

for suitable f and g as stated above the test function T0(g)f is smooth and the support properties

of T0 follow immediately from its definition. Finally, we have for elements g0 =



A C(A∗)−1

0 (A∗)−1


 ∈

P̃↑
+ that J (0, n

2
)(g0, Z) = D(0, n

2
)(A−1)∗ and this implies T0↾P̃↑

+ = T on the space of test functions,

where the covariant representation T is given in Eq. (11).

5.6 Remark Taking into account the comments in Remark 4.7 (ii) we can define similarly the

representations Wi, i = 2, 3, 4, and obtain the corresponding intertwining relations with T0.

5.7 Theorem The massless free nets given in Theorem 3.6 are SU(2, 2) covariant.

Proof: Putting in the Bose case (n even) Wn := W1 ⊕ W2 and in the Fermi case (n odd)

Wn := W1⊕W2⊕W3⊕W4, we get from Theorem 5.5 and the preceding remark that for n even Wn

leaves the symplectic form σn invariant resp. for n oddWn leaves the corresponding scalar product

on hn invariant (cf. Definition 3.5). Further, for suitable g ∈ SU(2, 2) and f ∈ C∞
0 (R4,H(0, n

2
))

the respective eq.

Wn(g)Inf = In(T0(g)f)

hold. Now the covariance follows by similar arguments as in the proof of Theorem 3.6.

We will now make use of the SU(2, 2) covariance proved in the preceding theorem and which

is typical of massless free nets. We will show that the models studied in this paper are examples
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of the conformally covariant nets studied in [13]. Thus at the level of the von Neumann algebras

we will be able to apply the general results of the mentioned reference. First we need to consider

the natural Fock states on CCR(hn, σn) resp. CAR(hn,Γn). For n even the Fock state is specified

by the natural internal complexification of hn, j(ϕ+⊕ϕ−) := iϕ+⊕iϕ−, while for n odd the Fock

state characterized by the basis projection P :=




1l 0 0 0

0 1l 0 0

0 0 0 0

0 0 0 0




on hn (cf. [10, Chapter 8],[9]). Note

that in both cases the one particle Hilbert space is given by hn := H′
n,+ ⊕ H′

n,− and the unitary

reducible representation W ′
1 ⊕W ′

2 satisfy the spectrality condition on it (recall also Remark 3.7).

Let π0 be the Fock representation on the corresponding symmetric resp. antisymmetric Fock

space H0 with Fock vacuum Ω and denote by a prime the commutant in B(H0). Then we may

consider the following net of von Neumann algebras indexed by double cones:

K ∋ O 7→ Mn(O) :=

(
π0

(
An(O)

))′′

⊂ B(H0).

We will show next that the preceding net O 7→ Mn(O) satisfies the axioms of a vacuum

representation (cf. [8, Chapter 1]) with the stronger covariance w.r.t. the conformal group.

5.8 Proposition The nets of von Neumann algebras O 7→ Mn(O), n ∈ N, defined before satisfy

the properties of

(i) (Isotony) If O1 ⊆ O2, then Mn(O1) ⊆ Mn(O2), O1,O2 ∈ K.

(ii) (Causality) If O1 ⊥ O2, then Mn(O1) ⊆ Mn(O2)
′.

(iii) (Additivity) For any {Oλ}λ∈Λ ⊂ K with ∪λOλ ∈ K. Then

Mn(∪λOλ) =
∨

λ

Mn(Oλ) :=
(
∪λMn(Oλ)

)′′
.

(iv) (Covariance and spectrality condition) There exists a unitary representation Q of SU(2, 2)

on B(H0) and a Q–invariant vector Ω ∈ H0 such that Mn(gO) = Q(g)Mn(O)Q(g)−1,

g ∈ SU(2, 2). Further Q↾P̃↑
+ is strongly continuous and the generators of the space time

translations satisfy the spectrality condition.

Proof: The properties of isotony, causality and additivity follow directly from the corresponding

properties of the net of abstract C*–algebras O 7→ An(O) in Theorem 3.6. Further recall that

for the Bose resp. the Fermi case the one–particle Hilbert space associated to the natural Fock
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representations is H′
n,+ ⊕H′

n,− and since W1 ⊕W2 given above is unitary on it we have from the

invariance of the Fock state and Theorem 5.7 that for suitable g ∈ SU(2, 2) and O ∈ K

Mn(gO) =
(
π0 ◦ αg (Mn(O))

)′′
=
(
Q(g)π0 (Mn(O)) Q(g)−1

)′′
= Q(g)Mn(O)Q(g)−1 .

Here Q(g) is the second quantization of W1 ⊕W2 on the symmetric resp. antisymmetric Fock

space over H′
n,+ ⊕ H′

n,−. Further, Q(g)Ω = Ω, where Ω is the Fock vacuum and Q↾R4 satisfies

the spectrum condition because by Theorem 5.5 (W1 ⊕W2)↾R
4 = (V ′

1 ⊕ V ′
2)↾R4 does.

For unbounded regions one defines the corresponding localized von Neumann algebras by

additivity.

We will conclude this section mentioning some standard algebraic results for these models that

are consequence of the conformal covariance showed above. We will freely use in the following

definitions and results from [13, Section 2], [31, Section 4] and [32] (cf. also with references cited

therein). Denote by K1 the double cone of radius 1 and centered at the origin, by Wr := {x ∈
R

4 | |x0| < x3} the right wedge and by V+ the forward light cone. Recall that there are elements

of the conformal group that map these regions in each other. Then we have:

(i) The von Neumann algebras M(K1), M(Wr) and M(V+) are spacially isomorphic and in

particular Type III1–factors.

(ii) The modular groups of the von Neumann algebras M(K1), M(Wr) and M(V+) act geo-

metrically.

(iii) Implementation of the PCT transformation using the modular conjugation associated to

the von Neumann algebra M(W) for a wedge region W.

(iv) Essential duality and timelike duality for the forward/backward cones hold.

6 Conclusions

We have seen in this paper that the notion of free net (which avoids the explicit use of quantum

fields) is particularly well adapted in the massless case for proving standard properties expected

for these models, in particular for showing covariance under the conformal group. Further, free

nets are completely characterized by the embeddings In (cf. Section 3) which have a purely group

theoretical interpretation.

One possible extension of the massless free net construction is to consider higher dimensional

(flat) Minkowski space (although it is not clear that this would be physically meaningful). In
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any case some of the important features of the construction presented here still appear in higher

dimensions. Indeed, in a recent paper by Angelopoulos and Laoues [3] with the suggestive title

“Masslessness in n–dimensions” it is shown that some of the characteristic group theoretical

aspects of the 4–dimensional theory are still valid for n ≥ 5. In particular, the notion of massless

representations (which are again induced representations) can be naturally stated in this context

and it is still true that they extend to unitary representations of the corresponding conformal

group. A new aspect of higher dimensions though is the fact that the degeneracy of the inducing

representations of the associated little groups E(n − 2) affects also its ‘rotational’ part. Thus

generalizing the notion of covariant representation to this situation we conclude that the reduction

of the degrees of freedom mentioned in Sections 1 and 3 will be even more present in higher

dimensions.
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