Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Gauge field theory coherent states (GCS): III. Ehrenfest theorems

MPG-Autoren
/persons/resource/persons20719

Thiemann,  Thomas
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Winkler,  Oliver
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2802.pdf
(Preprint), 463KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thiemann, T., & Winkler, O. (2001). Gauge field theory coherent states (GCS): III. Ehrenfest theorems. Classical and Quantum Gravity, 18, 4629-4681.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-561D-B
Zusammenfassung
In the preceding paper of this series of articles we established peakedness properties of a family of coherent states that were introduced by Hall for any compact gauge group and were later generalized to gauge field theory by Ashtekar, Lewandowski, Marolf, Mourăo and Thiemann. In this paper we establish the ''Ehrenfest property' of these states which are labelled by a point (A,E), a connection and an electric field, in the classical phase space. By this we mean that the expectation values of the elementary operators (and of their commutators divided by i [hbar] , respectively) in a coherent state labelled by the (A,E) are, to zeroth order in [hbar] , given by the values of the corresponding elementary functions (and of their Poisson brackets, respectively) at the point (A,E). These results can be extended to all polynomials of elementary operators and to a certain non-polynomial function of the elementary operators associated with the volume operator of quantum general relativity. These findings are another step towards establishing that the infinitesimal quantum dynamics of quantum general relativity might, to lowest order in [hbar] , indeed be given by classical general relativity.