
PHYSICAL REVIEW D, VOLUME 63, 024002
Gravitational wave damping of neutron star wobble
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We calculate the effect of gravitational wave~GW! back reaction on realistic neutron stars~NS’s! under-
going torque-free precession. By ‘‘realistic’’ we mean that the NS is treated as a mostly fluid body with an
elastic crust, as opposed to a rigid body. We find that GW’s damp NS wobble on a time scaletu;2
3105 yr @1027/(DI d /I 0)#2(kHz/ns)

4, wherens is the spin frequency andDI d is the piece of the NS’s inertia
tensor that ‘‘follows’’ the crust’s principal axis~as opposed to its spin axis!. We give two different derivations
of this result: one based solely on energy and angular momentum balance, and another obtained by adding the
Burke-Thorne radiation reaction force to the Newtonian equations of motion. This problem was treated long
ago by Bertotti and Anile, but their claimed result is wrong. When we convert from their notation to ours, we
find that theirtu is too short by a factor of;105 for the typical cases of interest and even has the wrong sign
for DI d negative. We show where their calculation went astray.
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I. INTRODUCTION

This paper calculates the effect of gravitational wa
~GW! back reaction on the torque-free precession, or wob
of realistic, spinning neutron stars~NS’s!. By ‘‘realistic’’ we
mean the NS is treated as a mostly fluid body with an ela
crust, as opposed to a rigid body.~However, we do not in-
clude any superfluid effects in our analysis.! Freely pre-
cessing neutron stars are a possible source for the lase
terferometer GW detectors @Laser Interferometer
Gravitational Wave Observatory~LIGO!, VIRGO, and GEO
under construction, TAMA already operational#; it is the
prospect of gravitational wave astronomy that motivated
study. Also, the first clear observation of free precession
pulsar signal was reported very recently@1#, with a modula-
tion period consistent with the free precession model o
lined in this paper, making this investigation all the mo
timely.

The effect of GW back reaction on wobbling, axisymme
ric rigid bodies was first derived 27 years ago in an impr
sively early calculation by Bertotti and Anile@2#. They found
~correctly! that for rigid bodies, GW back reaction damp
wobble on a time scale~for small wobble angleu! tu

rigid

51.83106 yr @1027/(DI /I 1)#2(kHz/ns)
4(1045g cm2/I 1),

where ns is the spin frequency andDI 5(I 32I 1) ~with I 1
5I 2ÞI 3).

In the same paper, Bertotti and Anile@2# went on to cal-
culate the effect of GW back reaction on wobble for t
more realistic case of anelastic NS. When cast into our
notation, their claimed GW time scale
5I 1c5/@2G(2pns)

4DI VDI d#, whereDI V is the asymmetry
in the moment of inertia due to centrifugal forces andDI d is
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the asymmetry due to some other mechanism, such as s
in the solid crust. TakingDI V to be~roughly! the asymmetry
expected for a rotating fluid according toDI V /I
'0.3(ns /kHz)2, we would then have a damping time o
merely 0.6 yr (kHz/ns)

6@1027/(DI d /I )#(1045g cm2/I ). De-
spite the fundamental beauty of this problem and its poten
astrophysical significance, their remarkable claim—that
realistic NS’s, GW damp wobble with amazing efficiency—
was apparently little known.~A citation index search showe
that Bertotti and Anile@2# had been referenced by other a
thors only four times in the last 27 years.!

We will show that the Bertotti-Anile result for elasti
NS’s is very wrong, however. For typical cases of intere
their GW time scaletu is too short by a factor of;105.
Moreover, their calculation even gives the wrong sign~ex-
ponential growth instead of damping! whenDI d is negative.1

In contrast, we find that GW always act to damp the wob
in realistic NS’s, just as for rigid bodies. While in nature th
typical case will beDI d positive,DI d,0 can also occur in
principle. We call attention to this case not because it
common, but because it highlights how much our result d
fers from Bertotti and Anile@2# and because, in fact, the
implicit prediction of exponential wobble growth for thi
case provided our initial impetus to look more closely at t
problem.

1Actually, Bertotti and Anile@2# never claim in words that they
find unstable growth of the wobble angle whenDI d,0, but that is
what is found if one just takes their formulas and converts fr
their notation to ours, as above. Moreover, we have repeated
~flawed! calculation, including their one crucial error, and seen t
it does lead to a prediction of exponential wobble growth forDI d

negative. The conversion from their notation to ours is sim
(d1I 2d2I )(cos2 g2

1
2 sin2 g)→DId andd2I→DI V .
©2000 The American Physical Society02-1
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CURT CUTLER AND DAVID IAN JONES PHYSICAL REVIEW D63 024002
The organization of this paper is as follows. In Sec. II w
derive the GW damping time scale for rigid-body wobb
using the mass quadrupole expressions for the energy
angular momentum radiated to infinity.~This derivation is
actually Exercise 16.13 in the textbook by Shapiro and T
kolsky @3#.! We give another derivation oftu in Sec. III,
this time by adding the Burke-Thorne radiation reacti
force directly to the Newtonian equations of motion. Th
latter approach was how Bertotti and Anile@2# first calcu-
lated ~correctly! the GW damping time for wobbling,rigid
bodies.

In Sec. IV we review standard material on the torque-f
precession of elastic bodies, in the absence of viscous te
or GW back reaction. In Sec. V we derive the GW damp
time scaletu in the elastic case, using energy and angu
momentum balance. In Sec. VI we give a second deriva
of tu in the elastic case, using the Burke-Thorne radiat
reaction force to evolve the elastic body’s free precess
This was also the strategy of Bertotti and Anile@2#, and we
show where they went wrong. Briefly, they did not reali
that in addition to torquing the NS, the radiation reacti
force also perturbs the NS’s shape~in particular, its inertia
tensor!. When solving for the evolution of the wobble angl
we show that the ‘‘perturbed shape’’ term in the equations
motion almost entirely cancels the GW torque term that th
do include.~Of course, by definition there is no ‘‘perturbe
shape’’ term in the rigid-body case, which is probably w
they forgot this term when adapting that calculation to
elastic case.! In Sec. VII we describe how to include th
effects of a fluid core in the radiation reaction calculatio
Finally, in Sec. VIII we conclude by commenting briefly o
the astrophysical implications of our result.

We will work in cgs units.

II. RADIATION REACTION FOR A RIGID
BODY: ENERGY AND ANGULAR MOMENTUM

BALANCE

The derivation of the wobble damping rate for realis
NS’s, using energy and angular momentum balance, is ra
similar to the corresponding derivation for rigid bodies. He
we briefly review the solution to the rigid-body problem, as
warm-up for tackling the realistic case.

Consider an axisymmetric rigid body with principal ax
x̂1 ,x̂2 ,x̂3 and principal moments of inertiaI 15I 2ÞI 3 . Let
the body have angular momentumJ, misaligned fromx̂3 .
Define the wobble angleu by J• x̂35J cosu. It is a standard
result from classical mechanics that~in the absence of exter
nal torques! the body axisx̂3 precesses aroundJ with ~iner-
tial frame! precession frequencyḟ5J/I 1 , with u constant
@4#. Together, the pair (u,ḟ) completely specify the free
precession~modulo a trivial constant of integration specify
ing f at t50). We wish to calculate the evolution of thes
two parameters using thetime-averagedfluxes (Ė,J̇).

Straightforward application of the mass quadrupole f
malism @6# gives

Ė52
2G

5c5 ḟ6~DI !2 sin2 u~cos2 u116 sin2 u!, ~2.1!
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whereDI 5I 32I 1 and

J̇5Ė/ḟ. ~2.2!

It follows from differentiation ofḟ5J/I 1 that

f̈52
2G

5c5

DI 2

I 1
ḟ5 sin2 u~16 sin2 u1cos2 u!. ~2.3!

To calculate the rate of change of the wobble angle,
arrange

dE

dt
5

]E

]JU
u

dJ

dt
1

]E

]uU
J

du

dt
~2.4!

to give

u̇5

J̇F ḟ2
]E

]JU
u
G

]E

]uU
J

, ~2.5!

where Eq.~2.2! has been used. The energy of the body
simply its kinetic energy

E5
J2

2I 1
F12cos2 u

DI

I 3
G , ~2.6!

and so

]E

]JU
u

5
J

I 1
F12cos2 u

DI

I 3
G , ~2.7!

]E

]uU
J

5
J2

I 1
cosu sinu

DI

I 3
. ~2.8!

This gives

u̇52
2G

5c5

DI 2

I 1
ḟ4 cosu sinu~16 sin2 u1cos2 u!. ~2.9!

We can construct time scales on which the spin-down
alignment occur:

t
ḟ

rigid
52

ḟ

f̈
5

5c5

2G

1

ḟ4

I 1

DI 2

1

sin2 u~16 sin2 u1cos2 u!
, ~2.10!

tu
rigid52

sinu

d

dt
sinu

5
5c5

2G

1

ḟ4

I 1

DI 2

1

cos2 u~16 sin2 u1cos2 u!
.

~2.11!

The radiation reaction causes bothḟ and sinu to decrease,
regardless of whether the body is oblate or prolate. Note
in the limit of small wobble angle the inertial precessio
2-2
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GRAVITATIONAL WAVE DAMPING OF NEUTRON STAR WOBBLE PHYSICAL REVIEW D63 024002
frequency remains almost constant (t
ḟ

rigid→`), while u de-
creases exponentially on the time scale

tu!1
rigid 5

5c5

2G

1

ḟ4

I 1

DI 2
. ~2.12!

Parametrizing,

tu
rigid51.83106 yr S 1027

DI /I 1
D 2S kHz

ns
D 4S 1045g cm2

I 1
D .

~2.13!

In the limit of vanishingly small wobble angle, the parti
derivative on the left-hand side~LHS! of Eq. ~2.7! becomes
what we conventionally call the ‘‘spin frequency’’V of the
body @5#. Equation~2.5! then shows thatu̇ is proportional to
the difference between the inertial precession frequencḟ
and the spin frequencyV. This difference remains finite a
u→0 according toḟ2V5(DI /I 1)V@11O(u2)#. Thus for
a prolate body (DI ,0), such as an American football, th
body precesses slower than it spins, while for an oblate b
the inertial precession frequency is higher than the spin
quency. Since the denominator in Eq.~2.5! is also propor-
tional to DI , the wobble angle decreases regardless of
sign of this factor. This viewpoint will be useful when w
consider the radiation reaction problem for an elastic bod

III. RADIATION REACTION FOR RIGID
BODIES: LOCAL FORCE

We will now rederive the spin-down and alignment tim
scales by adding the Burke-Thorne local radiation reac
force to the equations of motion.

The Burke-Thorne radiation reaction potential at a poinx
is given by@6#

FRR5
G

c5 xaxb
d5 I–ab

dt5
, ~3.1!

where I–ab denotes the trace-reduced quadrupole mom
tensor:

I–ab5E
V
rS xaxb2

1

3
dabx

2DdV. ~3.2!

Note that this is related to the moment of inertia tensor
cording to

I–ab52I ab2
2

3
dabE

V
rx2dV, ~3.3!

with the result that

DI[I 32I 152~ I–32 I–1!. ~3.4!

The radiation reaction force~on a particle of unit mass! is
Fa

RR52]FRR/]xa. The instantaneous~not time-averaged!
torque on a body can easily be shown to be
02400
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Ta5
2G

5c5 eabcI–bd

d5 I–dc

dt5
. ~3.5!

Making use of Eq.~3.4! it is straightforward to calculate this
torque for the free precessional motion. We find

T5
2G

5c5 DI 2ḟ5 sinu~16 sin2 u1cos2 u!n'nd
, ~3.6!

acting always in the plane containing the angular momen
and the symmetry axisx3 , and perpendicular tond, i.e.,
along the direction ofn'nd

shown in Fig. 1. We will refer to
this plane as thereference plane.

The evolution equations can be calculated without go
to the trouble of writing down Euler’s equations. Differen
tiation of ḟ5J/I 1 gives

f̈5
J̇

I 1
, ~3.7!

and so

f̈52
T sinu

I 1
. ~3.8!

DefineJ'nd
as the component of the angular momentum p

pendicular to the symmetry axis. Then differentiation of t
trivial relation

sinu5
J'nd

J
~3.9!

leads to

u̇52
T'J

J
52

T cosu

J
, ~3.10!

FIG. 1. For the rigid body the gravitational radiation reacti
torque T lies in the reference plane. It acts perpendicular to
symmetry axis, i.e., along the direction of unit vectorn'nd

.

2-3
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CURT CUTLER AND DAVID IAN JONES PHYSICAL REVIEW D63 024002
whereT'J is the component of the torque perpendicular toJ.
Equations~3.8! and~3.10! show that the action of the torqu
breaks down neatly into two parts. The component alonJ
acts to change the inertial precession frequencyḟ, while the
component perpendicular toJ acts to changeu. Substitution
of Eq. ~3.6! into Eqs. ~3.8! and ~3.10! then reproduces the
spin-down and alignment of Eqs.~2.3! and~2.9!, so the two
methods of calculation agree. As this torque formulat
makes clear@by combining Eqs.~3.8! and ~3.10!#, the prod-
uct ḟ cosu remains constant, so that if a body is set into fr
precession described by (u0 ,ḟ0), it tends to a nonprecessin
motion aboutx3 with ~inertial frame! angular velocityḟ

5cosu0ḟ0.

IV. TORQUE-FREE PRECESSION OF ELASTIC BODIES

We now review the theory of the free precession of
elastic body. This problem was first addressed in the con
of the Earth’s own motion. A rigorous treatment of the me
ods employed can be found in Munk and MacDonald@7#.
The terrestrial analysis was extended to neutron stars
Pines and Shaham@8#. The energy loss due to gravitation
waves was considered by Alpar and Pines@9#.

Following the latter authors, we will model a star consi
ing of a centrifugal bulge and asingleadditional deformation
bulge. Alpar and Pines wrote an inertia tensor for the ela
body of the form

I5I 0,Sd1DI V~nVnV21/3d!1DI d~ndnd21/3d!, ~4.1!

where d is the unit tensor@1, 1, 1#, nV is the unit vector
along the star’s angular velocityV, andnd is the unit vector
along the body’s principal deformation axis~explained be-
low!. The I 0,S and DI d pieces ofI together represent th
inertia tensor for the correspondingnonrotating star. The
DI d term is just the nonspherical piece of this tensor~ap-
proximated as axisymmetric!. If the star were a perfect fluid
DI d would vanish, but in real stars~and the Earth! DI d is
nonzero due to crustal shear stresses and magnetic fields
termDI V ~.0 and}V2 for smallV! represents the increas
in the star’s moment of inertia~compared to the nonrotatin
case! due to centrifugal forces. Since the crust of a rotat
NS will tend to ‘‘relax’’ towards its oblate shape, havin
DI d.0 is surely the typical case in nature.~E.g., if one could
slow the Earth down to zero angular velocity without crac
ing its crust, it would remain somewhat oblate: the crus
‘‘relaxed, zero-strain’’ shape is oblate, and after centrifu
forces are removed, the stresses that build up in the crust
act to push it back towards that relaxed shape.! But a nega-
tive DI d is also possible in principle. We say the deformati
bulge aligned withnd is ‘‘oblate’’ if DI d.0 and ‘‘prolate’’
if DI d,0.

What is a typical magnitude forDI d in real, spinning
NS’s? Let us assumeDI d is due primarily to crustal shea
stresses~as opposed to stresses in a hypothetical solid c
extremely strongB fields, or pinned superfluid vortices!.
Then for a relaxed crust~i.e., a crust whose reference ellip
ticity is very close to its actual ellipticity!, we haveDI d
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5bDIV , where Alpar and Pines@9# estimateb;1025 for a
primordial ~cold catalyzed! crust. The maximum value fo
DI d /I is therefore of order;1025. The parameterb ~which
arises from internucleon Coulomb forces! scales like the av-
erageZ2/A of the crustal nuclei. Since crusts of accret
matter ~as in LMXB’s! have smaller-Z nuclei @10#, their b
factor is correspondingly smaller, by a factor of;2–3. Us-
ing DI V /I;0.3(ns /kHz)2, we would therefore estimate
DI d /I;1027 for a NS with a relaxed, accreted crust an
ns;300 Hz, while for the Crab Nebula one would expe
DI d /I;331029 ~again, assuming its crust is almost r
laxed!. For the freely precessing pulsar reported in Sta
et al. @1#, where the body-frame precession period is;2
3108 times the rotation period, Eq.~4.15! below ~valid for
elastic bodies! yields DI d /I 5531029. For b51025 this
corresponds to a reference oblateness of 531024. This is
consistent with the star’s crust having solidified when it w
spinning at about 40 Hz, assuming that neither glitches
plastic flow have modified its shape since.@When the effects
of crust-core coupling are taken into account, giving E
~7.5!, this initial frequency reduces to 12 Hz. See Jones@11#
for a review of pulsar free precession observations.#

Precession occurs whennd andnV are not aligned. Below
we describe the precessional motion when there is no da
ing. This analysis is quite general: it applies to any s
whose inertia tensor is described by Eq.~4.1!, independent of
what causes the deformation bulge. In the case of sev
equally important sources of deformation along differe
axes, extra terms must be added to Eq.~4.1! and the analysis
would become more complex.

To proceed it is necessary to use Eq.~4.1! to form the
angular momentumJ of the body. However, as we are no
modeling a rigid body, we must take care to allow for t
relative motion of one part with respect to another. Follo
ing @7# we will write the velocity of some point in the bod
as the sum of a rotational velocity with angular velocityV
and a small velocityu relative to this rotating frame. We wil
call the frame that rotates atV thebody frame, although it is
only in the rigid-body limit that the body’s shape is fixe
with respect to this frame. In other words, the velocity
some particle making up the body is the sum of the bo
frame velocityV3r at that pointr plus the velocityu of the
point relative to the body frame. Then

Ja5I abVb1ha , ~4.2!

where the possibly time-varying moment of inertia is defin
in the usual way,

I ab5E
V
r~xcx

cdab2xaxb!dV, ~4.3!

while ha is the angular momentum of the bodyrelative to
this frame:

ha5E
V
reabcx

bucdV. ~4.4!
2-4
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GRAVITATIONAL WAVE DAMPING OF NEUTRON STAR WOBBLE PHYSICAL REVIEW D63 024002
We will neglect thehi term when constructing a free prece
sional motion, as it can be shown thathi is small in a well-
defined sense@11#. Therefore we will simply write

Ja5I abV
b . ~4.5!

Having formulated the problem in this manner, it
straightforward to show that the free precession of an ela
body is similar to that of a rigid one. First, write down th
angular momentum using Eqs.~4.1! and ~4.5!. Referring all
of our tensors to the body frame, with the three-axis alo
nd ,

J5~ I 0,S12/3DI V21/3DI d!V1DI dV3nd. ~4.6!

This shows thatJ, V, andnd are coplanar. As the angula
momentum is constant, this plane must rotate aboutJ. As in
the rigid-body case, we will refer to this as thereference
plane. See Fig. 2. Taking the components of Eq.~4.6!, we
obtain

J15~ I 0,S12/3DI V21/3DI d!V1[I 1V1 , ~4.7!

J25~ I 0,S12/3DI V21/3DI d!V2[I 1V2 , ~4.8!

J35~ I 0,S12/3DI V12/3DI d!V3[I 3V3 . ~4.9!

These equations show that despite the triaxiality ofI the
angular momentum components themselves are structu
equivalent to those of a rigid symmetric top. The equatio
of motion of the body~i.e., Euler’s equations! involve only
the components ofJ andV. Therefore Eqs.~4.7!–~4.9! show
that the free precession of the triaxial body is forma
equivalent to that of a rigid symmetric top. We can think
the elastic body as having aneffectivemoment of inertia
tensor diag@I1,I1,I3#. Note that theeffective oblateness I3
2I 1 is equal toDI d .

FIG. 2. This shows the reference plane, which contains the
formation axisnd, the angular velocity vectorV, and the fixed
angular momentumJ. The vectorsnd andV rotate aroundJ at the

inertial precession frequencyḟ. The terms ‘‘oblate’’ and ‘‘prolate’’
refer to the deformation bulge.
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Now introduce standard Euler angles to describe
body’s orientation, with the polar axis alongJ. Let u andf
denote the polar and azimuthal coordinates of the defor
tion axis, whilec represents a rotation about this axis. W
refer to u as thewobble angle. Taking the ratio of compo-
nentsJ1 andJ3 using Eqs.~4.7! and~4.9! at an instant when
V250, we obtain

tang5
I 3

I 1
tanu, ~4.10!

whereg denotes the (V,nd) angle. See Fig. 2.
We will label the angle betweenJ andV as û:

û5g2u. ~4.11!

This angle is much smaller thanu, as can be seen by linea
izing Eq. ~4.10! in DI V andDI d to give

û5
DI d

I 3
sinu cosu. ~4.12!

Note that according to our conventions, when the deform
tion bulge is oblate,DI d and û are positive, but when the
deformation bulge is prolate,DI d and û are negative.

We can decompose the angular velocity according to

V5ḟnJ1ċnd. ~4.13!

Substituting this into Eq.~4.6! and resolving alongnJ andnd
gives

J5I 1ḟ, ~4.14!

ċ52
DI d

I 1
V3 , ~4.15!

whereJ denotes the magnitude of the angular momentu
Note that whenDI V50 the above formulas reduce to th
familiar rigid-body equations.

Thus the motion is simple. As viewed from the inerti
frame, the deformation axis rotates at a rateḟ in a cone of
half-angleu about the angular momentum vector. This ang
lar velocity is sometimes called theinertial precession fre-
quency. The centrifugal bulge rotates around the angular m
mentum vector also, but—for oblate deformations—on
opposite side ofJ, making an angleû[g2u with J. Super-
imposed upon this is a rotation about the deformation axi
a rateċ, known as thebody-frame precession frequencyor
sometimes simply theprecession frequency. This frequency
is negative for an oblate distortion and positive for a prol
one.

V. RADIATION REACTION FOR AN ELASTIC
BODY: ENERGY AND ANGULAR MOMENTUM

BALANCE

Here we derive the wobble damping timetu for elastic
bodies, based on energy and angular momentum bala

e-
2-5
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Once fully underway, the derivation is just a couple line
But to understand it, it is useful to carry along a simp
physical model for the deformed crust.~However, our deri-
vation will actually be completely general.! Here is the
model: take some nonrotating, spherical NS, and stretc
rubber band around some great circle on the crust. We s
refer to this great circle as the NS’s equator. Obviously
effect of the rubber band is to make the NS slightly prol
~but still axisymmetric!. To get an oblate shape, you ca
instead imagine sewing compressed springs into the sur
of the crust at the equator. For definiteness, let the pote
energy of the band~or springs! be V5 1

2 e l 2, where l is its
length. Soe is positive for the rubber band~prolate deforma-
tion, DI d,0) and negative for the springs~oblate deforma-
tion, DI d.0). Now give the NS angular momentumJ about
some axis that is not quite perpendicular to the equator.
now have our deformed, wobbling NS. We consider
equation of state of the star and the valuee to be fixed once
and for all, and consider how the energy of the syst
(star1band) varies as a function of its total angular mome
tum J and the wobble angleu ~the angle betweenJ and the
perpendicular to the equator!; i.e., we considerE(J,u). We
will be concerned with small wobble angle, so let us expa
E(J,u) as a Taylor series inJ andu:

E~J,u!5E01
1

2
BJ21

1

24
CJ41

1

2
Feu2J21¯ .

~5.1!

Here E0 is defined to be the energy of the (star1band) at
zeroJ, andB, C, andF are some expansion coefficients th
in principle depend on the physical properties of t
(star1band!. Fortunately, we will soon see that there a
simple relations betweenB, C, andF and previously defined
physical parameters, such asDI d . Our ultimate goal is to
obtain the two partial derivatives on the right-hand side
Eq. ~2.5!, whereE now denotes thetotal energy.

First, to see that no lower order terms~such asJ, uJ, u2,
or uJ2 terms! can appear in the expansion~5.1!, note that the
J50 configuration corresponds to the minimum of the p
tential energy of the (star1band) system. Displacements
the (star1band) are first order inJ2, so changes in the po
tential energy of (star1band) areO(J4). Thus terms in
E(J,u) that are}J2 are kinetic energy pieces. These term
with a J2 in them are clearly just12 (I 0

21)abJaJb , whereI 0
ab

is defined to be the inertia tensor of the (star1band) atJ
50. @Corrections to the star’sI ab first enter the energy a
O(J4).# We write I 0

ab as

I 0
ab5I 0,Sdab1DI dS nd

and
b2

1

3
dabD , ~5.2!

whereI 0,S represents the ‘‘spherical part’’ ofI 0
ab . Then

~ I 0
21!ab5

1

I 0,S
Fdab2S DI d

I 0,S
D S nd

and
b2

1

3
dabD G , ~5.3!

where a term ofO(DI d
2) has been neglected. The kinet

energy part ofE is @up to terms ofO(DI d
2) andO(J4)#
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Ekin5
J2

2I 0,S
F12S DI d

I 0,S
D S 2

3
2u2D G , ~5.4!

where we have used the small wobble angle resultJand
a

5J(12 1
2 u2). From Eq.~5.4! we immediately read off the

values ofB andFe in expansion~5.1!:

B5I 0,S
21F12

2

3

DI d

I 0,S
G ,

Fe5DI d /~ I 0,S!2, ~5.5!

and obtain the partial derivative

]E

]uU
J

5J2u
DI d

~ I 0,S!2 . ~5.6!

To compute the partial derivative in the numerator of E
~2.5!, it is sufficient to consider theu→0 limit @5# so that

V5
dE

dJU
u50

5BJ1
1

6
CJ3, ~5.7!

where V denotes the spin frequency in the axisymmet
limit. It is related to the inertial precession frequency by

V5ḟ~12DI d /I 0,S!. ~5.8!

The final physics inputs we need are

Ė52
2G

5c5

DI d
2

I 0,S
ḟ6u2, ~5.9!

Ė5ḟ J̇. ~5.10!

Equations~5.9! and ~5.10! follow from the quadrupole for-
malism in the same way as for the rigid body.

The necessary pieces have been gathered; substit
into Eq. ~2.5! gives

u̇5
J̇I 0,S

2

uJ2

~ḟ2V!

DI d
~5.11!

52
2G

5c5 S DI d

I 0,S
D 2

I 0,Sḟ4u. ~5.12!

This is simply the same spin-down rate as for a rigid bo
with the replacement (DI /I 1)→ed . This is much longer than
the time scale claimed by Bertotti and Anile@2# by a factor
of DI V /DI d , which is typically;105 or higher.

Finally, the spin-down ratef̈ can be obtained in the sam
way as for a rigid body, i.e., by differentiatingḟ5J/I 1 and
using Eqs.~5.9! and~5.10!. Strictly, there will also be a term
in İ 1 , but this correction will be down by a factor of orde
(V/Vmax)

2. We then obtain the same spin down as for a rig
body, again with the replacementDI→DI d :
2-6
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f̈52
2G

5c5

DI d
2

I 0,S
ḟ5u2. ~5.13!

VI. RADIATION REACTION FOR AN ELASTIC
BODY: LOCAL FORCE

We now give a second derivation of the wobble damp
rate for an elastic star, by directly adding the GW radiat
reaction force to the Newtonian equations of motion. Besi
being a satisfying consistency check on the calculation
Sec. IV, by doing this second derivation correctly we c
show where Bertotti and Anile@2# went astray.

As was the case for the rigid body, the Burke-Thor
potential will exert a torque on the spinning star. Howev
this is not the only effect of the radiation reaction force:
will distort the shape of the NS and thus its moment
inertia. The equation describing the precession is then of
form

d

dt
@~ IN1dIBT!V#5T, ~6.1!

whereIN denotes the Newtonian part of the moment of in
tia tensor,dIBT the perturbation in this tensor due to th
Burke-Thorne force, andT the Burke-Thorne torque. It wa
the dIBT terms that were not included by Bertotti and Anil
Fortunately, these can also be calculated explicitly, as
show below.

A. Effect of FRR on the NS’s shape

It is perhaps surprising that onecan explicitly determine
the effect ofFRR on the NS’s moment of inertia, since th
answer would seem to depend on the NS’s mass and
details of its equation of state; i.e., one might worry th
extra parameters must be specified even to make the pro
well defined. However, the point is that~from symmetry ar-
guments! the perturbationDI i j depends only on asingle
physical parameter, and this parameteralready appears in
our Newtonian equations of motion. That parameter
DI V /V2, the amount of oblateness caused ‘‘per unit ce
trifugal force.’’

The point is thatboth the centrifugal and radiation reac
tion forces have the very special property that they gr
linearly with distance from the center of the star. This fa
coupled with symmetry arguments, is enough to determ
DI i j in terms ofDI V /V2; no new physical parameters hav
to be introduced.

Let FL be some external potential of the formFL

[Labxaxb , whereLab is some trace-free tensor. Allow thi
potential to act on the nonrotating~and so spherically sym
metric! NS; it will induce a perturbationDI ab in the NS’s
inertia tensor. Since the background is spherically symm
ric, the only possibility~to first order in the perturbation! is
that DI ab5CLab, whereC is some constant~i.e., indepen-
dent ofLab).

We can determineC as follows. Decompose the centrifu
gal potential into a spherically symmetric and a trace-f
piece:
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V2~dab2nV

a nV
b !xaxb52

1

3
V2x21LV

abxaxb ,

~6.2!

whereLV
ab5 1

2 V2(nV
a nV

b 2 1
3 dab). For smallV the perturbed

inertia tensor isDI ab5DI V(nV
a nV

b 2 1
3 dab), so the constant

C is just 2DI V /V2.
The radiation reaction potential for the freely precess

elastic body can be found by substituting the radiation re
tion free motion into Eq.~3.1! to give

FRR52
G

5c5 xaxbFDI d

d5

dt5
~ndandb!1DI V

d5

dt5
~nVanVb!G .

~6.3!

The first term is the potential caused by the motion of
deformation bulge, the second by the centrifugal bulge. T
differentiations of the unit vectors are straightforward. In t
case whereu!1 we can approximatend'nJ1un'J and
nV'nJ2 ûn'J , wheren'J is the unit vector in the referenc
plane which lies perpendicular toJ and points towardsnd.
We then find

FRR52
G

5c5 ḟ5xaxb@DI du2DI Vû#~ v̂anJb1nJav̂b!.

~6.4!

Herev̂ denotes a unit vectornJ3n'J . Using the prescription
described above, these radiation reaction potentials can
converted immediately into perturbations of the moment
inertia tensor:

dIBT52
2G

5c5 ḟ3@DI dDI Vu2~DI V!2û #~ v̂nJ1nJv̂!.

~6.5!

B. Adding FRR to the equations of motion

It now remains to compute the torqueT using Eq.~3.5!.
We obtain four terms, corresponding to the expansion of
product of I– with its fifth time derivative. Again linearizing
with respect tou we obtain

T5
2G

5c5 ḟ5@DI d
2u2DI dDI Vû1DI dDI Vu2DI V

2 û #n'J .

~6.6!

DefineeV[DI V /I 0,S anded[DI d /I 0,S .2 Then the terms
on the RHS of Eq.~6.6! stand in the ratioed /eV :ed :1:eV .
We are now in a position to write down the equation f
d(INV)/dt. Using Eq.~6.5! and the Newtonian motion to
computed@(dIBT)V#/dt and neglecting terms of orderu2,
we find that Eq.~6.1! reduces to

2Note our definition ofeV differs by a factor of 2/3 from@9#, who
seteV[ 2

3 DI V /I 0,S .
2-7
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d

dt
~ INV!1

2G

5c5 ḟ5u@DI dDI Vu2~DI V!2û #n'J

5
2G

5c5 ḟ5@DI d
2u2DI dDI Vû1DI dDI Vu2DI V

2 û #n'J .

~6.7!

We see that the last two terms on the RHS are cancele
terms on the LHS. This leaves

d

dt
~ INV!5

2G

5c5 ḟ5@DI d
2u2DI dDI Vû#n'J . ~6.8!

The problem is reduced to a rigid-body Newtonian one, w
the two torque terms indicated on the right-hand side. T
terms stand in the ratio 1:eV . In fact, the dominant term is
the same as that obtained in the rigid-body case with
changeDI→DI d .

We therefore find that the alignment rate as calcula
using the local Burke-Thorne formalism agrees with t
flux-at-infinity method. The previous force-based calculat
of Bertotti and Anile@2# failed to include the deformation
dIBT , so that the cancellations in Eq.~6.7! described above
did not occur.

Finally, it is easy to show that even when the approxim
tions u!1, ed!1 are not employed, the effective torque
due to thedIBT terms are still perpendicular toJ, so the
spin-down f̈ using this local formalism is necessarily th
same as in the flux-at-infinity method.

VII. ALLOWANCE FOR A LIQUID CORE

We have successfully described the effects of grav
tional radiation reaction on an elastic precessing body.
will now briefly describe how to extend this result to th
realistic case where the star consists of an elastic shell~the
crust! containing a liquid core. The Earth itself is just such
body, and the form of its free precession was considered l
ago. We will base our treatment on that of Lamb@12#, who
considered a rigid shell containing an incompressible liq
of uniform density. To make the problem tractable the m
tion of the fluid was taken to be one of uniform vorticity. W
will assume that the ellipticity of the shell and, also, t
ellipticity of the cavity in which the fluid resides are sma
Then the small-angle free precession of the combined sys
can be found by means of a normal mode analysis of
equations of motion@12#.

The key points are as follows: The fluid’s angular v
locity vector does not significantly participate in the fr
precession. Instead, it remains pointing along the syste
total angular momentum vector. The shell precesses a
this axis in a cone of constant half-angle. The fluid exert
force on the shell such that the shell’s body frame preces
frequency is increased in magnitude, so that

ċ52ḟ
DI

I crust
, ~7.1!
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whereDI denotes the difference between the one and th
principal moments of inertia of thewhole body, not just the
shell.

We now wish to calculate the alignment rate of such
body due to gravitational radiation reaction. The averag
energy and angular momentum fluxes, as well as the ins
taneous torque, depend only upon the orientation of the m
quadrupole of the body and so are exactly the same as if
body were rigid: i.e., Eqs.~2.1!, ~2.2!, and~3.6! apply. Equa-
tions giving the kinetic energy and angular momentum of
body are given in Lamb@12#. These can be used to obtain th
partial derivatives that appear in Eq.~2.5!. Explicitly, we find

]E

]JU
u

5V5ḟ1ċ ~7.2!

and

]E

]uU
J

5ḟ2uDI . ~7.3!

~See Jones@11# for a detailed derivation.!
These lead to an alignment time scale that isI crust/I

shorter than that of Eq.~2.13!. This result is confirmed using
the local torque formulation, where

u̇52
T',J

I crust
. ~7.4!

In the realistic case where both crustal elasticity and c
fluidity are taken into account, we can combine the abo
arguments as described by Smith and Dahlen@13#; i.e., we
can take the rigid result and putI→I crust and DI→DI d to
give

ċ52ḟ
DI d

I crust
, ~7.5!

u̇52
2G

5c5

DI d
2

I crust
ḟ4u. ~7.6!

VIII. CONCLUSIONS

We have shown that the GW damping time for wobble
realistic NS’s has the same form as for rigid bodies, but w
the replacementDI 2/I 1→DI d

2/I crust. This given an alignment
time scale of

tu51.83105 yr S I crust

1044g cm2D S 1038g cm2

DI d
D 2S kHz

ns
D 4

.

~8.1!

For the Crab Nebula, takinged;331029, this givestu;5
31013yr—much longer than the age of the universe. For
accreting NS withed;1027 and ns;300 Hz, we estimate
tu;23108 yr.

Our basic conclusion, then, is that the GW back react
is sufficiently weak thatother sources of dissipation prob
ably dominate. Unfortunately, even for the Earth the dissi
2-8



n
b
a

a
n

ll b
st,
f

es
at

on

r-

ic
cus-
ect
re

ns.
93

GRAVITATIONAL WAVE DAMPING OF NEUTRON STAR WOBBLE PHYSICAL REVIEW D63 024002
tion mechanisms are not well understood@7#. Early estimates
of Chau and Henriksen@14#, which considered dissipatio
within the neutron star crust, suggested that wobble would
damped in around 106 free precession periods, i.e., over
time interval of 106/(edns). A more recent study of Alpar
and Sauls@15# argued that the dominant dissipation mech
nism will be due to imperfect coupling between the crust a
superfluid core. They estimate that the free precession wi
damped in~at most! 104 free precession periods. In contra
according to Eq.~8.1!, the GW damping time is in excess o
108 (kHz/ns)

3 free precession periods. On the basis of th
estimates, it seems likely that internal damping will domin
over the gravitational radiation reaction inall neutron stars
of interest. Note, however, that while internal dissipati
d

02400
e

-
d
e

e
e

damps wobble foroblatedeformations, we expect that inte
nal dissipation causes the wobble angle toincreasein the
prolate (DI d,0) case.

A study of the gravitational wave detectability of realist
neutron stars undergoing free precession, including a dis
sion of other astrophysical mechanisms which might aff
the evolution of the motion, will be presented elsewhe
@16#.

ACKNOWLEDGMENTS

We thank N. Andersson and B. F. Schutz for discussio
This research was supported by NASA grant NAG5-40
and PPARC grant PPA/G/1998/00606.
6.
0.
@1# I. H. Stairs, A. G. Lyne, and S. L. Shemar, Nature~London!
406, 484 ~2000!.

@2# B. Bertotti and A. M. Anile, Astron. Astrophys.28, 429
~1973!.

@3# S. L. Shapiro and S. A. Teukolsky,Black Holes, White
Dwarfs, and Neutron Stars~Wiley-Interscience, New York,
1983!.

@4# L. D. Landau and E. M. Lifshitz,Mechanics, 3rd ed.
~Butterworths-Heinemann, London, 1976!.

@5# J. Ostriker and J. Gunn, Astrophys. J.157, 1395~1969!.
@6# C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation

~Freeman, San Francisco, 1973!.
@7# W. H. Munk and G. J. F. MacDonald,The Rotation of the

Earth ~Cambridge University Press, Cambridge, Englan
 ,

1960!.
@8# D. Pines and J. Shaham, Nature~London!, Phys. Sci.235, 43

~1972!; Phys. Earth Planet. Inter.6, 103 ~1972!.
@9# A. Alpar and D. Pines, Nature~London! 314, 334 ~1985!.

@10# G. Ushomirsky, C. Cutler, and L. Bildsten, astro-ph/000113
@11# D. I. Jones, Ph.D. thesis, University of Wales, Cardiff, 200
@12# H. Lamb, Hydrodynamics, 6th ed. ~Cambridge University

Press, Cambridge, England, 1952!.
@13# M. L. Smith and L. A. Dahlen, Geophys. J. R. Astron. Soc.64,

223 ~1981!.
@14# W. Y. Chau and R. N. Henriksen, Astrophys. Lett.8, 49

~1971!.
@15# A. Alpar and J. A. Sauls, Astrophys. J.327, 723 ~1988!.
@16# D. I. Jones, B. F. Schutz and N. Andersson~in preparation!.
2-9


