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Abstract. Some years ago, Radzikowski has found a characterization of Hadamard states
for scalar quantum fields on a four-dimensional globally hyperbolic spacetime in terms of a
specific form of the wavefront set of their two-point functions (termed ‘wavefront set spectrum
condition’), thereby initiating a major progress in the understanding of Hadamard states and
the further development of quantum field theory in curved spacetime. In the present work,
we extend this important result on the equivalence of the wavefront set spectrum condition
with the Hadamard condition from scalar fields to vector fields (sections in a vector bundle)
which are subject to a wave-equation and are quantized so as to fulfill the covariant canonical
commutation relations, or which obey a Dirac equation and are quantized according to the
covariant anti-commutation relations, in any globally hyperbolic spacetime having dimension
three or higher.

In proving this result, a gap which is present in the published proof for the scalar field case

will be removed. Moreover we determine the short-distance scaling limits of Hadamard states for

vector-bundle valued fields, finding them to coincide with the corresponding flat-space, massless

vacuum states.

1 Introduction

In quantum field theory on curved spacetime, Hadamard states have acquired a promi-
nent status; they are now recognized as defining the class of physical states for quantum
fields obeying linear wave equations on any globally hyperbolic spacetime. The origi-
nal motivation for introducing Hadamard states was the observation that they allow a
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definition of the expectation value of the energy-momentum tensor with reasonable prop-
erties [41, 16, 43], thus Hadamard states may be viewed as a subclass of the states with
finite energy density. This rests basically on the fact that the two-point functions of
Hadamard states all have — by the very definition of Hadamard states — the same sin-
gular part which is determined by the spacetime metric and the wave equation obeyed
by the quantum field (via the ‘Hadamard recursion relations’) and which mimics the sin-
gular behaviour of the vacuum state’s two-point function for linear quantum fields in flat
spacetime.

A major progress in the study of Hadamard states was initiated by the observation
that, for the free scalar field, the Hadamard condition on the two-point function of a
quantum field state can be characterized in terms of a particular, antisymmetric form of
the wavefront set of the two-point function [32]. This particular form of the two-function’s
wavefront set is reminiscent of the form of the support of the Fourier-transformed two-
point function of a quantum field in the vacuum state on Minkowski spacetime and hence
has been called “wavefront set spectrum condition” in [32] and “microlocal spectrum
condition” in [5]. A generalization to n-point functions has been suggested in [5]. In the
present work, we will say that a state ω fulfills the microlocal spectrum condition if the
wavefront set of its two-point function ω2 assumes the same specific, anti-symmetric form
known for Hadamard states of a free scalar field. Expressed in formulae, this means that
the relations (5.9,5.10) in Sec. 5 hold.

The equivalent translation of the property of a two-point function to be of Hadamard
form into specific properties of its wavefront set made it possible to apply the the power-
ful methods of microlocal analysis (see e.g. the monographs [22, 23, 37]) in the study of
Hadamard states. We mention here the following results that consequently arose:

(a) It has been shown that the Hadamard form of states of the free scalar field is incom-
patible with a wide class of spacetime backgrounds which are initially globally hyperbolic
and then develop closed timelike curves [24].

(b) “Worldline energy inequalities” have been established for Hadamard states [13]. Such
energy inequalities signify lower bounds for the expectation value of the energy den-
sity integrated along timelike curves for a suitable class of physical states (for instance,
Hadamard states). (We refer to [13] and the review [14] for further discussion and refer-
ences.)

(c) A covariant definition of Wick-polynomials of the free scalar field has been given, and
generalizations of the flat space spectrum condition to curved spacetime by a “microlocal
spectrum condition” [5].

(d) A local, covariant perturbative construction of P (φ)4 theories on curved spacetime
has been developed along the lines of the approach by Epstein and Glaser [4].

In a recent work [34] we have shown that each ground state or KMS-state (thermal equilib-
rium state) of any vector-valued quantum field obeying a hyperbolic linear wave-equation
on a stationary, globally hyperbolic spacetime fulfills the microlocal spectrum condition.
The present paper may be viewed as accompanying our work [34]. We shall present a
characterization of the Hadamard condition for vector fields obeying a wave equation or
Dirac equation on any globally hyperbolic spacetime in terms of a specific form of the
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wavefront set of the corresponding two-point functions — in other words, we generalize
the results of [32] on the equivalence of Hadamard condition and microlocal spectrum
condition from the case of scalar fields to that of vector fields and Dirac fields. Moreover,
we shall consider not only 4-dimensional spacetime, but all spacetime dimensions ≥ 3.

Since two-point functions of Hadamard states differ by a C∞-kernel, it is easy to show
that the results of [38, 39] generalize from the scalar field case to the effect that all quasifree
Hadamard states of a vector-valued linear quantum field (fulfilling canonical commutation
or anti-commutation relations) induce locally unitarily equivalent representations of the
field algebra. This may provide a starting point for generalizing the results of [4] on
the Epstein-Glaser approach to perturbative construction of interacting quantum fields in
curved spacetime from scalar fields to vector fields which may have more direct physical
relevance.

We should like to point out that, in the case of the Dirac field on globally hyperbolic
spacetimes, results similar to ours have already been obtained in a couple of other works.
The first of these is the PhD thesis by Köhler [27] who shows that, in four spacetime
dimensions, the Hadamard form of the two-point function of quasifree states for the Dirac
field can be characterized by the microlocal spectrum condition. This result is essentially
the same as our Thm. 5.8 for the said case. In some more recent works, Kratzert [29] and
Hollands [21] consider the Dirac field on n-dimensional globally hyperbolic spacetimes.
They also present results on the equivalence of Hadamard form and microlocal spectrum
condition. Moreover, both authors investigate also the polarization set of the two-point
functions of Hadamard states. The polarization set is a generalization of the wavefront
set for vector-bundle distributions introduced by Dencker [7]. In components of a local
frame for a vector-bundle, a vector-bundle distribution u is locally represented as an
element (u1, . . . , ur) of ⊕rD

′(Rn) where r is the dimension of the fibres and n is the
dimension of the base-manifold (see Sec. 2.3). Then the elements in the polarization set
of u are vectors (x, ξ; v) ∈ (T ∗Rn\{0})⊕Cr where the vectors v describe, roughly speaking,
which of u’s components has the “most singular” behaviour in the microlocal sense, and
(x, ξ) describes the directions of worst decay in Fourier-space of those “most singular”
components, like in the wavefront set. The projection of the polarization set of u onto its
(T ∗Rn\{0})-part yields the wavefront set of u, defined as the union of the wavefront sets of
all its components u1, . . . , ur which are scalar distributions. In their works, Kratzert and
Hollands determine, among other things, the polarization set of the two-point functions
for Hadamard states of the Dirac field and they show that Dencker’s connection, which
describes the propagation of singularities of the polarization set, coincides in this case with
the lifted spin-connection. Thereby they arrive at a characterization of Hadamard states of
the Dirac field in terms of a specific form of the polarization sets of the corresponding two-
point functions. This characterization is somewhat more detailed than ours in terms of
the wavefront set since the polarization set contains more information than the wavefront
set. However, as is already seen from the works [27, 29, 21], the microlocal spectrum
condition in terms of the wavefront set completely characterizes the Hadamard condition
as long as the principal part of the wave operator whose wave-equation is obeyed by the
quantum field is scalar. We will exclusively consider this case, as Hadamard forms for
more general wave operators have, to our knowledge, never been considered.

The contents of this paper are as follows: In Chapter 2 we summarize the definition
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and basic properties of the wavefront set for scalar and vector-bundle distributions on
manifolds. This material is included mainly to establish our notation, and to render the
paper, for the convenience of the reader, as self-contained as reasonably possible. An
auxiliary result relating the wavefront set of a distribution to the wavefront set of its
short-distance scaling limit is also given.

Chapter 3 contains the definition of wave-operators and Dirac-operators on vector-
bundles over globally hyperbolic spacetimes of any dimension m ≥ 3. (Since we consider
only Majorana-spinors, there are further restrictions on m in the Dirac-operator case.)
Much of the material in that chapter is patterned along the references [10, 11, 26, 19, 40].
We also quote the ‘propagation of singularities theorem’ for distributional solutions of
wave-operators, needed later, from [12, 7].

In Chapter 4 we give a discussion of quantum fields obeying canonical commutation
relations (CCR) or canonical anti-commutation relations (CAR). We also explain how
CCR- or CAR-quantum fields are associated with wave-operators or Dirac-operators,
respectively.

In the fifth chapter we begin with the definition of Hadamard states for vector-valued
linear quantum fields obeying a wave equation or a Dirac equation in a globally hyperbolic
spacetime of dimension ≥ 3. Our definition mimics the approach by Kay and Wald [25] for
the scalar case, so we are really defining “globally Hadamard states” whose full definition
is a bit involved.

Then we state in Sec. 5.2 the result on the ‘propagation of Hadamard form’ in the
generality needed for the present purposes and sketch the proof, which is an entirely
straightforward adaptation of the proof in [18] (as clarified in [25]) for the scalar field
case.

In a further step, Sec. 5.3, we determine the short distance scaling limits of Hadamard
states which are found to coincide with the two-point functions of the flat-space vacua for
multi-component free fields satisfying massless Klein-Gordon or Dirac equations.

Finally, we present our main result as Thm. 5.8 in Sec. 5.4, asserting that Hadamard
states of a vector-valued quantum field satisfying a wave-equation and CCR, or a Dirac
equation and CAR, can be characterized by the specific form of the wavefront set of their
two-point functions exactly as in the scalar field case. Prior to proving that result, we
will point out that the original proof of the statement for scalar fields in [32] contains
a gap, and we shall provide the means to complete the argument with the help of the
result on the propagation of Hadamard form. (That gap affects also the proofs of the
equivalence of Hadamard form and microlocal spectrum condition for Dirac fields in the
works [27, 29, 21] since their authors rely on Radzikowski’s argument.)

Several technical issues related to Hadamard forms have been put into the Appendix.
Among them are the precise forms of Hadamard recursion relations for wave-operators on
vector-valued fields as well as the relation of Riesz-type distributions to Hadamard forms.
A considerable part of that material has been taken from the monograph [19], which we
would like to advertise as a most valuable source regarding the mathematics of Hadamard
forms.
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2 On the Wavefront Set

2.1 Wavefront Sets of Scalar Distributions

Let n ∈ N and v ∈ D′(Rn). One calls (x, k) ∈ Rn × (Rn\{0}) a regular directed point
for v if there are χ ∈ D(Rn) with χ(x) 6= 0, and a conical open neighbourhood Γ of k in
Rn\{0} [i.e. Γ is an open neighbourhood of k, and k ∈ Γ ⇔ µk ∈ Γ ∀µ > 0], such that

sup
k̃∈Γ

(1 + |k̃|)N |χ̂v(k̃)| ≤ CN <∞

holds for all N ∈ N, where χ̂v denotes the Fourier transform of the distribution χ · v.

Definition 2.1. WF(v), the wavefront set of v ∈ D′(Rn), is defined as the complement
in Rn × (Rn\{0}) of the set of all regular directed points for v.

Thus, WF(v) consists of pairs (x, k) of points x in configuration space, and k in Fourier
space, so that the Fourier transform of χ · v isn’t rapidly decaying along the direction k
for large |k|, no matter how closely χ is concentrated around x.

If φ : U → U ′ is a diffeomorphism between open subsets of Rn, and v ∈ D′(U),
then it holds that WF(φ∗v) = tDφ−1WF(v) where tDφ−1 denotes the transpose of the
inverse tangent map (or differential) of φ, with tDφ−1(x, k) = (φ(x), tDφ−1 · k) for all
(x, k) ∈ WF(v) and φ∗v(f) = v(f◦φ), f ∈ D(U ′). This transformation behaviour of the
wavefront set allows it to define the wavefront set WF(v) of a scalar distribution v ∈ D′(X)
on any n-dimensional manifold X [as usual, we take manifolds to be Hausdorff, connected,
2nd countable, C∞ and without boundary] by using coordinates: Let κ : U → Rn be a
coordinate system around a point q ∈ X. Then the dual tangent map is an isomorphism
tDκ : T∗

qX → Rn. We will use the notational convention (q, ξ) ∈ T∗X ⇔ ξ ∈ T∗
qX. Then

let (q, ξ) ∈ T∗X\{0} and (x, k) := tDκ−1(q, ξ) = (κ(q), tDκ−1 · ξ), so that (x, k) is in
Rn × (Rn\{0}).

Definition 2.2. We define WF(v) by saying that (q, ξ) ∈ WF(v) iff (x, k) ∈ WF(κ∗v)
where κ∗v is the chart expression of v.

Owing to the transformation properties of the wavefront set under local diffeomor-
phisms one can see that this definition is independent of the choice of the chart κ, and
moreover, WF(v) is a subset of T∗X\{0}, the cotangent bundle with the zero section
removed.

It is straightforward to deduce from the definition that

WF(
∑

j

vj) ⊂
⋃

j

WF(vj) (2.1)

for any collection of finitely many v1, . . . , vm ∈ D′(X), and

WF(Av) ⊂ WF(v) , v ∈ D′(X) , (2.2)

for any partial differential operator A with smooth coefficients. (This generalizes to
pseudodifferential operators A.) It is also worth noting that WF(v) is a closed conic
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subset of T∗X\{0} where conic means (q, ξ) ∈ WF(v) ⇔ (q, µξ) ∈ WF(v) ∀µ > 0.
Another important property is the following: Denote by pM∗ the base projection of T∗X,
i.e. pM∗ : (q, ξ) 7→ q. Then for all v ∈ D′(X) there holds

pX∗WF(v) = sing supp v (2.3)

where sing supp v is the singular support of v.

Definition 2.3. For v ∈ D′(X), sing supp v is defined as the complement of all points
q ∈ X for which there is an open neighbourhood U and a smooth n-form αU ∈ Ωn(U) so
that

v(h) =

∫

U

h · αU for all h ∈ D(U) .

In other words, v is given by an integral over a smooth n-form exactly if WF(v) is
empty.

2.2 Vector Bundles and Morphisms

Let X be a C∞ vector bundle over a base manifold N (dimN = n) with typical fibre
C r or R r and bundle projection πN . The space of smooth sections of X will be denoted
by C∞(X) and C∞

0 (X) denotes the subspace of smooth sections with compact support.
These spaces can be equipped with locally convex topologies similar to those of the test-
function spaces E(Rn) and D(Rn), see e.g. [8, 9]. We denote by (C∞(X))′ and (C∞

0 (X))′

the respective spaces of continuous linear functionals, and by C∞
0 (XU) the space of all

smooth sections in X with compact support in the open subset U of N .
It will be useful to introduce the following terminology. LetX be any smooth manifold.

Then we say that ρ is a local diffeomorphism ofX if there are two open subsets U1 = dom ρ
and U2 = Ran ρ of X so that ρ : U1 → U2 is a diffeomorphism. If U1 = U2 = X, then ρ
is a diffeomorphism of X. Now let ρ be a (local) diffeomorphism of the base manifold N .
Then we say that R is a (local) bundle map of X covering ρ if R is a smooth map from
π−1
N (dom ρ) to π−1

N (Ran ρ) with πN◦R = ρ and mapping the fibre over each q ∈ dom ρ
linearly into the fibre over ρ(q). If this map is also one-to-one and if R is also a local
diffeomorphism, then R will be called a (local) morphism of X covering ρ.

Each (local) bundle map R of X covering a (local) diffeomorphism ρ of N induces a
(local) action on C∞

0 (X), that is, a continuous linear map R⋆ : C∞
0 (Xdom ρ) → C∞

0 (XRan ρ)
given by

R⋆f := R◦f◦ρ−1 , f ∈ C∞
0 (Xdom ρ) . (2.4)

We finally note that the terminology introduced above applies equally well to the case
where ρ is a local diffeomorphism between base manifolds of different vector bundles.

2.3 Wavefront Set of Vectorbundle Distributions

Let X again be a C∞ vector bundle as before. Then let U ⊂ N be an open subset
and let (e1, . . . , er) be a local trivialization, or local frame, of X over U . That means
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the ej , j = 1, . . . , r are sections in C∞(XU) so that, for each q ∈ U , (e1(q), . . . , er(q))
forms a linear basis of the fibre π−1

N ({q}). Such a local trivialization induces a one-to-one
correspondence between C∞

0 (XU) and ⊕rD(U) by assigning to each f ∈ C∞
0 (XU) the

(f 1, . . . , f r) ∈ ⊕rD(U) with 1

faea = f .

This, in turn, induces a one-to-one correspondence between (C∞
0 (XU))′ and ⊕rD′(U), via

mapping u ∈ (C∞
0 (XU))′ to the (u1, . . . , ur) ∈ ⊕rD′(U) given by

ua(h) = u(h · ea) , h ∈ D(U) .

With this notation, one defines for u ∈ (C∞
0 (XU))′ the wavefront set as

WF(u) :=

r⋃

a=1

WF(ua) ,

i.e. the wavefront set of u is defined as the union of the wavefront sets of the scalar
component-distributions in any local trivialization over U . Using (2.1) and (2.2) it is
straightforward to see that this definition is independent of the choice of local trivializa-
tions. Therefore, one is led to the following

Definition 2.4. Let u ∈ (C∞
0 (X))′, (q, ξ) ∈ T∗N\{0}. Then (q, ξ) is defined to be in

WF(u) if, for any neighbourhood U of q over which X trivializes, (q, ξ) is in WF(uU)
where uU is the restriction of u to C∞

0 (XU).

The properties of WF(u) are similar to those in the case of scalar distributions; obvi-
ously (2.1) and (2.2) generalize to the vectorbundle case. Also, WF(u) is a closed conic
subset of T∗N\{0}, and it holds that

pN∗WF(u) ⊂ sing supp u , u ∈ (C∞
0 (X))′ , (2.5)

where pN∗ : T∗N → N is the cotangent bundle projection, and the counterpart of Def.
2.3 relevant here is:

Definition 2.5. For u ∈ (C∞
0 (X))′, sing supp u is defined as the complement of all points

in N for which there are an open neighbourhood U , a smooth section ν ∈ C∞(X∗) in the
dual bundle X

∗ to X, and a smooth n-form αU ∈ Ωn(U) so that

u(f) =

∫

U

ν(f) · αU , f ∈ C∞
0 (XU) .

As in the scalar case, it is very useful to know the behaviour of the wavefront set under
(local) morphisms of X. The following Lemma provides this information. The proof can
be given by simply adapting the arguments well-known for the scalar case.

1summation over repeated indices is implied
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Lemma 2.6. Let U1 and U2 be open subsets of N , and let R : XU1 → XU2 be a vector
bundle map covering a diffeomorphism ρ : U1 → U2. Let u ∈ (C∞

0 (XU1))
′. Then it holds

that

WF(R⋆u) ⊂ tDρWF(u) = {(ρ−1(x), tDρ · ξ) : (x, ξ) ∈ WF(u)} , (2.6)

where tDρ denotes the transpose (or dual) of the tangent map of ρ. If R is even a bundle
morphism, then the inclusion (2.6) becomes an equality.

Note that the above Lemma applies equally well to the case of bundle morphisms
covering diffeomorphisms between base spaces of different vector bundles.

2.4 Scaling Limits

In the present subsection we consider scaling limits of vector-bundle distributions.
Let X be a vector bundle with base N as before. Let q ∈ N and let κ : U → O ⊂ Rn

be a coordinate chart around q. We assume that the chart range O is convex and that
κ(q) = 0. Then we define the following semi-group (δ̌λ)1>λ>0 of local diffeomorphisms of
O:

δ̌λ(y) := λ · y , y ∈ O, 1 > λ > 0 .

This induces a semi-group (δλ)1>λ>0 of local diffeomorphisms of U according to

δλ = κ−1◦δ̌λ◦κ , 1 > λ > 0 .

(Note that (δλ)1>λ>0 depends on κ, which is not reflected by our notation.)
Now let (Dλ)1>λ>0 be a family of local morphisms of X so that Dλ covers δλ for each

1 > λ > 0.

Definition 2.7. Let u ∈ (C∞
0 (XU))′. If the limit

u(0)(f) := lim
λ→0

u(D⋆
λf)

exists for all f ∈ C∞
0 (XU) and does not vanish for all f , then u(0) will be called the scaling

limit distribution with respect to (Dλ)1>λ>0 at q.

Clearly, the scaling limit distribution is then a member of (C∞
0 (XU))′. The following

result will later be of interest.

Proposition 2.8. Let u(0) be the scaling limit distribution of a u ∈ (C∞
0 (XU))′ at q with

respect to some (Dλ)1>λ>0 such that

max
1≤a,b≤r

|Da
b (λ)| ≤ cλ−ν , 0 < λ < λ0, (2.7)

holds for the components Da
b (λ) of Dλ in any local trivialization of X near q with suitable

constants c, ν > 0.
Then

(q, ξ) ∈ WF(u(0)) ⇒ (q, ξ) ∈ WF(u). (2.8)
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Proof. We will establish the relation

(q, ξ) /∈ WF(u) ⇒ (q, ξ) /∈ WF(u(0)) (2.9)

which is equivalent to (2.8). Using the chart, we identify T∗
qN with Rn, and we identify

the components (u
(0)
1 , . . . , u

(0)
r ) of u(0) and (u1, . . . , ur) of u with respect to a local trivi-

alization of X near q with elements of D′(O) where O is the chart range. (Note that it is
no restriction to assume that X trivialises on the chart domain since only the behaviour
of u in any arbitrarily small neighbourhood of q is relevant here.) With the indicated
identifications provided by the chart, the required relation (2.9) reads

(0, ξ) /∈ WF(ua) for all 1 ≤ a ≤ r ⇒ (0, ξ) /∈ WF(u(0)
a ) for all 1 ≤ a ≤ r

and

u(D⋆
λf) = Da

b (λ)ua(f
b ◦ δ−1

λ ) = Da
b (λ)u[λ]

a (f b)

in components of the local trivialization, where we have introduced

u[λ]
a (f) := ua(f ◦ δ−1

λ ), f ∈ D(O).

Now let (0, ξ) /∈ WF(ua) for all 1 ≤ a ≤ r. This means that there is a function χ ∈ C∞
0 (O)

with χ(0) = 1 and an open conic neighbourhood Γ of ξ (in Rn\{0}) so that, for all m > 0,

sup
k∈Γ

|χ̂ua(k)| (1 + |k|m) ≤ Cm (2.10)

holds for all 1 ≤ a ≤ r with suitable Cm > 0.
Now choose some χ0 ∈ C∞

0 (O) with χ0(0) = 1 and supp(χ0) ⊂ supp(χ). Then the
̂
χ0u

(0)
a (k) are analytic functions of k, hence bounded on compact sets. This implies that

it suffices to show that there are an open conic neighbourhood Γ0 of ξ and some m0 > 0
so that for all m > m0

sup
k∈Γ0

∣∣∣∣
̂
χ0u

(0)
a (k)

∣∣∣∣ |k|
m < C ′

m (2.11)

holds for all 1 ≤ a ≤ r with suitable C ′
m > 0, in order to conclude that (0, ξ) /∈ WF(u

(0)
a )

for all 1 ≤ a ≤ r.
To prove that (2.11) holds, we observe that

(
(χua)

[λ]
)
̂ (k) = χ̂ua(λ

−1k), 1 > λ > 0, k ∈ R
n.

Furthermore, since (2.10) holds and since the cone Γ is scale-invariant, we see that

sup
1>λ>0,k∈Γ

∣∣χ̂ua(λ−1k)
∣∣ ∣∣λ−1k

∣∣m ≤ Cm
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for all 1 ≤ a ≤ r. Thus, if m ≥ ν, we obtain from assumption (2.7), for all 1 ≤ a ≤ r,

sup
1>λ>0,k∈Γ

∣∣Db
a(λ)

(
(χub)

[λ]
)
̂ (k)

∣∣ |k|m ≤ sup
1>λ>0,k∈Γ

cr2λ−ν max
1≤b≤r

∣∣χ̂ub(λ−1k)
∣∣ |k|m

≤ cr2 sup
1>λ>0,k∈Γ

max
1≤b≤r

∣∣χ̂ub(λ−1k)
∣∣ ∣∣λ−1k

∣∣m

≤ cr2Cm.

Observing that χ0u
[λ]
a = χ0(χua)

[λ] for 1 > λ > 0 and using also that

(χ0u
(0)
a )̂ (k) = lim

λ→0
Db
a(λ)(χ0u

[λ]
b )̂ (k)

holds for all k ∈ Rn, 1 ≤ a ≤ r, the desired bound (2.11) is implied by the last estimate.

3 Wave-operators and Dirac-operators

3.1 Wave-operators on Vector-bundles over Curved Spacetimes

We shall investigate the situation of general vector-valued fields propagating over a curved
spacetime. Thus, the basic object of our considerations is a vector bundle V with typical
fibre Cr, base manifold M (dimM = m) and base projection πM . The base mani-
fold is to have the structure of a spacetime, so it will be assumed that M is endowed
with a Lorentzian metric g having signature (+,−, . . . ,−). Thus (M, g) is a Lorentzian
spacetime-manifold. Within the scope of the present work, we will impose further reg-
ularity conditions on the causal structure of (M, g). First, we assume that that (M, g)
is time-orientable, i.e. that there exists a global, timelike vectorfield on M . A further
assumption which we make is that (M, g) be globally hyperbolic. This means that there
exists a Cauchy-surface in (M, g), which by definition is a C0-hypersurface in M which is
intersected exactly once by each inextendible g-causal curve in M . It can be shown that
(M, g) is globally hyperbolic if and only if there exists an m − 1-dimensional manifold
Σ and a diffeomorphism Ψ : R × Σ → M so that, for each t ∈ R, Σt = Ψ({t} × Σ)
is a Cauchy-surface in (M, g). This means that a globally hyperbolic spacetime can be
smoothly foliated by a C∞-family {Σt}t∈R of Cauchy-surfaces.

The causal structure of globally hyperbolic spacetimes is, in a sense, “best behaved”.
In particular, it has the consequence that if v is a non-zero lightlike vector in TqM for any
q ∈ M , then the maximal geodesic γ which it defines (i.e. γ : I ⊂ R → M is a solution
of the geodesic equation with γ(0) = q and d

dt
γ(t)

∣∣
t=0

= v, and any other such curve that
has the same properties cannot properly extend γ) is endpointless (inextendible), and
thus there is for each Cauchy-surface C in (M, g) exactly one parameter value t so that
γ(t) ∈ C.

Let us also collect the notation for the causal future/past sets. If p ∈ M , then one
denotes by J±(p) the subset of all points q in M which lie on any future/past directed
causal curve [continuous, piecewise smooth] starting at p. For G ⊂ M , J±(G) is defined
as

⋃{J±(p) : p ∈ G}. For any subset Σ of M one defines its future/past domain of
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dependence, D±(Σ), as the set of all points p inM such that each past/future-inextendible
causal curve starting at p intersects Σ at least once. Then D(Σ) denotes D+(Σ)∪D−(Σ).
A set G′ ⊂ M is called causally separated from G if G′ ∩ (J+(G) ∪ J−(G)) = ∅. Note
that the relation of causal separation is symmetric in G and G′. The reader is referred to
[20, 42] for a more detailed discussion of causal structure.

After this brief reminder concerning some basic properties of Lorentzian spacetimes,
we turn now to wave-operators. A linear partial differential operator

P : C∞
0 (V) → C∞

0 (V)

will be said to have metric principal part if, upon choosing a local trivialization of V over
U ⊂ M in which sections f ∈ C∞

0 (VU) take the component representation (f 1, . . . , f r),
and a chart (xµ)mµ=1, one has the following coordinate representation for P : 2

(Pf)a(x) = gµν(x)∂µ∂νf
a(x) + Aνab(x)∂νf

b(x) +Ba
b (x)f

b(x) .

Here, ∂µ denotes the coordinate derivative ∂
∂xµ , and Aνab and Ba

b are suitable collections of
smooth, complex-valued functions. Observe that thus the principal part of P diagonalizes
in all local trivializations (it is “scalar”).

We will further suppose that there is a morphism Γ of V covering the identity map of
M which acts as an involution (Γ◦Γ = idV) and operates anti-isomorphically on the fibres.
Therefore, Γ acts like a complex conjugation in each fibre space, and the Γ-invariant part
V

◦ of V is a vector bundle with typical fibre isomorphic to Rr. If P has metric principal
part and is in addition Γ-invariant, i.e.

Γ◦P ◦Γ = P ,

then P will be called a wave operator. [Note that we have written here Γ where we should
have written Γ⋆, however this appears justified since Γ covers the identity, so we adopt
this convention since it results in a simpler notation.]

It is furthermore worth noting that, given any wave operator, there is a uniquely
determined covariant derivative, or linear connection, ∇(P ) on V, characterized by the
property

2 · ∇(P )
gradϕf = P (ϕf) − ϕP (f) − (2ϕ)f (3.1)

for all ϕ ∈ C∞
0 (M,R) and all f ∈ C∞

0 (V◦) [19, Chp. 6]. Here, 2 denotes the d’Alembertian
operator associated with g on the scalar functions. Then there exists also a bundle map
V of V

◦ covering the identity on the base manifold M such that

Pf = gµν∇(P )
µ ∇(P )

ν f + V f , f ∈ C∞
0 (V◦) .

(Here we have followed our convention to denote the induced action of the bundle map
covering idM simply by V instead of V ⋆.)

2Greek indices are raised and lowered with gµ
ν(x), latin indices with δa

b .
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3.2 Propagation of Singularities

We consider a wave operator P for a vector bundle V over a spacetime manifold (M, g)
(for the present subsection, we need not require that (M, g) be globally hyperbolic). Let
w ∈ (C∞

0 (V)⊗C∞
0 (V))′. Then we call w a bisolution for the wave operator P up to C∞,

or, for short, bisolution mod C∞, if there are two smooth sections ϕ, ψ ∈ C∞(V∗ ⊠ V
∗),

where V
∗ denotes the dual bundle of V and V

∗ ⊠ V
∗ is the outer tensor product bundle

(this is the bundle over M ×M having fibre V
∗
p⊗V

∗
q at (p, q) ∈M ×M , with the obvious

projection), so that

w(Pf ⊗ f ′) =

∫
ϕ(p,q)(f(p) ⊗ f ′(q)) dµ(p) dµ(q) ,

w(f ⊗ Pf ′) =

∫
ψ(p,q)(f(p) ⊗ f ′(q)) dµ(p) dµ(q)

holds for all f, f ′ ∈ C∞
0 (V). Here, dµ denotes the volume measure induced by the metric

g. In view of the fact that the projection of WF(w) to the base manifold yields sing suppw,
one can see that, upon defining w(P ), w2(P ) ∈ (C∞

0 (V) ⊗ C∞
0 (V))′ by

w(P )(f ⊗ f ′) := w(Pf ⊗ f ′) ,

w(P )(f ⊗ Pf ′) := w(f ⊗ Pf ′) , f, f ′ ∈ C∞
0 (V) ,

w is a bisolution for the wave operator P mod C∞ exactly if

WF(w(P )) = ∅ and WF(w(P )) = ∅ .
In keeping with that notation, when w,w′ ∈ (C∞

0 (V ⊠ V))′ we shall also say that w
agrees with w′ mod C∞, or

w = w′ mod C∞ ,

if WF(w − w′) = ∅.
Let us now define the set of “null-covectors”

N := {(q, ξ) ∈ T∗M : gσρ(q)ξσξρ = 0} . (3.2)

Since (M, g) possesses a time orientation, it is useful to introduce the following two disjoint
future/past-oriented parts of N,

N± := {(q, ξ) ∈ N | ± ξ � 0} , (3.3)

where ξ � 0 means that the vector ξµ = gµνξν is future-pointing and non-zero.
On the set N one can introduce an equivalence relation as follows:

Definition 3.1. One defines
(q, ξ) ∼ (q′, ξ′)

iff there is an affinely parametrized lightlike geodesic γ with γ(t) = q, γ(t′) = q′ and

gσρ(q)ξρ = ( d
ds

∣∣
s=t
γ(s))σ , gσρ(q′)ξ′ρ = ( d

ds

∣∣
s=t′

γ(s))σ .

That is to say, ξ and ξ′ are co-parallel to the lightlike geodesic γ connecting the base
points q and q′, and therefore ξ and ξ′ are parallel transports of each other along that
geodesic.

By B(q, ξ) := [(q, ξ)]∼ we will denote the equivalence class associated with (q, ξ) ∈ N.

12



With this terminology, we can formulate the propagation of singularities theorem
(PST) for wave-operators, which is a consequence of more general results of Dencker [7]
together with [12, Lemma 6.5.5]. See also [24] for a more elementary account.

Proposition 3.2. Let P be a wave operator on C∞
0 (V), and suppose that w ∈ (C∞

0 (V)⊗
C∞

0 (V))′ is a bisolution mod C∞ for P . Then there holds

WF(w) ⊂ N × N

and

(q, ξ; q′, ξ′) ∈ WF(w) with ξ 6= 0 and ξ′ 6= 0 ⇒ B(q, ξ) × B(q′, ξ′) ⊂ WF(w) .

3.3 Propagators and Cauchy-Problem

As in the previous section, we assume that V is a vector bundle with typical fibre Cr and
base manifold M . Again, M comes endowed with a Lorentzian metric g with the property
that the spacetime (M, g) is time-orientable and globally hyperbolic. A time-orientation
is assumed to have been chosen. Moreover we suppose that there is a fibre wise complex
conjugation Γ on V, and a wave-operator P operating on C∞

0 (V) and commuting with Γ.
An additional structure will be introduced now: We assume that V is a hermitean

vector bundle. That is, there is a smooth section h in V
∗ ⊠ V

∗ so that, for each p in
M , hp is a sesquilinear form on Vp (this form need not be positive definite). Clearly, h
induces an antilinear vector-bundle morphism ϑ : V → V

∗ covering the identity via

h(v,w) := (ϑv)(w) , v,w ∈ Vq, q ∈M . (3.4)

Then one can use h to introduce a non-degenerate sesquilinear form

(f, f ′) :=

∫

M

h(f(q), f ′(q)) dµ(q) , f, f ′ ∈ C∞
0 (V) , (3.5)

on C∞
0 (V). The volume form dµ appearing here is that induced by the metric g on M .

We will furthermore make the following assumption:

(Pf, f ′) = (f, Pf ′) , f, f ′ ∈ C∞
0 (V) . (3.6)

It has been observed in [26, 11] that under the stated assumptions the results of [30]
imply the existence of unique advanced and retarded fundamental solutions of P . A
similar statement can be deduced from [19, Prop. III.4.1]. We quote this result as part
(a) of the subsequent proposition from [26]. Part (b) of this proposition is the statement
that the Cauchy-problem for the wave-operator is well-posed. The proof of this statement
may either be given by generalizing the classical energy-estimate arguments as given e.g.
in [20] for tensor-fields to sections in vector bundles, or by using the arguments in [10]
Lemma A.4 to globalize the local version of that statement which is proven e.g. in [19,
Prop. III.5.4].
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Proposition 3.3. (a) The wave-operator P possesses unique advanced/retarded funda-
mental solutions, i.e. there is a unique pair of (continuous) linear maps

E± : C∞
0 (V) → C∞(V)

such that

PE±f = E±Pf = f and supp(E±f) ⊂ J±(supp f) , f ∈ C∞
0 (V) .

Moreover, from ΓP = PΓ it follows that ΓE± = E±Γ, and if P has the hermiticity
property (3.6), then it holds that

(E±f, f ′) = (f, E∓f ′) , f, f ′ ∈ C∞
0 (V) .

(b) Let Σ be a Cauchy-surface in (M, g), and let n be the future-pointing unit-normal vector
field along Σ. Using Gaussian normal coordinates, n determines by geodesic transport a
vector field in a neighbourhood of Σ (the geodesic spray of n) which is also denoted by
n. Then, given any pair f, f ′ ∈ C∞

0 (V), there is exactly one φ ∈ C∞(V) solving the
Cauchy-problem for the wave operator P with data induced by f and f ′, i.e. φ obeys

(i) Pφ = 0 ,

(ii) (φ− f) ↾ Σ = 0 , (∇(P )
n φ− f ′) ↾ Σ = 0 ,

where ∇(P ) is the connection induced by P .

3.4 Spin Structures and Spinor Fields

In the present section, we summarize a few basics about manifolds with spin structure
and Dirac operators, following Dimock’s article [11] to large extent, however generalizing
parts therein to spacetime dimensions ≥ 3 while specializing at the same time to Majorana
spinors. In this context, we refer the reader to [6].

As before, we suppose that (M, g) is a time-orientable, globally hyperbolic Lorentzian
spacetime of dimension m. Additionally, we suppose that (M, g) is “space-orientable”,
i.e. that each Cauchy-surface is orientable. We suppose that time- and space-orientations
have been chosen. Then we define F (M, g) as the bundle of time- and space-oriented
g-orthonormal frames on M . That is, F (M, g) consists of m-tuples (v0, v1, . . . , vm−1)(p) of
vectors vµ ∈ TpM , p ∈M , such that v0 is timelike and future-pointing, (v1, . . . , vm−1) is a
collection of spacelike vectors having the prescribed spatial orientation, and g(vµ, vν) = ηµν
where (ηµν)

m−1
µ,ν=0 = diag(+,−, . . . ,−) is the m-dimensional Minkowski-metric in a Lorentz

frame. The base projection πF : F (M, g) →M is given by (v0, . . . , vm−1)(p) 7→ p. F (M, g)
has the structure of a principal fibre bundle with structure group SO↑(1, m − 1), where
the arrow signifies that the transformations preserve the time-orientation.

The universal covering group of SO↑(1, m− 1) is Spin↑(1, m− 1). Let us denote by

Spin↑(1, m− 1) ∋ λ 7→ Λ(λ) ∈ SO↑(1, m− 1)
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the 2–1 covering projection. Then a spin structure for (M, g) is, by definition, a principal
fibre bundle S(M, g) with base manifold M (πS : S(M, g) →M will denote the base pro-
jection) and with structure group Spin↑(1, m−1), together with a bundle-homomorphism
φ : S(M, g) → F (M, g) preserving the base points, πF ◦φ = πS, and having the property
that

φ◦Rλ(s) = RΛ(λ)◦φ(s) , s ∈ S(M, g) .

Here, R . denotes the right action of the structure group on the corresponding principal
fibre bundles. A sufficient criterion for existence of spin-structures is that M is paralleliz-
able; this is for instance the case for all 4-dimensional globally hyperbolic spacetimes.

It is known (cf. [6]) that for the cases m = 3, 4, 9, 10mod 8 there are Majorana algebras

M(1, m− 1), defined as the real-linear subalgebras of M(C2[m/2]
) (the algebra of complex

2[m/2]×2[m/2] matrices3) which are generated by elements {γµ : µ = 0, . . . , m−1} obeying
the relations:

γµγν + γνγµ = 2ηµν , and

γ∗0 = γ0 , γ∗k = −γk (k = 1, . . . , m− 1) , γµ = −γµ (µ = 0, . . . , m− 1),

where ( . )∗ means taking the hermitean conjugate matrix and ( . ) denotes the matrix with
complex conjugate entries. Given a Majorana algebra M(1, m − 1), one can construct a
canonical, faithful group endomorphism ℓ : Spin↑(1, m − 1) → M(1, m − 1) so that the
group multiplication is carried to the matrix product, and with the property that

ℓ(λ) · γµ = Λ(λ)νµγν · ℓ(λ) .

Therefore ℓ is at the same time a linear representation of Spin↑(1, m−1) on C2[m/2]
. Thus,

given a spin structure and a Majorana algebra, one may form the vector bundle

DℓM = S(M, g) ⋉
ℓ

C
2[m/2]

,

the vector bundle associated to S(M, g) and the representation ℓ of its structure group

Spin↑(1, m− 1) on C2[m/2]
. It is called the bundle of Majorana spinors (corresponding to

the Dirac representation ℓ induced by M(1, m − 1)). The dual bundle to DℓM will be
denoted by D∗

ℓM .

Remark. It is just a matter of convenience that we restrict our discussion to the case of
Majorana spinors. One could work with Dirac spinors as well; then one has to introduce
appropriate ‘doublings’ of spinor bundle and Dirac operator. Such an approach has, in
the context of quantizing Dirac fields, been favoured elsewhere [11, 21, 27, 29, 35]. By
employing somewhat more elaborate notation, one may generalize our results in Chapter
5 to the slightly more general case of Dirac spinors.

3.5 Dirac-operators

The metric-induced connection ∇ on TM naturally gives rise to a connection on the
frame bundle F (M, g). Since the Lie-algebras of Spin↑

0(1, m−1) and SO↑(1, m−1) can be

3[m/2] denotes the integer part of m/2
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canonically identified, that connection on F (M, g) induces a connection on S(M, g), from
which one obtains a linear connection on DℓM . We denote the corresponding covariant
derivative operator by ∇ : C∞(TM ⊗ DℓM) → C∞(DℓM), v ⊗ f 7→ ∇vf , without
indicating the dependence on the representation ℓ.

Now one can proceed exactly as in [11] and introduce the spinor-tensor γ, the Dirac-
operator ∇/ and the Dirac adjoint u+. The spinor-tensor γ ∈ C∞

0 (T ∗M ⊗DℓM ⊗D∗
ℓM) is

defined by requiring that its components γµ
a
b with respect to (appropriate) local frames

are equal to the matrix elements (γµ)
a
b, and the Dirac operator is introduced by setting

in frame components, for a local section f = faea ∈ C∞
0 (DℓM),4

(∇/ f)a := ηµνγµ
a
b(∇νf)b .

The Dirac adjoint DℓM ∋ u 7→ u+ ∈ D∗
ℓM is a base-point preserving anti-linear bundle

morphism defined by setting (u+)a = ubγ0 ab for the dual frame components. This allows
to define a hermitean structure h on DℓM via

h(u,w) := u+(w) , u,w ∈ DℓM ,

and thus the Dirac adjunction plays the role of ϑ of the last section. One can, more-
over, introduce a conjugation Γ on DℓM by setting, in any frame, (Γu)a = ua for the
components. Then one finds

h(Γu,Γw) = −h(w, u) , u,w ∈ DℓM , (3.7)

showing that Γ is a skew-conjugation for the hermitean form h and that h is, while non-
degenerate, not positive, but rather a conjugate skew-symmetric form (analogous to a
symplectic form). As in the last section, h induces a hermitean (now, conjugate skew-
symmetric) form on C∞

0 (DℓM) given by

(f, f ′) :=

∫

M

h(f(p), f ′(p)) dµ(p) , f, f ′ ∈ C∞
0 (DℓM) , (3.8)

where again dµ is the volume form induced my the metric g on M , and clearly Γ acts now
as skew-conjugation with respect to this hermitean form on C∞

0 (DℓM).
Now if m ≥ 0 is a constant (more generally, it could be a Γ-invariant bundle map of

DℓM covering the identity), one may introduce a pair of Dirac operators

D� := ∇/ + im , D� := ∇/ − im , (3.9)

both of which are first-order linear partial differential operators acting on C∞(DℓM)
having the same principal part. Moreover, they have the properties:

ΓD� = −D�Γ , D�D� = D�D� , and (D�f, f
′) = −(f,D�f

′) , f, f ′ ∈ C∞
0 (DℓM) ,

and similar relations hold when replacing D� by D�. Another property, entailed by the
relations (Clifford relations) for the generators of M(1, m − 1), is that P = D�D� is a
wave operator on DℓM which fulfills the hermiticity condition (3.6).

The following proposition is a trivial generalization of similar statements in [11] for
the four-dimensional case; we refer to that reference for the proof.

4Note that, at this point, the indices µ, ν are frame-indices, while elsewhere they are coordinate-indices
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Proposition 3.4. [11] Let D�, D� be the Dirac operators on DℓM defined above. Define

S±
�

:= D�E
± and S� := S+

�
− S−

�
,

where E± are the advanced/retarded fundamental solutions of the wave-operator P =
D�D�. Then it holds that S±

�
is the unique advanced/retarded fundamental solution of

D�, i.e. the unique continuous operator from C∞
0 (V) to C∞(V) so that

D�S
±
�
f = S±

�
D�f = f and supp(S±

�
f) ⊂ J±(supp f) , f ∈ C∞

0 (V) .

Moreover, it follows that ΓS±
�

= −S±
�

Γ, and

(S�f, f
′) = (f, S�f

′) and (f, S�f) ≥ 0 , f, f ′ ∈ C∞
0 (V) .

4 Quantum fields, CAR and CCR

The present section serves to explain what it means that a quantum field satisfies CAR or
CCR. First, however, we have to make precise the idea of a vector-valued quantum field
on a spacetime (M, g):

Let V be a vector bundle over the base manifold M , carrying a fibrewise conjugation
Γ. A quantum field is then a collection of objects {Φ,D,H}, where H is a Hilbert-space,
D is a dense subspace of H and Φ is an operator valued distribution having domain D.
That is to say, Φ(f) is for each f in C∞

0 (V) a closable operator with domain D and D is
left invariant under application of Φ(f). Moreover, for all ψ, ψ′ ∈ D, the map

C∞
0 (V) ∋ f 7→ 〈ψ,Φ(f)ψ′〉

is in (C∞
0 (V))′. We also require that

Φ(Γf) ⊂ Φ(f)∗ for all f ∈ C∞
0 (V),

where Φ(f)∗ denotes the adjoint operator of Φ(f).
Let w be a distribution in (C∞

0 (V ⊠ V))′. One defines the symmetric (w(+)) and
antisymmetric (w(−)) part of w by

w(±)(f ⊗ f ′) =
1

2
(w(f ⊗ f ′) ± w(f ⊗ f ′))

and continuous linear continuation to C∞
0 (V ⊠ V). To say that a quantum field satisfies

CAR or CCR amounts to specifying the symmetric or antisymmetric part, respectively
of the two-point functions

w
(ψ)
2 (f ⊗ f ′) = 〈ψ,Φ(f)Φ(f ′)ψ〉

H
, f, f ′ ∈ C∞

0 (V),

independently of ψ ∈ D, ‖ψ‖ = 1. (“c-number commutation relations”.) To describe this
more concretely, we introduce CAR- and CCR-structures.
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CAR case: We assume that there is a complex Hilbert-space (V, 〈·, ·〉
V
) carrying a conju-

gation C, together with a continuous linear map

qV : C∞
0 (V) → V

having a dense range, such that C ◦ qV = qV ◦ Γ. Relative to such a CAR-structure, we
say that the quantum field Φ satisfies the CAR if

w
(ψ)(+)
2 (f ⊗ f ′) = 〈CqV(f), qV(f ′)〉

V
, f, f ′ ∈ C∞

0 (V),

holds for all unit vectors ψ ∈ D.

CCR case: Here we assume that there is a (real-linear) symplectic space (S, σ(·, ·)) and a
real-linear, symplectic map

qS : C∞
0 (V◦) → S.

Relative to this CCR-structure, we say that the quantum field Φ satisfies the CCR if

w
(ψ)(−)
2 (f ⊗ f ′) = σ (qS(f), qS(f

′)) , f, f ′ ∈ C∞
0 (V),

holds for all unit vectors ψ ∈ D.

One can, instead of using quantum fields, alternatively consider states on the Borchers-
algebra [2] over the test-section space C∞

0 (V). Since we have presented this approach in
[34], we won’t discuss this here. Instead, we very briefly sketch the C∗-algebraic variant
of CAR and CCR which shows how quantum fields may be constructed from states on
C∗-algebras associated with CAR- or CCR-structures.

We begin with the CAR case. Let a CAR-structure (V, 〈·, ·〉
V
, C, qV) be given. Then

one can form the corresponding self-dual CAR-algebra B(V, C) [1], which is the C∗-algebra
with unit 1 generated by a family of elements{B(v) : v ∈ V} with the relations

(i) v 7→ B(v) is C-linear,

(ii) B(v)∗ = B(Cv), v ∈ V,

(iii) B(v)∗B(w) +B(w)B(v)∗ = 〈v, w〉
V
· 1, v, w ∈ V.

(There is a unique C∗-norm compatible with these relations.) Now let ω be any state,
i.e. a positive (ω(B∗B) ≥ 0), normalized (ω(1) = 1) linear functional on B(V, C). Then
let (πω,Hω,Ωω) be the corresponding GNS-representation5. It induces a quantum field
{Φ,D,H} as follows. Take H = Hω, and define Φ(f) by

Φ(f) := πω (B(qV(f)) ) , f ∈ C∞
0 (V). (4.1)

5 We recall here the following fact. Let ω denote a positive, normalized linear functional on a C∗-algebra
A with unit 1. Then there exists a triple (πω, Hω , Ωω), called GNS-representation of ω where Hω is a
complex Hilbert-space, πω is a ∗-representation of A by bounded operators on Hω , and Ωω is a unit vector
in H which is cyclic for πω (πω(A)Ωω is dense in Hω), with the property that ω(A) = 〈Ωω, πω(A)Ωω〉 for
all A ∈ A. The triple (πω, Hω , Ωω) is unique up to unitary equivalence.
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As domain D one may take PΩω, where P is the set of all polynomials in the Φ(f), f ∈
C∞

0 (V). One could as well take D = Hω since the Φ(f) are bounded operators as
consequence of the CAR. It is then straightforward to see that this quantum field satisfies
the CAR. Note that Φ depends on the chosen state ω, and each state ω induces via (4.1)
a quantum field satisfying the CAR.

We can associate with any state ω on B(V, C) its two point function ω2, defined by

ω2(f ⊗ f ′) := 〈Ωω,Φ(f)Φ(f ′)Ωω〉 , f, f ′ ∈ C∞
0 (V),

with Φ(f) as in (4.1); then ω2 is an element of (C∞
0 (V ⊠ V))′.

Next, we turn to the CCR-case. Let (S, σ, qS) be a CCR-structure. Then let W(S, σ)
be the CCR- or Weyl-algebra associated with the symplectic space (S, σ). This is the
C∗-algebra with unit 1 generated by a family of elements {W (φ) : φ ∈ S} with relations

(i) W (φ)∗ = W (−φ) = W (φ)−1,

(ii) W (φ)W (ψ) = e−i/2σ(φ,ψ)W (φ+ ψ).

(Also in this case there is a unique C∗-norm compatible with these relations.) Now let
ω be a state on W(S, σ) with corresponding GNS-representation (πω,Hω,Ωω). This state
is called regular if, for each φ ∈ S, the unitary group R ∋ t 7→ πω(W (tφ)) is strongly
continuous. Consequently, we have for each φ ∈ S a selfadjoint generator R(φ) so that
πω(W (tφ)) = exp(itR(φ)). However, in order to ensure that there is a dense common
invariant domain for all R(φ), φ ∈ S, and moreover, to obtain a quantum field, one needs
to impose a stronger regularity condition. We say that ω is C∞-regular if, for all N ∈ N,
the map

R
N × C∞

0 (V◦)N ∋ (~t, ~f ) 7→ ω(W (qS(t1f1)) · · ·W (qS(tNfN )))

is C∞ in ~t and if it is, together with all partial ~t-derivatives, continuous in ~f . Note that
this requires that f, f ′ 7→ σ(qS(f), qS(f

′)) is continuous. Given a C∞-regular state ω on
W(S, σ), we obtain a quantum field {Φ,D,H} from the GNS-representation (πω,Hω,Ωω)
via setting H = Hω, D = PΩω where P is the set of polynomials in the R(φ), φ ∈ S and

Φ(f) = R(qS(f)), f ∈ C∞
0 (V◦). (4.2)

(Then Φ(f) = 1/2(Φ(f +Γf)+ iΦ(i(f −Γf))) for all f ∈ C∞
0 (V).) We remark that, as in

the CAR-case, the quantum field depends on the choice of a C∞-regular state ω. There
exist very many C∞-regular states for W(S, σ) once f, f ′ 7→ σ(qS(f), qS(f

′)) is continuous,
in particular every quasifree state on W(S, σ) is C∞-regular.

Similarly as above, we associate with any C∞-regular state ω on W(S, σ) its two-point
function,

ω2(f ⊗ f ′) := 〈Ωω,Φ(f)Φ(f ′)Ωω〉 , f, f ′ ∈ C∞
0 (V),

where Φ(f) is defined by (4.2). Again ω2 induces a distribution in (C∞
0 (V ⊠ V))′.

Finally, we indicate how wave-operators and Dirac operators induce CCR-structures and
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CAR-structures, respectively.

Wave operator/CCR case: We assume that V is a hermitean vector bundle, with typical
fibre Cr, and base manifold M so that (M, g) is a globally hyperbolic spacetime of dimen-
sion m ≥ 3. Furthermore, we suppose that P is a wave operator acting on the smooth
sections in the vector bundle satisfying the hermiticity condition (3.6). Let E := E+−E−

where E± are the unique advanced/retarded fundamental solutions of P , cf. Prop. 3.3.
Then define

S := C∞
0 (V◦)/kerE , qS(f) := f + kerE ,

σ(qS(f), qS(f
′)) := (f, Ef ′) , f, f ′ ∈ C∞

0 (V◦) ,

where ( . , . ) is the hermitean form on C∞
0 (V◦) introduced in (3.5). We call the thus

defined CCR-structure the CCR structure induced by P .

Dirac operator/CAR case: Let (M, g) be a globally hyperbolic spacetime of dimension
m = 3, 4, 9, 10 mod 8 and let DℓM be the associated bundle of Majorana spinors. More-
over, let S� = S+

�
− S−

�
where S±

�
are the advanced/retarded fundamental solutions of

the operator D�, cf. Prop. 3.4. Then define the CAR structure induced by D� by setting

qV : C∞
0 (V) → C∞

0 (V)/kerS� , qV(f) := f + kerS� ,

〈qV(f), qV(f ′)〉V = (f, S�f
′) , CqV(f) := qV(Γf) ,

V := completion of C∞
0 (V)/kerS� w.r.t. 〈 . , . 〉 .

Here ( . , . ) is the hermitean form on C∞
0 (V) introduced in (3.8).

Finally, it should be noted that the quantum fields associated with these CAR and
CCR structures satisfy the Dirac-equation and the wave-equation, respectively. That is,
if (S, σ, qS) is the CCR-structure induced by the wave-operator P and the quantum field
Φ is defined as in (4.2), then

Φ(Pf) = 0 , f ∈ C∞
0 (V) , (4.3)

and if (V, 〈 . , . 〉V, qV) is the CAR structure induced by the Dirac operator D�, and Φ is
defined as in (4.1), then

Φ(D�f) = 0 , f ∈ C∞
0 (V) . (4.4)

5 Hadamard forms, Hadamard states

5.1 Definition of Hadamard forms and Hadamard states

Our next task is to give the definition of Hadamard forms and of Hadamard states. Our
definition follows that given by Kay and Wald [25] (for bosonic fields; the formulation
for fermionic fields is an adaptation of the approach in [25] together with the notion of
Hadamard form for Dirac fields in [31] which in similar form appeared in [27] and [40]).
The definition of Hadamard forms in full detail is unfortunately somewhat laborious. We
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proceed by first collecting the definitions of various notions entering into the definition
of Hadamard forms; however, we relegate the full definition of the coefficient sections
determined by the Hadamard recursion relations for the wave operator P (taken from
[19]) to the Appendix.

We suppose that we are given a hermitean vector bundle V over a globally hyperbolic
spacetime manifold (M, g) (m := dim M ≥ 3), together with a wave-operator P on
C∞

0 (V) fulfilling the hermiticity condition (3.6). Γ denotes a fibrewise conjugation on V

commuting with P .

(a) Causally normal related points: A convex normal neighbourhood in M is an open
domain U in M such that for each pair of points p, q ∈ U there is a unique geodesic
segment contained in U which connects p and q. We denote by X the set of all
those (p, q) ∈ M ×M which are causally related and for which J+(p) ∩ J−(q) and
J−(p) ∩ J+(q) are contained in a convex normal neighbourhood in M .

(b) Causal normal neighbourhoods: According to [25], an open neighbourhood N of a
Cauchy-surface Σ in (M, g) is called a causal normal neighbourhood of Σ if Σ is a
Cauchy-surface for N and if for each choice of p, q ∈ N with p ∈ J+(q), there exists
a convex normal neighbourhood in M in which J−(p) ∩ J+(q) is contained. It is
shown in [25] that each Cauchy-surface possesses causal normal neighbourhoods.

(c) Squared geodesic distance, Hadamard coefficient sections: There is an open neigh-
bourhood U of X on which s(p, q), the squared geodesic distance between p and q
(signed, such that s(p, q) > 0 for p, q spacelike, s(p, q) ≤ 0 for p, q causally related),
is well defined and smooth. Moreover, U may be chosen so that there are smooth
sections U , V (n) and T (n), n ∈ N, in C∞((V⊠V

∗)U) which are uniquely determined
by the ‘Hadamard recursion relations’ for the wave operator P , see Appendix A.1
for precise definition (taken from [19]). These are called the Hadamard coefficient
sections for P . If U has been chosen in the described way, then we call U a regular
domain.

(d) N-regularizing functions: Let N be a causal normal neighbourhood of a Cauchy-
surface. A smooth function χ : N ×N → [0, 1] will be called N-regularizing if there
is a regular domain U, and an open neighbourhood U∗ ⊂ N ×N of the set of pairs
of causally related points in N with U∗ ⊂ U, such that χ ≡ 1 on U∗ and χ ≡ 0
outside of U. The sets U∗,U are then called the domain pair corresponding to χ. It
can be shown that N -regularizing functions exist, a proof is given in [32].

(e) Time-functions: A smooth function t : M → R is called a time-function if its
gradient is a future-directed timelike vector field normalized to 1.

We also have to define some distributions on M . To this end, let N be a causal normal
neighbourhood, t a time-function on N , and ε > 0. Moreover, let χ be an N -regularizing
function with domain pair U∗,U. Then we define the smooth function (with m = dimM)

χG(1)
ε (x, y) := β(1)χ(x, y)

(
s(x, y) − i2ε(t(x) − t(y)) + ε2

)−m
2

+1
(5.1)

21



with support in N ×N . In case m is even, we also define

χG(2)
ε (x, y) := β(2)χ(x, y) ln

(
s(x, y) − i2ε(t(x) − t(y)) + ε2

)
(5.2)

where the branch cut of the logarithm is taken along the negative real line. The constants
β(1), β(2) in the above formulas are given by6

β(1) =
1

2

{
(−1)

m+1
2 π

2−m
2

[
Γ

(
4−m

2

)]−1
for m odd

−π−m
2 Γ

(
m
2
− 1

)
for m even

, β(2) = (−1)
m
2 21−mπ−m

2

[
Γ

(m
2

)]−1

.

We define distributions on C∞
0 (M ×M) by

χG(
1
2
)(F ) = lim

ε→0+

∫∫
χG

(
1
2
)

ε (p, q)F (p, q)dµ(p)dµ(q) , F ∈ C∞
0 (M ×M). (5.3)

For an account of some properties of these distributions, see Appendix A.3.
Now we can formulate the notion of Hadamard form:

Definition 5.1. We say that w ∈ (C∞
0 (V⊠V))′ is of Hadamard form on N for the wave

operator P if there are

• an N -regularizing function χ with corresponding domain pair U∗,U (implying that
the square of the geodesic distance s and the Hadamard coefficient sections U , T (n),
V (n), n ∈ N, for P are well-defined and smooth on U),

• a time-function t,

• for each n ∈ N an H (n) ∈ Cn((V ⊠ V
∗)N×N)

such that for all f, f ′ ∈ C∞
0 (VN) in case m odd:

w(Γf ⊗ f ′) = χG(1)
(
(ϑf)T (n)f ′

)
+

∫
(ϑf)(p)H(n)(p, q)f ′(q) dµ(p) dµ(q),

and for m even:

w(Γf ⊗ f ′) = χG(1)
(
(ϑf)Uf ′

)
+ χG(2)

(
(ϑf)V (n)f ′

)
+

∫
(ϑf)(p)H(n)(p, q)f ′(q) dµ(p) dµ(q),

where we have used abbreviations like

((ϑf)T (n)f ′)(p, q) := (ϑf)a(p)T
(n)a

b(p, q)f
′b(q)

to denote the function in C∞
0 (N ×N) resulting from contracting ϑf ⊗ f ′ pointwise with

T (n). Here, ϑ is the antilinear base-point preserving bundle-morphism from V onto V
∗

induced by the hermitean form as in (3.4), and we have written ϑ also in places where we
should have written ϑ⋆ in order to simplify notation.

6the Γ appearing here denotes the Gamma-function, not the conjugation on the underlying vector
bundle introduced before
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The notion of Hadamard form seems to depend on the choice of the time-function
t and the N -regularizing function χ; however, that turns out not to be the case. The
difference of a distribution w which is of Hadamard form relative to an N -regularizing
function χ and a distribution w′ of Hadamard form relative to an N -regularizing function
χ′ is C∞ because χ and χ′ are both equal to 1 in a neighbourhood of the singular support
of w and w′. Thus w is Hadamard relative to χ′ and w′ relative to χ, as well — a different
choice of χ may be absorbed into a different choice of the H (n). In Appendix A.3 we will
use an argument similar to that in [25] for the case of scalar fields to show that, given a
causal normal neighbourhood N of a Cauchy-surface, the definition of Hadamard form is
independent of the choice of the time-function t that entered into the definition.

Moreover, a solution w of the wave-equation mod C∞ which is of Hadmard form has
another remarkable property, known as “propagation of the Hadamard form”. We will
turn to this in the subsequent section.

We are now ready to present our definition of Hadamard states associated with the
wave operator P in the CCR case.

Definition 5.2. Let (S, σ, qσ) be the CCR-structure induced by the wave operator P and
ω a C∞-regular state on the CCR-algebra W(S, σ). We say that ω is a Hadamard state if
there is a causal normal neighbourhood N of a Cauchy-surface in (M, g) so that ω2 (the
two-point function of ω) is of Hadamard form.

The CAR case needs slightly different assumptions. Let (M, g) be a globally hyperbolic
spacetime of dimension m = 3, 4, 9, 10 mod 8, and let DℓM be the corresponding bundle
of Majorana spinors, and D�, D� as in (3.9).

Definition 5.3. Let (V, 〈 . , . 〉
V
, C, qV) be the CAR structure induced by D�, and ω a

state on the CAR-algebra B(V, C). Then we call ω a Hadamard state if there is a causal
normal neighbourhood of a Cauchy-surface in (M, g), and a w ∈ C∞

0 ((V ⊠ V)N×N)′ of
Hadamard form on N for the wave operator P = D�D� so that

ω2(f ⊗ f ′) = w(D�f ⊗ f ′), f, f ′ ∈ C∞
0 (VN)

holds for the two point function ω2 of ω.

We note several things in connection with this definition. First, these definitions of
Hadamard state seem to depend on the choice of a causal normal neighbourhood N , but
the next section will show that this is not the case.

Moreover, for reasons of consistency with the CCR- and CAR-structures one has to
check the following neccesary conditions.

Lemma 5.4. (a) In the wave operator/CCR-case: Given a causal normal neighbourhood
N , there is a Hadamard form w on N for the wave operator P so that

w(−)(Γf ⊗ f ′) = i (f, Ef ′) , f, f ′ ∈ C∞
0 (VN). (5.4)

(b) In the Dirac operator/CAR-case: Given a causal normal neighbourhood N , there is a
Hadamard form w on N for the wave operator P = D�D� so that

w(+)(ΓD�f ⊗ f ′) = −i (f, S�f
′) , f, f ′ ∈ C∞

0 (DℓMN ). (5.5)
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(c) Let N be a causal normal neighbourhood of any Cauchy-surface, and suppose that
w ∈ (C∞

0 ((V ⊠ V)N×N)′ is of Hadamard form for the wave-operator P on N . Then w is
a bisolution mod C∞ for P on N .

Drawing on results of [15, 19], it will be shown in Appendix A.4 that Hadamard forms
possess the claimed properties.

However, we should point out that these properties of Hadamard forms, while enough
for our purposes later, are really only necessary conditions for the existence of Hadamard
states. First, a further condition is imposed by the positivity of a state, ω(A∗A) ≥ 0, for
all A ∈ W(S, σ) or all A ∈ B(V, C). At the level of two-point functions, this implies

ω2(Γf ⊗ f)ω2(Γf
′ ⊗ f ′) ≥ |ω2(Γf ⊗ f ′)|2 (5.6)

for all test-sections f and f ′, both in the CCR and CAR case. Moreover, two-point
functions ω2 are proper bisolutions — not just mod C∞ — for the wave-operator in the
CCR case, and for the Dirac operator in the CAR case.

Since one may construct quasifree states on W(S, σ) or B(V, C) from two point func-
tions, the question whether Hadamard states exist is equivalent to the question of whether
there are Hadamard forms w which are proper bisolutions of the wave-operator or the
Dirac operator satisfying (5.4) or (5.5), respectively, together with the property w(Γf ⊗
f)w(Γf ′ ⊗ f ′) ≥ |w(Γf ⊗ f ′)|2 for all test-sections f and f ′. That question has been
answered in the affirmative for the scalar field case in the work [17]. The argument of [17]
rests on a “spacetime deformation argument”, i.e. the property of any globally hyperbolic
spacetime to possess a “deformed copy” (M̃, g̃) which is again globally hyperbolic and
coincides with (M, g) on a causal normal neighbourhood N of any given Cauchy-surface
while being ultrastatic in the past of N . On the ultrastatic part of (M̃, g̃), one may con-
struct again the CCR-algebra of the Klein-Gordon field together with a stationary ground
state which can be shown to be Hadamard. This state induces via the dynamics of the
field (i.e. owing to Prop. 3.3) a state of the Klein-Gordon field on N and thus on (M, g),
and by the propagation of Hadamard form, this state is then found to be Hadamard.

We don’t see any obstruction to generalizing that method to tensor-fields and Dirac
fields; however for more general vector fields the problem arises if the vectorbundle V on
M possesses, in a suitable sense, a “deformed copy” Ṽ on the deformed copy (M̃, g̃) of
(M, g). We won’t consider that problem in our present work.

What seems worth mentioning is that, as we will see in the next section, the positivity
condition (5.6) forces the hermitean form h on V to be positive, in the wave operator/CCR
case.

5.2 Propagation of Hadamard form

In this section we are going to present the propagation of Hadamard form under the
dynamics of a wave-operator on sections of a vector bundle. It is a very straightforward
generalization of an analogous result for the case of scalar fields, which has been estab-
lished in a first version by Fulling, Sweeny and Wald [18] and, for the present notion of
“global” Hadamard form, by Kay and Wald [25]. The main reason for presenting the
propagation of Hadamard form result here is that, in contrast to a claim made in [32]
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(regarding the same issue for the scalar field case), it will turn out to be needed in es-
tablishing the characterization of Hadamard states in terms of the wavefront sets of their
two-point functions. Below, in the proof of Thm. 5.8, we will explain why the argument
in [32] (and similarly a related argument in [28]) contains a gap, which will be closed by
employing the propagation of Hadamard form.

The assumptions on P,V,Γ, (M, g) etc. are the same as in Sec. 5.1.

Theorem 5.5. [18, 17, 25] (Propagation of Hadamard form)

Let w ∈ (C∞
0 (V ⊠ V))′ be a bisolution mod C∞ for the wave-operator P . Moreover,

assume that there is a Cauchy-surface Σ in (M, g) having a causal normal neighbourhood
N so that w is of Hadamard form for the wave-operator on N .

Then, if N ′ is a causal normal neighbourhood of any other Cauchy-surface Σ′ in (M, g),
w is also of Hadamard form for the wave-operator P on N ′.

Proof. Since there is essentially no deviation from the proof of this statement given for
the scalar case in the works [18, 17, 25], we shall be content with giving only a sketch of
the proof.

Let Σ′ be another Cauchy-surface with causal normal neighbourhood N ′. We assume first
that Σ′ ⊂ int J+(Σ). Let Σ′

♯ ⊂ Σ′ have compact closure and set K ′ = intD(Σ′
♯)∩N ′. Then

choose any open, relatively compact neighbourhood Σ♯, in Σ, of J−(Σ′
♯)∩Σ. Denote the set

intD(Σ♯)∩N by K, and denote the set int(J+(Σ)∩J−(Σ′)) by M(Σ,Σ′). Then M(Σ,Σ′),
endowed with the appropriate restriction of g as spacetime metric, is a globally hyperbolic
sub-spacetime of (M, g). Thus there is a foliation {Σt}t∈R of M(Σ,Σ′) in Cauchy-surfaces.
Each Σt possesses a causal normal neighbourhood Nt in M(Σ,Σ′), so {Nt}t∈R forms an
open covering of M(Σ,Σ′). Now consider two causal normal neighbourhoods Ñ and Ñ ′ of
Σ and Σ′ (in M) such that their closures are contained in N and N ′, respectively. Then
let

C = cl[(intD(Σ♯) ∩M(Σ,Σ′))\cl(Ñ ∪ Ñ ′)] .

We write C◦ for the open interior of C; it is also a globally hyperbolic sub-spacetime.
Now C is a compact subset of M(Σ,Σ′) and hence there is a finite subfamily N1, . . . , Nk

of {Nt}t∈R covering C. It is not very difficult to see that one may choose such a family
with the following properties: (1) Σj+1 ⊂ int J+(Σj) holds for the corresponding Cauchy-
surfaces of which the Nj are causal normal neighbourhoods; (2) For all j = 1, . . . , k − 1
there is some t(j) ∈ R with (Nj ∩Nj+1) ∩ C◦ ⊃ Σt(j) ∩ C◦; (3) N1 ∩ C◦ covers K ∩ C◦ and

Nk ∩ C◦ covers K ′ ∩ C◦ (by enlarging N1, Nk, Ñ and Ñ ′ if necessary).
Now by assumption, w is of Hadamard form on N , and thus certainly w is of Hadamard

form when restricted to K (that is, w restricted to C∞
0 ((V⊠V))K×K)). By construction,

N1 ∩C◦ covers the part K ∩C◦ of K. On the other hand, N1 ∩C◦ is a globally hyperbolic
sub-spacetime of M(Σ,Σ′), so there is a Hadamard form w1 on N1 ∩ C◦. Therefore,
on K ∩ C◦ we have w = w1 mod C∞. Now N\cl(Ñ) contains a Cauchy-surface Σ̃ for
M(Σ,Σ′) (owing to the properties of causal normal neighbourhoods). And hence, since
w1 is a Hadamard form on N1 ∩ C◦ and thus a bisolution of the wave-operator mod C∞,
as likewise is w by assumption, this implies that w = w1 mod C∞ on intD(Σ̃ ∩ C◦), as
follows by a straightforward generalization of Lemma A.2 in [17]. But this entails that
w = w1 mod C∞ on all of N1 ∩ C◦, and thus w is of Hadamard form N1 ∩ C◦. From
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here onwards, one iterates the just given argument to show inductively that if w is of
Hadamard form on Nj∩C◦, then it is also of Hadamard form on Nj+1∩C◦, and hence w is
of Hadamard form on all Nj ∩C◦, j = 1, . . . , k ; cf. the argument of “Cauchy-evolution in
small steps” in [18]. Finally, since Nk ∩C◦ covers the part K ′∩C◦ of K ′, one concludes in
a like manner that w is also of Hadmard form on K ′. And since the relatively compact set
Σ′
♯ ⊂ Σ′ entering in the definition of K ′ was arbitrary, this shows that w is of Hadamard

form on all of N ′.
This establishes the statement of the Theorem for the case that Σ′ ⊂ int J+(Σ), but

it is obvious that an analogous proof establishes the statement also in the case Σ′ ⊂
int J−(Σ).

Now let Σ′ be an arbitrary Cauchy-surface. Then one can choose a Cauchy-surface
Σ′′ ⊂ int(J−(Σ)∩J−(Σ′)). One concludes first that w is of Hadamard form on any causal
normal neighbourhood N ′′ of Σ′′, and then that w is of Hadamard form on N ′.

5.3 Scaling limits

Next we shall determine the short distance scaling limits of Hadamard forms (and thereby,
of Hadamard states); this also gives in combination with Prop. 2.8 some first information
on their wavefront sets. Some notation needs to be introduced for this purpose.

Let Ω be a convex normal neighbourhood of a point p in M such that VΩ trivializes.
Ω can be covered by (inverse) normal coordinates ξp′ centered at p′, for any p′ ∈ Ω. The
precise definition of these coordinates is given in Appendix A.2. Fixing p ∈ Ω, we can
now define dilations

δλ(q) := ξp
(
λξ−1

p (q)
)
, q ∈ Ω, λ ∈ [0, 1]. (5.7)

Let (ei)i=1...r be a local frame for VΩ. This frame induces a local bundle morphism Dλ

covering δλ via

Dλ(q, v
iei(q)) = (δλ(q), v

iei(δλ(q))) (5.8)

as well as a bundle morphism

R : VΩ → R
m × C

r , (q, vi(q)ei(q)) 7→ (ξ−1
p (q), vi(q)bi)

where (bi)i=1...r is the standard basis of Cr. Furthermore, we can express the linear map
ϑ◦Γ|p : Vp → V

∗
p as a matrix with respect to the basis (ei|p)i=1,... ,r of Vp and its dual

basis in V
∗
p. This matrix will be denoted by Θ = (Θab)

r
a,b=1. Then we write

(
(ΘR⋆f)R⋆f ′

)
(q, q′) = Θabf

b(ξp(q))f
′a(ξp(q

′)) .

Now let α ∈ R. We define an action of the dilations on test sections by

(
D

(α)
λ f

)
(q) := λ−α (D⋆

λf) (q) , f ∈ C∞
0 (VΩ) .

We use this action to define scaling limits for distributions as described in Section 2.4.
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The following result gives information about the scaling limit of a Hadamard state
at (p, p) ∈ M ×M .7 For its formulation note that G

(1)
η stands for the distribution G(1)

taken with respect to the flat metric (“g = η”) on the domain of ξp induced by the normal
coordinates at p. The proof of this statement will be given in Appendix A.5.

Proposition 5.6. Let α1 = m/2+1, α2 = α1−1/2 and ω be a quasifree Hadamard state
fulfilling the CCR or CAR. For the corresponding two-point function ω2 we have

CCR case: lim
λ→0

ω2

(
D

(α1)
λ f ⊗D

(α1)
λ f ′

)
= G(1)

η

(
(ΘR⋆f)R⋆f ′

)
=: ω

(C)
2 (f ⊗ f ′)

CAR case: lim
λ→0

ω2

(
D�D

(α2)
λ f ⊗D

(α2)
λ f ′

)
= G(1)

η

(
(γµ∂

µΘR⋆f)R⋆f ′
)

=: ω
(A)
2 (f ⊗ f ′)

The statement says that the scaling limit of the two-point function of a Hadamard
state assumes the form of the two-point function for a multicomponent field obeying the
massless Klein-Gordon equation (CCR-case) or the massless Dirac equation (CAR) on
flat Minkowski space, apart from the appearance of the invertible matrix Θ.

Since we have assumed that ω is a state so that ω2(Γf⊗f) ≥ 0, Θ cannot be completely
arbitrary. In fact, in the CCR-case, Θ · (Γ◦Γ0) must be a positive definite matrix, and
hence the sesquilinear form h must be positive definite, i.e. h is a fibre bundle scalar
product. Here, Γ◦Γ0 means the matrix obtained in the basis (ei|p) from composing the

conjugation Γ : Vp → Vp with the conjugation Γ0 : vi ei|p 7→ vi ei|p.

Lemma 5.7. For the above defined sesquilinear forms ω
(C)
2 and ω

(A)
2 on C∞

0 (VU) there
holds

(i) (p, ξ; p,−ξ) ∈ WF(ω
(C)
2 ) and

(ii) (p, ξ; p,−ξ) ∈ WF(ω
(A)
2 )

for all (p, ξ) ∈ N−.

Proof. The claim (i) is easy to see: Since Θ is an invertible matrix, one can use Lemma
2.6 (for the case of a bundle morphism) to reduce the proof of the statement to the scalar
case, where the claimed property is well-known (cf. [33, 32]8). To prove (ii), note first

that again by Lemma 2.6 it is sufficient to show (0, v; 0,−v) ∈ WF(u
(A)
2 ) for each past

pointing, lightlike v in Minkowski space, where 9

u
(A)
2 (f ⊗ f ′) = lim

ǫ→0+

∫ δab

(∑m−1
µ=0 γµ∂µf

)a
(y)f ′b(y′)

−(y − y′)2 − 2iǫ(y0 − y′0) + ǫ2
dmy dmy′, f, f ′ ∈ ⊕rC∞

0 (Rm).

7it is customary to call this also simply the “scaling limit at p”; this is abuse of language according
to the definition of scaling limit in Sec. 2.4: Note that the objects q ∈ N , X, D∗

λ of Sec. 2.4 correspond

to (p, p) ∈ M × M , V ⊠ V, D
(α)
λ ⊗ D

(α)
λ here.

8Note however that in these references (p, ξ) is found to lie in N+ due to a different sign convention
in the definition of a Hadamard form.

9we write y2 = ηµνyµyν for the squared Minkowskian distance in coordinates
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Assume the wavefront set of u
(A)
2 were empty at the base-point (0, 0). Then u

(A)
2 is C∞

near (0, 0) and we find that

lim
λ→0

λ−αu
(A)
2 (f [λ] ⊗ f ′[λ]

) = 0, f, f ′ ∈ ⊕rC∞
0 (Rm)

with α ≤ 2m− 1 and f [λ](y) := f(λ−1y). But u
(A)
2 is scale invariant, i.e.

λ3−2mu
(A)
2 (f [λ] ⊗ f ′[λ]

) = u
(A)
2 (f ⊗ f ′)

for all f, f ′ ∈ ⊕rC∞
0 (Rm), 1 > λ > 0, so that we are forced to conclude that u

(A)
2 (f⊗f ′) = 0

for all f, f ′ ∈ ⊕rC∞
0 (Rm). This entails

0 = u
(A)
2 (γρf ⊗ f ′) + u

(A)
2 (f ⊗ γTρ f

′)

= lim
ǫ→0+

∫
δab∂yρfa(y)f ′b(y′)

−(y − y′)2 − 2iǫ(y0 − y′0) + ǫ2
dmy dmy′

for each ρ = 0, . . . , m− 1 and all f, f ′ ∈ ⊕rC∞
0 (Rm), which implies

0 = lim
ǫ→0+

∫
δab(−∆fa)(y)(−∆f ′b)(y′)

−(y − y′)2 − 2iǫ(y0 − y′0) + ǫ2
dmy dmy′

for all f, f ′ ∈ ⊕rC∞
0 (Rm), where ∆ is the Euclidean Laplacian in Rm. But this is clearly

a contradiction since (−∆) ⊗ (−∆) is an elliptic differential operator and thus preserves
the wavefront set of the distribution

f ⊗ f ′ 7→ lim
ǫ→0+

∫
δabf

a(y)f ′b(y′)

−(y − y′)2 − 2iǫ(y0 − y′0) + ǫ2
dmy dmy′

and this is non-empty at coinciding base points as remarked above. Therefore, there
are elements (p, ξ; p, ξ′) ∈ WF(ω

(A)
2 ). However, every such element must be of the form

ξ ∈ N−, ξ
′ = −ξ since this is so for ω

(C)
2 and ω

(A)
2 results from ω

(C)
2 by application

of a derivative operator. So, there is some (p, ξ; p,−ξ), ξ ∈ N− in WF(ω
(A)
2 ). Now

we use that u
(A)
2 is invariant under spatial coordinate rotations with respect to y = 0

(i.e. rotations in the y0 = 0-hyperplane) together with Lemma 2.6 to conclude that each

(p, ξ; p,−ξ), ξ ∈ N−, is contained in WF(ω
(A)
2 ).

5.4 Main Theorem

The following theorem generalizes the results on the equivalence of Hadamard form and
microlocal spectrum condition, which have first been given by Radzikowski [32] for the
scalar field case, and later by Köhler [27], by Kratzert [29] and by Hollands [21] for the
case of Dirac fields, to fields that are sections in vector bundles, and fulfill the CCR or
CAR. The arguments used are in part taken from [32] with some adaptations. However,
we won’t make use of the existence of ‘distinguished parametrices’ for the wave operator
which was established in the scalar field case in [12]. And, as has been mentioned before,
there is a gap in the arguments of [32]. A similar gap affects Cor. 1 in [28], and it also
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affects the statements in [27, 29, 21] regarding the equivalence of Hadamard form and
microlocal spectrum condition since the authors of these works rely on Radzikowski’s
main argument (as we shall also mostly do). We will explain in Remark (iii) below the
statement of the next theorem where this gap occurs, and will repair it in our proof.

We also mention that the approach taken in the references [27, 29, 21] is slightly
more general to the extent that, in contrast to our approach, it is not assumed in these
references that the Dirac fields are Majorana fields (cf. the Remark at the end of Sec.
3.4). Thus, in these references Hadamard states are not automatically charge-conjugation
invariant in the sense that ω2(Γf,Γf

′) = ω2(f
′, f), as is the case here. That situation

could be obtained, however, by considering appropriate ‘doublings’ of the field systems
considered in the mentioned references.

The assumptions are the same as in Sec. 5.1.

Theorem 5.8. Let ω be either:

• a C∞-regular state on the CCR-algebra W(S, σ) associated with a CCR-structure
induced by a wave operator P .

• a state on the CAR-algebra B(V, C) associated with a CAR-structure induced by a
Dirac operator D�.

Then it holds that:

(a) If there is a causal normal neighbourhood N of a Cauchy-surface in (M, g) so that
ω is a Hadamard state on N , then

WF(ω2) = R (5.9)

where

R = {(q, ξ; q′, ξ′) ∈ N− × N+ : (q, ξ) ∼ (q′,−ξ′)} . (5.10)

(b) Conversely, if (5.9) holds, then ω is a global Hadamard state.

Remark. (i) As will be obvious from the proof, one also has the following slightly more
general statement of part (a): Let w be a bisolution mod C∞ for the wave-operator, and
suppose that w is of Hadamard form on N . Then WF(w) = R. It is not clear, however,
if the converse direction (b) holds for w unless its symmetric or antisymmetric part is
suitably fixed (mod C∞) as is the case for two-point functions of quantum fields fulfilling
CAR or CCR.

(ii) It will also be apparent from the proof that (b) holds also under the assumption
WF(ω2) ⊂ R (and even under the seemingly much weaker assumption WF(ω2) ⊂ N− ×
N+). This proves the claim made in [34] that a two-point function ω2 of a quantum field
fulfilling CAR or CCR and WF(ω2) ⊂ R is of Hadamard form and thus WF(ω2) = R.

(iii) The proof of part (a) needs an argument proving that the relation WF(ω2N×N) ⊂ R

implies WF(ω2) ⊂ R, where ω2N×N denotes the restriction of ω2 to C∞
0 ((V ⊠ V)N×N).

To show this one invokes, as in [32], the propagation of singularities theorem which says
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that (q, ξ; q′, ξ′) ∈ WF(ω2) implies B(q, ξ) × B(q′, ξ′) ∈ WF(ω2). The argument proving
the said implication requires, however, that both bicharacteristics B(q, ξ) and B(q′, ξ′)
really consist of inextendible lightlike geodesics, and this is not the case if either ξ = 0
or ξ′ = 0 since B(q, 0) equals {q}. Thus, when considering e.g. (q, ξ; q′, 0) with q′ not
in N , then B(q′, 0) won’t meet N and so one cannot use the propagation of singularities
theorem to decide if (q, ξ; q′, 0) is in WF(ω2) by knowing that WF(ω2N×N ) ⊂ R. Due
to having overlooked this gap, it has been claimed explicitly in [32] that the propagation
of Hadamard form result were not needed in order to conclude that WF(ω2) ⊂ R once
it is known that ω2 is of Hadamard form on some causal normal neighborhood N of an
arbitrary Cauchy surface. As far as we can see, however, the result on the propagation of
Hadamard form is needed in order to conclude that pairs (q, ξ; q′, 0) or (q, 0; q′, ξ′) aren’t
contained in WF(ω2). At least it will prove sufficient to reach at this conclusion.

Proof. (a) Let the element Gn of (C∞
0 ((V ⊠ V)N×N))′ be defined by

Gn(f ⊗ f ′) =

{
χG(1)

(
(ϑf)T (n)f ′

)
for m odd

χG(1)
(
(ϑf)Uf ′

)
+ χG(2)

(
(ϑf)V (n)f ′

)
for m even ,

where χ is an N -regularizing function. Using the arguments of part (i) of the proof
of Thm. 5.1 in [32] in combination with Lemma 2.6, it is straightforward to deduce
WF(Gn) ⊂ R ∩ (T∗N × T∗N). Thus, if w ∈ (C∞

0 ((V ⊠ V)N×N))′ denotes a Hadamard
form on N , then by the very definition of Hadamard form w − Gn is given by a Cn-
integral kernel, for all n ∈ N. Therefore one obtains as in the proof of Thm. 5.1 in [32]
that WF(w) ⊂ R ∩ (T∗N × T∗N).

Denoting by ω2 N×N the restriction of ω2 to C∞
0 ((V ⊠ V)N×N), it follows that

WF(ω2 N×N ) ⊂ R ∩ (T∗N × T∗N) (5.11)

whenever ω2 is the two-point function of a Hadamard state on N . (For the CCR case this
is immediate as in this case ω2 N×N = w for some Hadamard form w on N . For the CAR
case this follows since then ω2 N×N = (D� ⊗ 1)w for some Hadamard form w on N , and
application of differential operators cannot increase the wavefront set.)

For any quasifree state ω fulfilling the CCR or CAR it holds that ω2 is a bisolution
for the wave-operator (it would be sufficient for the subsequent arguments that ω2 be a
bisolution mod C∞). This means that one can apply the PST, Prop. 3.2, in order to show
that (5.11) already implies

WF(ω2) ⊂ R (5.12)

owing to the fact that N is a neighbourhood of a Cauchy-surface Σ: Let (q, ξ; q′, ξ′) be an
element of WF(ω2). Then the first part of Prop. 3.2 shows that ξ, ξ′ are both lightlike. As
any inextendible lightlike geodesic intersects Σ, we can — provided that both ξ and ξ′ are
non-zero — use the second part of Prop. 3.2 to conclude that (p, ζ ; p′, ζ ′) ∈ WF(ω2), where
(p, ζ ; p′, ζ ′) is the (unique) element of B(q, ξ)×B(q′, ξ′) with p, p′ ∈ Σ. But then, because
of (5.11), p = p′, ζ = −ζ ′ with ζ ′ future pointing. Thus we conclude that (q, ξ; q′, ξ′) ∈ R.

Now we will show that the PST in combination with the propagation of Hadamard
form entails that (q, ξ, q′, 0) and (q, 0; q′, ξ′) are absent from WF(ω2). We will give an
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indirect proof and thus assume that WF(ω2) contains an element of the form (q, ξ; q′, 0).
Then there will be a Cauchy-surface Σ′ passing through q′; this Cauchy-surface possesses
a causal normal neighbourhood N ′. By the propagation of Hadamard form, ω2, being a
bisolution (mod C∞ would suffice) for the wave-operator, will be of Hadamard form on N ′.
Moreover, ξ 6= 0, and so there is some point (p, ζ) ∈ B(q, ξ), ζ 6= 0, with p ∈ Σ′. Since ω2

is of Hadamard form on N ′, it follows (see above) that WF(ω2N ′×N ′) ⊂ R∩(T∗N ′×T∗N ′),
and thus (p, ζ ; q′, 0) can only be contained in WF(ω2) if p = q′ and ζ = 0. By the PST,
this contradicts the assumption that (q, ξ; q′, 0) ∈ WF(ω2).

Thus elements of the form (q, ξ; q′, 0) are absent from WF(ω2), and by an analogous
argument, also pairs of covectors of the form (q, 0; q′, ξ′) aren’t contained in WF(ω2). Thus
we have established the inclusion (5.12).

Now we have to establish the reverse inclusion

WF(ω2) ⊃ R. (5.13)

In order to prove this we use Prop. 5.6 and Lemma 5.7 together with Proposition 2.8,
showing that for any Hadamard state ω on the CCR-algebra one has

WF(ω2) ⊃
{
(q, ξ; q, ξ′) ∈ T∗

qN × T∗
qN : ξ ∈ N−, ξ

′ = −ξ
}
.

The same result can be derived for any Hadamard state ω on the CAR-algebra.
According to the PST, this implies that

WF(ω2) ⊃ B(q, ξ) × B(q, ξ′)

for all ξ, ξ′ ∈ T∗
qN with ξ ∈ N−, ξ′ = −ξ. Since this holds for all q in the causal normal

neighbourhood N of a Cauchy surface, relation (5.13) now follows. Thus we have proved
WF(ω2) = R.

(b) Now let ω be a state on the CCR or CAR algebra associated to some (wave or Dirac)
operator with the property that (5.9) holds. Let N be a causal normal neighbourhood
of any given Cauchy-surface. According to Lemma 5.4, there is, in the CCR-case, a
Hadamard form w on N fulfilling (5.4), and in the CAR-case, there is a Hadamard form
w on N obeying (5.5). According to part (a) of the proof, it holds in either case,

WF(w) = R ∩ (T∗N × T∗N),

so that one obtains

WF(w − ω2 N×N) ⊂ R ∩ (T∗N × T∗N) ⊂ N− × N+ .

Now we have in the CCR-case w(−) − ω
(−)
2 N×N = 0. Introducing the flip morphism

ι : M ×M → M ×M , (p, q) 7→ (q, p),

and some bundle morphism I covering ι, as well as u := w − ω2 N×N , this implies

WF(u) = WF(u(+)) = WF(I⋆u(+)) = tDιWF(u(+)) = tDιWF(u).

31



But because of the anti-symmetry of the set N− × N+, its intersection with its image
under tDι, N+ × N−, is empty, so one finds

WF(w − ω2 N×N ) = ∅.

The same reasoning applies to the CAR-case, where w(+)−ω(+)
2 N×N = 0. Thus ω2 is shown

to be of Hadamard form on N in both cases. This shows that ω is a Hadamard state.

A Appendix

A.1 The Hadamard coefficients

In this appendix we give the definition of the Hadamard coefficients for the wave-operator
P on the vector-bundle V according to Chapter III in [19], adapted to our notation.

Let N be a causal normal neighbourhood of an arbitrary Cauchy-surface, and let χ be
an N -regularizing function with support domain U∗,U. Then for (x, y) ∈ U, the (signed)
square of the geodesic distance between x and y, s(x, y), is well-defined and a smooth
function of both arguments. For each (x, y) ∈ U, denote by sy(x) the vector gradx s(x, y)
in TxN , and define

M(x, y) :=
1

2
2xs(x, y) −m.

Then by Prop. III.1.3 in [19], there is exactly one sequence {U(k)}k∈N0 of sections U(k) ∈
C∞((V ⊠ V

∗)U) satisfying the differential equations

(P ⊗ 1)U(k−1)(x, y) + (∇(P )
sy(x) ⊗ 1)U(k)(x, y) + (M(x, y) + 2k)U(k)(x, y) (A.1)

with the initial conditions

U(−1)(x, y) = 0, U(0)
a
b(x, x) = δab,

where the latter condition is to be understood with respect to dual frame indices for V

and V
∗, respectively, and the differential operators in (A.1) act on the left tensor entry,

i.e. with respect to the variable x. (We caution the reader that at this point our notation
deviates from that in [19].)

The members of the sequence {U(k)}k∈N0 are called Hadamard coefficients.
With this definition, the sections U , V (n) and T (n) in C∞((V ⊠ V

∗)U) appearing in
the main text (which are also often referred to as Hadamard coefficients) are given by

U(x, y) :=

(m−4)/2∑

k=0

(4 −m, k)−1U(k)(x, y)s(x, y)
k

V (n)(x, y) :=
(
2,
m

2
− 1

) n∑

k=0

1

2kk!
U((m−2)/2+k)(x, y)s(x, y)

k

T (n)(x, y) :=

n+(m−3)/2∑

k=0

(4 −m, k)−1U(k)(x, y)s(x, y)
k
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where the symbol (α, k) is defined by

(α, 0) = 1, (α, k) = α(α + 2) . . . (α + 2k − 2).

If the wave-operator P in question is symmetric w.r.t. the sesquilinear form (3.5), the
corresponding Hadamard coefficients have an additional symmetry property which we
shall use below. To state this property, let Θ = ϑΓ where ϑ and Γ are the morphisms
defined in the main text and define ι to be the flip morphism

ι : C∞(V ⊠V
∗) → C∞(V∗ ⊠ V),

f(p) ⊗ ν(q) 7→ ν(q) ⊗ f(p) , f ∈ C∞(V), ν ∈ C∞(V∗).

Note that the map Θ : V → V
∗ induces a bilinear form Θ(v, v′) = [Θv](v′) on V, and

hence one can introduce its transpose ΘT : V → V
∗ by [ΘTv](v′) = Θ(v′, v). Using

frame-indices, we introduce the notation
(
ΘTU(k)Θ

−1
)
a
b(p, q) = ΘT

ac(p)U(k)
c
d(p, q)(Θ

−1)db(q) , (A.2)

thus defining ΘTU(k)Θ
−1 ∈ C∞(V∗ ⊠ V). With that notation, we have

Lemma A.1. If P is symmetric, i.e. fulfills (3.6), the section U(k) − ι
(
ΘTU(k)Θ

−1
)

van-
ishes faster than any power of s(p, q) on the set {(p, q) ∈ U | s(p, q) = 0}, for all k ∈ N.

A proof of this fact can be obtained by combining the results of Prop. 4.6 and 4.9 from
[19], Chap. III.

A.2 Normal coordinates

We begin with some words on normal coordinates: Let Ω be a convex normal neighbour-
hood, containing a point p. Then we can cover Ω by normal coordinates ξp : Rm → Ω
centered at p as follows: We identify Rm and TpΩ, using a basis v(k) of TpΩ which fulfills
gp(v(i), v(j)) = ηij, by

w : R
m 7→ TpΩ, x = (x0, . . . , xm−1) 7→ w(x) =

m−1∑

i=0

xiv(i)

and let ξp(x) := expp(w(x)) for all x.
A useful fact about normal coordinates is that

−s(p, ξp(x)) = η(x, x) for ξp(x) ∈ Ω. (A.3)

Unfortunately, there is no such simple formula for the geodesic distance s(ξp(x), ξp(y)) if
both points are different from p. There is, however, a useful approximation to it, which
we will have occasion to use below: Let λ be in R, λ ≥ 0. Then we have

−s(ξp(λx), ξp(λy)) = λ2η(x− y, x− y) + λ4φ(x, y), (A.4)

where φ(x, y) is a remainder which is smooth in x, y. For details see [36].
It will be useful to have a symbol for the pullback of functions f in C∞

0 (Ω) via normal
coordinates. We therefore define

f̆p(x) :=

{
f(ξp(x)) det(gξp(x))

1
2 for ξp(x) ∈ Ω

0 else
.
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A.3 Some properties of χG(
1
2 )

We can now begin our investigation of the distributions showing up in our definition of a
Hadamard form by considering special kinds of distributions on Minkowski space:

Let t be a time function on m dimensional Minkowski space with t(0) = 0 and define

G̃(
1
2
)(f) = lim

ε→0+

∫
f(x)G

(
1
2
)

ε (0, x) dmx , f ∈ C∞
0 (Rm) , (A.5)

where the functions G
(1)
ε , G

(2)
ε are given by equations (5.1), (5.2), taken in the case of the

Minkowski metric (i.e. −s(x, y) = ηµν(x− y)µ(x− y)ν = η(x− y, x− y)) and with χ ≡ 1.
Although the time function t enters the above definition, the distributions G̃(1) and G̃(2)

do actually not depend on t. More precisely, we have

Lemma A.2.

G̃(1)(f) =





β(m+ 1, m)
∫ [
θ(−η(x, x))

√
−η(x, x)

−i sign(x0)θ(η(x, x))
√
η(x, x)

]
2

m−1
2 f(x) dmx for m odd

β(m+ 2, m)
∫ [

1
π
η(x, x) ln |η(x, x)|

−i sign(x0)θ(η(x, x))η(x, x)
]
2

m
2 f(x) dmx for m even

G̃(2)(f) = β(m+ 2, m)

∫ [
1

π
η(x, x) ln |η(x, x)| − i sign(x0)θ(η(x, x))η(x, x)

]
×

× (2 + 1 + 2/m)f(x) dmx

(A.6)

where θ(s) = 1 for s ≥ 0 and θ(s) = 0 for s < 0, and

β(α,m) := 21−απ(2−m)/2

[
Γ

(
α−m

2
+ 1

)
Γ

(α
2

)]−1

.

Proof. As first step, we will prove independence of t by generalizing an argument given
in [25] to arbitrary dimensions:

For G̃(2) note that G
(2)
ǫ converges for ε → 0 to a locally integrable function which

does not depend on t anymore. As we can use Lemma B2 of [25] to conclude that we
may interchange integration and limit in (A.5), we see that G̃(2) is indeed a well defined
distribution and independent of t.

The limit of G
(1)
ε for ε → 0 is not locally integrable, so before we can apply Lemma

B2 of [25] to argue as above, we will have to rewrite (A.5), using integration by parts. To
this end, introduce coordinates τ, σ, ϑ on Rm, where

τ(x0, . . . , xm−1) = x0, σ(x0, . . . , xm−1) =

m−1∑

i=1

x2
i

and ϑ stands for some coordinatization of Sm−2. In these coordinates

G̃(1)(f) = lim
ε→0+

∫∫∫
dτ dσ dϑ f(τ, σ, ϑ)σ

m−3
2

(
σ − τ 2 − i2εt(τ, σ, ϑ) + ε2

)−m
2

+1
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In case m is even, we carry out a m/2 − 1-fold partial integration with respect to σ and
arrive at

G̃(1)(f) = c lim
ε→0+

∫∫∫
dτ dσ dϑ ln

(
σ − τ 2 − i2εt+ ε2

)

(
∂σ

( 1

1 − i2ε∂σt
∂σ

( 1

1 − i2ε∂σt
. . .

︸ ︷︷ ︸
m
2
−1 times

σ
m−3

2 f
)))

,

where c is some constant. Now, the limit of the integrand is locally integrable and turns
out to be independent of t, too. Hence Lemma B2 of [25] can be applied to show the
desired result.

In case m is odd, we carry out a (m − 3)/2-fold partial integration with respect to σ
and arrive at

G̃(1)(f) = c′ lim
ε→0+

∫∫∫
dτ dσ dϑ

(
σ − τ 2 − i2εt+ ε2

)−1

(
σ − τ 2 − i2εt+ ε2

) 1
2

(
∂σ

( 1

1 − i2ε∂σt
∂σ

( 1

1 − i2ε∂σt
. . .

︸ ︷︷ ︸
m−3

2
times

σ
m−3

2 f
)))

,

where again c′ is a suitable constant. Since the limit of the integrand is not locally
integrable in τ , we are not ready to apply Lemma B2 of [25] yet. But we have already
written the integrand in a suggestive form as to the next partial integration. This turns
(σ − τ 2 − i2εt + ε2)−1 into a logarithm and the (σ − τ 2 − i2εtp + ε2)1/2 to (. . . )−1/2, at
worst, thus rendering the integrand locally integrable in the limit ε → 0. We also get a
boundary term at the integration boundary σ = 0, which is integrable in the limit ε→ 0
as well. Inspection of these limits shows that they are indeed independent of t, whence
G(1) is well defined and independent of t also in this case.

As a consequence of the independence of t, we can write the distributions in the form
given in the statement of the Lemma: Using the trivial time-function t0(x) := x0 and the
abbreviation gε(x) := −η(x, x) − i2εx0 + ε2, we get

G̃(1)(f) = lim
ε→0

{
β(m+ 1, m)

∫ √
gε(x)2

m−1
2 f(x) dmx for m odd

− 1
π
β(m+ 2, m)

∫
gε ln(gε)(x)2

m
2 f(x) dmx for m even

G̃(2)(f) = −1

π
β(m+ 2, m) lim

ε→0

∫
gε ln(gε)(x)(2 + 1 + 2/m)f(x) dmx

By exchanging the integration and the limit, we finally get the desired result.

We also have to introduce the so called Riesz distributions, as defined in [19], Chap. II.
To this end, let α > m and define the distributions

R̃(α)[f ] = −β(α,m)

∫
sign(x0)θ(η(x, x))(η(x, x))

α−m
2 f(x) dmx, f ∈ C∞

0 (Rn).

Note that β is chosen such that R̃(α)[φ] = R̃(α + 2)[2φ] for all α > m. We define the
distributions R̃(α) for all α ∈ R by means of this relation.
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As before, let Ω denote a causal normal neighbourhood and ξp normal coordinates on
Ω. We can then define distributions RΩ(α) on C∞

0 (Ω × Ω) by

RΩ(α)[f ⊗ f ′] :=

∫
f(p)R̃(α)[f̆ ′

p] dµ(p), f, f ′ ∈ C∞
0 (Ω)

and continuous extension to C∞
0 (Ω×Ω). These so called Riesz distributions bear a certain

relation to the distributions we are really interested in: Let Ω be a normal neighbourhood,
t be a time function on Ω and denote by G(1,Ω), G(2,Ω) the distributions on C∞

0 (Ω × Ω)
obtained by setting χ ≡ 1 in the definition of the distributions χG(1), χG(2), respectively.
We caution the reader, that, as a consequence, G(1,Ω) and G(2,Ω) are not well defined on
C∞

0 (M ×M) in contrast to χG(1), χG(2).
Using normal coordinates on Ω (especially their property (A.3)) and interchanging

limit and integration, we see that

G(
1
2
,Ω)(f ⊗ f ′) =

∫
f(p)G̃(

1
2
)(f̆ ′

p) dp, f, f ′ ∈ C∞
0 (Ω).

The interchange of limit and integration is valid because the limit ε→ 0 in G̃(1/2)(f̆ ′
p) is

uniform in p on compact sets. Thus we see that G(1,Ω), G(2,Ω) are actually independent
of t. Moreover, by comparison with the definition of R(α), using the formulae (A.6), we
find that

G(1,Ω)(−) = iRΩ(2), and G(2,Ω)(−) = iRΩ(m). (A.7)

A.4 Proof of Lemma 5.4

(i) Existence of Hadamard forms

Following Sec. 4.3 in [15], the argument that Hadamard forms for the wave-operator P
exist at all on a causal normal neighbourhood N runs as follows:

Assume that φ ∈ C∞
0 (R) has the following properties: 0 ≤ φ(s) ≤ 1, φ(s) = 1 for

|s| ≤ 1/2, and φ(s) = 0 for |s| ≥ 1. Then one can show (cf. [15, Lemma 4.3.2], [19, Prop.
III.2.6.3]) that there exists a strictly increasing and diverging sequence (κj)j∈N of natural
numbers so that the modified Hadamard coefficient sections Ṽ (n) and T̃ (n), which are
defined like V (n) and T (n), but with the terms s(x, y)k replaced by s(x, y)k · φ(κks(x, y)),
converge for n → ∞ uniformly on compact subsets of U to smooth sections Ṽ and T̃ ,
respectively. Moreover, it holds that for all n,

s(x, y)−n(Ṽ (x, y) − V (n)(x, y)) and s(x, y)−n(T̃ (x, y) − T (n)(x, y))

converge to 0 as s(x, y) → 0. Thus it is not difficult to check that (for m even)
f, f ′ 7→ χG(2)((ϑf)(V (n) − Ṽ )f ′) is given by a Cn-kernel, and likewise (for m odd)
f, f ′ 7→ χG(1)((ϑf)(T (n) − T̃ )f ′) is given by a Cn-kernel. This guarantees the existence of
Hadamard forms on N .

(ii) In a next step, one must show that the H (n) ∈ Cn((V ⊠ V
∗)N×N) can be chosen such

that (5.4), respectively (5.5), are fulfilled. Let us treat the case of relation (5.4) first.
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We note that in case p, q ∈ N lie acausal to each other, there is a neighbourhood
V in N × N such that E vanishes on V, and any Hadamard form on V is C∞. One
can thus correct the Hadamard form w on V by a C∞ integral kernel so as to obtain
a new Hadamard form vanishing on V. Hence, we need only consider the situation in a
neighbourhood of causally related points (p, q) ∈ N×N (and eventually use a partition of
unity argument). Given a pair of causally related points p, q ∈ N , there is, by definition
of causal normal neighbourhood, a convex normal neighbourhood Ω containing both p
and q.

The importance of the distributions RΩ(α) defined above lies in the fact that they
show up in the explicit formula for the fundamental solution EΩ of a wave-operator P on
Ω, given in [19]:

(
f, EΩf ′

)
=

{
RΩ(2)

[
ϑ(f)T (n)f ′

]
+

(
f,M (n)f ′

)
for m odd

RΩ(2) [ϑ(f)Uf ′] +RΩ(m)U
[
ϑ(f)V (n)f ′

]
+

(
f,M (n)f ′

)
for m even

(A.8)

where U(k), T
(n), V (n) and U are the sections defined in Appendix A.1 andM (n) ∈ Cn((V⊠

V
∗)Ω×Ω) are suitably chosen. We have also used the shorthands

ϑ(f)T (n)f ′(p, q) := ϑ(f)a(p)T
a
b(p, q)f

′b(q) ,

(f,M (n)f ′) :=

∫
(ϑf)a(p)M

a
b(p, q)f

′b(q) dµ(q)dµ(p) , etc.

Now let w be a Hadamard form, and let f, f ′ ∈ C∞
0 (VΩ). Then

w(−)(Γf ⊗ f ′) =

1

2





G(1,Ω)(ϑ(f)χT (n)f ′) +
(
f,H(n)f ′

)

−G(1,Ω)(ϑ(Γf ′)χT (n)Γf) −
(
Γf ′, H(n)Γf

)
for m odd

G(1,Ω)(ϑ(f)χUf ′) +G(2,Ω)(ϑ(f)χV (n)f ′) +
(
f,H(n)f ′

)

−G(1,Ω)(ϑ(Γf ′)χUΓ(f)) −G(2,Ω)(ϑ(Γf ′)χV (n)Γf) −
(
Γf ′, H(n)Γf

)
for m even

Using the fact that Γ is a conjugation in the CCR case, one can compute that (cf. (A.2)
for notation)

G(1,Ω)(ϑΓ(f ′)χT (n)Γ(f)) = G(1,Ω)(ι(ϑ(f)ι(ΘTχT (n)Θ−1)f ′))

Now we can use the fact that χ is identically 1 on {(p, q) ∈ Ω × Ω | s(p, q) = 0} together
with Lemma A.1 to the effect that

G(1,Ω)(ϑΓ(f ′)χT (n)Γ(f ′)) = G(1,Ω)(ι(ϑ(f)χT (n)f ′)) mod C∞ .

Treating the other terms with a minus sign in a similar way, we arrive at

w(−)(Γf ⊗ f ′) =




G(1,Ω)(−)(ϑ(f)χT (n)f ′) +
(
f,H(n)f ′

)

−
(
f, ι(ΘTH(n)Θ−1)f ′

)
+

(
f,K(n)f ′

)
for m odd

G(1,Ω)(−)(ϑ(f)χUf ′) +G(2,Ω)(−)(ϑ(f)χV (n)f ′) +
(
f,H(n)f ′

)

−
(
f, ι(ΘTH(n)Θ−1)f ′

)
+

(
f,K(n)f ′

)
for m even
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where K(n) ∈ C∞((V ⊠ V
∗)N×N ) reflects the potential asymmetry of χ, U(k) away from

{(p, q) ∈ Ω × Ω | s(p, q) = 0}. Upon using the identification (A.7) between RΩ(α) and
G(...,Ω)(−) and comparing with the expression (A.8), one can now see that it is indeed
possible to choose the H(n) in such a way that w(−)(Γf ⊗ f ′) = i(f, EΩf ′). Because of
uniqueness of the fundamental solution, we have EΩ = E|Ω, which concludes the proof of
the lemma in the CCR case.

For the CAR case, note that Γ acts as a skew-conjugation. Thus, the computation
can be carried through as above, and one can choose the sections H ′(n) of w′ such that

w′(+)
(ΓD�f ⊗ f ′) = i (D�f, Ef

′) , f, f ′ ∈ C∞
0 (VN) ,

which in turn gives the desired result.

(iii) Finally, we have to show that part (c) of Lemma 5.4 holds. We follow the argument
given in the “Note added in proof” in [32]. To this end we note that by part (a), w(−),
the antisymmetric part of a Hadamard form w, is always a bisolution mod C∞ for the
wave-operator P . On the other hand, according to Thm. 5.1, part (i), in [32] (cf. the
proof of our Thm. 5.8), it holds that WF(w) ⊂ R, where the set R has been defined in
(5.9); it is significant that R ⊂ N− × N+. Now since w(−) is a bisolution mod C∞ for
the wave-operator P , it holds that WF(w(P )(−)) = ∅, where w(P ) has been defined in Sec.
3.2. Thus WF(w(P )) = WF(w(P )(+)) ⊂ N− × N+. But since w(P )(+) is symmetric, its
wavefront set must be invariant under tDι−1 where ι : (p, q) 7→ (q, p) is the ‘flip’ morphism
on N × N . That is, one concludes exactly as in part (b) of the proof of Thm. 5.8 that
WF(w(P )(+)) must be contained in (N+ ×N−) ∩ (N− ×N+) = ∅. Similarly one concludes
that WF(w(P )

(+)) is empty, and thus w is a bisolution up to C∞ for the wave-operator P .

A.5 Scaling limits

In this section, we will prove Prop. 5.6 of the main text, determining the scaling limit
of a Hadamard distribution. Let, for the rest of the section, p be some point of M and
Ω a convex normal neighbourhood of p, small enough such that VΩ trivializes. Let the
morphisms δλ, D

(α)
λ be defined as in Section 5.3. Additionally define the action of dilations

on test functions f ∈ C∞
0 (Ω) by d

(α)
λ f = λ−αf ◦ δ−1

λ . We will also use the shorthand G
(1)
η

for the distribution G(1,Ω′), evaluated on Minkowski space (i.e. g = η, Ω′ = Rm).
As the main step of the proof, we will compute the scaling limit of the distributions

G(1,Ω), G(2,Ω):

Lemma A.3. Let α = m/2 + 1 and F ∈ C∞(Ω × Ω). Then for all f, f ′ ∈ C∞
0 (Ω) there

holds

lim
λ→0

G(1,Ω)(F · (d(α)
λ f ⊗ d

(α)
λ f ′)) = F (p, p) ·G(1)

η (f◦ξp ⊗ f ′◦ξp) ,

lim
λ→0

G(2,Ω)(F · (d(α)
λ f ⊗ d

(α)
λ f ′)) = 0.

Proof. Since for each f ∈ C∞
0 (Ω) the support of d

(α)
λ f is for λ → 0 shrinking to p, it

suffices to prove the statement for the case that F ∈ C∞
0 (Ω × Ω). We will demonstrate

the statement only for simple tensors F = u ⊗ u′ with u, u′ ∈ C∞
0 (Ω) since this results
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in slightly simpler notation, but it will be obvious from the argument that general F ∈
C∞

0 (Ω × Ω) can be dealt with in exactly the same manner.
We begin by considering G(1,Ω) in case m is odd: By using the results of App. A.3, we

see that

G(1,Ω)(ud
(α)
λ f ⊗ u′d

(α)
λ f ′) = c

∫∫
(ud

(α)
λ f)(q)h(v)2

m−1
2 (u′d

(α)
λ f ′)̆q(v) dmv dµ(q)

where c is some constant depending on m and

h(v) = θ(−η(v, v))
√
−η(v, v) − i sign(v0)θ(η(v, v))

√
η(v, v). (A.9)

Now we change the integration variables from (q, ξ−1
q (q′)) to (ξ−1

p (q), ξ−1
p (q′)), which we

denote by (x, y). We get

G(1,Ω)(ud
(α)
λ f ⊗ u′d

(α)
λ f ′)

= c

∫∫
λ−2αu(ξp(x))f(ξp(

x

λ
))h(v(x, y)) ·

·
(
2

m−1
2

y [u′(ξp(y))f
′(ξp(

y

λ
))] + terms with less than

m − 1 derivatives

)
γ

1
2

ξp(x)γ
1
2

ξp(y) dmy dmx

= c

∫∫
λm−2u(ξp(λx))f(ξp(x))h(v(λx, λy)) ·

·
(
λ1−m

2

m−1
2

y [u′(ξp(λy))f
′(ξp(y))] +O(λ2−m)

)
γ

1
2

ξp(λx)γ
1
2

ξp(λy) dmy dmx

where γp = |det(gp)|. To compute the limit λ → 0, we have to investigate the behaviour
of λ−1h(v(λx, λy)). We use equation (A.4) and the fact that

−v0(x, y) = x0 − y0 +O(s(q, q′)) +O(s(p, q′)) +O(s(p, q))

where we have set q = ξp(x), q
′ = ξp(y) (see [36, Chp. II,§9] for details), to conclude

lim
λ→0

λ−1h(v(λx, λy)) = h(x− y)

with h given by (A.9). Using this, and limλ→0 det(gξp(λx)) = det(gp) = 1 we get the desired
result.

The case m even is treated exactly the same way, with the exception that there is a
term (x − y)2 lnλ2 in λ−1h(v(λx, λy)) which seems to blow up for λ → 0. Using partial
integration, it is easy to see, though, that the term in G(1,Ω) resulting from this term in h
vanishes for any λ. Therefore, the rest of the argument goes through unchanged.

The argument for G(2,Ω) runs along the same lines.

Proposition 5.6 is now a corollary of the above Lemma: Let U be in C∞(V ⊠ V
∗). In the

components of the frame (ei) used to define Dλ in (5.8), we write

[(ϑ◦ΓD(α)
λ )UD

(α)
λ f ′](q, q′) = Θac(q)(D

(α)
λ f)c(q)Ua

b(q, q
′)(Dα

λf
′)b(q′)

and thus we obtain by the lemma,

lim
λ→0

G(1,Ω)
(
((ϑ◦ΓD(α)

λ f)UD
(α)
λ f ′)

)
= G(1)

η ((ΘR⋆f)UR⋆f ′) ,
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where U denotes the image of U |(p,p) under R ⊗ R. The content of Prop. 5.6 concerning
the CCR-case is now a consequence of simple properties of the Hadamard coefficients,
such as U(0)(p, p) = 1. In the CAR case, the appearance of an additional factor λ−1 due
to the differential operator D� has to be compensated by a different choice of α, as done
in the proposition.
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