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Abstract

Following the recent construction of maxima¥ & 16) gauged supergravity in three dimensions, we derive gaiiged,
N = 8 supergravities in three dimensions as deformations of the corresponding ungauged theories with scalar manifolds
(8,1)/(0(8) x O(n)). As a special case, we recover the= (4, 4) theories with localSO(4) = SO(3);, x SOB) g,
which reproduce the symmetries and massless spectriim=06, N = (2, 0) supergravity compactified on Ad 53.02001
Elsevier Science B.V. All rights reserved.

1. Introduction

Gauged supergravities in three dimensions differ from the gauged theories in higher dimensions by the existence
of an on-shell duality between the gauge fields and the scalar fields parametrizing the coset manifolds (a subse
of) whose isometries are gauged [1,2]. For instance, to gauge the maXimal6 theory one starts from the
maximally dualized theory in which all bosonic physical degrees of freedom are contained in the scalar coset
spaceG/H = Egg)/S0(16). Choosing a gauge groupy C G, the corresponding vector fields transforming in the
adjoint representation da¥g are defined by duality as (nonlocal and nonlinear) functions of the scalar fields, all of
which are kept. At the Lagrangian level the duality relation is implemented by means of a Chern—Simons term in
order of the gauge coupling constant (rather than the usual Yang—Mills term), such that the duality equation relating
the vectors to the scalar fields appears as an equation of motion. As required by consistency, the vector fields thel
do not introduce new physical degrees of freedom. A similar structure has been found for the abelian gaugings of
the D = 3, N = 2 supergravities [3]. While there are thus no a priori restrictions on the choice of gauge group, the
requirement that local supersymmetry be preserved in the gauged theory poses strong constraints. It was a mai
result of [1,2] that all consistency conditions can be encoded into a sihwgl@variant projection condition for the
embedding tensor afo.

In this Letter we perform an analogous construction for the nonmaximal8 theories of [4] and show that the
techniques developed in [1,2] can be carried over to this case, allowing for a quick determination of the possible
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gauge groups. Pure (topological)= 8 supergravity can be coupled to an arbitrary numbef matter multiplets,
each consisting of eight bosonic and fermionic physical degrees of freedom. The scalar sectors of these theorie:
are governed by the coset manifolds [4]

G/H =S0(8,n)/(S0(8) x O(n)).

Gauging any of these theories amounts to promoting a subgrgupSO(8, ) to a local symmetry in such a way
that the local supersymmetry remains preserved. Ad/fer 16, the proof of consistency can be reduced to a single
projection condition for the gauge group (see Eg. (14) below), which is for instance solved by the subgroups

Go=S0(p,4—p) x O(g,4—¢q), p,.q=0,2, 1)

with independent gauge coupling constagitsg> for the two factors in (1). Hence, for each of the groups in (1)
there exists a gauged = 8 supergravity with locatGo symmetry. There are further (non-compact) gauge groups
which will be briefly discussed at the end.

Half maximal gauged supergravities in three dimensions are expected to describe, e.g., the massless sector ¢
the AdS x S3 reduction of D =6, N = (2, 0) supergravity coupled ta, tensor multiplets [5,6]. Of particular
interest [7,8] have been the theories with=5 andn; = 21, which correspond to compactifying I11B supergravity
on AdS x S3 x M* with M* = T* or K3, respectively. The complete spectrum on AdSs® has been computed
in [9,10]; it is organized by the supergroup

SU2I1, 1), x UL, g, )

the N = (4, 4) extension of the AdSgroupSU(1,1); x SU(L, 1) containing the isometry group of the three
sphereS0(4) = S0(3) x SO(3)g which is the gauge symmetry of the theory. In addition, the theory is invariant
under a globaBO(4) which is a remnant of th&-symmetry grouB8O(5) = Sp(4) in six dimensions. The massless
sector has been found to consistigf copies of the short2, 2)s multiplet of (2) with eight bosonic (scalar)

and eight fermionic degrees of freedom (following [10], the nomenclattrek2)s for a multiplet of (2) refers

to the representation content of its highest weight state uBdéet) = SO(3) x SO(3)). By contrast, theSO(4)

vector fields belong to the nonpropagating three-dimensional supergravity multiplet. The low energy theory is then
expected to coincide with the gauged supergravity obtained by takiag = 0 in (1) and by setting, = 0, such

that the second factor turns into a glols(4) symmetry while the associated vector fields decouple from the
Lagrangian. As we shall verify in more detail below, this theory indeed reproduces the symmetries and massless
spectrum of the six-dimensional theory on Ad& 3.

2. TheLagrangian

The gauged theory is constructed by deforming Mhe- 8 theory of [4] (to which we refer for notations)
according to the Noether procedure and by adding a Chern—-Simons term for the vector fields transforming in
the adjoint representation of the gauge group. The scalar matter foiysHa= SO(8,7)/(S0(8) x SO(n))
coset space sigma model. It is most conveniently parametriz&D8; n) valued matriced. in the fundamental
representation. Accordingly, the gauged Lagrangian is invariant under the symmetry

L(x) — go(x) L(x) A~ *(x), go(x) € Go, h(x)eH, 3

where Gg is an as yet undetermined subgroup®f The choice ofGg turns out to be severely restricted by
supersymmetry. Upon gauging, the glolsasymmetry of the ungauged theory is broken down to the centralizer of
Go in G, which acts by left multiplication oi.. The scalar fields couple to the fermions via thg-covariantized
currents

) 1 1 s
L0y + 8O By M) L= S QU X 4 SOuXT Py )



H. Nicolai, H. Samtleben / Physics Letters B 514 (2001) 165-172 167

where{X!/, X"} and{Y/"} denote the compact and noncompact generatossgf, respectively, with indices
I,J € 8, andr,s € n. In the following, we will use calligraphic letters as collective labels for the entire set
of generators ofog ,,: {IM} = {x!/, x"s, y!"}; more specifically, we distinguish between labglss, ... and
M, N, ...toindicate their transformation properties under the actiod @indG, respectively, cf. (6).

The constant tens@b oo characterizes the embedding of the gauge g@y G. It is obtained by restricting
the sog,, Cartan—Killing formnaas to the simple factors of the algebta C sog, associated taGo, and is
generally of the form

OMN =D e (5)
J

Wheren/\/‘/\/nj\j},C project onto the simple subfactors gf, and the factors; correspond to the relative coupling

strengths. The Lagrangian of the gauged theory explicitly depends on the representation méttigen the
adjoint representation &0(8, n)

1 1 )
Lill‘MLEVMAt'AZEVM[‘] XIJ +§VMVS X' +VMIr YIr, (6)
via theT -tensor

TAB = @ A VM AV 5. @)

The construction of the gauged theory parallels the one of the maximal theory [1,2] and we simply state the
resulting Lagrangian (up to quartic fermionic terms)

1 1, _ 1 1. _j i
L=—ZeR+ S YDy + 2¢P P — Siex Tyt Dux

1 1 1 _A
— Zewpg@MNBuM<3vaN+ ég@lCﬁfN’C’PBvﬁBpp> _ EerPlILrXArI—XAyVVMw;\
_I_EgeAwa;}yuvl/ff_I_igeAéAr)—(Aryu,wl/j_I_EgeAg\rBs)—(ArXBs +eW. (8)

Gravitini and matter fermions transform in the spinor and conjugate spinor representati@n@pfdenoted by
indicesA, B, ..., andA, B, ..., respectively? Their covariant derivatives are built with té-currentsQ,, from

(4):

1 1
DMW§ = BMWf + Z(Up,ubyubw? + ZQ;ILJF/{I‘éwf’

D;LXAr = aMXAr_I_ZwuubyabXAr_}_ZQllLJF;éXBr_I_Q;‘LAXAA.

The scalar tensors 2 3 describing the Yukawa-like coupling between scalars and fermions may be expressed as
linear functions of the"-tensor (7)

1 i 1
AB _ _¢ABpy _ — pIlJKL AAr _ _ — pIJK
Al =4 0 48FAB T[J\KL? A2 "= 12FAA TIJ|Kr1
- - 1 1
AgrBs=26A38rs@_’_4_85”1';{B{KLTIJ|KL+EF/{B{TIJVAV (9)

3 Generically, the supersymmetry parameters and gravitini belong to the vector represent&@vpffor N-extended supergravity. In
order to facilitate the comparison with [4] we here adopt an assignment of representations which differs from the generic one by a triality
rotation.
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Where_bye = (&TZ(?M)”MN@MN we denot_e the tra_ce of (5) Which equals_ the trgce offtilensor. The scalar
potentialW is given by the following expression (of eighth order in the matrix entries)of

1 1 . i

W= Zgz(AfBAfB — EAQA’AQA’) (10)

The supersymmetry variations are
_ _ . . 1 . .
L 18L — YIrGAFf{AXAr, SXAV — EIFAIAVMGAPlir + gAéAVEA,
Se,* = iety y), Syt = Dye +igAPyue®,
1 . _ i

5B, M = —EVM” EAriiyl +ivMerr! .
Lagrangian and supersymmetry transformations have been given up to higher order fermionic terms which were
already given in [4] (as shown in [2] the gauging does not lead to any modification in these terms). As in the
maximal gauged theory, invariance of the Lagrangian (8) under these transformations implies several consistency
conditions on the tensor4; 2 3, which are solved by (9) provided that tlietensor satisfies certain identities.

Combining these identities int8O(8, n) covariant expressions, we obtain an identity for the embedding tensor
© 7 Which allows us to select the admissible gauge graigs

3. Group theory and T-identities

The embedding tenso®n is a Go-invariant tensor in the symmetric tensor product of two adjoint
representations &0(8, n). It may accordingly be decomposed into its irreducible parts

@MNC<HXE>Sym=1+Dj+HH+E, (11)

where each box represents a vector representaBon n) of SO(8,n). We here use the standard Young
tableaux for the orthogonal groups: for instanc&,] denotes the traceless part of the symmetric tensor product

((8+n) x (8+n))sym- The four irreducible parts in the decomposition (11) have dimensio%(ﬁ]:&n)(9+n) -1,

%2(5 +n)(8+n)(9+ n)(10+ n), and (814'”), respectively. UndeH = SO(8) x SO(n) the vector representation
decomposes as

O— (8,,1) + (1,0,

where by-] we now denote the vector representatioof SO(n). The T-tensor which according to (7) is obtained
by anSO(8, n) rotation with) from (11), accordingly decomposes as

Tryke=(1,1)+ (35,1 + (35, 1) + (35,1) + (300, 1),

[
Ties=(28H).  Tope=@ D+ )+ (1 E )+ (1, )

L]
Tikp = (8y, L)) + (56, L)) + (160, 1), Tkpirs = 8y, LD + (81;, Eﬂ ) + <8v» E),

Tirss = (LD + (L E) + (35, 1) + 35, £ + (28, ). (12)
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underSO(8) x SO(n). As in the maximal gauged theory [1,2] it turns out that the supersymmetry of the gauged
Lagrangian (8) is equivalent to the vanishing of certain subrepresentations in (12), whereas the nonvanishing
parts may be cast into a singB®(8, n) representation. The relevant components of ikeensor may be entirely
expressed in terms of the scalar tensér 3

1 1 i
1J IJKL 4 AB IJKL 4 ArBs
TIJ‘KLZ_QSKL_érAB Al +§FAB Agr C,
117 4 Arb 1 1k 4Ad
TIJ\rszngBAgr 5, TIJ‘KPZ_ZFAA A5 ",
1 i B
TIr\Js 298118rs+§FAl£A§rBs~ (13)

Comparing this to th&0(8) x SO(n) representation content of the Yukawa tensérs 3 extracted from (9)
AP =)+ @50, AP =56,0),  AFP =1+ G5+ (28 ).

we recognize that, apart from the singlet contributions, the nonvanishing pegi@fprecisely corresponds to the
last term in (11) which decomposes into

[-]
E = (35, 1) + (35., 1) + (56,, &) + (28, 5)+ <8U, @)+ (1, )
-]

Together, we obtain th80(8, n) covariant consistency criterion

Tas=0na8 +PoastPTop < Oap=0ns5+P E 4585Pecp, (14)

for T 45 or equivalently for the embedding teng®y (- of the gauge group, whe}féE denotes the projector onto

the corresponding part in the tensor product (11). In components, this condition reads

OrykL = —955& + O kL O17,kp =0OUJKlp
@rs,pq = _98;2 + @[rs,pqls @Kp,rs = @K[p,rxls @Ir,.ls = ‘98115rx + @IJ,VSv (15)

and likewise forT 45, in agreement with (13). From the above decomposition one seeg jhapossesses the
additional nonvanishing components

Trsipg = —=08,4 + Tirsipg: — Tkplrs = Tk(pirs,

which do not appear in the Lagrangian. In turn, it may be verified by lengthy but straightforward computation that
(15) (together with the fact th& (A projects onto a subgroup) indeed encodes the full set of identities which are
required for supersymmetry of the gauged Lagrangian (8).

4. Admissible gauge groups

It remains to solve (14) and to identify the subgroupS©i{8, n) whose embedding tensor satisfies the projection
constraint (14) such that ti&-gauged Lagrangian (8) remains supersymmetric. Rather than aiming for a complete
classification, we here wish to discuss the most interesting cases, and, in particular, the gauging of the compaci
SO(4) c SO(8) related to the six-dimensional supergravity on AdSS3.
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Compact gauge grougo € SO(8) x SO(n) satisfy @, j; = 0; according to (15) they hence factor into two
subgroups o80(8) and SO(n), respectively, such that each factor separately satisfies (14). It is straightforward
to show that none of the maximal subgroufi3(p) x SO(8 — p) C SO(8) for p # 4 satisfies (14). The case
p = 4 requires a separate analysis since the two fac®@) x SO(4) are not simple but both factor into
O4) = 0(3) 1 x SO(3) . We therefore consider the group

Go=0®»Y x 0#®? = (03P x 03P x (S013)? x 0QB)P). (16)

Denote byl = {i,i} the corresponding decomposition of t8®(8) vector indices 8- (4,1) + (1, 4). The
embedding tensors of the four simple factorgfare given by

1 7 1
1) ki (2+) kl
NrrkL= (‘Sij + Eei.ikl>’ NrrkL= (‘Sij + Eeijkz) (7)
The Cartan—Killing form ofSO(8), e.g., decomposes as
(1-) (2+) (2-)

(1+)
MJKL=Nry gL Y0k TNk Tkt
The condition (14) is obviously solved by the following linear combination of the simple embedding tensors

Or1.kL = (77511+1)<L - 7751171)@) +a(n§2JjLI){L - ’152171)@) = €ijkl t+ €517 (18)
with a free constan&. The trace part of9 vanishes. This is the embedding tensor of (16) where the relative
coupling constants of the two factors in ed&(4) differ by a factor of—1 whereas the relative coupling constant
o between the tw&O(4) factors may be chosen arbitrarily. The resulting theory (8) has gauge §@dpx SO(4)
with two independent gauge coupling constants.
As a special case, we can choase 0 in (18) and obtain a theory with gauge group

Go=30(4) =30@)L x O)k. (29)

In this case, the secorfD(4) factor of (16) survives as a global symmetry of the theory. As explained above, the
symmetries of this theory thus coincide with those 6, N = (2, 0) supergravity on Ad$x $3. The fields of
(8) accordingly decompose under (19) into the physical degrees of freedom containediter supermultiplets

n(l-2,204+4- QD +21 -2 1) +2_-(1,2), (20)

and the nonpropagating fields which include the graviton, gravitini and8@{d) Chern—Simons vector fields.
Dropping the physical fields (20) from the Lagrangian, one recovers one of the topological Chern—Simons
supergravities of [11].

The theories obtained with (18) have a maximally supersymmetric ground state-dt, i.e., for vanishing
scalar fields. Its background isometries form the product of simple supergroups

DY(2,1,a)r x DX(2,1; )i, (21)

which is an N = (4,4) extension of the Ad$ group SU(1,1); x SU(1, 1)z [12]. We would expect the
corresponding gauged supergravity (8) to be related to they Ad$® x $2 compactifications considered in [13,
14]. Fora =0, i.e., for the theory with gauge group (19), the background isometry group (21) factors into the
semi-direct product of th& = (4, 4) supergroup

(2|1, Dz x SU2IL, D, (22)

and the globaBO(4) symmetry of the gauged theory. The ground state I of this theory corresponds to the
AdS; x S2 vacuum of the six-dimensional theory. The physical field content (20) correspondsoigies of the

4 The multiplicities 1, 2., 4, here and in the following formula refer to irreducible representations of the second (¢go4))symmetry.



H. Nicolai, H. Samtleben / Physics Letters B 514 (2001) 165-172 171

(2, 2)s short multiplet of (22), whereas the nonpropagating fields combine int@thigs + (1, 3) s short multiplets
of (22). As anticipated above, this reproduces the massless spectrim=d§, N = (2, 0) supergravity withn
tensor multiplets on Ad$x $° [9,10].

Similarly, we may gauge subgroups of the comp80i(n) by embedding up tdnr/4] factors of SO(4) =
0(3) x 0O(3), each of which is twisted by a relative factor ofl between the simple embedding tensors of
its two SO(3) factors. This allows to introduce up [a/4] additional independent coupling constants.

The noncompact gaugings in (1) are obtained in the same way. By replacing someSo{ & eector indices
I,J,...in (18) by SO(n) vector indices, s, ..., one may embed

Go=3S0(p,4— p) x O(q,4—q), (23)

wherep andg may take the values O or 2, and arbitrary relative coupling constdmgttween the two factors in

(23). The consistency of these theories follows in complete analogy to the compact case from the projection form of
the criterion (14). By contrast, the noncompact gr&Q¢3, 1) = 3.(2, C) cannot be consistently gauged because
thee-tensor in (17) would have to carry a factorigfesulting in an imaginary gauge coupling constant.

In addition to these gauge groups, the consistency condition (14) allows for several other noncompact maximal
subgroups ofz = SO(8, n). These solutions may be found by group theoretical arguments analogous to the ones
used in [1,2] to derive the exceptional gauging. E.g.,/fet 8, the groupG = SO(8, 8) possesses the maximal
noncompact subgroup

Go=GY x G? = Cygy x L2, R), (24)

whose compact subgroufy = H® x H® = (U(4) x S0(2)) x SO(2) is embedded it = SO(8) x SO(8) via

the maximal embedding3D(8) > S0O(6) x SO(2), where theSU (4) ~ SO(6) factor of Hg lies in the diagonal. The
embedding tensor of (24) with a fixed particular ratio of the coupling constants satisfies (14) where this ratio is
obtained from the formula [2]

g1 7dimG@ —15dimH® 1

=-— =—. 25
g2 7dimG® — 15dimH® 2 (25)

The same argument holds for the other real form of this gauge group
Go = Cs—4 x O(3), (26)

contained inG. Its maximal compact subgroufip = (US(4) x US(4)) x SO(3) is embedded inH via the
maximal embeddingSO(8) > SO(5) x SO(3), where theSO(3) factor of Hyp lies in the diagonal. The ratio of
coupling constants is again obtained from (25) and gives the same valgg' for= —1/2. The latter construction
(26) may be further generalized to amy 47Z: for G = SO(8, 4m), the maximal noncompact subgroup

Go=F(m, 2) x O(3), (27)

satisfies (14) if the ratio of coupling constants is giverghyg, = —2/(2+ m). It would be interesting to identify
a possible higher dimensional origin of these noncompact gaugings.

Finally, one can expect that other gauged theories Witk 16 local supersymmetries can be constructed in a
similar fashion (a complete list of extended supergravities in three dimensions has been given in [15]).
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