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Abstract

Following the recent construction of maximal (N = 16) gauged supergravity in three dimensions, we derive gaugedD = 3,
N = 8 supergravities in three dimensions as deformations of the corresponding ungauged theories with scalar manifolds
SO(8, n)/(SO(8) × SO(n)). As a special case, we recover theN = (4,4) theories with localSO(4) = SO(3)L × SO(3)R ,
which reproduce the symmetries and massless spectrum ofD = 6,N = (2,0) supergravity compactified on AdS3 ×S3.  2001
Elsevier Science B.V. All rights reserved.

1. Introduction

Gauged supergravities in three dimensions differ from the gauged theories in higher dimensions by the existence
of an on-shell duality between the gauge fields and the scalar fields parametrizing the coset manifolds (a subset
of ) whose isometries are gauged [1,2]. For instance, to gauge the maximalN = 16 theory one starts from the
maximally dualized theory in which all bosonic physical degrees of freedom are contained in the scalar coset
spaceG/H = E8(8)/SO(16). Choosing a gauge groupG0 ⊂ G, the corresponding vector fields transforming in the
adjoint representation ofG0 are defined by duality as (nonlocal and nonlinear) functions of the scalar fields, all of
which are kept. At the Lagrangian level the duality relation is implemented by means of a Chern–Simons term in
order of the gauge coupling constant (rather than the usual Yang–Mills term), such that the duality equation relating
the vectors to the scalar fields appears as an equation of motion. As required by consistency, the vector fields then
do not introduce new physical degrees of freedom. A similar structure has been found for the abelian gaugings of
theD = 3,N = 2 supergravities [3]. While there are thus no a priori restrictions on the choice of gauge group, the
requirement that local supersymmetry be preserved in the gauged theory poses strong constraints. It was a main
result of [1,2] that all consistency conditions can be encoded into a singleG-covariant projection condition for the
embedding tensor ofG0.

In this Letter we perform an analogous construction for the nonmaximalN = 8 theories of [4] and show that the
techniques developed in [1,2] can be carried over to this case, allowing for a quick determination of the possible
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gauge groups. Pure (topological)N = 8 supergravity can be coupled to an arbitrary numbern of matter multiplets,
each consisting of eight bosonic and fermionic physical degrees of freedom. The scalar sectors of these theories
are governed by the coset manifolds [4]

G/H = SO(8, n)/
(
SO(8) × SO(n)

)
.

Gauging any of these theories amounts to promoting a subgroupG0 ⊂ SO(8, n) to a local symmetry in such a way
that the local supersymmetry remains preserved. As forN = 16, the proof of consistency can be reduced to a single
projection condition for the gauge group (see Eq. (14) below), which is for instance solved by the subgroups

(1)G0 = SO(p,4− p) × SO(q,4− q), p, q = 0,2,

with independent gauge coupling constantsg1, g2 for the two factors in (1). Hence, for each of the groups in (1)
there exists a gaugedN = 8 supergravity with localG0 symmetry. There are further (non-compact) gauge groups
which will be briefly discussed at the end.

Half maximal gauged supergravities in three dimensions are expected to describe, e.g., the massless sector of
the AdS3 × S3 reduction ofD = 6, N = (2,0) supergravity coupled tonT tensor multiplets [5,6]. Of particular
interest [7,8] have been the theories withnT = 5 andnT = 21, which correspond to compactifying IIB supergravity
on AdS3 × S3 ×M4 with M4 = T 4 or K3, respectively. The complete spectrum on AdS3 × S3 has been computed
in [9,10]; it is organized by the supergroup

(2)SU(2|1,1)L × SU(2|1,1)R,

the N = (4,4) extension of the AdS3 groupSU(1,1)L × SU(1,1)R containing the isometry group of the three
sphereSO(4) = SO(3)L × SO(3)R which is the gauge symmetry of the theory. In addition, the theory is invariant
under a globalSO(4) which is a remnant of theR-symmetry groupSO(5) ∼= Sp(4) in six dimensions. The massless
sector has been found to consist ofnT copies of the short(2,2)S multiplet of (2) with eight bosonic (scalar)
and eight fermionic degrees of freedom (following [10], the nomenclature(k1, k2)S for a multiplet of (2) refers
to the representation content of its highest weight state underSO(4) ∼= SO(3) × SO(3)). By contrast, theSO(4)
vector fields belong to the nonpropagating three-dimensional supergravity multiplet. The low energy theory is then
expected to coincide with the gauged supergravity obtained by takingp = q = 0 in (1) and by settingg2 = 0, such
that the second factor turns into a globalSO(4) symmetry while the associated vector fields decouple from the
Lagrangian. As we shall verify in more detail below, this theory indeed reproduces the symmetries and massless
spectrum of the six-dimensional theory on AdS3 × S3.

2. The Lagrangian

The gauged theory is constructed by deforming theN = 8 theory of [4] (to which we refer for notations)
according to the Noether procedure and by adding a Chern–Simons term for the vector fields transforming in
the adjoint representation of the gauge group. The scalar matter forms aG/H = SO(8, n)/(SO(8) × SO(n))

coset space sigma model. It is most conveniently parametrized bySO(8, n) valued matricesL in the fundamental
representation. Accordingly, the gauged Lagrangian is invariant under the symmetry

(3)L(x) −→ g0(x)L(x)h−1(x), g0(x) ∈ G0, h(x) ∈ H,

whereG0 is an as yet undetermined subgroup ofG. The choice ofG0 turns out to be severely restricted by
supersymmetry. Upon gauging, the globalG symmetry of the ungauged theory is broken down to the centralizer of
G0 in G, which acts by left multiplication onL. The scalar fields couple to the fermions via theG0-covariantized
currents

(4)L−1(∂µ + gΘMN Bµ
MtN

)
L =: 1

2
QIJ

µ XIJ + 1

2
Qrs

µ Xrs +PI r
µ Y Ir ,



H. Nicolai, H. Samtleben / Physics Letters B 514 (2001) 165–172 167

where{XIJ ,Xrs} and{Y Ir} denote the compact and noncompact generators ofso8,n, respectively, with indices
I, J ∈ 8, and r, s ∈ n. In the following, we will use calligraphic letters as collective labels for the entire set
of generators ofso8,n: {tM} = {XIJ ,Xrs, Y Ir}; more specifically, we distinguish between labelsA,B, . . . and
M,N , . . . to indicate their transformation properties under the action ofH andG, respectively, cf. (6).

The constant tensorΘMN characterizes the embedding of the gauge groupG0 in G. It is obtained by restricting
the so8,n Cartan–Killing formηMN to the simple factors of the algebrag0 ⊂ so8,n associated toG0, and is
generally of the form

(5)ΘMN =
∑
j

εjη
(j)

MN ,

whereηMN η
(j)

NK project onto the simple subfactors ofg0, and the factorsεj correspond to the relative coupling
strengths. The Lagrangian of the gauged theory explicitly depends on the representation matricesVMA in the
adjoint representation ofSO(8, n)

(6)L−1tML ≡ VM
A tA = 1

2
VM

IJ XIJ + 1

2
VM

rs X
rs + VM

I r Y
Ir ,

via theT -tensor

(7)TA|B ≡ ΘMNVM
A VN

B.

The construction of the gauged theory parallels the one of the maximal theory [1,2] and we simply state the
resulting Lagrangian (up to quartic fermionic terms)

L= −1

4
eR + 1

2
εµνρψA

µDνψ
A
ρ + 1

4
ePI r

µ Pµ Ir − 1

2
ieχȦrγ µDµχȦr

− 1

4
εµνρgΘMNBµ

M
(
∂νBρ

N + 1

3
gΘKLfNK

PBν
LBρ

P
)

− 1

2
ePI r

µ χȦrΓ I

AȦ
γ νγ µψA

ν

(8)+ 1

2
geAAB

1 ψ A
µ γ µνψB

ν + igeAAȦr
2 χȦrγ µψA

µ + 1

2
geAȦrḂs

3 χȦrχḂs + eW.

Gravitini and matter fermions transform in the spinor and conjugate spinor representations ofSO(8), denoted by
indicesA,B, . . . , andȦ, Ḃ, . . . , respectively.3 Their covariant derivatives are built with theH -currentsQµ from
(4):

DµψA
ν := ∂µψA

ν + 1

4
ωµ

abγabψ
A
ν + 1

4
QIJ

µ Γ IJ
ABψB

ν ,

DµχȦr := ∂µχȦr + 1

4
ωµ

abγabχ
Ȧr + 1

4
QIJ

µ Γ IJ

ȦḂ
χḂr +Qrs

µ χȦs .

The scalar tensorsA1,2,3 describing the Yukawa-like coupling between scalars and fermions may be expressed as
linear functions of theT -tensor (7)

AAB
1 = −δABθ − 1

48
Γ IJKL

AB TIJ |KL, AAȦr
2 = − 1

12
Γ IJK

AȦ
TIJ |Kr,

(9)AȦrḂs
3 = 2δȦḂδrsθ + 1

48
δrsΓ IJKL

ȦḂ
TIJ |KL + 1

2
Γ IJ

ȦḂ
TIJ |rs,

3 Generically, the supersymmetry parameters and gravitini belong to the vector representation ofSO(N) for N -extended supergravity. In
order to facilitate the comparison with [4] we here adopt an assignment of representations which differs from the generic one by a triality
rotation.



168 H. Nicolai, H. Samtleben / Physics Letters B 514 (2001) 165–172

where byθ ≡ 2
(8+n)(7+n)

ηMNΘMN we denote the trace of (5) which equals the trace of theT -tensor. The scalar
potentialW is given by the following expression (of eighth order in the matrix entries ofL):

(10)W = 1

4
g2

(
AAB

1 AAB
1 − 1

2
AAȦr

2 AAȦr
2

)
.

The supersymmetry variations are

L−1δL = Y IrεAΓ I
AȦ

χȦr , δχȦr = 1

2
iΓ I

AȦ
γ µεAPI r

µ + gAAȦr
2 εA,

δeµ
α = iεAγ αψA

µ , δψA
µ = DµεA + igAAB

1 γµεB,

δBµ
M = −1

2
VM

IJ εAΓ IJ
ABψB

µ + iVM
I r ε

AΓ I

AȦ
γµχȦr .

Lagrangian and supersymmetry transformations have been given up to higher order fermionic terms which were
already given in [4] (as shown in [2] the gauging does not lead to any modification in these terms). As in the
maximal gauged theory, invariance of the Lagrangian (8) under these transformations implies several consistency
conditions on the tensorsA1,2,3, which are solved by (9) provided that theT -tensor satisfies certain identities.
Combining these identities intoSO(8, n) covariant expressions, we obtain an identity for the embedding tensor
ΘMN which allows us to select the admissible gauge groupsG0.

3. Group theory and T -identities

The embedding tensorΘMN is a G0-invariant tensor in the symmetric tensor product of two adjoint
representations ofSO(8, n). It may accordingly be decomposed into its irreducible parts

(11)ΘMN ⊂
(

�� × ��
)

sym
= 1+ �� + ���� + ����

,

where each box represents a vector representation(8 + n) of SO(8, n). We here use the standard Young

tableaux for the orthogonal groups: for instance,�� denotes the traceless part of the symmetric tensor product

((8+n)×(8+n))sym. The four irreducible parts in the decomposition (11) have dimensions 1,1
2(8+n)(9+n)−1,

1
12(5 + n)(8 + n)(9 + n)(10+ n), and

(8+n
4

)
, respectively. UnderH = SO(8) × SO(n) the vector representation

decomposes as

� → (8v,1) + (1,�),

where by� we now denote the vector representationn of SO(n). TheT -tensor which according to (7) is obtained
by anSO(8, n) rotation withV from (11), accordingly decomposes as

TIJ |KL = (1,1) + (35s,1) + (35c,1) + (35v,1) + (300,1),

TIJ |rs =
(
28, ��

)
, Trs|pq = (1,1) + (1, �� ) +

(
1, ����

)
+

(
1,

����

)
,

TIJ |Kp = (8v,�) + (56v,�) + (160v,�), TKp|rs = (8v,�) +
(
8v, ���

)
+

(
8v,

���

)
,

(12)TIr |J s = (1,1) + (1, �� ) + (35v,1) + (35v, �� ) +
(
28, ��

)
,
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underSO(8) × SO(n). As in the maximal gauged theory [1,2] it turns out that the supersymmetry of the gauged
Lagrangian (8) is equivalent to the vanishing of certain subrepresentations in (12), whereas the nonvanishing
parts may be cast into a singleSO(8, n) representation. The relevant components of theT -tensor may be entirely
expressed in terms of the scalar tensorsA1,2,3

TIJ |KL = −θδIJ
KL − 1

8
Γ IJKL

AB AAB
1 + 1

8n
Γ IJKL

ȦḂ
AȦrḂs

3 ,

TIJ |rs = 1

8
Γ IJ

ȦḂ
AȦrḂs

3 , TIJ |Kp = −1

4
Γ IJK

AȦ
AAȦr

2 ,

(13)TIr |J s = θδIJ δrs + 1

8
Γ IJ

ȦḂ
AȦrḂs

3 .

Comparing this to theSO(8) × SO(n) representation content of the Yukawa tensorsA1,2,3 extracted from (9)

AAB
1 = (1,1) + (35s,1), AAȦr

2 = (56v,�), AȦrḂs
3 = (1,1) + (35c,1) +

(
28, ��

)
,

we recognize that, apart from the singlet contributions, the nonvanishing part ofTA|B precisely corresponds to the
last term in (11) which decomposes into

����
= (35s,1) + (35c,1) + (56v,�) +

(
28, ��

)
+

(
8v,

���

)
+

(
1,

����

)
.

Together, we obtain theSO(8, n) covariant consistency criterion

(14)TA|B = θηAB + P ����

AB
C,DTC|D ⇐⇒ ΘAB = θηAB + P ����

AB
CDΘCD,

for TA|B or equivalently for the embedding tensorΘMN of the gauge group, whereP ����

denotes the projector onto

the corresponding part in the tensor product (11). In components, this condition reads

ΘIJ,KL = −θδIJ
KL + Θ[IJ,KL], ΘIJ,Kp = Θ[IJ,K]p,

(15)Θrs,pq = −θδrs
pq + Θ[rs,pq], ΘKp,rs = ΘK[p,rs], ΘIr,J s = θδIJ δrs + ΘIJ,rs,

and likewise forTA|B , in agreement with (13). From the above decomposition one sees thatTA|B possesses the
additional nonvanishing components

Trs|pq = −θδrs
pq + T[rs|pq], TKp|rs = TK[p|rs],

which do not appear in the Lagrangian. In turn, it may be verified by lengthy but straightforward computation that
(15) (together with the fact thatΘMN projects onto a subgroup) indeed encodes the full set of identities which are
required for supersymmetry of the gauged Lagrangian (8).

4. Admissible gauge groups

It remains to solve (14) and to identify the subgroups ofSO(8, n) whose embedding tensor satisfies the projection
constraint (14) such that theG0-gauged Lagrangian (8) remains supersymmetric. Rather than aiming for a complete
classification, we here wish to discuss the most interesting cases, and, in particular, the gauging of the compact
SO(4) ⊂ SO(8) related to the six-dimensional supergravity on AdS3 × S3.
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Compact gauge groupsG0 ⊂ SO(8) × SO(n) satisfyΘIr,J s = 0; according to (15) they hence factor into two
subgroups ofSO(8) andSO(n), respectively, such that each factor separately satisfies (14). It is straightforward
to show that none of the maximal subgroupsSO(p) × SO(8 − p) ⊂ SO(8) for p �= 4 satisfies (14). The case
p = 4 requires a separate analysis since the two factorsSO(4) × SO(4) are not simple but both factor into
SO(4) = SO(3)L × SO(3)R. We therefore consider the group

(16)G0 = SO(4)(1) × SO(4)(2) = (
SO(3)(1)L × SO(3)(1)R

) × (
SO(3)(2)L × SO(3)(2)R

)
.

Denote byI = {i, i} the corresponding decomposition of theSO(8) vector indices 8→ (4,1) + (1,4). The
embedding tensors of the four simple factors ofG0 are given by

(17)η
(1±)
IJ,KL =

(
δkl
ij ± 1

2
εijkl

)
, η

(2±)
IJ,KL =

(
δkl

ij
± 1

2
εij kl

)
.

The Cartan–Killing form ofSO(8), e.g., decomposes as

ηIJ,KL = η
(1+)
IJ,KL + η

(1−)
IJ,KL + η

(2+)
IJ,KL + η

(2−)
IJ,KL + · · · .

The condition (14) is obviously solved by the following linear combination of the simple embedding tensors

(18)ΘIJ,KL = (
η
(1+)
IJ,KL − η

(1−)
IJ,KL

) + α
(
η
(2+)
IJ,KL − η

(2−)
IJ,KL

) = εijkl + αεij kl,

with a free constantα. The trace part ofΘ vanishes. This is the embedding tensor of (16) where the relative
coupling constants of the two factors in eachSO(4) differ by a factor of−1 whereas the relative coupling constant
α between the twoSO(4) factors may be chosen arbitrarily. The resulting theory (8) has gauge groupSO(4)×SO(4)
with two independent gauge coupling constants.

As a special case, we can chooseα = 0 in (18) and obtain a theory with gauge group

(19)G0 = SO(4) = SO(3)L × SO(3)R.

In this case, the secondSO(4) factor of (16) survives as a global symmetry of the theory. As explained above, the
symmetries of this theory thus coincide with those ofD = 6, N = (2,0) supergravity on AdS3 × S3. The fields of
(8) accordingly decompose under (19) into the physical degrees of freedom contained inn matter supermultiplets4

(20)n
(
1 · (2,2) + 4 · (1,1) + 2+ · (2,1) + 2− · (1,2)

)
,

and the nonpropagating fields which include the graviton, gravitini and theSO(4) Chern–Simons vector fields.
Dropping the physical fields (20) from the Lagrangian, one recovers one of the topological Chern–Simons
supergravities of [11].

The theories obtained with (18) have a maximally supersymmetric ground state atL = I , i.e., for vanishing
scalar fields. Its background isometries form the product of simple supergroups

(21)D1(2,1;α)L × D1(2,1;α)R,

which is an N = (4,4) extension of the AdS3 group SU(1,1)L × SU(1,1)R [12]. We would expect the
corresponding gauged supergravity (8) to be related to the AdS3 × S3 × S3 compactifications considered in [13,
14]. Forα = 0, i.e., for the theory with gauge group (19), the background isometry group (21) factors into the
semi-direct product of theN = (4,4) supergroup

(22)SU(2|1,1)L × SU(2|1,1)R,

and the globalSO(4) symmetry of the gauged theory. The ground stateL = I of this theory corresponds to the
AdS3 × S3 vacuum of the six-dimensional theory. The physical field content (20) corresponds ton copies of the

4 The multiplicities 1, 2±, 4, here and in the following formula refer to irreducible representations of the second (global)SO(4) symmetry.
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(2,2)S short multiplet of (22), whereas the nonpropagating fields combine into the(3,1)S +(1,3)S short multiplets
of (22). As anticipated above, this reproduces the massless spectrum ofD = 6, N = (2,0) supergravity withn
tensor multiplets on AdS3 × S3 [9,10].

Similarly, we may gauge subgroups of the compactSO(n) by embedding up to[n/4] factors of SO(4) =
SO(3) × SO(3), each of which is twisted by a relative factor of−1 between the simple embedding tensors of
its two SO(3) factors. This allows to introduce up to[n/4] additional independent coupling constants.

The noncompact gaugings in (1) are obtained in the same way. By replacing some of theSO(8) vector indices
I, J, . . . in (18) bySO(n) vector indicesr, s, . . . , one may embed

(23)G0 = SO(p,4− p) × SO(q,4− q),

wherep andq may take the values 0 or 2, and arbitrary relative coupling constantα between the two factors in
(23). The consistency of these theories follows in complete analogy to the compact case from the projection form of
the criterion (14). By contrast, the noncompact groupSO(3,1) ∼= SL(2,C) cannot be consistently gauged because
theε-tensor in (17) would have to carry a factor ofi, resulting in an imaginary gauge coupling constant.

In addition to these gauge groups, the consistency condition (14) allows for several other noncompact maximal
subgroups ofG = SO(8, n). These solutions may be found by group theoretical arguments analogous to the ones
used in [1,2] to derive the exceptional gauging. E.g., forn = 8, the groupG = SO(8,8) possesses the maximal
noncompact subgroup

(24)G0 = G(1) × G(2) = C4(4) × SL(2,R),

whose compact subgroupH0 = H(1) ×H(2) = (SU(4)× SO(2))× SO(2) is embedded inH = SO(8)× SO(8) via
the maximal embeddingsSO(8) ⊃ SO(6)× SO(2), where theSU(4) ∼ SO(6) factor ofH0 lies in the diagonal. The
embedding tensor of (24) with a fixed particular ratio of the coupling constants satisfies (14) where this ratio is
obtained from the formula [2]

(25)
g1

g2
= −7 dimG(2) − 15 dimH(2)

7 dimG(1) − 15 dimH(1)
= −1

2
.

The same argument holds for the other real form of this gauge group

(26)G0 = C4(−4) × SO(3),

contained inG. Its maximal compact subgroupH0 = (USp(4) × USp(4)) × SO(3) is embedded inH via the
maximal embeddingsSO(8) ⊃ SO(5) × SO(3), where theSO(3) factor of H0 lies in the diagonal. The ratio of
coupling constants is again obtained from (25) and gives the same value forg1/g2 = −1/2. The latter construction
(26) may be further generalized to anyn ∈ 4Z: for G = SO(8,4m), the maximal noncompact subgroup

(27)G0 = Sp(m,2) × SO(3),

satisfies (14) if the ratio of coupling constants is given byg1/g2 = −2/(2+ m). It would be interesting to identify
a possible higher dimensional origin of these noncompact gaugings.

Finally, one can expect that other gauged theories withN < 16 local supersymmetries can be constructed in a
similar fashion (a complete list of extended supergravities in three dimensions has been given in [15]).
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