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Abstract: The reduced (in the angular coordinabevave equation and Klein—Gordon
equation are considered on a Kerr background and in the framewa@R-sémigroup
theory. Each equation is shown to have a well-posed initial value problem, i.e., to have a
unique solution depending continuously on the data. Further, itis shown that the spectrum
of the semigroup’s generator coincides with the spectrum of an operator polynomial
whose coefficients can be read off from the equation. In this way the problem of deciding
stability is reduced to a spectral problem and a mathematical basis is provided for mode
considerations. For the wave equation it is shown that the resolvent of the semigroup’s
generator and the corresponding Green’s functions can be computed using spheroidal
functions. Itis to be expected that, analogous to the case of a Schwarzschild background,
the quasinormal frequencies of the Kerr black hole appeasasances, i.e., poles of the
analytic continuation of this resolvent. Finally, stability of the solutions of the reduced
Klein—Gordon equation is proven for large enough masses.

1. Introduction

Linear stability of the Schwarzschild black hole was demonstrated by Kay and Wald [14]
who showed the boundedness of all solutions of the wave equation correspondffig to
data of compact support. Their proof rests on the positivity of the conserved energy.
The problem is more subtle for Kerr space time. A conserved energy exists, but
the energy density is negative inside the ergosphere. Hence the total energy could be
finite while the field still might grow exponentially in parts of the spacetime. Papers by
Press and Teukolsky [22], Hartle and Wilkins [8], and Stewart [28] make the absence
of exponentially growing normal modes very plausible. Whiting [31] has proven that
there are no such modes, and in his proof he showed that normal modes grow at most
linearly in time. Recent numerical evolution calculations [16,17] for slowly and fast
rotating Kerr black holes show no sign of exponential growth. In the case of massive
scalar perturbations of Kerr results of Damour, Deruelle and Ruffini [3], Zouros and
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Eardley [34], and Detweiler [3] point to the existence of unstable modes. These modes
are very slowly growing with growth times similar to the age of the universe. This fact
complicates the numerical detection of such modes.

Here we consider the reduced (in the angular coordippteave equation and Klein—
Gordon equation on a Kerr background and in the framewo®%$emigroup theory.
For this the mathematical framework from [2] is used. For each equation it is shown
that the initial value problem is well-posed, i.e., has a unique solution which depends
continuously on the data. Further, it is shown that the spectrum of the semigroup’s
generator coincides with the spectrum of an operator polynomial whose coefficients
can be read off from the equation. In this way the problem of deciding stability is
reduced to a spectral problem. For the wave equation it is shown that the resolvent of the
semigroup’s generator and the corresponding Green'’s functions can be computed using
spheroidal functions. It is to be expected that, analogous to the case of a Schwarzschild
background, the quasinormal frequencies of the Kerr black hole appear as poles of
the analytic continuation of this resolvent. Finally, the stability of the background with
respect to reduced massive perturbations is proven for large enough masses. This is done
by applying an abstract stability criterium from [2].

The Kerr metric in Boyer-Lindquist coordinates-, 6, ¢ is given by

2M 4Mar Sir? 6 )
= (1- 220 ) a2+ T T rdg — Zdr? — 5462
s s A

2Ma?r sin?\ .
— (rz +a°+ %) sinfdy?, Q)

whereM is the massg € [0, M] is the rotational parameter,
A:=r?—2Mr +d? X :=r’+a’cos6. (2)

The coordinates are constrainedbyo < r < +00,ry <r < 400, —T < @ < T
and O< 6 < &, where

ryi=M++M? - a2 3)

As a little reminder on the Kerr geometry we give the following basic facts relevant for
the discussion of the wave equation. The coordinate vectordj@ldbecomes singular

atr = r,.. This value of the radial coordinate marks the event horizon for Kerr spacetime.
The coordinate vectorfieldl/d: is null on the ergosphere

r=M++vM2—a2co0, (4)

isspacelikeinside andimelikeoutside. S isnot atimecoordinateinsidetheergosphere

and therefore one might think that Boyer-Lindquist coordinates are unsuitable for a
stability discussion. It turns out that this is not the case for the methods (from semigroup
theory) of this paper. Finally, the Kerr metric is globally hyperbolic outside the horizon
and hence the Cauchy problem for the scalar wave equation is well posed for data on
any Cauchy surface. This result is not used in this paper. Existence, uniqueness and
continuous dependence of the solutions on the initial data is proved here, too.
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The reduced wave equation governing solutions of the fbtmr, 6, ¢) = exp(img)
u(t, r,0), wherem runs through all integers, is given by

azu (r2 +L12)2 5
— _— = S|n29
ar2 + |:< A “ )

dmMar ou a 0 m2a? 1 0 . 0 m?
i ———A————.——SII’]@——}-_— u=20. (5)
At dr or A sing 96 30 sinfe

-1

A first inspection shows that

AmM 2 2\2 -1
o< ‘”(“ +a) —azsin20> < e )
A A Mr

on Q := (ry,00) x (0, ). Hence the coefficient multiplyingou /ar is real-valued,
strictly positive and bounded. Moreover the coeffcients multiplying the derivatives in
andé are real-valued and vanish at the horizon. As a consequentes(Byular at all
points on the boundary of <.

The structure of this paper is as follows. Section 2 contains the used conventions.
Section 3 gives an initial value formulation for (5). There the equation is interpreted as
an abstract equation

<ﬁ>/=—G(5> - _<(A+C_);+i3v> ()

for a differentiable functiori(u, v) assuming values in an appropriate Hilbert space

and in particular in the domain of a linear operatdrHere’ denotes a Hilbert space
derivative. The linear operators+ C and B will be read off from (5).B is the maximal
multiplication operator inX given by the function multiplying du/dt. The auxiliary
operatorC is a suitable negative multiple of the identity operatorXonThe definition

of A is more involved. A preliminary formig + C of A + C is given by the differential
operator enclosed in square brackets. It has as a domain all complex-valued functions
on € which are twice continuously differentiable and have a compact supp@et in
Moreover X is chosen such thalp + C is symmetric. It will be obvious that this
operator is in addition semibounded (from below). In the next dteqC will be defined

as theFriedrichs extension of Ag+ C. Using this existence, unigueness, and continuous
dependence of the solutions on the initial data (7) follow from abstract theorems derived
in [2]. In Sect. 4 the domain of will be investigated further. This is done for two reasons.
Firstly, to make sure that it contains functions having a reasonable behaviour, both, on
the axis of symmetry and on the horizon. Secondly, such information is needed as a basis
for Sect. 5. There the resolvent 6fis constructed using spheroidal functions. Section

6 discusses the reduced Klein—Gordon equation. The well-posedness of the initial value
problemis shown. Further, the stability of the solutions is shown for large enough masses.
Section 7 contains the discussion. The Appendix gives auxiliary theorems used in the
computation of the resolvent.

2. Conventions

The symbolsN, R, C denote the natural numbers (including zero), all real numbers and
all complex numbers, respectively.
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To ease understanding we follow common abuse of notation and don't differentiate
between coordinate maps and coordinates. For instance, interchangeabigenote
some real number greater thap or the coordinate projection onto the open interval
(ry, 00). The definition used will be clear from the context. In addition we assume com-
position of maps (which includes addition, multiplication, etc.) always to be maximally
defined. So for instance the addition of two maps (if at all possible) is defined on the
intersection of the corresponding domains.

For eachk € N\ {0}, n € N\ {0} and each non-trivial open subskt of R"
the symbolC* (M, C) denotes the linear space bfimes continuously differentiable
complex-valued functions oM. FurtherC’cj(M, C) denotes the subspace®f (M, C)
consisting of those functions which in addition have compact supp6tt in

Throughout the paper Lebesgue integration theory is used in the formulation of
[24]. Compare also Chapter Il in [11] and Appendix A in [30]. To improve readability
we follow common usage and don'’t differentiate between an almost everywhere (with
respect to the chosen measure) defined funcfiamd the associated equivalence class
(consisting of all almost everywhere defined functions which differ frbrmanly on a
set of measure zero). In this serls% (M, p), wherep is some strictly positive real-
valued continuous function o, denotes the Hilbert space of complex-valued, square
integrable (with respect to the measyré”x) functions onM. The scalar produdf)
onL2 (M, p) is defined by

(flg) == /M Fogpd'x, ®)

forall f,g € L% (M, p), where* denotes complex conjugation éh It is a standard
result of functional analysis thats (M, C) is dense inL2 (M, p).

Finally, throughout the paper standard results and nomenclature of operator theory
is used. For this compare standard textbooks on Functional analysis, e.g., [23, Vol. I],
[24,32].

3. Basic Choices and First Consequences

As the basic Hilbert spack for (7) we chose

X = L2 (Q g°°\/Tg|) , )

where|g| denotes the determinant of the matgiy,. Note that

2 .22
%0/l = (% — a?sir? 9) sin® (10)
is singular at the horizon. Hence the elementsKofanish there in the mean. In the
limit casea = 0 this measure reduces to the standard one often used for the stability
discussion of the Schwarzschild metric [29,13].

The operatoB is chosen as the maximal multiplication operatoKiby the function
multiplying i 9u/dt in (5). Since that function is bounded and positive real-valueid,
a bounded linear and positive self-adjoint operatoxogiven by

2 212 -1
Bf=4’”M“r((r +a’) —a25in29> ¥ (11)

A A
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for every f € X. The operatorg + C is defined by
(Ao+C)f := D%y f (12)

forall f € C2(2, C), where we set for every e C3(Q, C),

2., 22
Diyf = <% — a?sir? 9)

-1

3 9 mPa® 1 9 3 m?
——A————.——sine— 5 . 13
( ar dr A sing ao 89+sin29>f (13)

ThenAg + C is in particular linear and (using partial integration) symmetric. Further
again by partial integration it is easy to see that+ C is semibounded with the lower
bound —a, wherea := m?a?/(4M?r2). Note that this bound approacheso for

|m| — oo, which would suggest that the unreduced wave equation on Kerr background
would have no stable initial value problem. Also note that it approaches & fer 0
which is the optimal bound for Schwarzschild.

In the next step we defin€ := —(x + ¢), wherees > 0 is assumed to have the
dimension —2. The exact value of does not influence the results in any essential way.
Finally, we defineA as the Friedrichs extension 4f. As a consequencgis a densely-
defined, linear, selfadjoint and semibounded operator having the same lower bound as
Ag, 1.e.,¢.

The objectsX, A, B andC are easily seen to satisfy Assumptions 1 and 4 of [2].
Applying the results of that paper gives

Theorem 1. (i) By
Y ;= D(AY?) x X (14)
and
(Elm) == (AY2E1] AY 1) + (52Im2) (15)
for all & = (£1,&2),n = (1, n2) € Y thereis defined a complex Hilbert space
(i) '(I')r/l’e(()';érators G and —G defined by
G, n) = (-n, (A+C)¢ +iBn) (16)
forall € € D(A) andn € D(AY?) areinfinitesimal generators of strongly continu-
oussemigroups 75 : [0, 00) — L(Y,Y)andT_ : [0, c0) — L(Y, Y), respectively.
(iii) For all ¢ € [0, 00):
ITe()] < exp(ICI A2, (7)

where | |, || || denote the operator normfor L(Y, Y) and L(X, X), respectively.
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(iv) For every ro € R and every & € D(A) x D(AY?) thereis a uniquely determined
differentiable map # : R — Y such that

u(ty) =£& (18)
and
u'(t) = —Gu(t) 19

for all + € R. Here ’ denotes differentiation of functions assuming valuesin Y.
Moreover thisu is given by

T forr >0
AT (20)
T_(—t)&fort <0

for all t € R.
(v) A € Cisaspectral value, eigenvalue of i G if and only if

A+C —AB — 22 (21)

is not bijective and not injective, respectively.
(vi) For any A fromthe resolvent set of i G and any n = (51, n2) € Y one has:

(G -2ty = iGE+n), (22)
where
E:=(A+C—AB—=2 "B+ —in]. (23)

Equation (19) is the interpretation of (5) used in this paper. In this sense (iv) shows the
well-posedness of the initial value problem for (5), i.e., the existence and uniqueness
of the solution and its continuous dependence on the initial data. Moreover (20) gives
a representation of the solution and (iii) gives a rough bound for its growth in time. In
general, this bound is not strong enough to imply stability of the solutions to (5). Part
(v) reduces the determination of the generator's spectrum to the determination of the
spectrum of the operator polynomiél+ C — AB — 12, A e C [19,26]. Moreover (Vi)

does the same for the resolvents. Further, [2] gives the following stability criteria:

Theorem 2. (i) If

1
1A+ C)§) + Z(EIBf)Z >0

for all £ € D(A) with ||| = 1, then the spectrumof i G isreal.
(i) If A4+ C — (b/2) B — (b?/4) ispositive for some b € R, then the spectrumof i G is
real and thereare K > 0 and rg > 0 such that
lu(@)| < Kt

for all £ > 1g.
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Here| ||, || denote the induced norm X, (|)) and (Y, (|)), respectively. Note that

the reality of the generator's spectrum would exclude the existence of exponentially
growing mode solutions of (5). It seems that these criterianatestrong enough to
prove stability of the solutions of (3)But later on (i) will be used to conclude stability

for the corresponding Klein—Gordon equation for cases where the mass exceeds some
given bound depending aem. Note that the positivity oA g+ C would imply stability via

(i). On first sight positivity ofAg + C seems unlikely because of the negative potential
term—m?2a?/ A in (13). On the other hand it is well-known that the occurrence of such

a term can be due to the chosen representation spade foIC. In addition the domain

of this operator is very much restricted by the condition that its elements have compact
support inQ2. Sinces2 is open it follows that the support of such a function has a strictly
positive distance from the boundary. In the theory of Schrédinger operators it is well-
known from so-called “Poincare-Sobolev inequalities” that the kinetic energy associated
with such a state can exceed a negative potential energy. See, e.g., [33] or for a simple
example [23] Vol. Il, Example 1 in Chapter X.3. Indeed such inequalities were found,
but only ones leading to a positive potential term with asymptotic behaviow—#

forr — ry, where 0< B < 1. So none of them was found to be strong enough to
show positivity ofA 4+ C. Indeed the apparent absence of better estimates lead to the
impression thatl + C is indeed negative. If this is really true it should be easy to prove
using the results on the domain 4f+ C from the next section. This point has not been
investigated further, because the negativity alone would not give any further information
on the stability of the solutions of (5).

4. Investigation of the Domain of A + C

In this section the domain of + C will be further investigated. This is done for two
reasons. Firstly, to make sure that it contains functions having a reasonable behaviour,
both, on the axis of symmetry and on the horizon. It turns out that this is indeed the
case. In particular, as it should be the case, functions of thefc(mP,;(cose), where

f € Cg(lr, C) and P,’,l, [ = |ml|,|m| +1,..., are the usual generalized Legendre
polynomials are found to be in the domain #f+ C. Secondly such information is
needed as a basis for the construction of the resolvefitiofthe next section.

We do not give a full characterization @(A + C) here. Instead more modestly
sufficient conditions are given on functiongr) and g(6) which guarantee that the
productf(r)g(#) is in D(A + C). These conditions will turn out to be sufficient as a
basis for the next section. They are as follows:

Theorem 3. For thisdenote I, := (ry, o0) and Iy := (0, ) and define
X, := L2(I,, r*/D),  Xg := L2(Ip, Sin0), (24)

and for every f € C2(I,,C) and g € C2(ly, C),

A m2a? 1 . m?2
Drzf::ﬁ[—(Af’)/— — f] Dgg::—w(SInOg/)/vLsinzeg. (25)

1 inthe following discussion the trivial cases= 0, i.e., the case of a Schwarschild background yard O
corresponding to purely axial perturbations, are excluded. Of course, for these stability of the solutions can
be concluded from Theorem 2(ii).
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Letbe f € C2(1,,C)N X, and g € C2(Iy, C) N X, such that
D?f e X, and D3ge Xs (26)
and for m = 0 in addition such that
giLno sind g’ () = eli_r;n]Z sind g’ (6) = 0. 27
Then f(r)g(®) € D(A + C) and
(A+C)f(g®) = D2 f(r)g(®). (28)

Proof. First it follows from the obvious inequalities

4 2 2\2 2 .4

+ . aM
T U agipg <M (29)
A A re A

thatL%(Q, r#sing/A) andX are identical as sets and that the associated norms on that
set are equivalent. A further consequence of (29) along with partial integration is the fact
that f(r)g(9) is in the domainD((Ag + C)*) of the adjoint(Ag + C)* of Ag + C and

in particular that

(Ao + O)* f(r)g(®) = D% £(r)g(®). (30)

Hence f(r)g(0) € D((Ag + C)*) if and only if there is a sequende), k1, ... of
elements OCS(Q, C) converging tof (r)g(6) and such that for every given> 0 there
isvp € N such that for aljx, v € N satisfyingu > vg andv > vg:

|<h,u,_hv|(A0+C+05)(hu —h))| < e (31)
In the following the existence of such a sequence will be shown. Basic for this is the
following inequality valid for allu € C2(1,, C) andv € C3(Iy, C):
o0 b
w(r)v(0)|(Ag + C + a)u(r)v(®)) < (f |u|2dr> (/ sinf v*D3v de)
r 0
o0 i T
+ </ r* AT Yu* (DE + m%a?/ru dr) (/ sing |v(9)|2d0> (32)
r4 0

00 T
< ( / rAaT N (D 4 mPa? r} +r+2>udr) ( / sind v*(Df + 1>vd0)-
r4+ O

Here some elementary estimates have been used along with the positivitg -6f
m2a?/r% onC3(I,, C) C X,.SinceA+C +« is in particular positive also the following
inequality is valid for alluy, up € C2(1,, C) andva, vz € C3(Iy, C):

[{u1(r)v1(®) — u2(r)v2(0)|(Ao + C + a)[ua(r)va(0) — ua(r)v2(0)])|
= [I(A 4+ C + ) Y?[us(r) — u2(")1v2(0) + (A + C + ) 2uz(r)[v1(6) — v2(0)]||?
< 2([ur(r) — u2(Nw1O)[(Ag + C + a)[u1(r) — uz(r)1v1(6))
+ 2(u2(r)[v1(0) — v2)]I(Ag + C + @)uz(r)[v1(6) — v2(6)]), (33)
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wherea’ := m2a?/r% +r2. Sincef is in the domain of the Friedrichs extensiorizf

on Cg(lr, C) c X, thereis a sequencg, f1, ... of elements ot‘g(]r, C) converging
to f(r) and such that for every given> 0 there isvg € N such that for allx, v € N
satisfyingu > vg andv > vg:

/‘0074A71(fp._fv)*(Dr2+a/)(fu_fv)dr<8~ (34)

T+

Obviously, by an argument analogous to (33) this implies that the sequence

o
f AT D% v’y fydr, veN (35)

r+

is bounded. Moreover singgis in the domain of the Friedrichs extension Bf on

CS(IQ, C) C Xy there is a sequeng®), g1, - - - of elements ofcg(lg, C) converging
to g(#) and such that for every given> 0 there isvg € N such that for allu, v € N
satisfyingu > vg andv > vy:

T
/O SiNG (g, — gv)" (D2 +1) (g — gv) db < &. (36)
Here too, by an argument analogous to (33) this implies that the sequence
b/
/ sinf g* (D2 +1) g,df, veN (37)
0

is bounded. Finally, because of
[ fu(r)gu(0) — fu(r)gv(@)(Ag+ C + o) [ f1.(r)g.(0) — fu(r)gu(O)])]
<2 ( / rAATH(fu = £)T(DE o) (fu — fv)dr)

I+

T
: (/ sing g7 (DZ + 1gy de)
0

+2 (foor“A—lfj(DE +a)f, dr)

r+
T
. </O sing (g —gv)" (DZ+1) (g, — gv) d@) , (38)
the sequencey, i1, ... defined by
hy = fu(r)gv@), veN (39)
has the required properties.

In the proof we have used facts on the Sturm-Liouville operaffrand Dg. Now,
for the reader’s convenience these will be given. For this define the (obviously) linear,
symmetric and semibounded operatdys, Ago in X, and Xy, respectively, by

Arof == D2f, Agog := D3g, (40)

for every f € C2(1,, C) and everyg € C2(Iy, C). Then one has the following
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Lemmad. (i) A,oisessentially self-adjoint.

(i) Ago is essentially self-adjoint for m > 0. For m = 0, the Friedrichs extension of
Ago isgiven by the closure of the operator Agr defined by Agr f := Dgg for every
g € C%(Iy, C) N X, satisfying (27) together with the condition that Dgg € Xp.
For all m the spectrum of the Friedrichs extension of Agq is given by {|m|(|m| +
D, (m|+D(m|+2),...}.

Proof. (i) For this define the auxiliary Sturm—Liouville operat&;o in X, by
~ A
Arof == (af") (41)

for every f € CS(I,, C). Obviously, A, ¢ is densely-defined, linear, symmetric and
positive. Moreover since-m?a?/r* is bounded or1,, it follows by the Rellich—Kato
theorem (see, e.g, Theorem X.12 in Volume 1l of [23]) thab is essentially self-
adjoint if and only ifA,q is essentially self-adjoint. Now, the equati(m]“)/ =0has
nonvanishing constants as solutions. Since these are kiptitboth ends of,, it follows
that A, is in the limit point case, both, at. and at4oc. HenceA,g is essentially self-
adjoint (see, e.qg., [30]). Finally, from this follows (i). (ii) This statement is, of course,
well-known. O

5. Computation of the Generator’s Resolvent

In the following the resolvent of; will be determined for spectral parametararhich
are non-real and at the same time such thatis not an exceptional valiieNote that
because of Theorem 1 (vi), the resolventbtan be derived from the inverses of the
operator polynomiall + C — B — A2 which are given in (i) of the following theorem
on a dense subset &f.

Theorem 5. Let A be a non-real el ement of the resolvent set of i G which moreover is
such that ia is not an exceptional value. For eachm € Z let

psi(cosd, —a’r?), 1= |m|, |m|+1,|m|+2,- (42)

be the basis® of X, consisting of spheroidal eigenfunctions of DZ + A%a? sin? 6 corre-
sponding to the eigenvalues

)‘Ir:'nl(_az)‘z)’ )‘T:ln\+1(—azk2), R (43)

respectively.® Finally, let g € Co(I,,C),m € Z and! € {|m|, |m|+1,...}. Then

(i) the subset of X consisting of all finite linear combinations of elements of the form
h(r, 0)g(r)p" (cOs8, —a®1?), (44)

2 For the definition of these values see [20].

3 In the sense that the span of these functions is denkg.ilNote that these functions anet orthogonal
in general. Instead this sequence and the sequence consisting of its complex conjugatdsdotivogonal
Basis ofXy. See Theorem 4 in Sect. 3.23 of [20].

4 For the definition of the functiongs;" see [20].
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where

4 2 232 -1
b= rZ <—(r —Za ) —azsin29> , (45)

and g, [ run through the elments of Co(1,, C) and {|m|, |m| + 1, |m| + 2, ...},
respectively, isdensein X
(ii)
(A+C —AB —2%)7"Ih(r,0)g(r) pl" (cOSH, —a®A?)
= f,(r)p}"(cost, —a®2?), (46)
where f, € C?(I,, C) N X, issuch that D2 f, € X, and moreover satisfies
D, f, + MM (a2 /rh fr = g. (47)
Here for every ¢ € C2(I,, C),
A

n/ 1
Dig:=—=(8¢) - [(ma + 2Mr)? 4+ 32A(0 + 4Mr)] 6. (48)

Proof. First we notice thak is C*° on  and satisfies as a consequence of (29,)
r2/(AM?) < h < 1 (49)

Hence the maximal multiplication operatfy by 4 in X is defined on the whole of,
is bijective and its inverse is given by the maximal multiplication oper&igs which
is defined on the whole of, too, by the function 1% in X. Obviously, the subset ot
consisting of all finite linear combinations of elements of the form

g(r)p(cost, —a®2?), (50)

whereg € Co(I,, C) andl = |m|, |m|+ 1, |m|+2, ... isdense inX. Hence this is true
for the subset ok consisting of all finite linear combinations of elements of the form

h(r, 0)g(r) pj" (088, —a?3?), (51)
whereg € Co(I,,C) andl = |m|, |m| + 1, |m| + 2, ..., too. In the following letg be
some element ofy(7,, C) and! be some element dfm|, |m| + 1, |m| + 2, ...}. We
will compute the elemenf € X satisfying

(A Y C—AB— AZ) £(r.0) = h(r,0)g(r) pl" (COSH, —a®2?). (52)
We note that by Theorem 2
(A 4 C—1B— AZ) 1) P (cos, —a??)
— h(r, ) [(DEA fr 4 A (—a232) (0 /1% fr) (r)] p(coss, —a®h?)  (53)
for every f, € C2(I,, C) N X, such that

D?f, € X,. (54)
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In the following we construct such A which satisfies in particular (47). Then by the
bijectivity of A + C — AB — 12 we conclude that

f(r,0) = f(r)pi(cosh, —a’r?). (55)

For this construction we need some auxiliary solutignsf», f3 and f4 of the homo-
geneous equation associated with (47), i.e.,

, . 2r— M) (ma + 2 AMr)? 2 4Mr s
_ —— 4+ A1+ — — | fr=0, 56
e e G R RTINS
wheres = A;"(—azkz), having special asymptotic behaviour at the singular point
r = ry and at+oo. First, by definingf, := AY2f. and by introducing the new
independent variable,,

e = P+ AV + 2M I (VP AV + VD% (aM)) (57)

one gets a homogeneous first order systemffaandd f, /dr, which is equivalent to

(56) and which satisfies the assumptions of Theorem 4 in the Appendix. From this the-
orem follows the existence of linear independent continuously differentiable solutions
(fr1,d fr1/dry) and (fr2, d fr2/dr,) of the system along with continuously differen-
tiable functionsk1 and R» such that

d fr1
_ . df, .
Sra(ry) = e—zkr* 1+ Roa(ry)), ]:2 (re) =€ T (—iX + Ro2(r)) ,

lim |Ri(ri)l = lim [Ra(ry)| = 0. (58)
rye—>00 Fe—>00

fra(r) = € (14 R1a(ry), (r) = € (id + R12(ry))

Inthe following denote by, 1, f» the solutions of (56) correspondingtf1, d fy1/dry)
and( f,2, d f2/dr), respectively. Morover define
friforim() >0
frr =

59
fr2forimx) <0. 9

Then it follows by (58) thapf,x € C2(I,,C) N X, and D?(¢f,r) € X, for every

¢ € C%(1,,R) which is identically O forr < rg and identically 1 forr > rq, where

ro, r1 € I, are such thaty < r1, but otherwise arbitrary. For the second step by defining
g1 = fr/A andgy := f’ one gets a homogeneous first order system(gar g»)
which is equivalent to (56) and which satisfies the assumptions of Corollary 5 in the
Appendix. From this corollary follows the existence of linear independent continuously
differentiable solutiongg11, g12) and(g21, g22) of the system along with continuously
differentiable functions®z and R4 such that

g11(r) = (r —ry) 1+ Ra1(r)],

g12(r) = (r — ry) " %t[—i(ma + 2AMr) + R32(r)],

g21(r) = (r —r4)”72[1+ Raa(r)],

822(r) = (r — ry) " 2[i(ma + 2AMry) + Raz(r)],

Jim Rs(r)] = lim [Rs(r)] =0, (60)
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where
o1 = [VMZ = +i ((maj2) +2Mro)| )V MZ = a2,
02 = [VMZ = aZ — i ((maj2) + \Mr) | |V MZ — a2 (61)

In the following denote byf, 3, f;4 the solutions of (56) correspondingder1, g12) and
(g21, g22), respectively. Moreover define

fraforim() >0
fou :={ : g (62)

fraforim(y) <O.

Then it follows by (60) thaipf,; € C%(I,,C) N X, and D?(¢f,1) € X, for every
¢ € C%(1.,R) which is identically 1 forr < rg and identically O forr > r1, where
ro, r1 € I, are such thatg < r1, but otherwise arbitrary.

In the next step we notice th@tg and f,; are linear independent, because otherwise
we would get a contradiction to the assumed bijectivithof C — A B — A2. Hence the
Wronski determinan® of f,.x and f;, 1,

W:ZA(erfr/R_fr/Lf’R)’ (63)
is constant and different from 0. Therefore we can define
+R(r) " ’ ’ ’ L (1) o0 / / ’
fr(r) = —fgv / Sr(r)g(rdr’ — f‘LV / Srr(r)g(rHdr (64)
I'+ r
forallr € I,.

It follows from the foregoing results of}.; and f, g and from a simple computation
that f, € C?(I,,C) N X,, D?f, € X, and thatf, satisfies (47). Finally, from the
bijectivity of A + C — AB — A2 we conclude (46). O

6. The Case of the Klein—Gordon Equation

Compared to the wave equation considered in the previous sections, the only change in
this case is that the operatorhas to be substituted by’ := C + (m3/g%), where

mo denotes the mass of the field amxg/goo is the maximal multiplication operator

in X, which is defined on the whole of as well as bounded, since this function is
easily seen to be bounded én The other objectX, A and B stay the same. Again

it is easy to verify thatX, A, B and C’ satisfy Assumptions 1 and 4 of [2]. As a
consequence one has theorems analogous to Theorem 1 and Theorem 2. They imply
the well-posedness of the initial value problem, i.e., the existence and uniqueness of the
solution and its continuous dependence on the initial data. Further, via the analogue of
Theorem 2 (ii), Theorem 7 below implies for masses satisfying (69), that the spectrum
of the corresponding generator is real and that the norm of the solutions grow at most
linearly in time. In particular there are no exponentially growing modes in these cases.

Lemma6. Let B’ be a bounded linear and self-adjoint operator on X. Then A 4+ B’ is
identical to the Friedrichs extension of Ag + B’.
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Proof. First, sinceB’ is bounded linear and self-adjoint on X, it follows that

(Ao+ B")* = A§+ B'. (65)
Hence the domain of the Friedrichs extensidig + B') r of Ag + B’ is given by those
elementsf from D(AY) for which there is a sequend®, f1, ... in D(Ag) converging

to f and such that for ever§ > 0 there is a corresponding € N such that for all
w,v €N,

(fu = fol(Ao+ B  + 1B/ ID(fu — f))] <8 (66)
if, both, u > po andv > vg. Since (66) implies
I(fu = folAo(f = )] < 8, (67)
it follows that f is an element oD (A), too. Further, (65) implies
(Ao+ B')rf =(Ao+ B f=Af +B'f. (68)

HenceA + B’ is a linear self-adjoint (by the Rellich-Kato theorem, see, e.g, Theo-
rem X.12 in Volume Il of [23]) extension afAg + B’)r and, finally, sinc€Ag + B') ¢
is self-adjoint(Ap+ B )r=A+ B’. O

Theorem 7. Define b := ma/(Mry) and let be

2M  a?
|m|a 14 2M a

—. 69
2MV+ r+ +I"£ ( )

mo 2
Then
2,,00 2
A+ C+mg/g™ + (b/2)B — b /4 (70)
is positive.
Proof. Because of the preceding lemma it is enough to prove that
(f1(Ao+ C +m5/g% + (b/2)B — b?*/4) f) = O (71)

forall f € Cg(Q, C). Now let f be such an element. Since its support gypgs a
compact subset ¢t there areg > r4 andry > rgsuchthatsupfyf) c J x (0, 7) C €,
whereJ := (rg, r1). In afirst step one gets by partial integration, Fubini's theorem and
Lemma 4 (ii),

(f1(Ao+O) f)

9 9 m2a? 1 9 9 m2
= singf*l—A— ——— — ——sind—+ —— ) fdrdo
/Q f( sing 36 89+sin26>f '

b4 r1 d d 2.2 )
=/ U ;(__A—— a )fgdr:| sing o
0 ro dr dr A
2

nron 1 d . d m
sing £ (—— L sine L + ™) a0 la
+/,0 [/0 f’( Sind d6 d9+sin29>fr } '

T ry m2a2
2/ |:/ fo <|m|(|m|+1)— >f9dr] sind dé.
0 ro A

Q.a
S
@
5
3 D
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Further using

(f11/8%) = /0 ’ [ / rlrzlfelzdr} singdo, (72)
ro
(fIBf) = 4mMa /n Ul - |fg|2drj| sinodo, (73)
0 ro A
2 2\2
(f11) </Q%Sin9|f|2drd0, (74)

we get

(f1(Ao+C +mb/e®+ b/20B ~b/4) )

T " m2a’r —r
>/ / S (Iml(ml+1) — — * o m3r?
0 ro r+ r—r_—

e’ %+ 2Mr + 2))f d ]sin@d@
- r r a o ar
4M2r3_
b4 r1 2
2/ U fe ('m'+m2 (1‘ a_2> (75)
0 p ’
0 +
—mzaz 2 202 2,2 2 .
+4M2r+ -[(r++2Mr+ +a ) —ri(r°+2Mr +a )]) fo dr] sind do > 0.

Hence the positivity ofig + C + m3/g%° + (b/2)B — b?/4 follows. O

7. Discussion

The reduced (in the angular coordingtpwave equation and Klein—Gordon equation
were considered on a Kerr background and in the framewotegemigroup theory.

Each equation was shown to have a well-posed initial value problem, i.e., to have a
unique solution depending continuously on the data. Further, it was proved that the
spectrum of the semigroup’s generator coincides with the spectrum of an operator poly-
nomial whose coefficients can be read off from the equation. In this way the problem
of deciding stability is reduced to a spectral problem. In addition a mathematical basis
is provided for mode consideratioRg:or the wave equation it was shown that the re-
solvent of the semigroup’s generator and the corresponding Green’s functions can be
computed using spheroidal functions. Itis to be expected that, analogous to the case of a
Schwarzschild background, the quasinormal frequencies of the Kerr black hole appear
asresonances, i.e., poles of the analytic continuation of this resolvent. Finally, stability

of the background with respect to reduced massive perturbations was proved for masses
exceeding a given bound (see (69)).

5 To give an example for this claim, say, we would be able to show that the unstable specturornsists
of discrete eigenvalues and that the corresponding eigenstates seperate in the way assumed by Whiting. Then,
via the results of this paper, Whiting’s result [31] on the absence of exponentially growing modes would imply
the stability of the solutions of the wave equation.
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Itisinteresting to compare the last result to earlier results of Detweiler in [4], Damour,
Deruelle, Ruffini in [3] and Zouros, Eardley in [34]. These make the existence of expo-
nentially growing modes for the massive Klein—Gordon equation very plausible. They
found approximate unstable modes in the superradient regime, i.e., with frequencies
satisfyingRe(w) < ma/(2Mr,). These modes become stable when this condition is
violated. The approximations made in these papers lead to further restrictions. It turns
out that the assumption of, both, these restrictions and the bound (69) derived here is
incompatible with the assumption of superradience. Hence the stability result here does
not contradict the results in these papers, but is complementary iffsiarkover it
suggests that the negation of an inequality of the form of (69) (or some equivalent form)
isthe superradient condition. For this it should be noted that with some effort and along
the lines of this paper it may be possible to improve (69), i.e., to decrease the bound.
For this the Poincare—Sobolev inequalities mentioned at the end of Section 3 should be
helpful.

Acknowledgements. The authoris grateful to B. G. Schmidt for pointing his attention to the problem of defining
the quasi-normal frequencies of the Kerr black hole as resonances and to J. L. Friedman, B. G. Schmidt and
B. F. Whiting for valuable discussions.

8. Appendix

The following theorem used in Sect. 5 was first proved by Dunkel in [5] (compare also
[18,1,9)).

Theorem8.Letn € N\ {0}, a € R, I := [a,00) and Iy := (a, 00). In addition
let Ao be a diagonalizable complex n x n matrix and ¢}, ..., e, be a basis of C"
consisting of eigenvectorsof Ag. Further, for each j € {1, ..., n}let i ; betheeigenvalue
corresponding to e;. and P; be the matrix representing the projection of C" onto (C.e;-
with respect to the canonical basis of C". Finally, let A1 be a continuous map from 7
into the complexn x n matrices M (n x n, C) such that A1 is Lebesgueintegrable for
eachj, kel ... n

Then thereisa Ctmap R : Ip — M(n x n, C) with lim,_, « R (t) = O for each
j,kel, ...,nandsuchthatu : Iy > M(n x n, C) defined by

u(t) ==Y _expirjt) - (E + R(®)) - P; (76)

j=1

for all r € I (where E isthen x n unit matrix), mapsinto theinvertiblen x n matrices
and satisfies

u'(t) = (Ao + A1(1)) - u(r) (77)
for all € Ip.
This theorem has the following

Corollary 9. Letn € N\ {0}; a,f0 € Rwitha < fo; p € N; oy := 1for p =0
and o, := p for p % 0. In addition let Ag be a diagonalizable complex n x n matrix
andey, ..., e, beabasisof C" consisting of eigenvectors of Ag. Further, for each j €

6 The author is very grateful to J. L. Friedman for directing his attention to this fact.
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{1,

..., n}let; betheeigenvaluecorresponding to e} and P; bethematrix representing

the projection of C" onto (C.e’/. with respect to the canonical basis of C". Finally, let
A1 be a continuous map from (a, 1) into the complex n x n matrices M (n x n, C) for
which thereisanumber ¢ € (a, 1p) suchthat therestriction of Ay j; to[c, #o) isLebesgue
integrablefor each j, k€ 1,...,n.

ThenthereisaClmap R : (a, 19) — M(n xn, C) with lim;_oR x(t) = Ofor each

Jj,kel ...,nandsuchthat u : (a, t0) - M(n x n, C) defined by

Yi_jto—t)M - (E+R@)-P; forpu=0
u(t) ;= (78)
Y ic1exprj(to—)™*) - (E+ R() - P; forpu #0

for all # € (a, r0) (Where E isthen x n unit matrix), maps into the invertible n x n
matrices and satisfies

, o
u'(t) = (WAO + Al(t)> ~u(1) (79)

for eacht € (a, t9).
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