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Abstract

We first derive all world-sheet action functionals for NSR superstring models
with (1,1) supersymmetry and any number of abelian gauge fields, for gauge trans-
formations of the standard form. Then we prove for these models that the BRST
cohomology groups Hg(s), g < 4 (with the antifields taken into account) are iso-
morphic to those of the corresponding bosonic string models, whose cohomology is
fully known. This implies that the nontrivial global symmetries, Noether currents,
background charges, consistent deformations and candidate gauge anomalies of an
NSR (1,1) superstring model are in one-to-one correspondence with their bosonic
counterparts.
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1 Introduction and conclusion

We present in this paper a BRST cohomological analysis of superstring models in the
NSR formulation [1–3] with local (1,1) supersymmetry [4,5]. The class of models under
study is quite general since it is characterized only by requirements on the field content
and the gauge symmetries. The field content is given by the component fields of three
types of supersymmetry multiplets: the 2d supergravity multiplet, ‘matter multiplets’
containing the ‘target space coordinates’, and abelian gauge field multiplets. The num-
ber of matter multiplets and gauge field multiplets is not fixed, i.e., our results apply
to any target space dimension (1,2, . . . ) and an arbitrary number (0,1, . . . ) of abelian
world-sheet gauge fields. The supersymmetry transformations are obtained from an
analysis of the Bianchi identities of 2d supergravity in presence of abelian gauge fields.

The first part of our analysis is the determination of all local world-sheet actions
compatible with these requirements, using the standard form of the gauge transforma-
tions (the question whether or not these transformations can be nontrivially deformed
is a matter covered by the investigation in the second part of the paper, cf. comments at
the end of section 4.1). This analysis is accomplished by a cohomological computation in
the space of local functions which do not depend on antifields (this is possible because we
use a formulation in which the commutator algebra of the gauge transformations closes
off-shell). Its result has been reported and discussed already in [6]: when abelian gauge
fields are absent, the cohomological analysis reproduces the general superstring action
found already in [7]; in presence of abelian gauge fields, it yields locally supersymmetric
extensions of the purely bosonic actions derived in [8,9] and may be interpreted in terms
of an enlarged target space with one ‘frozen’ extra dimension for each gauge field. In
particular there are locally supersymmetric actions of the Born-Infeld type among these
actions [6].

In the second part of the paper we analyse the local BRST cohomology H(s) for
the models whose world-sheet actions were determined in the first part1. Here and
throughout this paper H(s) denotes the cohomology of the BRST differential in the
space of local functions which neither depend explicitly on the world-sheet coordinates
nor on the world-sheet differentials, but only on the fields, antifields and their derivatives.
This cohomology is the most important one for the models under study because the
other local BRST cohomology groups can be easily derived from it. This is due to the
invariance of the models under world-sheet diffeomorphisms, owing to a general property
of diffeomorphism invariant theories discussed in detail in sections 5 and 6 of [11] (see
also [12–14]).

In particular, H(s) yields directly the cohomology in form-degree 2 of s modulo
the “world-sheet exterior derivative” d. 2 This cohomology is the most relevant one
for physical applications and denoted by Hg,2(s|d), where g specifies the ghost number

1The action is needed to fix the BRST transformations of the antifields. s denotes the BRST differ-
ential in the jet space associated with the fields and antifields [10]. Our analysis is general except for a
very mild assumption (invertibility) on the “target space metric”, see section 6.

2Actually d is defined on the jet space of the fields and antifields [10].
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sector. Cocycles of Hg,2(s|d) are denoted by ωg,2 and the cocycle condition is

sωg,2 + dωg+1,1 = 0, (1.1)

where ωg+1,1 is some local 1-form with ghost number g + 1. ωg,2 is a coboundary in
Hg,2(s|d) if ωg,2 = sωg−1,2 + dωg,1 for some local forms ωg−1,2 and ωg,1. Hg,2(s|d)
is related to H(s) through the descent equations as explained in [11–14]. The phys-
ically interesting cohomology groups Hg,2(s|d) are those with ghost numbers g < 2:
H−1,2(s|d) yields the nontrivial Noether currents and global symmetries [15], H0,2(s|d)
and H1,2(s|d) determine the consistent deformations [16], background charges [17] and
candidate gauge anomalies (see, e.g., [18]). The corresponding cohomology groups of s
are Hg(s) with g < 4. They are the objects of our second main result: we shall prove
that these cohomology groups are isomorphic to their counterparts in the correspond-
ing bosonic string models3 [the bosonic model corresponding to a particular superstring
model is obtained from the latter simply by setting all fermions to zero in the world-
sheet action]. Furthermore, the correspondence is very explicit: the representatives of
the s-cohomology of a superstring model are simply extensions of their “bosonic” coun-
terparts, i.e., they contain the representatives of the s-cohomology of the corresponding
bosonic string model and complete them to s-cocycles of the superstring model [anal-
ogously to the superstring action itself, which contains the bosonic string action and
completes it to a locally supersymmetric one].

This result provides a complete characterization of the cohomology groups Hg(s),
g < 4 because the cohomology H(s) for the bosonic string models has been completely
determined in [19] (ordinary bosonic strings) and [9] (bosonic strings with world-sheet
gauge fields). Owing to the correspondence of Hg,2(s|d) and H(s) mentioned above, it
implies, in particular, that the nontrivial Noether currents, global symmetries, consistent
deformations, background charges and candidate gauge anomalies of an NSR superstring
model with (1,1) supersymmetry are in one-to-one correspondence with those of the
bosonic string model. The results for the bosonic models were derived and discussed in
detail in [8, 9, 17,19,20]. We shall not repeat or summarize them here.

We find the result quite remarkable and surprising since it means that the local (1,1)
supersymmetry of the models under study has no effect on the structure of the cohomol-
ogy at all. We note that our analysis and result applies analogously to heterotic strings
with local (1,0) supersymmetry (by switching off one of the supersymmetries). However,
we do not expect that it extends to superstrings with two or more local supersymmetries
of the same chirality, such as heterotic strings with local (2,0) supersymmetry. These
supersymmetries restrict already the world-sheet action to special backgrounds [21–23].
Accordingly, we expect that the local BRST cohomology of such superstring models is
“smaller” than the one for corresponding bosonic strings.

The paper is organized as follows. In section 2 we specify the field content and the
gauge and BRST transformations of the fields. In section 3 we construct field vari-
ables (jet space coordinates) which are well suited for the cohomological analysis. This

3We believe that the isomorphism extends to all higher ghost number sectors as well since most parts
of our proof (in fact, everything except for the case-by-case study in appendix B) hold for all ghost
numbers.
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involves the super-Beltrami parametrization for the gravitational multiplet and a con-
struction of superconformal tensor fields for the matter and gauge multiplets. In section
4 we determine the most general action for the field content and gauge transforma-
tions introduced before by computing H2(s) in the space of antifield independent local
functions. This completes the first part of our analysis. In section 5 we introduce the
antifields, give their BRST transformations and extend the superconformal tensor cal-
culus by constructing superconformal antifield variables. The next two sections contain
the derivation of our second result: in section 6 we define and analyse an on-shell BRST
cohomology H(σ); in section 7 we show that Hg(σ) is isomorphic to Hg(s) and to the
cohomology of the corresponding bosonic string model when g < 4. Some details of the
analysis of sections 6 and 7 are collected in the appendices A and B. The remaining
appendices give a short summary of the derivation of the gauge transformations from
the supergravity Bianchi identities and contain a collection of the s-transformations of
the covariant (= superconformal) field and antifield variables.

2 Field content and gauge symmetries

The field content of the models we are going to study is given by the supergravity
multiplet consisting of the vielbein e a

m , the gravitino χαm and an auxiliary scalar field
S.4 Furthermore we consider a set of scalar multipets {XM , ψMα , F

M} corresponding to
the string “target space coordinates” and their superpartners and a set of abelian gauge
multiplets {Aim, λiα, φi}. On Minkowskian world-sheets all fields are real and the fermions
are Majorana-Weyl spinors. The number of scalar multiplets and gauge multiplets is not
specified, i.e. our approach covers any number of such fields. As gauge symmetries we
impose world-sheet diffeomorphisms, local 2d Lorentz transformations, Weyl and super-
Weyl transformations and of course local (1,1) world-sheet supersymmetry. Furthermore
we require invariance under abelian gauge transformations of the Aim and under arbitrary
local shifts of the auxiliary field S. The gauge symmetries entail the corresponding ghost
fields, which fixes the field content to

ΦA = {e a
m , χ

α
m , S,X

M , ψMα , F
M , Aim, λ

i
α, φ

i, ξm, ξα, Cab, CW , ηα,W, ci},

where ξm denote the world sheet diffeomorphism ghosts, ξα are the supersymmetry
ghosts and Cab is the Lorentz ghost. CW and ηα are the Weyl and super-Weyl ghosts,
respectively. ci are the ghosts associated with the U(1) transformations of the gauge
fields and W denotes the ghost corresponding to the local shifts of the auxiliary field S.
The gauge transformation of the supergravity multiplet written as BRST transforma-
tions are

se a
m = ξn∂ne

a
m + (∂mξ

n)e a
n − 2iξαχ β

m (γaC)αβ + C a
b e

b
m + CW e am

sχ α
m = ξn∂nχ

α
m + (∂mξ

n)χ α
n + ∇mξ

α − 1
4 ξ

βe a
mS(γa)β

α + 1
2 C

Wχ α
m

+iηβ(γm) α
β − 1

4 C
abχ β

m εab(γ∗)
α
β

sS = ξn∂nS − 4ξγ(γ∗C)γαε
nm∇nχ

α
m + i ξγ(γmC)γαχ

α
m S − CWS +W, (2.1)

4m,a, α denote 2d world-sheet, Lorentz and spinor indices, respectively.
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where Cαβ is the charge conjugation matrix satisfying −(γa)T = C−1(γa)C. γ∗ is
defined through γaγb = ηab1l + εabγ∗ and ε01 = ε10 = 1. ∇m denotes the Lorentz
covariant derivative

∇m = ∂m − 1
2 ω

ab
m lab

in terms of the Lorentz generator lab and the spin connection

ω ab
m = EanEbk(ω[mn]k − ω[nk]m + ω[km]n)

ω[mn]k = ekd∂[ne
d
m] − iχnγkχm, E m

a e bm = δ b
a . (2.2)

The BRST transformations of the scalar multiplets read

sXM = ξm∂mX
M + ξαψMα

sψMα = ξm∂mψ
M
α − iξβ(γmC)βα(∂mX

M − χ γ
mψ

M
γ ) + ξβCβαF

M

+1
4 C

abεab(γ∗)
β
α ψ

M
β − 1

2 C
WψMα

sFM = ξm∂mF
M + ξα(γm) β

α {∇mψ
M
β + iχ γ

m (γnC)γβ(∂nX
M − χ δ

n ψ
M
δ )

−χ γ
mCγβF

M} − CWFM . (2.3)

The BRST transformations of the U(1) multiplets are

sφi = ξn∂nφ
i + ξα(γ∗)

β
α λ

i
β − CWφi

sλiβ = ξn∂nλ
i
β + ξα

(

i(γ∗C)αβε
mn(∂mA

i
n + χmγnλ

i − iχnγ∗Cχmφ
i)

−i(γ∗γ
mC)αβ(∂mφ

i − χmγ∗λ
i) + i(γ∗C)αβSφ

i
)

+1
4 C

abεab(γ∗)
γ
β λ

i
γ + 2ηα(γ∗C)αβφ

i − 3
2 C

Wλiβ

sAim = ξn∂nA
i
m + (∂mξ

n)Ain + ∂mc
i

−2i ξαχ β
m (γ∗C)βαφ

i − ξα(γm) βα λ
i
β . (2.4)

These transformations were obtained by analyzing the 2d supergravity algebra in pres-
ence of the scalar matter and gauge multiplets [24] analogously to the superspace analysis
of [25]. A short summary of the analysis is given in appendix C. In the supergravity
sector we used the constraints

Tαβ
a = 2i(γaC)αβ, Tab

c = Tαβ
γ = 0 (2.5)

and in the U(1) sector

F iαβ = 2i(γ∗C)αβφ
i. (2.6)
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All constraints are conventional, i.e., can be achieved by redefinitions of the connections.
The transformations of the ghosts are such that the BRST differential s squares to zero,

sξn = ξm∂mξ
n + iξαξβ(γnC)αβ

sξα = ξn∂nξ
α − iξγξβ(γmC)βγχ

α
m − 1

4 C
abξβεab(γ∗)

α
β + 1

2 C
W ξα

sCab = ξm∂mC
ab − i

4 ξ
αξβS(γ∗C)αβε

ab − iξαξβ(γmC)βαω
ab
m − 2ηβξα(γ∗C)αβε

ab

sCW = ξn∂nC
W + 2ηβξβ

sηα = ξn∂nη
α − 1

4 C
abηβεab(γ∗)

α
β + iξβ(γn) αβ

(

1
2 ∂nC

W − ηγ(χnC)γ
)

−1
2 C

Wηα + ξαW

sW = ξn∂nW − 4iξβ(γmC)βα
(

∇mη
α − 1

4 χ
α
mW − i

2 χ
γ
m (γn) α

γ (∂nC
W )

)

−4ξβχ α
m (γmγnC)αβη

γ(χnC)γ − CWW

sci = ξm∂mc
i + iξαξβ(γ∗C)αβφ

i − iξαξβ(γmC)αβA
i
m. (2.7)

We remark that the use of Weyl, super-Weyl and Lorentz transformations, as well as
the shift symmetry associated with the auxiliary field S are artefacts of the formulation
and disappear in an equivalent formulation based on a Beltrami parametrization of the
world-sheet zweibein (see sections 3 and 4). Of course we could have used the Beltrami
approach from the very beginning, but we decided to start from the more familiar
formulation presented above.

3 Superconformal tensor calculus

The first part of our cohomological analysis consists in the construction of a suitable
“basis” for the fields and their derivatives (more precisely: suitable coordinates of the
jet space associated with the fields). The goal is to find a basis {uℓ, vℓ, wI} with as
many s-doublets (uℓ, vℓ) as possible and complementary (local) variables wI such that
swI can be expressed solely in terms of the w’s, i.e.,

suℓ = vℓ, swI = rI(w). (3.1)

On general grounds, such a basis is related to a tensor calculus [14, 26, 27]. In the
present case the tensor calculus is a superconformal one, generalizing the conformal
tensor calculus in bosonic string models found in [19] (see also [9]). The w’s with ghost
number 1 are specific ghost variables corresponding to the superconformal algebra, the
w’s with ghost number 0 are “superconformal tensor fields” on which this algebra is
represented.

3.1 Super-Beltrami parametrization

The superconformal structure of the models under consideration is related to the super-
symmetric generalization of the so-called Beltrami parametrization [28, 29]. Beltrami
differentials parametrize conformal classes of 2d metrics, and this makes them natural
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quantities to be used as basic variables in the present context. Since Beltrami differen-
tials change only under world-sheet reparametrizations but not under Weyl or Lorentz
transformations, their use leads to a simpler formulation of the models under study (cf.
remarks at the end of section 2, and in section 4). In the following we choose a Euclidean
notation and parametrize the worldsheet with independent variables z and z̄ rather than
with light cone coordinates, because this simplifies the notation and avoids some factors
of i.5

As it is not hard to guess the supersymmetric generalization of the Beltrami
parametrization involves in addition to the bosonic Beltrami differential µ a fermionic
partner α, the Beltramino. The starting point is the parametrization of the vielbein

ez = (dz + dz̄µ z
z̄ )e z

z

ez̄ = (dz̄ + dzµ z̄
z )e z̄

z̄ . (3.2)

The coefficients µ z
z̄ and µ z̄

z are the Beltrami differentials

µ := µ z
z̄ =

e zz̄
e zz

,

µ̄ := µ z̄
z =

e z̄z
e z̄z̄

, (3.3)

whereas the factors e zz and e z̄z̄ are referred to as conformal factors. One should note that
the Beltrami differentials transform under diffeomorphisms but do not change under
Weyl or Lorentz transformations. The latter “structure group transformations” are
carried solely by the conformal factors which form s-doublets (uℓ, vℓ) with ghost variables
substituting (in the new basis) for the Lorentz ghost and the Weyl ghost.

The fermionic superpartners of the Beltrami differentials are suitable combinations
of the gravitino fields

α :=
√

8
e z
z

(

χ 2
z̄ − µχ 2

z

)

ᾱ :=
√

8
e z̄
z̄

(

χ 1
z − µ̄χ 1

z̄

)

. (3.4)

The Beltraminos are also invariant under structure group transformations. Especially
they do not change under super-Weyl transformations. Again one can find comple-
mentary combinations of the gravitinos forming s-doublets with ghost variables that
substitute for the super-Weyl ghosts. The fact that Weyl, Lorentz and super-Weyl
ghosts (and not just their derivatives) occur in s-doublets as we just described reflects
that Weyl, Lorentz and super-Weyl invariance are artefacts of the formulation.

The Beltrami parametrization involves also a redefinition of the diffeomorphism
ghosts, sometimes called the Beltrami ghost fields. This again has to be supplemented

5Note that reality conditions of spinors are subtle after Wick rotation to Euclidean space: In our
left-right symmetric case of (1,1) supersymmetry we could define (ψ)∗ = ψ̄ and work with manifestly
real actions, but obviously this would not be possible for heterotic theories. This is, however, irrelevant
in our algebraic context.
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with a redefinition of the supersymmetry ghosts. The new ghost variables, which replace
the diffeomorphism ghosts ξz and ξz̄ and the supersymmetry ghosts ξ1 and ξ2 are

η := (ξz + µξz̄)

η̄ := (ξz̄ + µ̄ξz)

ε := 1
2 (ξ̂2 + ξz̄α), ξ̂2 :=

√

8
e z
z
ξ2

ε̄ := 1
2 (ξ̂1 + ξzᾱ), ξ̂1 :=

√

8
e z̄
z̄
ξ1 (3.5)

In terms of the new ghost variables the BRST transformations of “right-moving” and
“left-moving” quantities decouple from each other [28],

sµ =
(

∂̄ − µ∂ + (∂µ)
)

η + αε

sα =
(

2∂̄ − 2µ∂ + (∂µ)
)

ε+ η∂α + 1
2 α∂η

sη = η∂η − εε

sε = η∂ε− 1
2 ε∂η, (3.6)

with analogous transformations for the right movers.

3.2 Superconformal ghost variables and algebra

We have now paved the road for the construction of field variables {uℓ, vℓ, wI} fulfilling
(3.1). In fact we have already identified some s-doublets (uℓ, vℓ), namely the u’s given by
the conformal factors and their fermionic counterparts and the corresponding v’s given
by ghost fields substituting in the new basis for the Weyl, Lorentz and super-Weyl ghosts.
Furthermore, the field S obviously forms an s-doublet with a ghost field substituting
for W . The derivatives of these u’s and v’s form s-doublets as well. The Beltrami
differentials µ, µ̄ and their derivatives are u’s too. From (3.6) one observes that sµ
and sµ̄ contain derivatives ∂̄η and ∂η̄ and of the reparametrization ghosts, respectively.
Taking derivatives of these transformations, one sees that the m-th derivatives of the
Beltrami differentials pair off with ghost variables that substitute in the new basis for
all (m+ 1)-th derivatives of the reparametrization ghosts except for ∂m+1η and ∂̄m+1η̄.
Analogously, the s-transformations of the Beltraminos contain derivatives ∂̄ε and ∂ε̄ of
the supersymmetry ghosts. Thus the m-th derivatives of α and ᾱ pair off with ghost
variables substituting for all (m + 1)-th derivatives of ε and ε̄ except for ∂m+1ε and
∂̄m+1ε̄. We introduce the following notation for those ghost variables which do not sit
in s-doublets:

{CN} = {ηp, η̄p, εp+
1
2 , ε̄p+

1
2 : p = −1, 0, 1, . . . }, (3.7)
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with

ηp =
1

(p+ 1)!
∂p+1η

η̄p =
1

(p+ 1)!
∂̄p+1η̄

εp+
1
2 =

1

(p+ 1)!
∂p+1ε

ε̄p+
1
2 =

1

(p+ 1)!
∂̄p+1ε̄. (3.8)

These ghost variables fulfill the requirement imposed in (3.1) on w’s. Indeed, using
(3.6), one easily computes their s-transformations:

sηp = −1
2 η

qηrf p
rq + 1

2 ε
aεbf p

ab

= 1
2 η

qηr(r − q)δpr+q − 1
2 ε

aεb2δpa+b (3.9)

sεa = −1
2 η

pεcf a
cp + 1

2 ε
cηpf a

pc

= −εcηp
(p

2
− c

)

δap+c. (3.10)

The f ’s which occur in these transformations are the structure constants of a graded
commutator algebra of operators ∆N to be represented on tensor fields constructed of
the component fields of the matter and U(1) multiplets,

{∆N} = {Lp, L̄p, Gp+1
2
, Ḡ

p+
1
2

: p = −1, 0, 1, . . . }. (3.11)

This graded commutator algebra is nothing but the NS superconformal algebra

[Lp, Lq] = (p − q)Lp+q, {Ga, Gb} = 2La+b, [Lp, Ga] =
(p

2
− a

)

Gp+a, (3.12)

with the analogous formulas for the L̄’s and Ḡ’s and the usual property that the holo-
morphic and antiholomorphic generators (anti-)commute,

[Lp, L̄q] = 0, {Ga, Ḡb} = 0,

[Lp, Ḡa] = 0, [L̄p, Ga] = 0.

The representation of this algebra on superconformal tensor fields, and the explicit
construction of these tensor fields, will be given in the following subsection.

3.3 Superconformal tensor fields

We shall now summarize the representation of the algebra (3.12) on superconformal ten-
sor fields constructed of the fields and their derivatives (the representation on antifields
is discussed in section 5) such that the BRST transformation of these tensor fields reads6

sT =
∑

p≥−1

(

ηpLp + η̄pL̄p + εp+
1
2 G

p+
1
2

+ ε̄p+
1
2 Ḡ

p+
1
2

)

T . (3.13)

6T stands for any of these superconformal tensor fields; η’s and ε’s are the ghost variables (3.8).
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The superconformal tensor fields corresponding to the fields XM , ψMα , FM and their
derivatives are denoted by XM

m,n, ψ
M
m,n, ψ̄

M
m,n, F

M
m,n (m,n ∈ {0, 1, 2, . . . }). Here the

subscripts m,n denote the number of operations L−1 and L̄−1 acting on XM
0,0, ψ

M
0,0, ψ̄

M
0,0,

FM0,0, respectively (L−1 and L̄−1 will be identified with covariant derivatives, see below),

XM
0,0 ≡ XM , ψM0,0 ≡ (e z

z /2)
1
2 ψM2 , ψ̄M0,0 ≡ (e z̄

z̄ /2)
1
2 ψM1 , FM0,0 ≡ 1

2 (e z
z )

1
2 (e z̄

z̄ )
1
2 FM ,

XM
m,n = (L−1)

m(L̄−1)
nXM

0,0 (m,n ∈ {0, 1, 2, . . . }) etc.

The representation on these tensor fields can be inductively deduced from the algebra
(3.12) using that all operations Lm, L̄m, Ga, Ḡa vanish on XM

0,0 except for L−1, L̄−1,

G−1/2 and Ḡ−1/2, with G−1/2X
M
0,0 = ψM0,0 and Ḡ−1/2X

M
0,0 = ψ̄M0,0 (as can be read off from

sXM ). This gives on XM
m,n:

LpX
M
m,n =

{

m!
(m−p−1)!X

M
m−p,n for p < m

0 for p ≥ m

L̄qX
M
m,n =

{

n!
(n−q−1)!X

M
m,n−q for q < n

0 for q ≥ n

G
p+

1
2
XM
m,n =

{

m!
(m−p−1)!ψ

M
m−p−1,n for p < m

0 for p ≥ m

Ḡ
q+

1
2
XM
m,n =

{

n!
(n−q−1)! ψ̄

M
m,n−q−1 for q < n

0 for q ≥ n

The action on the other fields is then easily obtained using

[Lp, G
−

1
2

] = 1
2 (p+ 1)G

p−
1
2
, {G

p+
1
2
, G

−
1
2
} = 2Lp

and the analogous formulas for L̄ and Ḡ in (3.12). One obtains

Lpψ
M
m,n =

{

m!
(m−p)!

(

m− p+ 1
2 (p+ 1)

)

ψMm−p,n for p ≤ m

0 for p > m

G
p+

1
2
ψMm,n =

{

m!
(m−p−1)!X

M
m−p,n for p < m

0 for p ≥ m

Ḡ
q+

1
2
ψMm,n =

{

− n!
(n−q−1)!F

M
m,n−q−1 for q < n

0 for q ≥ n

L̄qψ
M
m,n =

{

n!
(n−q−1)!ψ

M
m,n−q for q < n

0 for q ≥ n

LpF
M
m,n =

{

m!
(m−p)!

(

m− p+ 1
2 (p+ 1)

)

FMm−p,n for p ≤ m

0 for p > m

G
p+

1
2
FMm,n =

{

m!
(m−p−1)! ψ̄

M
m−p,n for p < m

0 for p ≥ m
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and analogous formulas for L’s, G’s, L̄’s and Ḡ’s acting on ψ̄Mm,n, and L̄’s and Ḡ’s acting

on FMm,n.
The relation to the fields and their derivatives is established by identifying the op-

erations L−1 and L̄−1 with covariant derivatives D and D̄ along the lines of [14],

L−1 ≡ D =
1

1 − µµ̄

[

∂ − µ̄∂̄ −
∑

p≥0

(M̄pL̄p − µ̄MpLp) −
∑

a

(ĀaḠa − µ̄AaGa)
]

L̄−1 ≡ D̄ =
1

1 − µµ̄

[

∂̄ − µ∂ −
∑

p≥0

(MpLp − µM̄pL̄p) −
∑

a

(AaGa − µĀaḠa)
]

(3.14)

where

Mp = 1
(p+1)! ∂

p+1µ, M̄p = 1
(p+1)! ∂̄

p+1µ̄,

Ap+
1
2 = 1

(p+1)!2 ∂
p+1α, Āp+

1
2 = 1

(p+1)!2 ∂̄
p+1ᾱ.

One readily checks that these formulas result in local expressions for the superconformal
tensor fields and their s-transformations. Introducing the following notation for the
lowest weight superconformal matter fields

XM ≡ XM
0,0 , ψM ≡ ψM0,0 , ψ̄M ≡ ψ̄M0,0 , F̂M ≡ FM0,0 , (3.15)

one gets in particular the following supercovariant derivatives

DXM =
1

1 − µµ̄

[

(∂ − µ̄∂̄)XM − 1
2 ᾱψ̄

M + 1
2 µ̄αψ

M
]

DψM =
1

1 − µµ̄

[

(∂ − µ̄∂̄)ψM + 1
2 µ̄(∂µ)ψM + 1

2 ᾱF̂
M + 1

2 µ̄αDX
M

]

D̄ψM =
1

1 − µµ̄

[

(∂̄ − µ∂)ψM − 1
2 (∂µ)ψM − 1

2 αDX
M − 1

2 µᾱF̂
M

]

(3.16)

and analogous expressions for D̄XM , D̄ψ̄M and Dψ̄M . We do not spell out higher
order covariant derivatives explicitly because it turns out that they do not contribute
nontrivially to the cohomology. The BRST transformations of the superconformal tensor
fields are summarized in appendix D.

The construction of the superconformal tensor fields arising from the gauge multi-
plets is similar, once one has identified the suitable ghost variables and the lowest order
tensor fields. The gauge fields Aim and their symmetrized derivatives ∂(m1

. . . ∂mk
Aimk+1)

(k = 1, 2, . . . ) form s-doublets with ghost variables that substitute for all the derivatives
of the ghosts ci. Therefore one expects that only the undifferentiated ghosts ci give rise
to w-variables. Promising candidates for these w-variables are ghost variables Ci of the
same form as in the purely bosonic case [9],

Ci = ci + ξmAim . (3.17)
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The s-transformations of the gauge fields, written in terms of Ci, and of the Ci them-
selves read

sAim = ξn(∂nA
i
m − ∂mA

i
n) + ∂mC

i − ξαχ β
mF

i
αβ − ξαe a

mF
i
aα

sCi = ξmξn(∂mA
i
n − ∂nA

i
m) + 1

2 ξ
αξβF iαβ + ξmξαχ β

mF
i
αβ + ξmξαF imα (3.18)

where we used notation of appendix C. Since we expect Ci to count among the w’s, its
s-transformation should involve only w’s again, see (3.1). This suggests a strategy to
determine the superconformal tensor fields corresponding to the undifferentiated fields
φi, λiα and to the field strengths of Aim: one tries to rewrite sCi in (3.18) in terms of the
ghost variables (3.8) and to read off from the result the sought superconformal tensor
fields. This strategy turns out to be successful; one obtains

sCi = ηη̄F i0,0 + ηε̄λi0,0 + η̄ελ̄i0,0 + εε̄φi0,0

where

φi0,0 =
√

e zz e
z̄
z̄ φ

i

λi0,0 =

√

e z̄
z̄

2

(

−e z
z λ

i
2 + χ2

zφ
i
)

λ̄i0,0 =

√

e z
z

2

(

e z̄
z̄ λ

i
1 + χ1

z̄φ
i
)

F i0,0 =
1

1 − µµ̄

(

1
2 ε

mn(∂mA
i
n − ∂nA

i
m) + 1

2 µᾱλ
i − 1

2 µ̄αλ̄
i − 1

4 αᾱφ
i
)

. (3.19)

An explicit computation shows that the s-transformations of these quantities are indeed
of the desired form (3.13), with

λi0,0 = G
−

1
2
φi0,0, λ̄i = Ḡ

−
1
2
φi0,0, F i0,0 = Ḡ

−
1
2
G

−
1
2
φi0,0. (3.20)

It is now straightforward to construct, along the previous lines, variables φim,n, λ
i
m,n,

λ̄im,n, F
i
m,n on which the algebra (3.12) is represented and (3.13) and (3.14) hold. We do

not spell out these tensor fields (with m or n different from 0) explicitly because it turns
out that they do not contribute nontrivially to the cohomology. The resulting BRST
transformations are summarized in appendix D too.

We introduce the following notation for the lowest order (i.e. lowest weight, see
below) superconformal tensor fields arising from the gauge multiplet:

φ̂i ≡ φi0,0 , λi ≡ λi0,0 , λ̄i ≡ λ̄i0,0 , F i ≡ F i0,0 . (3.21)

Again tensor fields of higher order will be denoted by Dφ̂i, D̄φ̂i, DD̄φ̂i etc. but as
already stated above their explicit form will not be needed.

4 Action

We shall now determine the most general action for the field content and gauge transfor-
mations specified in section 2. The action has vanishing ghost number and is independent
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of antifields. Furthermore the requirement that the action be gauge invariant translates
into BRST invariance up to surface terms. The integrands of the world-sheet actions we
are looking for are thus the antifield independent solutions ω0,2 of equation (1.1). They
are related through the descent equations to the solutions of

sω = 0, ω 6= sω̂,

gh (ω) = 2, agh (ω) = agh (ω̂) = 0 (4.1)

where gh is the ghost number and agh is the antifield number (=“antighost number”,
see section 5 for the definition). In the previous section we have constructed a basis
for the fields and their derivatives satisfying the requirements of (3.1). By standard
arguments this implies that ω and ω̂ can be assumed to depend only on the wI , i.e., on
superconformal tensor and ghost fields introduced in section 3.7 Furthermore we can
restrict the investigation to functions ω and ω̂ with vanishing “conformal weights” by
an argument used already in [9, 19]: we extend the definition of L0 and L̄0 to all w’s
(including the ghost variables) by

{

s ,
∂

∂(∂η)

}

wI = L0w
I ,

{

s ,
∂

∂(∂̄η̄)

}

wI = L̄0 w
I . (4.2)

Hence, in the space of local functions of the w’s the derivatives with respect to ∂η and
∂̄η̄ are contracting homotopies for L0 and L̄0, respectively, and the cohomology can be
nontrivial only in the intersection of the kernels of L0 and L̄0.

All w’s are eigenfunctions of L0 and L̄0 with the eigenvalues being their “confor-
mal weights”. The only wI with negative conformal weights are the undifferentiated
diffeomorphism ghosts η, η̄ and the undifferentiated supersymmetry ghosts ε, ε̄; their
conformal weights are (−1, 0), (0,−1), (−1/2, 0) and (0,−1/2), respectively [here (a, b)
are the eigenvalues of (L0, L̄0)]. The only superconformal tensor fields with vanishing
conformal weights are the undifferentiated XM . These properties simplify the analysis
enormously.

Our strategy for finding the solutions to (4.1) will be based on an expansion in
supersymmetry ghosts

ω =
k̄

∑

k=0

ωk , (Nε +Nε̄)ωk = kωk

s = s2 + s1 + s0 , [Nε +Nε̄, sk] = ksk, (4.3)

where we have introduced the counting operator Nε for the susy ghost ε and all its
derivatives

Nε =
∑

n≥0

(∂nε)
∂

∂(∂nε)
(4.4)

7The u’s and v’s contribute only “topologically” via the de Rham cohomology of the zweibein manifold
to the s-cohomology, cf. theorem 5.1 of [11]. In particular they do not contribute nontrivially to the
solutions of (4.1).
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and analogously Nε̄ counts ε̄ and derivatives thereof.8 One observes that s2 is the
simplest piece in the above decomposition of s. It acts nontrivially only on the
reparametrization ghosts η, η̄, derivatives thereof and on Ci,

s2η = −εε , s2η̄ = −ε̄ε̄ , s2C
i = εε̄φ̂i .

We shall base the investigation on the cohomology of s2. The cocycle condition sω = 0
decomposes into

s2ωk̄ = 0, s1ωk̄ + s2ωk̄−1 = 0, . . . (4.5)

Due to the requirement of ghost number 2 and antifield number 0 in (4.1), one is left
with 0 ≤ k̄ ≤ 2. The three possible values for k̄ are now analysed case by case.
k̄=0: The general form of ω0̄ according to the condition of vanishing conformal weight
is

ω0̄ = ηη̄A(1,1) + η∂ηA(1,0) + η̄∂̄η̄A(0,1) + η∂̄η̄B(1,0) + η̄∂ηB(0,1)

+η∂2ηA(0,0) + η̄∂̄2η̄Ā(0,0) + ∂η∂̄η̄B(0,0) + CiCjDij(0,0)

+ηCiDi(1,0) + η̄CiDi(0,1) + ∂ηCiDi(0,0) + ∂̄η̄CiD̄i(0,0),

where the A’s, B’s and D’s do not depend on the ghosts and the subscripts (m,n)
indicate their conformal weights. It is easy to verify explicitly that

s2ω0̄ = 0 ⇔ ω0̄ = 0. (4.6)

k̄=1. The general form of ω1̄ is

ω1̄ = ηεA(3/2,0) + η̄ε̄A(0,3/2) + ηε̄A(1,1/2) + η̄εA(1/2,1)

+η∂εA(1/2,0) + η̄∂̄ε̄A(0,1/2) + ε∂ηB(1/2,0) + ε̄∂̄η̄B(0,1/2)

+ε∂̄η̄C(1/2,0) + ε̄∂ηC(0,1/2) + εCiDi(1/2,0) + ε̄CiDi(0,1/2),

where again the A’s, B’s and D’s do not depend on the ghosts and their conformal
weights are indicated in brackets. A straightforward computation shows that s2ω1̄ = 0
imposes

A(3/2,0) = A(0,3/2) = C(1/2,0) = C(0,1/2) = 0

A(1,1/2) = φ̂iDi(1/2,0) , A(1/2,1) = φ̂iDi(0,1/2)

A(1/2,0) = −2B(1/2,0) , A(0,1/2) = −2B(0,1/2)

The conformal weights (1/2, 0) and (0, 1/2) imply

Di(1/2,0) = ψMDMi(X), Di(0,1/2) = ψ̄M D̄Mi(X)

B(1/2,0) = ψMBM (X), B(0,1/2) = ψ̄M B̄M (X)
8We note that the expansion (4.3) holds because we are studying the antifield independent cohomology

here. The analogous expansion in presence of antifields is more involved; in fact, it can even involve
infinitely many terms. Therefore the strategy applied here to determine the action is not practicable in
the same way for analysing the full (antifield dependent) cohomology later.
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where we indicated that the remaining B’s and D’s are arbitrary functions of the X’s.
Hence, we get

ω1̄ = (ηε̄φ̂i + εCi)ψMDMi(X) + (η̄εφ̂i + ε̄Ci)ψ̄M D̄Mi(X)

+(ε∂η − 2η∂ε)ψMBM (X) + (ε̄∂̄η̄ − 2η̄∂̄ε̄)ψ̄M B̄M (X).

The second equation (4.5) requires that s1ω1̄ be s2-exact. This imposes

BM = B̄M = 0, DMi = D̄Mi , ∂N D̄iM = ∂MDiN

⇔ BM = B̄M = 0, DMi = D̄Mi = ∂MDi(X)

where we have introduced the notation

∂M =
∂

∂XM
.

Furthermore, the second equation (4.5) uniquely determines the function ω0, which
corresponds to ω1̄ [the uniqueness follows from (4.6)]. It turns out that the other equa-
tions (4.5) do not impose further conditions in this case, but are automatically fulfilled.
Altogether we find

ω1̄ = [(ηε̄φ̂i + εCi)ψM + (η̄εφ̂i + ε̄Ci)ψ̄M ]∂MDi(X) (4.7)

ω0 = −ηη̄[ψM λ̄i − ψ̄Mλi + F̂M φ̂i + ψM ψ̄N φ̂i∂N ]∂MDi(X)

+Ci(ηDXM + η̄D̄XM )∂MDi(X) (4.8)

Using the freedom to add a coboundary we obtain by adding s[CiDi(X)] to ω1̄ +ω0 the
equivalent solution

ηη̄F iDi(X) − ηη̄(ψM λ̄i − ψ̄Mλi + F̂M φ̂i + ψM ψ̄N φ̂i∂N )∂MDi(X)

+ηε̄(λi + φ̂iψM∂M )Di(X) + η̄ε(λ̄i + φ̂iψ̄M∂M )Di(X) + εε̄φ̂iDi(X). (4.9)

k̄=2. The general form of ω2̄ is given by

ω2̄ = εεA(1,0) + ε̄ε̄A(0,1) + εε̄A(1/2,1/2) + ε∂εB(X) + ε̄∂̄ε̄B̄(X),

where due to the indicated conformal weights one has

A(1,0) = DXMAM (X) + ψMψNAMN (X)

A(0,1) = D̄XM ĀM (X) + ψ̄M ψ̄N ĀMN (X)

A(1/2,1/2) = F̂MHM(X) + φ̂iHi(X) + ψM ψ̄NHMN (X)

We can simplify ω2̄ using the freedom to subtract s-exact pieces from an s-cocycle. In
particular, we can therefore neglect pieces in ω2̄ which are of the form s1ω̂1 + s2ω̂0 (i.e.
we consider ω′ = ω − s(ω̂1 + ω̂0) where ω is an s-cocycle arising from ω2̄). Choosing

ω̂1 = 1
2 (ε̄ψ̄M − εψM )HM (X)
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we get

s1ω̂1 = εε̄F̂MHM(X) + 1
2 (ε̄ε̄D̄XM − εεDXM )HM (X)

−1
2 (ε̄ψ̄M − εψM )(ε̄ψ̄N + εψN )∂NHM (X).

This shows that by subtracting s1ω̂1 from ω2̄, we can remove the piece F̂MHM(X) from
A(1/2,1/2), thereby redefining A(1,0), A(0,1) and HMN(X). Furthermore, we have

εεA(1,0) + ε̄ε̄A(0,1) + εε̄φ̂iHi(X) + ε∂εB(X) + ε̄∂̄ε̄B̄(X) = s2ω̂0,

ω̂0 = −ηA(1,0) − η̄A(0,1) + CiHi(X) − 1
2 ∂ηB(X) − 1

2 ∂̄η̄B̄(X).

Hence, we can also remove the pieces containing A(1,0), A(0,1), Hi(X), B(X) and B̄(X)
from ω2̄. Without loss of generality, we can thus restrict the investigation of the case
k̄ = 2 to

ω2̄ = εε̄ψM ψ̄NHMN (X). (4.10)

Obviously ω2̄ satisfies the first eqation (4.5), since it does not involve η, η̄ or Ci. One
now has to analyze the remaining equations (4.5). It is straightforward to compute s1ω2̄

and to verify that the second equation (4.5) is solved by

ω1 = ηε̄[DXM ψ̄N − ψM F̂N + ψM ψ̄NψK∂K ]HMN (X)

+η̄ε[−ψM D̄XN − F̂M ψ̄N + ψM ψ̄N ψ̄K∂K ]HMN (X). (4.11)

The third eq. (4.5) requires that s0ω2̄ + s1ω1 be s2-exact. This turns out to be the case
(for arbitrary HMN) and determines ω0. One finds

ω0 = ηη̄Ω,

Ω = (DXM D̄XN + F̂M F̂N + Dψ̄M ψ̄N − ψM D̄ψN )HMN (X)

−(DXM ψ̄N ψ̄K + D̄XNψMψK)∂KHMN (X)

+(F̂MψKψ̄N − F̂KψM ψ̄N + F̂NψM ψ̄K)∂KHMN(X)

+ψMψKψ̄N ψ̄L∂K∂LHMN(X). (4.12)

The remaining two equations (4.5) are also satisfied. The functions HMN (X) are com-
pletely arbitrary. The symmetrized part H(MN)(X) and the antisymmetrized part
H[MN ](X) give rise to the “target space metric” GMN and the “Kalb-Ramond field”
BMN , respectively. Despite of our string inspired terminology we stress that there are
no conditions imposed on GMN and BMN apart from their symmetry properties. In
particular the “metric” GMN need not be invertible (in section 6 we shall impose that
a submatrix of GMN be invertible). BMN is determined only up to

H[MN ](X) → H[MN ](X) + ∂[MBN ](X)

where BM (X) are arbitrary functions. This originates from the fact that the s-cocycle
ω = ω2̄ + ω1 + ω0 remains form invariant under

ω → ω + s[(εψM + ε̄ψ̄M + ηDXM + η̄D̄XM )BM (X) + . . . ]

where the dots stand for terms at least bilinear in the fermions. Changing ω by such
s-exact pieces results in the above change of H[MN ](X) and modifies the Lagrangian by
a total derivative.
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4.1 Result

We conclude that up to redefinitions by coboundary terms, the general solution of (4.1)
is given by the sum of the functions (4.9)–(4.12). The solution involves arbitrary func-
tions Di(X) and HMN (X), which thus parametrize the various possible actions. The
antisymmetric part of HMN (X) is determined only up to redefinitions by ∂[MBN ](X), as
HMN (X) → HMN(X) + ∂[MBN ](X) modifies the Lagrangian only by total derivatives.
The functions Di(X) are determined up to arbitrary constants, since only ∂MDi(X) en-
ters in the equivalent solution (4.7) and (4.8).9 Owing to general properties of descent
equations in diffeomorphism invariant theories [11–14], the integrand of the action is
obtained from the solution of (4.1) simply by substituting world-sheet differentials for
diffeomorphism ghosts ξm. The resulting Lagrangian, written in terms of the Beltrami
fields, is a generalized version of the one found in [28]:

L = LMatter + LU1

LMatter = 1
1−µµ̄

[

(∂ − µ̄∂̄)XM (∂̄ − µ∂)XN (GMN +BMN )

−
(

(∂ − µ̄∂̄)XMαψN + (∂̄ − µ∂)XM ᾱψ̄N
)

GMN − 1
2 αᾱψ

M ψ̄NGMN

]

−
(

ψ̄N (∂ − µ̄∂̄)ψ̄M + ψN (∂̄ − µ∂)ψM
)

GMN − (1 − µµ̄)F̂M F̂NGMN

−ψ̄M ψ̄N (∂ − µ̄∂̄)XK(ΓKNM − 1
2 HKNM)

−ψMψN (∂̄ − µ∂)XK(ΓKNM + 1
2 HKNM)

+1
6 (ᾱψ̄M ψ̄N ψ̄K − αψMψNψK)HKMN

+(1 − µµ̄)F̂MψK ψ̄N (2ΓKNM −HKNM)

+1
2 (1 − µµ̄)ψMψK ψ̄N ψ̄LRKMLN

LU1 = F iDi − (1 − µµ̄)[ψM (λ̄i − 1
2

1
1−µµ̄ µᾱφ̂

i) − ψ̄M (λi − 1
2

1
1−µµ̄ µ̄αφ̂

i)

+F̂M φ̂i + ψM ψ̄N∂N ]∂MDi (4.13)

where we have introduced the following notations

GMN := H(MN)(X) BMN := H[MN ](X)

Di := Di(X) F i := εmn(∂mA
i
n − ∂nA

i
m)

ΩKNM := ∂KHMN (X) − ∂MHKN(X) + ∂NHKM(X) = 2ΓKNM −HKNM

RKLMN := ∂M∂[KHL]N (X) − ∂N∂[KHL]M(X)

The “target space curvature” RKLMN we have introduced is of course not the Rieman-
nian one. The Riemannian curvature appears after eliminating the auxiliary fields from
the action.

Of course, the action can be also written in terms of the original fields introduced in
section 2. One obtains from the matter part the well known superstring action including

9A constant in Di yields a topological term in the action proportional to the Chern class of the gauge
bundle.
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the B-field background [7]

L/e = 1
2∂mX

M∂nX
N (−hmnGMN + εmnBMN ) + i

2ψ
M
γm∂mψ

NGMN

+1
2F

MFNGMN + χkγ
nγk(ψN∂nX

M − 1
4Cχnψ

M
ψN )GMN

+(1
2F

Mψ
K
ψN − iψ

N
γmψM∂mX

K)ΓNKM

+1
4(FMψ

K
γ∗ψ

N − iψ
N
γmγ∗ψ

M∂mX
K)HNKM

− i
12χmγ

nγmψMψ
N
γnγ∗ψ

KHMNK

+ 1
16ψ

M
(1l + γ∗)ψ

Nψ
K

(1l + γ∗)ψ
LRKMLN

+εmnDi∂mA
i
n + i

4ψ
M
ψNφi∂N∂MDi

+1
2(iψ

N
γ∗λ

i − iFNφi + χmγ
mψNφi)∂NDi. (4.14)

Thus the cohomological analysis shows that in the absence of gauge multiplets the
Lagrangian derived in [7] is in fact unique up to total derivatives and choices of the
background fields. It should be kept in mind, however, that this uniqueness is tied to
the gauge transformations specified in section 2. It can get lost when one allows that
the gauge transformations get deformed. This deformation problem can be analysed
by BRST cohomological means too, but then the relevant cohomological problem in-
cludes the antifields [16]. The results which we shall derive in the second part of this
work imply that the nontrivial consistent deformations correspond one-to-one to the
deformations of the bosonic string models. All deformations of bosonic string models
without world-sheet gauge fields were derived in [17]. Hence, all nontrivial deformations
of the standard superstring world-sheet action [7] and its gauge transformations are su-
persymmetric generalizations of the actions and gauge transformations given in [17]; in
particular this result implies that nontrivial deformations of the standard superstring
gauge transformations exist only if the background possesses special Killing vectors de-
scribed in [17]. A full analysis (to all orders in the deformation parameters) of the
deformation problem for bosonic models with world-sheet gauge fields is missing so far,
but a complete classification of the first order deformations was given in [9]. The latter
results extend thus to the superstring models too.

5 Antifields

To proceed with our analysis we have to bring the antifields into the game. According
to the principles of the field-antifield formalism [30–33] to each field a corresponding
antifield Φ∗

A is introduced with ghost number and statistics

gh (Φ∗
A) = −gh (ΦA) − 1, ǫ(Φ∗

A) = ǫ(ΦA) + 1 (mod 2),

such that the statistics of the antifields is opposite to that of the corresponding fields. It
is useful to introduce still another grading into the algebra of fields and antifields, namely
the already mentioned antifield (or antighost) number. On all the fields (including the
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ghosts) the antifield number is defined to be zero, i.e., agh (ΦA) = 0. On the antifields
the antifield number equals minus the ghost number, agh (Φ∗

A) = −gh (Φ∗
A).

The antibracket for two arbitrary functions of the fields ΦA and antifields Φ∗
A is

defined as

(F,G) =

∫
(

δRF

δΦA

δLG

δΦ∗
A

− δRF

δΦ∗
A

δLG

δΦA

)

.

Thus the antibracket has odd statistics and carries ghost number one. The BRST
transformations of the antifields are generated via the antibracket by the proper solution
S to the classical master equation (S,S) = 0 according to

sΦ∗
A = (S,Φ∗

A) =
δRS
δΦA

.

Owing to the off-shell closure of the gauge algebra S simply reads

S = S0 −
∫

(sΦA)Φ∗
A,

where S0 is the classical action and sΦA are the BRST transformations given in section
2. It is useful to decompose the BRST differential according to the grading with respect
to the antifield number s =

∑

k≥−1 sk with agh (sk) = k (this decomposition should
not be confused with the one in (4.3) even though we use the same notation). The
decomposition starts with the field theoretical Koszul-Tate differential δ ≡ s−1 and the
differential γ ≡ s0. Contrary to the bosonic case the decomposition does not terminate
at this level. An additional part s1 raising the antifield number by one unit shows up
reflecting field dependent gauge transformations in the commutator of supersymmetry
transformations. The Koszul-Tate differential acts nontrivially only on the antifields
and implements the equations of motion. Hence, the knowlegde of the classical action
is necessary to determine the δ-transformations of the antifields. However, the action of
the part of the BRST differential leaving the antifield number unchanged is determined
solely by the imposed gauge transformations. The γ-transformations of the antifields
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corresponding to the matter fields and the U(1) multiplet read

γX∗
M = ∂m(ξmX∗

M ) − i∂m(ξβ(γmC)βαψ
∗α
M )

−1
2 ∂m(ξα(γnγmC)αβχ

β
nF

∗
M )

γψ∗α
M = ∂m(ξmψ∗α

M ) + ξαX∗
M − iξγ(γmC)γβχ

α
mψ

∗β
M − i

2 ∂m(ξβ(γm) αβ F
∗
M )

− i
8 ξ

β(γmγ∗)
α
β ω

ab
m εabF

∗
M − 1

2 ξ
βχ δ

m(γmγnC)βδχ
α
n F

∗
M

−1
4 C

abεab(γ∗)
α
β ψ

∗β
M + 1

2 C
Wψ∗α

M

γF ∗
M = ∂m(ξmF ∗

M ) − ξβCβαψ
∗α
M − i

2 ξ
β(γmC)βαχ

α
mF

∗
M + CWF ∗

M

γA∗m
i = ∂n(ξ

nA∗m
i ) − (∂nξ

m)A∗n
i

+i∂n(ξ
α(γ∗C)αβε

nmλ∗βi )

γφ∗i = ∂m(ξmφ∗i ) − ξα(γ∗C)αβε
mnχn(γ∗C)χmλ

∗β
i

−i∂m(ξα(γ∗γ
mC)αβλ

∗β
i − i

2 ξ
α(γ∗C)αβSλ

∗β
i

+2iξαχβm(γ∗C)βαA
∗m
i − 2ηγ(γ∗C)γβλ

∗β
i + CWφ∗i

γλ∗αi = ∂m(ξmλ∗αi ) − ξβ(γm) α
β A

∗m
i + ξβ(γ∗)

α
β φ

∗
i − iξβ(γ∗γ

mC)βγ(χγ∗)
αλ∗γi

−iξδ(γ∗C)δβε
kl

(

χγk(γl)
α
γ

)

λ∗βi − 1
4 C

abεab(γ∗)
α
β λ

∗β
i + 3

2 C
Wλ∗αi . (5.1)

s1 acts nontrivially on A∗m
i , φ∗i and on the antifields for the gravitational multiplet χ∗m

α ,
e∗ma and S∗. In particular one finds

s1A
∗m
i = iξαξβ(γmC)βαc

∗
i , s1φ

∗
i = −iξαξβ(γ∗C)βαc

∗
i ,

where c∗i denote the antifields corresponding to U(1) ghosts.
The explicit form of the BRST transformations of the antifields for the gravitational

multiplet and the ghosts will not be needed in the following. In section 7 it is shown
that they do not contribute nontrivially to the cohomology, at least at ghost number
g < 4.

5.1 Superconformal antifields

We shall now identify “superconformal antifields” whose γ-transformations take the
same form as the s-transformations of superconformal tensor fields in (3.13). The iden-
tification of superconformal antifields is somewhat more involved than the procedure for
the fields. From experience with the bosonic case one expects reasonable candidates to
arise from redefinitions of the form Φ∗

A → 1
1−µµ̄ Φ∗

A, accounting for the fact that antifields
transform under diffeomorphisms as tensor densities rather than tensors. In addition
we have to take care of their “structure group transformations”, i.e., of their conformal
weights, their Lorentz transformations and super-Weyl transformations10. Yet this does
not suffice to obtain γ-transformations of the desired form. It turns out that the anti-
fields have to be mixed among themselves. These considerations lead us to the following

10Antifields transform “contragradiently” under structure group transformations as compared to the
corresponding fields.
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definitions of the lowest order matter antifields

F̂ ∗
M ≡ F ∗

M(0,0) =
1

1 − µµ̄
(e z
z e

z̄
z̄ )−

1
2 F ∗

M

ψ̂∗
M ≡ ψ∗

M(0,0) =
i√
2

1

1 − µµ̄
(e zz )−

1
2 ψ∗

M
2 +

µᾱ

1 − µµ̄
F̂ ∗
M

ˆ̄ψ∗
M ≡ ψ̄∗

M(0,0) =
i√
2

1

1 − µµ̄
(e z̄z̄ )−

1
2 ψ∗

M
1 − µ̄α

1 − µµ̄
F̂ ∗
M

X̂∗
M ≡ X∗

M(0,0) =
1

1 − µµ̄
X∗
M +

µ̄α

1 − µµ̄
ψ̂∗
M +

µᾱ

1 − µµ̄
ˆ̄ψ∗
M +

αᾱ

1 − µµ̄
F̂ ∗
M .

Their γ-transformations are indeed of the desired form (3.13) and read explicitly

γF̂ ∗
M = (ηD + η̄D̄)F̂ ∗

M − ε ˆ̄ψ∗
M + ε̄ψ̂∗

M + 1
2 ((∂η) + (∂̄η̄))F̂ ∗

M

γψ̂∗
M = (ηD + η̄D̄)ψ̂∗

M + εX̂∗
M + ε̄D̄F̂ ∗

M + (1
2 (∂η) + (∂̄η̄))ψ̂∗

M + (∂̄ε̄)F̂ ∗
M

γ ˆ̄ψ∗
M = (ηD + η̄D̄)ˆ̄ψ∗

M + ε̄X̂∗
M − εDF̂ ∗

M + ((∂η) + 1
2 (∂̄η̄))ˆ̄ψ∗

M − (∂ε)F̂ ∗
M

γX̂∗
M = (ηD + η̄D̄)X̂∗

M + εDψ̂∗
M + ε̄D̄ ˆ̄ψ∗

M + ((∂η) + (∂̄η̄))X̂∗
M

+(∂ε)ψ̂∗
M + (∂̄ε̄)ˆ̄ψ∗

M . (5.2)

The expressions above are in fact already complete, since s1 does not act nontrivially on
the matter antifields. Analogously to the situation of the superconformal tensor fields
the algebra (3.12) is represented on these fields and their derivatives, which we denote
by

F ∗
M(m,n) = (L−1)

m(L̄−1)
nF̂ ∗

M ≡ (D)m(D̄)nF̂ ∗
M ,

etc, where the operators L−1 and L̄−1 are identified with supercovariant derivatives as
in (3.14). In particular one finds on the antifields with lowest conformal weights the
following expressions

DF̂ ∗
M = 1

1−µµ̄

(

(∂ − µ̄∂̄ − 1
2 (∂̄µ̄) + 1

2 µ̄(∂µ))F̂ ∗
M − 1

2 µ̄α
ˆ̄ψ∗
M − 1

2 ᾱψ̂
∗
M

)

D̄F̂ ∗
M = 1

1−µµ̄

(

(∂̄ − µ∂ − 1
2 (∂µ) + 1

2 µ(∂̄µ̄))F̂ ∗
M + 1

2 α
ˆ̄ψ∗
M + 1

2 µᾱψ̂
∗
M

)

Dψ̂∗
M = 1

1−µµ̄

(

(∂ − µ̄∂̄ − (∂̄µ̄) + 1
2 µ̄(∂µ))ψ̂∗

M − 1
2 µ̄αX̂

∗
M − 1

2 ᾱD̄F̂ ∗
M − 1

2 (∂̄ᾱ)F̂ ∗
M

)

D̄ψ̂∗
M = 1

1−µµ̄

(

(∂̄ − µ∂ − 1
2 (∂µ) + µ(∂̄µ̄))ψ̂∗

M + 1
2 αX̂

∗
M + 1

2 µ̄αDF̂
∗
M + 1

2 µ̄(∂α)F̂ ∗
M

)

and analogous formulas for D ˆ̄ψ∗
M and D̄ ˆ̄ψ∗

M . Again higher order antifields will not be
needed.

The construction of the covariant antifields for the gauge multiplet follows the argu-
ments given above, with the additional task to get rid of the super-Weyl transformations.
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We introduce the redefinitions

λ̂∗i ≡ λ∗i(0,0) = − 1

1 − µµ̄
(e z̄
z̄ )−

1
2 (e z

z )−1λ∗2

ˆ̄λ∗i ≡ λ̄∗i(0,0) =
1

1 − µµ̄
(e z
z )−

1
2 (e z̄

z̄ )−1λ∗1

φ̂∗i ≡ φ∗i(0,0) =
1√
2

1

1 − µµ̄
(e z
z )−

1
2 (e z̄

z̄ )−
1
2 φ∗i

−1

2

1

1 − µµ̄

(

χ̂ 2
z − µ̄χ̂ 2

z̄

)

λ̂∗i −
1

2

1

1 − µµ̄

(

χ̂ 1
z̄ − µχ̂ 1

z

) ˆ̄λ∗i

Â∗
i ≡ A∗

i(0,0) =
1√
2

1

1 − µµ̄

(

Ā∗
i + µ̄A∗

i

)

− 1

1 − µµ̄

(

ᾱλ̂∗i + µ̄αˆ̄λ∗i

)

ˆ̄A∗
i ≡ Ā∗

i(0,0) =
1√
2

1

1 − µµ̄

(

A∗
i + µĀ∗

i

)

− 1

1 − µµ̄

(

αˆ̄λ∗i + µᾱλ̂∗i

)

, (5.3)

where we have used the shorthand notation for the corrections involving gravitions

χ̂ 1
z =

√

8
e z̄
z̄
χ 1
z and χ̂ 2

z =
√

8
e z
z
χ 2
z with obvious expressions for the z̄ components.

The γ-transformations then read

γλ̂∗i = (ηD + η̄D̄)λ̂∗i + 1
2 ∂̄η̄λ

∗
i + εφ̂∗i − ε̄ ˆ̄A∗

i

γ ˆ̄λ∗i = (ηD + η̄D̄)ˆ̄λ∗i + 1
2 ∂η

ˆ̄λ∗i + ε̄φ̂∗i − εÂ∗
i

γφ̂∗i = (ηD + η̄D̄)φ̂∗i + 1
2 (∂η + ∂̄η̄)φ̂∗i + εDλ̂∗i + ε̄D̄ ˆ̄λ∗i

γÂ∗
i = (ηD + η̄D̄)Â∗

i + ∂ηÂ∗
i + ε̄Dλ̂∗i − εDˆ̄λ∗i − ∂εˆ̄λ∗i

γ ˆ̄A∗
i = (ηD + η̄D̄) ˆ̄A∗

i + ∂̄η̄ ˆ̄A∗
i + εD̄ˆ̄λ∗i − ε̄D̄λ̂∗i − ∂̄ε̄λ̂∗i , (5.4)

and are indeed of the desired form respecting the requirement (3.1). Note that the
combination of the gravitinos used in the redefinition of φ̂∗i transforms into the super-
Weyl ghost thereby removing the unwanted transformation properties under the super-
Weyl symmetry. Again higher order antifields will not be needed.

The explicit form of the superconformal antifields given above has already been used
to derive the results for the rigid symmetries presented in [6]. A complete list of the
BRST transformations (including the Koszul-Tate part and the s1-transformations) of
the antifields needed for the cohomological analysis is given in appendix E. In the follow-
ing sections (and also in the appendices) we have dropped the hats on the superconformal
antifields, but it is clear from the context which set of variables is meant.

6 On-shell cohomology

We shall now define and analyse an “on-shell BRST cohomology” H(σ) and show that
it is isomorphic to its purely bosonic counterpart at ghost numbers < 4, i.e., to the
on-shell BRST cohomology of the corresponding bosonic string model. The relevance of
H(σ) rests on the fact that it is isomorphic to the full local s-cohomology H(s) (in the

21



jet space associated to the fields and antifields), at least at ghost numbers < 4,

g < 4 : Hg(σ) ≃ Hg(s). (6.1)

This will be proved in section 7.
The analysis in this and the next section is general, i.e., it applies to any model with

an action (4.13) (or, equivalently, (4.14)) provided that two rather mild assumptions
hold, which are introduced now. The first assumption only simplifies the action a little
bit but does not reduce its generality: as we have argued already in [6], one may assume
that the functions Di(X) which occur in the action coincide with a subset of the fields
XM . We denote this subset by {yi} and the remaining X’s by xµ,

{XM} = {xµ, yi}, Di(X) ≡ yi. (6.2)

For physical applications this “assumption” does not represent any loss of generality
because it can always be achieved by a field redefinition (“target space coordinate trans-
formation”) XM → X̃M = X̃M (X). The yi may be interpreted as coordinates of an
enlarged target space leading to “frozen extra dimensions” [6]. The second assumption
is that Gµν(x, y) is invertible (in contrast, GMN need not be invertible). This is par-
ticularly natural in the string theory context, since it allows one to interpret Gµν as a
target space metric. It is rather likely that our result holds for even weaker assumptions
(but we did not study this question), because the results derived in [9, 19] for bosonic
string models do not use the invertibility of Gµν .

Let us remark that the isomorphism (6.1) is not too surprising, because it is remi-
niscent of a standard result of local BRST cohomology stating that H(s) is isomorphic
to the on-shell cohomology of γ in the space of antifield independent functions, where γ
is the part of s with antifield number 0 (see, e.g., section 7.2 of [10]). However, (6.1) is
not quite the same statement because the definition of σ given below does not take the
equations of motion for µ, µ̄, α or ᾱ into account. Hence, (6.1) contains information in
addition to the standard result of local BRST cohomology mentioned before: the equa-
tions of motion for µ, µ̄, α, ᾱ are not relevant to the cohomology! This is a useful result
as these equations of motion are somewhat unpleasant, because they are not linearizable
(the models under study do not fulfill the standard regularity conditions described, e.g.,
in section 5.1 of [10]).

6.1 Definition of σ and H(σ)

σ is an “on-shell version” of s defined in the space of local functions made of the fields
only (but not of any antifields). We work in the ‘Beltrami basis’ and use the equations
of motion obtained by varying the action (4.13) with respect to the fields X, ψ, ψ̄, F̂ , φ̂,
λ, λ̄ and Am. The covariant version of these equations of motion can be obtained from
the s-transformations of the corresponding covariant antifields given in appendix E by
setting the antifield independent part (‘Koszul-Tate part’) of these transformations to
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zero. This gives the following “on-shell equalities” (≈):

F̂ i ≈ 0 (6.3)

ψi ≈ 0 (6.4)

ψ̄i ≈ 0 (6.5)

Dyi ≈ 0 (6.6)

D̄yi ≈ 0 (6.7)

φ̂i ≈ 2GiµF̂
µ + ψµψ̄νΩµνi (6.8)

λi ≈ 2GiµDψ̄µ + Dxµψ̄νΩµνi + F̂µψνΩνiµ + ψµψν ψ̄ρRνµiρ (6.9)

λ̄i ≈ −2GiµD̄ψµ − D̄xµψνΩνµi + F̂µψ̄νΩiνµ + ψµψ̄ν ψ̄ρRµiρν (6.10)

F̂ ρ ≈ −1
2 ψ

µψ̄νΩµν
ρ (6.11)

D̄ψµ ≈ −1
2 [D̄xνψρΩρν

µ + 1
2 ψ

λψ̄σψ̄ρΩλσ
νΩµ

ρν + ψν ψ̄ρψ̄σRµνσρ] (6.12)

Dψ̄µ ≈ 1
2 [−Dxνψ̄ρΩνρ

µ + 1
2 ψ

λψ̄σψρΩλσ
νΩρ

µ
ν + ψνψρψ̄σRρνσ

µ] (6.13)

F i ≈ 2GiµDD̄xµ + DxµD̄xνΩµνi − F̂µF̂ νΩiµν

−Dψ̄µψ̄νΩiνµ + ψµD̄ψνΩµiν

−Dxµψ̄νψ̄ρRµiρν − D̄xµψνψρRρνµi
−F̂µψν ψ̄ρ∂iΩνρµ − 1

2 ψ
µψν ψ̄ρψ̄σ∂iRνµσρ (6.14)

DD̄xµ ≈ 1
2 [−DxνD̄xρΩνρ

µ + F̂ νF̂ ρΩµ
νρ

+Dψ̄νψ̄ρΩµ
ρν − ψνD̄ψρΩν

µ
ρ

−Dxσψ̄ν ψ̄ρRµσρν + D̄xσψνψρRρνσµ

+F̂ σψνψ̄ρ∂µΩνρσ + 1
2 ψ

λψν ψ̄σψ̄ρ∂µRνλρσ] (6.15)

where indices µ of Ω, R, ∂ have been raised with the inverse of Gµν(x, y), and ψi,
ψ̄i and F̂ i belong to the same supersymmetry multiplet as yi (the auxiliary fields F̂ i

should not be confused with the supercovariant field strengths F i of the gauge fields).
Note that the right hand sides of (6.8), (6.9), (6.10), (6.14) and (6.15) still contain F̂µ,
D̄ψµ or Dψ̄µ, which are to be substituted for by the expressions given in (6.11), (6.12)
and (6.13), respectively. Furthermore, in (6.14) one has to substitute the expression
resulting from (6.15) for DD̄xµ. Using Eqs. (6.3) through (6.15) and their D and D̄
derivatives, we eliminate all variables on the left hand sides of these equations and all the
covariant derivatives of these variables. Furthermore, we use these equations to define
the σ-transformations of the remaining field variables from their s-transformations. For
instance, one gets

σyi = 0 (6.16)

σxµ = (ηD + η̄D̄)xµ + εψµ + ε̄ψ̄µ (6.17)

σψµ = ηDψµ − 1
2 η̄[D̄x

νψρΩρν
µ + 1

2 ψ
λψ̄σψ̄ρΩλσ

νΩµ
ρν + ψνψ̄ρψ̄σRµνσρ]

+1
2 ∂ηψ

µ + εDxµ + 1
2 ε̄ψ

ρψ̄νΩρν
µ. (6.18)

The σ-transformations of η, η̄, ε, ε̄, µ, µ̄, α, ᾱ coincide with their s-transformations. The
cohomology H(σ) is the cohomology of σ in the space of local functions of the variables
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{uℓ, vℓ,WA}, where the u’s and v’s are the same as in sections 3 and 4, while the W ’s
are given by

{WA} = {yi, xµ,Dkxµ, D̄kxµ,Drψµ, D̄rψ̄µ, ∂rη, ∂̄r η̄, ∂rε, ∂̄r ε̄, Ci :

k = 1, 2, . . . , r = 0, 1, . . . }. (6.19)

H(σ) is well-defined because σ squares to zero,

σ2 = 0. (6.20)

This holds because the (covariant) equations of motion of the fields X, ψ, ψ̄, F̂ , φ̂, λ,
λ̄, Am and their covariant derivatives transform into each other under diffeomorphisms
and supersymmetry transformations but not into the equations of motion of µ, µ̄, α
or ᾱ [as can be read off from the s-transformations of the superconformal antifields in
appendix E].

6.2 Relation to H(σ,W)

σ acts on the variables {uℓ, vℓ,WA} according to σuℓ = vℓ, σWA = rA(W ). Further-
more, analogously to (4.2) one has

{

σ ,
∂

∂(∂η)

}

WA = L0W
A ,

{

σ ,
∂

∂(∂̄η̄)

}

WA = L̄0W
A , (6.21)

i.e., in the space of local functions of the W ’s the derivatives with respect to ∂η and
∂̄η̄ are contracting homotopies for L0 and L̄0, respectively. Hence, the same stan-
dard arguments, which were used already in section 4 yield that H(σ) is given by
HdR(GL+(2)) ⊗ H(σ,W), where HdR(GL+(2)) reflects the nontrivial de Rham coho-
mology of the zweibein manifold (see theorem 5.1 of [11]), while H(σ,W) is the σ-
cohomology in the space of local functions with vanishing conformal weights made solely
of the variables (6.19),

H(σ) = HdR(GL+(2)) ⊗H(σ,W), W = {ω : ω = ω(W ), (L0ω, L̄0ω) = (0, 0)}.
(6.22)

The factor HdR(GL+(2)) is irrelevant for the following discussion because it just reflects
det eam 6= 0 and makes no difference between superstring and bosonic string models.

6.3 Decomposition of σ

To study H(σ,W) we decompose σ into pieces of definite degree in the supersymmetry
ghosts and the fermions11. The corresponding counting operator is denoted by N ,

N = Nε +Nε̄ +Nψ +Nψ̄ (6.23)

11We are referring here to the variables (6.19) themselves, and not to the fermions that are implicitly
contained in these variables through covariant derivatives.
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with Nε and Nε̄ as in (4.4) and

Nψ =
∑

r≥0

(Drψµ)
∂

∂(Drψµ)
, Nψ̄ =

∑

r≥0

(D̄rψ̄µ)
∂

∂(D̄rψ̄µ)
.

Using the formulae given above, it is easy to verify that σ decomposes into pieces with
even N -degree,

σ =
∑

n≥0

σ2n , [N,σ2n] = 2nσ2n (6.24)

where, on each variable (6.19), only finitely many σ2n are non-vanishing. For instance,
(6.18) yields

σ0ψ
µ = ηDψµ − 1

2 η̄D̄x
νψρΩρν

µ + 1
2 ∂ηψ

µ + εDxµ

σ2ψ
µ = −1

4 η̄ψ
λψ̄σψ̄ρΩλσ

νΩµ
ρν − 1

2 η̄ψ
νψ̄ρψ̄σRµνσρ + 1

2 ε̄ψ
ρψ̄νΩρν

µ

σ2nψ
µ = 0 for n > 1.

6.4 Decomposition of σ0

We shall prove the asserted result by an inspection of the cohomology of σ0. To that
end we decompose σ0 according to the supersymmetry ghosts. That decomposition has
only two pieces owing to the very definition of σ0 and N ,

σ0 = σ0,0 + σ0,1 , [Nε +Nε̄ , σ0,0] = 0 , [Nε +Nε̄ , σ0,1] = σ0,1 . (6.25)

One easily verifies by induction that σ0,1 has the following simple structure:

σ0,1y
i = 0

σ0,1Drxµ = 0

σ0,1D̄rxµ = 0

σ0,1Drψµ =

r
∑

k=0

(

r

k

)

∂kεDr+1−kxµ

σ0,1D̄rψ̄µ =

r
∑

k=0

(

r

k

)

∂̄kε̄ D̄r+1−kxµ

σ0,1∂
rη = 0

σ0,1∂̄
r η̄ = 0

σ0,1∂
rε = 0

σ0,1∂̄
r ε̄ = 0

σ0,1C
i = 0. (6.26)
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6.5 H(σ0,W) at ghost numbers < 5

The cocycle condition of H(σ0,W) reads

σ0ω = 0, ω ∈ W. (6.27)

We analyse (6.27) using (6.25). To that end we decompose ω according to the number
of supersymmetry ghosts,

ω =

k
∑

k=k

ωk , (Nε +Nε̄)ωk = kωk . (6.28)

Note that k is finite, k ≤ gh (ω). Hence, the cocycle condition (6.27) decomposes into

σ0,1ωk = 0, σ0,0ωk + σ0,1ωk−1 = 0, . . . , σ0,0ωk = 0. (6.29)

We can neglect contributions σ0,1ω̂k−1 to ωk because such contributions can be removed
by subtracting σ0ω̂k−1 from ω. Hence, ωk can be assumed to be a nontrivial represen-
tative of H(σ0,1,W). That cohomology is computed in appendix A and yields

ωk = h(y, x,C, [ε, η], [ε̄, η̄]) + ηDxµhµ(y, x, ∂η,C, [ε̄, η̄])
+η̄D̄xµh̄µ(y, x, ∂̄η̄, C, [ε, η]) + ηη̄DxµD̄xνhµν(y, x, ∂η, ∂̄η̄, C) (6.30)

where σ0,1-exact pieces have been neglected, and [ε, η] and [ε̄, η̄] denote dependence
on the variables ∂rε, ∂rη and ∂̄rε̄, ∂̄rη̄ (r = 0, 1, . . . ), respectively. The result (6.30)
holds for all ghost numbers and shows in particular that ωk can be assumed not to
depend on the fermions (Drψµ, D̄rψ̄µ) at all. We now insert this result in the second
equation (6.29), which requires that σ0,0ωk be σ0,1-exact. At ghost numbers < 5 this
requirement kills completely the dependence of ωk on the supersymmetry ghosts as we
show in appendix B. The result for these ghost numbers is thus that, modulo σ0-exact
pieces, the solutions to (6.27) neither depend on the fermions nor on the supersymmetry
ghosts,

gh (ω) < 5 : ω = σ0ω̂ + h(y, x,C, [η], [η̄]) + ηDxµhµ(y, x, ∂η,C, [η̄])
+ η̄D̄xµh̄µ(y, x, ∂̄η̄, C, [η]) + ηη̄DxµD̄xνhµν(y, x, ∂η, ∂̄η̄, C). (6.31)

Furthermore, (6.25) and (6.26) show that a function which neither depends on the
fermions nor on the supersymmetry ghosts is σ0-exact if and only if it is the σ0-
transformation of a function which does not depend on these variables either. Combining
this with (6.31) one concludes

g < 5 : Hg(σ0,W) ≃ Hg(σ0,W0), (6.32)

where W0 is the subspace of W containing the functions with vanishing N -eigenvalues,

W0 = {ω ∈ W : Nω = 0}.
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This subspace can be made very explicit. The only variables (6.19) with negative con-
formal weights on which a function ω ∈ W0 can depend are the undifferentiated ghosts
η and η̄ [note: the only other variables (6.19) with negative conformal weights are the
undifferentiated supersymmetry ghosts, but they do not occur in ω ∈ W0 by the very
definition of W0]. Since η and η̄ are anticommuting variables each of them can occur at
most once in a monomial contributing to ω ∈ W0. Hence, since η and η̄ have conformal
weights (−1, 0) and (0,−1), respectively, functions in W0 can only depend on those w’s
with conformal weights ≤ 1 (as higher weights cannot be compensated for by variables
with negative weights), and a variable with L0-weight (L̄0-weight) 1 must necessarily
occur together with η (η̄). This yields

ω ∈ W0 ⇔ ω = f(y, x,C, ∂η, ∂̄η̄, ηDxµ, η̄D̄xµ, η∂2η, η̄∂̄2η̄). (6.33)

Note that H(σ0,W0) is nothing but the on-shell cohomology H(σ,W) of the correspond-
ing bosonic string model, since elements of W0 neither depend on the fermions nor on
the supersymmetry ghosts, and since σ0 reduces in W0 to σ0,0, which encodes only the
diffeomorphism transformations but not the supersymmetry transformations.

6.6 H(σ) at ghost numbers < 4

We shall now show that H(σ,W) is at ghost numbers < 4 isomorphic to H(σ0,W0),

g < 4 : Hg(σ,W) ≃ Hg(σ0,W0). (6.34)

Because of (6.22) this implies that H(σ) is isomorphic to its counterpart in the corre-
sponding bosonic string model (recall that the factor HdR(GL+(2)) is present in the
case of bosonic strings as well, and that Hg(σ0,W0) is the on-shell cohomology of the
bosonic string model). To derive (6.34), we consider the cocycle condition of H(σ,W),

σω = 0, ω ∈ W. (6.35)

We decompose ω into pieces with definite degree in the supersymmetry ghosts and
fermions,

ω =
n

∑

n=n

ωn, Nωn = nωn, (6.36)

with N as in (6.23) [actually there are only even values of n in this decomposition
because ω has vanishing conformal weights]. The cocycle condition (6.35) implies in
particular

σ0ωn = 0, (6.37)

where we used the decomposition (6.24) of σ. Hence, every cocycle ω of Hg(σ,W)
contains a coycle ωn of Hg(σ0,W). Our result (6.32) on Hg(σ0,W) implies that this
relation between representatives of Hg(σ,W) and Hg(σ0,W) gives rise to a one-to-one
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correspondence between the cohomology classes of Hg(σ,W) and Hg(σ0,W0) for g < 4
and thus to (6.34). The arguments are standard and essentially the following:

(i) When g < 5, ωn can be assumed to be nontrivial in Hg(σ0,W) and represents
thus a class of Hg(σ0,W0). Indeed, assume it were trivial, i.e., ωn = σ0ω̂n for some
ω̂n ∈ W. In that case we can remove ωn from ω by subtracting σω̂n. ω

′ := ω−σω̂n ∈ W
is cohomologically equivalent to ω and its decomposition (6.36) starts at some degree
n′ > n unless it vanishes (which implies already ω = σω̂n). The cocycle condition for
ω′ implies σ0ω

′
n′ = 0 and thus ω′

n′ = σ0ω̂
′
n′ for some ω̂′

n′ ∈ W as a consequence of (6.32)

(owing to n′ > n ≥ 0). Repeating the arguments, one concludes that ω is σ-exact,
ω = σ(ω̂n+ ω̂′

n′ + . . . ) [it is guaranteed that the procedure terminates, i.e., that the sum

ω̂n + ω̂′
n′ + . . . is finite and thus local, because the number of supersymmetry ghosts is

bounded by the ghost number and thus the number of fermions is bounded too because
ω has vanishing conformal weights].

(ii) When g < 4, every nontrivial cocycle ω0 of Hg(σ0,W0) can be completed to a
nontrivial cocycle ω of Hg(σ,W). Indeed suppose we had constructed ωn ∈ W, n =
0, . . . ,m with ghost number g such that ω(m) :=

∑m
n=0 ωn fulfills σω(m) =

∑

n≥m+1Rn
with NRn = nRn [for m = 0 this is implied by σ0ω0 = 0 which holds because ω0 is
a σ0-cocycle by assumption]. σ2 = 0 implies σ

∑

n≥m+1Rn = 0 and thus σ0Rm+1 = 0
at lowest N -degree. Note that Rm+1 is in W (owing to σW ⊂ W) and that it has
ghost number g + 1 < 5 because ω(m) has ghost number g < 4. (6.32) guarantees
thus that there is some ωm+1 ∈ W such that Rm+1 = −σ0ωm+1, which implies that
ω(m+1) := ω(m) + ωm+1 fulfills σω(m+1) =

∑

n≥m+2R
′
n. By induction this implies that

every solution to (6.37) with ghost number < 4 can indeed be completed to a solution
of (6.35) [the locality of ω holds by the same arguments as above]. If ω0 is trivial
in Hg(σ0,W0), then its completion ω is trivial in Hg(σ,W) by arguments used in (i).
Conversely, the triviality of ω in Hg(σ,W) (ω = ση) implies obviously the triviality of
ω0 in Hg(σ0,W0) (ω0 = σ0η0) because there are no negative N -degrees.

7 Relation to the cohomology of bosonic strings

We shall now derive (6.1) and the announced isomorphism between the s-cohomologies
of a superstring and the corresponding bosonic string model. Both results can be traced
to the existence of variables {ũℓ̃, ṽℓ̃, W̃ Ã} on which s takes a form very similar to σ
on the variables {uℓ, vℓ, wA} used in section 6. In the ‘Beltrami basis’ the set of ũ’s
consists of: (i) ũ’s with ghost number 0 which coincide with the uℓ; (ii) ũ’s with ghost
number −1 given by the superconformal antifields X∗

M , ψ∗
M , ψ̄∗

M , F ∗
M , φ∗i , λ

∗
i λ̄

∗
i , A

∗
i

(recall that we have dropped the hats on these antifields) and all covariant derivatives
of these antifields plus the Ā∗

i and all their D̄-derivatives (D̄rĀ∗
i , r = 0, 1, . . . )12; (iii) ũ’s

with ghost number −2 given by the antifields of the ghosts, i.e., by η∗, η̄∗, ε∗, ε̄∗, C∗
i

and all their derivatives. It can be readily checked that a complete set of new local jet

12The DkD̄rĀ∗

i with k > 0 do not count among the u’s because the antifield independent parts of
sDkD̄rĀ∗

i and −sDk−1D̄r+1A∗

i are equal (both are given by DkD̄r+1yi). Rather, they are substituted
for by the v’s corresponding to the Dk−1D̄rC∗

i (k > 0) owing to sDk−1D̄rC∗

i = −DkD̄rĀ∗

i + . . . .
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coordinates in the Beltrami basis is given by {ũℓ̃, ṽℓ̃, W̃ Ã
(0)} with ṽℓ̃ = sũℓ̃ and

{W̃ Ã
(0)} = {yi, xµ,Dkxµ, D̄kxµ,Drψµ, D̄rψ̄µ, ∂rη, ∂̄r η̄, ∂rε, ∂̄r ε̄, Ci,

∂rµ∗, ∂̄rµ̄∗, ∂rα∗, ∂̄rᾱ∗ : k = 1, 2, . . . , r = 0, 1, . . . }. (7.1)

Note that {W̃ Ã
(0)} does not only contain the WA listed in (6.19), but in addition the

variables ∂rµ∗, ∂̄rµ̄∗, ∂rα∗, ∂̄rᾱ∗. The latter occur here because their s-transformations
contain no linear parts and can therefore not be used as ṽ’s13. The W̃ Ã

(0) fulfull

sW̃ Ã
(0) = rÃ(W̃(0)) +O(1) (7.2)

where O(1) collects terms which are at least linear in the ũ’s and ṽ’s. As shown in [27],

(7.2) implies the existence of variables W̃ Ã = W̃ Ã
(0) +O(1) which fulfill

sW̃ Ã = rÃ(W̃ ) (7.3)

with the same functions rÃ as in (7.2). Furthermore the algorithm described in [27] for

the construction of the W̃ Ã results in local expressions when applied in the present case.
This can be shown by means of arguments similar to those used within the discussion
of the examples in [27]14.

(7.3) implies that the s-transformations of those W̃ ’s which correspond to the vari-
ables (6.19) can be obtained from the σ-transformations of the latter variables simply
by substituting there W̃ ’s for the corresponding W ’s. For instance, this gives

syi′ = 0, (7.4)

sxµ′ = η(Dxµ)′ + η̄(D̄xµ)′ + εψµ′ + ε̄ψ̄µ′ (7.5)

where here and in the following a prime on a variable indicates a W̃ -variable15. For
instance, yi′ is the W̃ -variable corresponding to yi and explicitly given by

yi′ = yi + ελ̄∗i − ε̄λ∗i − ηA∗
i + η̄Ā∗

i + ηη̄C∗
i . (7.6)

This very close relation between s on the W̃ -variables and σ on the variables (6.19)
would immediately imply H(s) ≃ H(σ) if the W̃ -variables (∂rµ∗)′, (∂̄rµ̄∗)′, (∂rα∗)′,

13The other derivatives of the antifields µ∗, µ̄∗, α∗, ᾱ∗, such as the ∂̄k∂rµ∗ (k > 0), do not occur
among the W̃(0)’s because they are substituted for by the ṽ’s corresponding to η∗, η̄∗, ε∗, ε̄∗ and their
derivatives (e.g., one has sη∗ = −∂̄µ∗ + . . . ).

14In the present case, the suitable ‘degrees’ to be used in these arguments are the conformal weights
and the ghost number. Using these degrees one can prove that the algorithm produces local (though not
necessarily polynomial) expressions: the resulting W̃ ’s can depend nonpolynomially on the xµ, yi and
on the two particular combinations ελ̄∗

i and ε̄λ∗

i but they are necessarily polynomials in all variables
which contain derivatives of fields or antifields.

15The construction of the W̃ ’s implies (∂rη)′ = ∂rη, (∂̄r η̄)′ = ∂̄r η̄, (∂rε)′ = ∂rε and (∂̄rε̄)′ = ∂̄r ε̄
because the s-transformation of these ghost variables do not contain any ũ’s or ṽ’s. This has been used
in (7.5).
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(∂̄rᾱ∗)′ were not present. Nevertheless the asserted isomorphism (6.1) holds because
the conformal weights of the latter variables are too high so that they cannot contribute
nontrivially to Hg(s) for g < 4. To show this we analyse H(s) along the same lines as
H(σ) in section 6.

The first step of that analysis gives

H(s) ≃ HdR(GL+(2)) ⊗H(s, W̃), W̃ = {ω : ω = ω(w), (L0ω, L̄0ω) = (0, 0)}. (7.7)

This result is analogous to (6.22) and expresses that the zweibein gives the only nontrivial
cohomology in the subspace of ũ’s and ṽ’s and that there is a contracting homotopy for
L0 and L̄0 because (7.3) implies

{

s ,
∂

∂(∂η)

}

W̃ Ã = L0W̃
Ã ,

{

s ,
∂

∂(∂̄η̄)

}

W̃ Ã = L̄0W̃
Ã .

The conformal weights of α∗′, ᾱ∗′, µ∗′ and µ̄∗′ are (3/2, 0), (0, 3/2), (2, 0) and (0, 2),
respectively.

H(s, W̃) can be analysed by means of a decomposition of s analogous to the σ-
decomposition in (6.24), using a counting operator N ′ for all those W̃ ’s which have
half-integer conformal weights,

N ′ = Nε +Nε̄ +Nψ′ +Nψ̄′ +Nα∗′ +Nᾱ∗′ .

The decomposition of s reads

s =
∑

n≥0

s2n , [N ′, s2n] = 2n s2n .

Next we examine the s0-cohomology. Analogously to (6.25) one has

s0 = s0,0 + s0,1 , [Nε +Nε̄ , s0,0] = 0 , [Nε +Nε̄ , s0,1] = s0,1 .

We now determine the cohomology of s0,1 along the lines of the investigation of the
σ0,1-cohomology in appendix A by inspecting the part of s0,1 which contains the undif-
ferentiated ghost ε. That part is the analog of σ0,1,1 in (A.2) and takes the form ε Ĝ′

−1/2.

Ĝ′
−1/2 acts nontrivially only on the ψ′, α∗′ and their (covariant) derivatives according to

Ĝ′
−1/2(Drψµ)′ = (Dr+1xµ)′ , Ĝ′

−1/2(∂
rα∗)′ = −(∂rµ∗)′

We define a contracting homotopy B′ which is analogous to the contracting homotopy
B in appendix A,

B′ =
∑

r≥0

[

(Drψµ)′
∂

∂(Dr+1xµ)′
− (∂rα∗)′

∂

∂(∂rµ∗)′

]

.

Using B′ one proves that the functions f ′m with m > 0 which are analogous to the
functions fm in appendix A can be assumed not to depend on the variables (Drψµ)′,
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(Dr+1xµ)′, (∂rα∗)′ or (∂rµ∗)′.16 In the case m = 0 one gets that f ′0 does not depend
on (∂rα∗)′ or (∂rµ∗)′, simply because the conformal weights of these variables are too
large [cf. the arguments in the text after (A.9)]. This implies the analog of equation
(A.11), with functions h′m and g′µ which may still depend on (D̄rψ̄µ)′, (D̄r+1xµ)′, (∂̄rᾱ∗)′

or (∂̄rµ̄∗)′. The dependence on these variables can be analysed analogously, using a
contracting homotopy B̄′ for these variables, along the lines of the remaining analysis
in appendix A. One finally obtains the following result for H(s0,1, W̃):

s0,1ω = 0, ω ∈ W̃ ⇒
ω = h(y′, x′, C ′, [ε, η], [ε̄, η̄])

+ η(Dxµ)′hµ(y′, x′, ∂η, C ′, [ε̄, η̄]) + η̄(D̄xµ)′h̄µ(y′, x′, ∂̄η̄, C ′, [ε, η])

+ ηη̄(Dxµ)′(D̄xν)′hµν(y′, x′, ∂η, ∂̄η̄, C ′) + s0,1ω̂(w), ω̂ ∈ W̃. (7.8)

Hence, H(s0,1, W̃) is completely isomorphic to H(σ0,1,W) (for all ghost numbers). In
particular, the representatives do not depend on (∂rα∗)′, (∂̄rᾱ∗)′, (∂rµ∗)′ or (∂̄rµ̄∗)′

[recall that the reason is that the conformal weights of these variables are too high; if,
for instance, µ∗′ had conformal weights (1, 0) instead of (2, 0) it had contributed to (7.8)
analogously to (Dxµ)′]. This implies the results announced above: arguments which are
completely analogous to those used to derive first (6.31) and then (6.34) lead to

g < 4 : Hg(s, W̃) ≃ Hg(s0, W̃0), W̃0 = {ω ∈ W̃ : N ′ω = 0}. (7.9)

Analogously to (6.33), the elements of W̃0 can only depend on those w’s with conformal
weights ≤ 1, i.e.,

ω′ ∈ W̃0 ⇔ ω′ = f(y′, x′, C ′, ∂η, ∂̄η̄, η(Dxµ)′, η̄(D̄xµ)′, η∂2η, η̄∂̄2η̄). (7.10)

Because of (7.3), s0 takes exactly the same form in W̃0 as σ0 in W0. This implies (for
all ghost numbers)

H(s0, W̃0) ≃ H(σ0,W0). (7.11)

Because of (7.9) and (6.34) (as well as (7.7) and (6.22)) this yields (6.1). (7.9) establishes
also the equivalence between the cohomologies of the superstring and the corresponding
bosonic string at ghost numbers < 4 because HdR(GL+(2)) ⊗H(s0, W̃0) is nothing but
the s-cohomology of the bosonic string.
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A Cohomology of σ0,1 in W
In this appendix we compute H(σ0,1,W) where σ0,1 is given in (6.26). The cocycle
condition reads

σ0,1ω = 0, ω ∈ W. (A.1)

We decompose this equation into pieces with definite degree in the undifferentiated
supersymmetry ghosts ε. σ0,1 decomposes into two pieces, σ0,1,0 and σ0,1,1, where σ0,1,0

does not change the degree in the undifferentiated ε, whereas σ0,1,1 increases this degree
by one unit. σ0,1,1 reads

σ0,1,1 = ε Ĝ−1/2 , Ĝ−1/2 =
∑

r≥0

(Dr+1xµ)
∂

∂(Drψµ)
. (A.2)

ω can be assumed to have fixed ghost number and is thus a polynomial in the undiffer-
entiated ε,

ω =

m
∑

m=m

εmfm , (A.3)

where fm can depend on all variables (6.19) except for the undifferentiated ε. At highest
degree in the undifferentiated ε, (A.1) implies σ0,1,1(ε

mfm) = 0 and thus

Ĝ−1/2fm = 0. (A.4)

We analyse this condition by means of the contracting homotopy

B =
∑

r≥0

(Drψµ)
∂

∂(Dr+1xµ)
.

The anticommutator of B and Ĝ−1/2 is the counting operator for all variables Drψµ and
Dr+1xµ (r = 0, 1, . . . ),

{B, Ĝ−1/2} =
∑

r≥0

[

(Drψµ)
∂

∂(Drψµ)
+ (Dr+1xµ)

∂

∂(Dr+1xµ)

]

.

Hence, (A.4) implies by standard arguments that fm is Ĝ−1/2-exact up to a function
that does not depend on the Drψµ or Dr+1xµ,

fm = Ĝ−1/2 gm + hm(y, x,C, [D̄x, ψ̄], [∂ε, η], [ε̄, η̄]) (A.5)

where gm is a function that can depend on all variables (6.19) except for the undif-
ferentiated ε, [D̄x, ψ̄] denotes collectively the variables D̄r+1xµ, D̄rψ̄µ, and [∂ε, η] and
[ε̄, η̄] denote collectively the variables ∂r+1ε, ∂rη and ∂̄rε̄, ∂̄rη̄, respectively (r = 0, 1, . . .
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in all cases). We shall first study the case m > 0 [the case m = 0 will be included
automatically below]. (A.5) implies

m > 0 : ω = σ0,1(ε
m−1gm) + εm−1f ′m−1 +

m−2
∑

m=m

εmfm

+εmhm(y, x,C, [D̄x, ψ̄], [∂ε, η], [ε̄, η̄]) (A.6)

where

f ′m−1 = fm−1 − σ0,1,0 gm .

The exact piece σ0,1(ε
m−1gm) on the right hand side of (A.6) will be neglected in the

following, i.e., actually we shall examine ω′ := ω − σ0,1(ε
m−1gm) in the following. How-

ever, for notational convenience, we shall drop the primes (of ω′ and f ′m−1) and consider
now

m > 0 : ω =

m−1
∑

m=m

εmfm + εmhm(y, x,C, [D̄x, ψ̄], [∂ε, η], [ε̄, η̄]) (A.7)

We have thus learned that, if m > 0, the piece in ω with highest degree in the undif-
ferentiated ε can be assumed not to depend on any of the variables Drψµ or Dr+1xµ

(r = 0, 1, . . . ). As a consquence, the σ0,1-transformation of that piece does not depend
on these variables either and σ0,1ω = 0, with ω as in (A.7), implies

Ĝ−1/2fm−1 = 0. (A.8)

We can now analyse (A.8) in the same way as (A.4) and repeat the arguments until we
reach an equation

Ĝ−1/2f0 = 0 (A.9)

where f0 is a function with conformal weights (0, 0) which does not depend on
the undifferentiated ε [note that fm has conformal weights (m/2, 0) because εmfm
has conformal weights (0, 0); if m had been zero, we had arrived at (A.9) immedi-
ately]. The only way in which f0 can depend nontrivially on the variables Drψµ or
Dr+1xµ (r = 0, 1, . . . ) is through terms of the form ηψµψνfµν(y, x, ∂η,C, [D̄x, ψ̄], [ε̄, η̄]),
η∂εψµfµ(y, x, ∂η,C, [D̄x, ψ̄], [ε̄, η̄]), or ηDxµgµ(y, x, ∂η,C, [D̄x, ψ̄], [ε̄, η̄]) [recall that the
only variables (6.19) with negative L0-weights are the undifferentiated η and ε and that
η is an anticommuting variable]. (A.9) implies fµν(y, x, ∂η,C, [D̄x, ψ̄], [ε̄, η̄]) = 0 and
fµ(y, x, ∂η,C, [D̄x, ψ̄], [ε̄, η̄]) = 0. We conclude

f0 = ηDxµgµ(y, x, ∂η,C, [D̄x, ψ̄], [ε̄, η̄]) + h0(y, x,C, [D̄x, ψ̄], [∂ε, η], [ε̄, η̄]) (A.10)

We thus get the following intermediate result: without loss of generality we can assume

ω =
∑

m

εmhm(y, x,C, [D̄x, ψ̄], [∂ε, η], [ε̄, η̄]) + ηDxµgµ(y, x, ∂η,C, [D̄x, ψ̄], [ε̄, η̄]).

(A.11)
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The only part of σ0,1 which is active on such an ω is the part

σ̂0,1 =
∑

r≥0

r
∑

k=0

(

r

k

)

(∂̄k ε̄ D̄r+1−kxµ)
∂

∂(D̄rψ̄µ)
.

Note that σ̂0,1 touches only the dependence on the variables D̄rψ̄µ, D̄r+1xµ and ∂̄rε̄
(r = 0, 1, . . . ) and treats all other variables as contants. Hence, for ω as in (A.11),
σ0,1ω = 0 implies

σ̂0,1hm(y, x,C, [D̄x, ψ̄], [∂ε, η], [ε̄, η̄]) = 0 ∀m,
σ̂0,1gµ(y, x, ∂η,C, [D̄x, ψ̄], [ε̄, η̄]) = 0. (A.12)

These equations are decomposed into pieces with definite degree in the undifferentiated
ε̄ and then analysed using the contracting homotopy

B̄ =
∑

r≥0

(D̄rψ̄µ)
∂

∂(D̄r+1xµ)
.

By means of arguments analogous to those that have led to (A.11) we conclude that we
can assume, without loss of generality,

hm(y, x,C, [D̄x, ψ̄], [∂ε, η], [ε̄, η̄]) =
∑

q

ε̄qhm,q(y, x,C, [∂ε, η], [∂̄ ε̄, η̄])

+η̄D̄xµgm,µ(y, x, ∂̄η̄, C, [∂ε, η]),

gµ(y, x, ∂η,C, [D̄x, ψ̄], [ε̄, η̄]) =
∑

q

ε̄qhµ,q(y, x, ∂η,C, [∂̄ ε̄, η̄])

+η̄D̄xνgµ,ν(y, x,C, ∂η, ∂̄η̄). (A.13)

Since the hm,q, gm,µ, hµ,q and gµ,ν do not depend on the fermions, they are σ0,1-invariant.
We have thus proved that (A.1) implies

ω = h(y, x,C, [ε, η], [ε̄, η̄])

+ηDxµhµ(y, x, ∂η,C, [ε̄, η̄]) + η̄D̄xµh̄µ(y, x, ∂̄η̄, C, [ε, η])
+ηη̄DxµD̄xνhµν(y, x, ∂η, ∂̄η̄, C) + σ0,1ω̂ (A.14)

where the functions on the right hand side (h, ηDxµhµ, . . . , ω̂) are elements of W.
Note also that the sum on the right hand side is direct: no nonvanishing function
h+ηDxµhµ+ η̄D̄xµh̄µ+ηη̄DxµD̄xνhµν is σ0,1-exact because the various terms either do
not contain variables Dr+1xµ or D̄r+1xµ at all, or they contain Dxµ but no ε, or D̄xµ
but no ε̄. Hence, our result characterizes H(σ0,1,W) completely.

B Derivation of (6.31)

We shall show that (6.30) implies (6.31). The proof is a case-by-case study for g =
0, . . . , 4. Since ωk does not depend on the fermions and has vanishing conformal weights,
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it can be assumed to contain only terms with even Nε-degree and even Nε̄-degree. Hence,
it does not depend on the supersymmetry ghosts if g = 0 or g = 1 which gives (6.31) in
these cases. If 2 ≤ g ≤ 4 the assertion follows from

σ0,0ωk + σ0,1ωk−1 = 0, (B.1)

which is the second equation in (6.29).
g = 2: Only ωk=2 can depend on the supersymmetry ghosts. One has

ωk=2 = ε∂εa(X) + ε̄∂̄ε̄ā(X)

where a(X) and ā(X) are functions of the undifferentiated xµ and yi. σ0,0ω2 contains
for instance η(∂ε)2a(X) and η̄(∂̄ε̄)2ā(X) because σ0,0ε and σ0,0ε̄ contain η∂ε and η̄∂̄ε̄,
respectively. If a 6= 0 or ā 6= 0, these terms are not σ0,1-exact because they do not
contain derivatives of an xµ. We conclude that a = 0 and ā = 0 and thus that (6.31)
holds for g = 2.

g = 3: Again, only ωk=2 can depend on the supersymmetry ghosts. The terms in
ωk=2 depending on ε or its derivatives are

ηε∂2εa(X) + ε∂ε∂ηb(X) + ε∂ε∂̄η̄c(X) + ε∂εCidi(X)

+η̄D̄xµε∂εeµ(X) + η(∂ε)2f(X) + ∂2ηε2g(X). (B.2)

In addition there are analogous terms with ε̄ or its derivatives. A straightforward cal-
culation shows that (B.1) imposes

b = 0, c = 0, di = 0, eµ = ∂µa, f = a, g = −1
2 a (B.3)

where a = a(X) is an arbitary function of the yi and xµ. Using (B.3) in (B.2), the latter
becomes

[ηε∂2ε+ η̄D̄xµε∂ε∂µ + η(∂ε)2 − 1
2 ∂

2ηε2]a(X)

= σ0[ε∂εa(X)] + σ0,1[η∂εψ
µ∂µa(X)]. (B.4)

This shows that all terms containing ε or its derivatives can be removed from ωk=2 by
the redefinition ω′ = ω − σ0[ε∂εa(X) + η∂εψµ∂µa(X)]. Similarly one can remove all
terms containing ε̄ or its derivatives. Hence, without loss of generality one can assume
ωk=2 = 0 which implies (6.31) for g = 3.

g = 4: Now ωk=4 and ω2 can depend on the supersymmetry ghosts. One has

ωk=4 = ε3∂2εa(X) + ε2(∂ε)2b(X) + ε̄3∂̄2ε̄ā(X) + ε̄2(∂̄ε̄)2b̄(X) + ε∂εε̄∂̄ε̄c(X).

The fact that σ0,0∂
2ε contains −(1/2)ε∂3η implies a = 0. Analogously one concludes

ā = 0. The fact that σ0,0∂ε and σ0,0∂̄ε̄ contain η∂2ε and η̄∂̄2ε̄, respectively, implies
b = 0, b̄ = 0 and c = 0.
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ω2 is of the form PA(ghosts,Dxµ, D̄xµ)aA(X) where the PA either depend on ε
and its derivatives, or on ε̄ and its derivatives. The complete list of polynomials PA

depending on ε and its derivatives is

η∂ηε∂2ε, η∂η(∂ε)2 , ∂2η∂ηε2, η∂2ηε∂ε, η∂3ηε2,

η̄D̄xµηε∂2ε, η̄D̄xµη(∂ε)2, η̄D̄xµ∂ηε∂ε, η̄D̄xµ∂2ηε2,

η∂̄η̄ε∂2ε, η∂̄η̄(∂ε)2, η̄∂̄2η̄ε∂ε, ∂η∂̄η̄ε∂ε, ∂2η∂̄η̄ε2, η̄D̄xµ∂̄η̄ε∂ε,
ηCiε∂2ε, ηCi(∂ε)2, ∂ηCiε∂ε, ∂2ηCiε2, ∂̄η̄Ciε∂ε, η̄D̄xµCiε∂ε,CiCjε∂ε,

Starting with the terms

ε∂2εη∂ηA1(X) + (∂ε)2η∂ηB1(X) + ε2∂η∂2ηE2(X) (B.5)

one finds that (B.1) implies A1(X) = B1(X) = 2E2(X). Considering the terms

ε∂εη∂2ηB5(X) + ε2η∂3ηE1(X) + ε∂2εηη̄D̄xµA4,µ(X)

+(∂ε)2ηη̄D̄xµB4,µ(X) + ε∂ε∂ηη̄D̄xµC4,µ(X) + ε2∂2ηη̄D̄xµE6,µ(X), (B.6)

one observes that the σ0 transformation of these terms neither contain ∂̄kη̄ or ∂̄kε̄ terms
nor U(1) ghosts. Thus they have to fulfill (B.1) separately and one obtains

C4,µ(X) = −∂µA1(X)

B4,µ(X) = −∂µB5(X) + ∂µA1(X) − 2E6,µ(X)

A4,µ(X) = −2∂µE1(X) − 2E6,µ(X).

Eliminating the coefficients one finds that (B.5) + (B.6) can be expressed by

σ0

(

η(∂ε)2(B5(X) −A1(X)) + ηε∂2εE1(X) + ε∂ε∂ηA1(X) − 2ε∂εη̄D̄xµE6,µ(X)
)

+σ0,1

(

−η∂η∂εψµ∂µA1(X) − 2η̄η∂εD̄xµψν∂νE6,µ − η̄η∂εD̄xρψνΩρν
µE6,µ

)

, (B.7)

where we have used the on-shell equality (6.15). Next we consider the terms involving
derivatives of η̄

ε∂2εη∂̄η̄A2(X) + (∂ε)2η∂̄η̄B2(X) + ε∂εη̄∂̄2η̄B6(X)

+ε∂ε∂η∂̄η̄B7(X) + ε2∂2η∂̄η̄E3(X) + ε∂ε∂̄η̄η̄D̄xµC5,µ(X), (B.8)

which implies via (B.1)

B7(X) = 0, A2(X) = B6(X) = B2(X) = −2E3(X),

C5,µ(X) = −∂µA2(X). (B.9)

Thus (B.8) can be written as

σ0

(

ε∂ε∂̄η̄A2(X)
)

− σ0,1

(

∂ε∂̄η̄ηψµ∂µA2(X)
)

(B.10)
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and thus be removed from ω2. In the last step we consider contributions containing
U(1) ghosts, i.e.

ε∂2εηCiA3,i(X) + (∂ε)2ηCiB3,i(X) + ε∂ε∂ηCiB8,i(X) + ε2∂2ηCiE4,i(X)

+ε∂ε∂̄η̄CiB9,i(X) + ε∂εCiη̄D̄xµC6,µi(X) + ε∂εCiCjB10,ij(X). (B.11)

(B.1) imposes B10,ij(X) = B9,i(X) = B8,i(X) = 0. Furthermore we derive the condi-
tions

A3,i(X) = B3,i(X) = −2E4,i(X) C6,µi(X) = −∂µA3,i(X). (B.12)

Using the on-shell equality (6.14), (B.11) can be written as

σ0

(

ε∂εCiA3,i(X)
)

+σ0,1

(

∂εCiηψµ∂µA3,i(X) − ∂εηη̄ψµD̄xν(Ωµνi − Ωµν
λGλi)A3,i(X)

)

. (B.13)

Hence, as in the case g = 3 one finds that (B.1) implies ω2 = σ0(. . . ) + σ0,1(. . . ) which
implies (6.31) for g = 4.

C Analysis of Bianchi identities

In this appendix we summarize briefly the investigation of the Bianchi identities for two-
dimensional supergravity coupled to Maxwell theory. The starting point is the structure
equation

[DA,DB} = −TABCDC −RABδL − FAB
iδi, (C.1)

where [·, ·} denotes the graded commutator, {DA} = {Da,Dα} contains the covariant
derivatives Da and covariant supersymmetry transformations Dα, δL = (1/2)εablab is
the Lorentz generator and δi are the U(1) generators (represented trivially in our case).
The “torsions” TAB

C , “curvatures” RAB and “field strengths” FAB
i are generically field

dependent and determined from the Bianchi identities implied by (C.1). Using the
constraints (2.5) and (2.6) one obtains for the torsions

Tαβ
a = 2i(γaC)αβ

Taβ
α = 1

4 S(γa)β
α

Tab
α = i

4 εab(Cγ∗)
αβDβS, (C.2)

where S is the auxiliary scalar field of the gravitational multiplet. For the curvatures
one obtains

Rαβ = iS(γ∗C)αβ

Raα = i
2 (γaγ∗)α

βDβS

Rab = 1
4 εab(S

2 + D2S), (C.3)

37



and the field strengths are given by

Fαβ
i = 2i(γ∗C)αβφ

i

Faα
i = (γa)α

βλiβ . (C.4)

The supersymmetry transformations of λiβ and F iab turn out to be

Dαλ
i
β = i(γaγ∗C)αβDaφ

i + i
2 (γ∗C)αβε

abF iba + i
2 (γ∗C)αβSφ

i

DαF
i
ab = −(γbDaλ

i)α + (γaDbλ
i)α + 1

2 εabDαSφ
i + 1

2 εabS(γ∗)α
δλiδ. (C.5)

Introducing the corresponding connection 1-forms and proceeding along the lines of [14]
one identifies the covariant derivatives Da in terms of partial derivatives and connections,
and the curvatures, field strengths and torsions with two lower Lorentz indices in terms
of the connections and the other field strengths. Owing to the constraint Tab

c = 0 this
yields the expression (2.2) for the spin connection. Furthermore one obtains

Fab
i = Ea

nEb
m(∂nA

i
m − ∂mA

i
n − (χmγnλ

i) + (χnγmλ
i) − 2i(χmγ∗Cχn)φ

i)

and the expression for Tab
α can be used to express the supersymmetry transformation

of the auxiliary field S as

DαS = 4i(γ∗C)αβε
nm∇mχn

β − i(γmC)αβχm
βS.

The full BRST transformations (2.1), (2.3) and (2.4) are then obtained by adding the
Weyl transformations by hand and imposing s2 = 0 on all fields. To achieve this in
an off-shell setting, one introduces the super-Weyl symmetry on the gravitino and the
gaugino and the local shift symmetry of the auxiliary field S.

D BRST transformations of superconformal tensor fields

This appendix collects the BRST transformations of the superconformal tensor fields
and corresponding ghost variables derived in section 3. The transformations of the
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undifferentiated fields read

sη = η∂η − εε

sη̄ = η̄∂̄η̄ − ε̄ε̄

sε = η∂ε− 1
2 ε∂η

sε̄ = η̄∂̄ε̄− 1
2 ε̄∂̄η̄

sCi = ηη̄F i + ηε̄λi + η̄ελ̄i + εε̄φ̂i

sXM = (ηD + η̄D̄)XM + εψM + ε̄ψ̄M

sψM = (ηD + η̄D̄)ψM + 1
2 ∂ηψ

M + εDXM − ε̄F̂M

sψ̄M = (ηD + η̄D̄)ψ̄M + 1
2 ∂̄η̄ψ̄

M + ε̄D̄XM + εF̂M

sF̂M = (ηD + η̄D̄)F̂M + 1
2 (∂η + ∂̄η̄)F̂M + εDψ̄M − ε̄D̄ψM

sφ̂i = (ηD + η̄D̄)φ̂i + 1
2 (∂η + ∂̄η̄)φ̂i + ελi + ε̄λ̄i

sλi = (ηD + η̄D̄)λi + (∂η + 1
2 ∂̄η̄)λ

i + εDφ̂i + ε̄F i + ∂εφ̂i

sλ̄i = (ηD + η̄D̄)λ̄i + (1
2 ∂η + ∂̄η̄)λ̄i + ε̄D̄φ̂i − εF i + ∂̄ε̄φ̂i

sF i = (ηD + η̄D̄)F i + (∂η + ∂̄η̄)F i − εDλ̄i + ε̄D̄λi − ∂ελ̄i + ∂̄ε̄λi

The s-transformations of covariant D or D̄ derivatives (of first or higher order) of a field
are obtained by applying D’s and/or D̄’s to the transformations given above, using the
rules Dη = ∂η, Dη̄ = 0, Dε = ∂ε, Dε̄ = 0 etc, as well as [D, D̄] = 0. E.g., one gets

sDXM = (ηD + η̄D̄)DXM + ∂ηDXM + εDψM + ε̄Dψ̄M + ∂εψM

sD̄XM = (ηD + η̄D̄)D̄XM + ∂̄η̄D̄XM + εD̄ψM + ε̄D̄ψ̄M + ∂̄ε̄ψ̄M

sDD̄XM = (ηD + η̄D̄)DD̄XM + (∂η + ∂̄η̄)DD̄XM

+εDD̄ψM + ε̄DD̄ψ̄M + ∂εD̄ψM + ∂̄ε̄Dψ̄M

sDψM = (ηD + η̄D̄)DψM + 3
2 ∂ηDψ

M + 1
2 ∂

2ηψM

+εD2XM + ∂εDXM − ε̄DF̂M

sD̄ψ̄M = (ηD + η̄D̄)D̄ψ̄M + 3
2 ∂̄η̄D̄ψ̄

M + 1
2 ∂̄

2η̄ψ̄M

+ε̄D̄2XM + ∂̄ε̄D̄XM + εD̄F̂M

sD̄ψM = (ηD + η̄D̄)D̄ψM + 1
2 ∂ηD̄ψ

M + ∂̄η̄D̄ψM

+εDD̄XM − ∂̄ε̄F̂M − ε̄D̄F̂M

sDψ̄M = (ηD + η̄D̄)Dψ̄M + ∂ηDψ̄M + 1
2 ∂̄η̄Dψ̄

M

+ε̄DD̄XM + ∂εF̂M + εDF̂M
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E BRST transformations of superconformal antifields

In this appendix we present the full s transformations of the superconformal antifields
associated with the matter and gauge multiplets, using the following notation:

GMN := H(MN)(X)

Di := Di(X)

ΩKNM := ∂KHMN(X) − ∂MHKN(X) + ∂NHKM(X)

= 2ΓKNM −HKNM (HKNM = 3∂[KHNM ])

RKLMN := ∂M∂[KHL]N(X) − ∂N∂[KHL]M(X)

= 1
2 (∂KΩLMN − ∂LΩKMN) = 1

2 (∂MΩKNL − ∂NΩKML).

ΩKNM and RKLMN enjoy the following properties:

ΩKMN + ΩKNM = ΩMKN + ΩNKM = 2∂KGMN

RKLMN = −RLKMN = −RKLNM , ∂[JRKL]MN = 0.

The full BRST transformations of the undifferentiated superconformal matter antifields
are

sF ∗
M = −φ̂i∂MDi + 2GMN F̂

N + ψK ψ̄NΩKNM

+(ηD + η̄D̄)F ∗
M + 1

2 (∂η + ∂̄η̄)F ∗
M − εψ̄∗

M + ε̄ψ∗
M

sψ∗
M = λ̄i∂MDi + ψ̄N φ̂i∂N∂MDi + 2GMN D̄ψN

+D̄XNψKΩKNM − F̂N ψ̄KΩMKN − ψK ψ̄N ψ̄LRKMLN

+(ηD + η̄D̄)ψ∗
M + (1

2 ∂η + ∂̄η̄)ψ∗
M + εX∗

M + ε̄D̄F ∗
M + ∂̄ε̄F ∗

M

sψ̄∗
M = −λi∂MDi − ψN φ̂i∂N∂MDi + 2GMNDψ̄N

+DXN ψ̄KΩNKM + F̂NψKΩKMN + ψKψLψ̄NRLKMN

+(ηD + η̄D̄)ψ̄∗
M + (∂η + 1

2 ∂̄η̄)ψ̄
∗
M + ε̄X∗

M − εDF ∗
M − ∂εF ∗

M

sX∗
M = −2GMNDD̄XN −DXKD̄XLΩKLM + F̂K F̂LΩMKL

+Dψ̄Kψ̄LΩMLK − ψKD̄ψLΩKML

+DXN ψ̄K ψ̄LRNMLK + D̄XNψKψLRLKNM

+F̂NψK ψ̄L∂MΩKLN + 1
2 ψ

RψK ψ̄N ψ̄L∂MRKRLN

+F i∂MDi − (ψN λ̄i − ψ̄Nλi + F̂N φ̂i + ψN ψ̄K φ̂i∂K)∂N∂MDi

+(ηD + η̄D̄)X∗
M + (∂η + ∂̄η̄)X∗

M

+εDψ∗
M + ε̄D̄ψ̄∗

M + ∂εψ∗
M + ∂̄ε̄ψ̄∗

M
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The s transformation of the superconformal antifields for the gauge multiplet read

sλ∗i = ψ̄M∂MDi

+(ηD + η̄D̄)λ∗i + 1
2 ∂̄η̄λ

∗
i + εφ∗i − ε̄Ā∗

i

sλ̄∗i = −ψM∂MDi

+(ηD + η̄D̄)λ̄∗i + 1
2 ∂ηλ̄

∗
i + ε̄φ∗i − εA∗

i

sφ∗i = −F̂M∂MDi − ψM ψ̄N∂N∂MDi

+(ηD + η̄D̄)φ∗i + 1
2 (∂η + ∂̄η̄)φ∗i

+εDλ∗i + ε̄D̄λ̄∗i − εε̄C∗
i

sA∗
i = −DXM∂MDi

+(ηD + η̄D̄)A∗
i + ∂ηA∗

i

+ε̄Dλ∗i − εDλ̄∗i − ∂ελ̄∗i − ε̄ε̄C∗
i

sĀ∗
i = D̄XM∂MDi

+(ηD + η̄D̄)Ā∗
i + ∂̄η̄Ā∗

i

+εD̄λ̄∗i − ε̄D̄λ∗i − ∂̄ε̄λ∗i − εεC∗
i

sC∗
i = −DĀ∗

i − D̄A∗
i + (ηD + η̄D̄)C∗

i + (∂η + ∂̄η̄)C∗
i

The BRST transformations of covariant derivatives of the covariant antifields (such
as sDX∗

M) are obtained from the above formulae by means of the rules described in
appendix D.
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[22] S. J. Gates, C. M. Hull and M. Roček, “Twisted Multiplets And New Supersym-
metric Nonlinear Sigma Models,” Nucl. Phys. B 248 (1984) 157-186.

[23] C. M. Hull and E. Witten, “Supersymmetric Sigma Models And The Heterotic
String,” Phys. Lett. B 160 (1985) 398-402.

[24] A. Kling, “BRST cohomology of Dirichlet-Superstrings”, diploma thesis, Vienna
1998 (unpublished).

[25] P. S. Howe, “Super Weyl Transformations In Two-Dimensions”, J. Phys. A 12

(1979) 393-402.

[26] F. Brandt, “Gauge covariant algebras and local BRST cohomology,” Contemp.
Math. 219 (1999) 53-67 [hep-th/9711171].

[27] F. Brandt, “Jet coordinates for local BRST cohomology,” Lett. Math. Phys. (to
appear) [math-ph/0103006].

[28] F. Delduc and F. Gieres, “Beltrami differentials, conformal models and their su-
persymmetric generalizations”, Class. Quant. Grav. 7 (1990) 1907-1952.

[29] R. Grimm, “Left-Right Decomposition of Two-Dimensional Superspace Geometry
and Its BRS Structure”, Ann. Phys. 200 (1990) 49-100.

[30] I. A. Batalin and G. A. Vilkovisky, “Quantization Of Gauge Theories With Linearly
Dependent Generators”, Phys. Rev. D 28 (1983) 2567-2582

[31] I. A. Batalin and G. A. Vilkovisky, “Gauge Algebra And Quantization”, Phys. Lett.
B 102 (1981) 27-31.

[32] M. Henneaux and C. Teitelboim, “Quantization of Gauge Systems”, Princeton Uni-
versity Press, Princeton, 1992.
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