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Abstract

We first derive all world-sheet action functionals for NSR superstring models
with (1,1) supersymmetry and any number of abelian gauge fields, for gauge trans-
formations of the standard form. Then we prove for these models that the BRST
cohomology groups HY(s), g < 4 (with the antifields taken into account) are iso-
morphic to those of the corresponding bosonic string models, whose cohomology is
fully known. This implies that the nontrivial global symmetries, Noether currents,
background charges, consistent deformations and candidate gauge anomalies of an
NSR (1,1) superstring model are in one-to-one correspondence with their bosonic
counterparts.

PACS: 11.25.-w, 11.30.Pb; keywords: superstring, BRST cohomology


http://arXiv.org/abs/hep-th/0104110

1 Introduction and conclusion

We present in this paper a BRST cohomological analysis of superstring models in the
NSR formulation [[-ff] with local (1,1) supersymmetry [i,H]. The class of models under
study is quite general since it is characterized only by requirements on the field content
and the gauge symmetries. The field content is given by the component fields of three
types of supersymmetry multiplets: the 2d supergravity multiplet, ‘matter multiplets’
containing the ‘target space coordinates’, and abelian gauge field multiplets. The num-
ber of matter multiplets and gauge field multiplets is not fixed, i.e., our results apply
to any target space dimension (1,2, ... ) and an arbitrary number (0,1, ... ) of abelian
world-sheet gauge fields. The supersymmetry transformations are obtained from an
analysis of the Bianchi identities of 2d supergravity in presence of abelian gauge fields.

The first part of our analysis is the determination of all local world-sheet actions
compatible with these requirements, using the standard form of the gauge transforma-
tions (the question whether or not these transformations can be nontrivially deformed
is a matter covered by the investigation in the second part of the paper, cf. comments at
the end of section [L.1)). This analysis is accomplished by a cohomological computation in
the space of local functions which do not depend on antifields (this is possible because we
use a formulation in which the commutator algebra of the gauge transformations closes
off-shell). Its result has been reported and discussed already in [f]: when abelian gauge
fields are absent, the cohomological analysis reproduces the general superstring action
found already in [[q]; in presence of abelian gauge fields, it yields locally supersymmetric
extensions of the purely bosonic actions derived in [§,J] and may be interpreted in terms
of an enlarged target space with one ‘frozen’ extra dimension for each gauge field. In
particular there are locally supersymmetric actions of the Born-Infeld type among these
actions [ff.

In the second part of the paper we analyse the local BRST cohomology H(s) for
the models whose world-sheet actions were determined in the first partf] Here and
throughout this paper H(s) denotes the cohomology of the BRST differential in the
space of local functions which neither depend explicitly on the world-sheet coordinates
nor on the world-sheet differentials, but only on the fields, antifields and their derivatives.
This cohomology is the most important one for the models under study because the
other local BRST cohomology groups can be easily derived from it. This is due to the
invariance of the models under world-sheet diffeomorphisms, owing to a general property
of diffeomorphism invariant theories discussed in detail in sections 5 and 6 of [[L1] (see
also [L2-[L4]).

In particular, H(s) yields directly the cohomology in form-degree 2 of s modulo
the “world-sheet exterior derivative” d. f| This cohomology is the most relevant one
for physical applications and denoted by H92(s|d), where g specifies the ghost number

!The action is needed to fix the BRST transformations of the antifields. s denotes the BRST differ-
ential in the jet space associated with the fields and antifields [E] Our analysis is general except for a
very mild assumption (invertibility) on the “target space metric”, see section fj.

2Actually d is defined on the jet space of the fields and antifields [E]



sector. Cocycles of H92(s|d) are denoted by w¥? and the cocycle condition is
sw9? + dwdTH =0, (1.1)

where w911 is some local 1-form with ghost number g + 1. w9%? is a coboundary in
H92(s|d) if w9? = sw9™12 4 dw9! for some local forms w9~H2? and w9!. HI2(s|d)
is related to H(s) through the descent equations as explained in [[1-[[4. The phys-
ically interesting cohomology groups H92(s|d) are those with ghost numbers g < 2:
H~12(s|d) yields the nontrivial Noether currents and global symmetries [[§], H%?(s|d)
and H'?(s|d) determine the consistent deformations [[[§], background charges [[q] and
candidate gauge anomalies (see, e.g., [[§]). The corresponding cohomology groups of s
are HY9(s) with ¢ < 4. They are the objects of our second main result: we shall prove
that these cohomology groups are isomorphic to their counterparts in the correspond-
ing bosonic string modelsf] [the bosonic model corresponding to a particular superstring
model is obtained from the latter simply by setting all fermions to zero in the world-
sheet action]. Furthermore, the correspondence is very explicit: the representatives of
the s-cohomology of a superstring model are simply extensions of their “bosonic” coun-
terparts, i.e., they contain the representatives of the s-cohomology of the corresponding
bosonic string model and complete them to s-cocycles of the superstring model [anal-
ogously to the superstring action itself, which contains the bosonic string action and
completes it to a locally supersymmetric one].

This result provides a complete characterization of the cohomology groups HY(s),
g < 4 because the cohomology H(s) for the bosonic string models has been completely
determined in [I9] (ordinary bosonic strings) and [d (bosonic strings with world-sheet
gauge fields). Owing to the correspondence of H92(s|d) and H(s) mentioned above, it
implies, in particular, that the nontrivial Noether currents, global symmetries, consistent
deformations, background charges and candidate gauge anomalies of an NSR superstring
model with (1,1) supersymmetry are in one-to-one correspondence with those of the
bosonic string model. The results for the bosonic models were derived and discussed in
detail in [§,[,[[7,[[9,R0]. We shall not repeat or summarize them here.

We find the result quite remarkable and surprising since it means that the local (1,1)
supersymmetry of the models under study has no effect on the structure of the cohomol-
ogy at all. We note that our analysis and result applies analogously to heterotic strings
with local (1,0) supersymmetry (by switching off one of the supersymmetries). However,
we do not expect that it extends to superstrings with two or more local supersymmetries
of the same chirality, such as heterotic strings with local (2,0) supersymmetry. These
supersymmetries restrict already the world-sheet action to special backgrounds [21-RJ.
Accordingly, we expect that the local BRST cohomology of such superstring models is
“smaller” than the one for corresponding bosonic strings.

The paper is organized as follows. In section f| we specify the field content and the
gauge and BRST transformations of the fields. In section [J we construct field vari-
ables (jet space coordinates) which are well suited for the cohomological analysis. This

$We believe that the isomorphism extends to all higher ghost number sectors as well since most parts
of our proof (in fact, everything except for the case-by-case study in appendix ) hold for all ghost
numbers.



involves the super-Beltrami parametrization for the gravitational multiplet and a con-
struction of superconformal tensor fields for the matter and gauge multiplets. In section
H we determine the most general action for the field content and gauge transforma-
tions introduced before by computing H?(s) in the space of antifield independent local
functions. This completes the first part of our analysis. In section | we introduce the
antifields, give their BRST transformations and extend the superconformal tensor cal-
culus by constructing superconformal antifield variables. The next two sections contain
the derivation of our second result: in section fj we define and analyse an on-shell BRST
cohomology H(o); in section [l we show that HY(o) is isomorphic to HY(s) and to the
cohomology of the corresponding bosonic string model when g < 4. Some details of the
analysis of sections ] and [ are collected in the appendices [ and [J. The remaining
appendices give a short summary of the derivation of the gauge transformations from
the supergravity Bianchi identities and contain a collection of the s-transformations of
the covariant (= superconformal) field and antifield variables.

2 Field content and gauge symmetries

The field content of the models we are going to study is given by the supergravity
multiplet consisting of the vielbein e,}, the gravitino x%, and an auxiliary scalar field
S ﬁ Furthermore we consider a set of scalar multipets { X, ¢ M} corresponding to
the string “target space coordinates” and their superpartners and a set of abelian gauge
multiplets {4, A2, ¢'}. On Minkowskian world-sheets all fields are real and the fermions
are Majorana-Weyl spinors. The number of scalar multiplets and gauge multiplets is not
specified, i.e. our approach covers any number of such fields. As gauge symmetries we
impose world-sheet diffeomorphisms, local 2d Lorentz transformations, Weyl and super-
Weyl transformations and of course local (1,1) world-sheet supersymmetry. Furthermore
we require invariance under abelian gauge transformations of the A?, and under arbitrary
local shifts of the auxiliary field S. The gauge symmetries entail the corresponding ghost
fields, which fixes the field content to

o4 = {e, 2,2, S, XM M FM AL N G em e, 0 eV o W, 'Y,

where &™ denote the world sheet diffeomorphism ghosts, £* are the supersymmetry
ghosts and C'% is the Lorentz ghost. C" and n® are the Weyl and super-Weyl ghosts,
respectively. ¢’ are the ghosts associated with the U(1) transformations of the gauge
fields and W denotes the ghost corresponding to the local shifts of the auxiliary field S.
The gauge transformation of the supergravity multiplet written as BRST transforma-
tions are

sei = £"O0net 4 (Om€™)es — A6°%,7 (°Cap + Gyt + CVe 5
Xt = E"OnXom A+ (OmE" )X+ Viné® — 1%€,55(7a) ™ + 3 CV x5
+in? (vm) 5 — 1 Cxean (1) 6
sS = €008 = 4 (1C)rat™ VX +187 (V" CyaxmS — CV S+ W, (2.1)

“m, a, o denote 2d world-sheet, Lorentz and spinor indices, respectively.




where C,s is the charge conjugation matrix satisfying —(7%)7 = C~1(y?)C. ~. is
defined through ~%y® = 71 + %+, and €” = g9 = 1. V,, denotes the Lorentz
covariant derivative

Vi = Om — 5w,
in terms of the Lorentz generator l,;, and the spin connection

wrrCLLb = EanEbk(W[mn}k — Wnklm + w[km}n)
Wimnlk = ekdﬁ[nenf] — IXnYEXms Emeb =0t (2.2)
The BRST transformations of the scalar multiplets read
sXM = €m0 XM 1 eyl
sl = €"0miy! —i€7 (V" C)pa(0m XM = x,Ju)") + €7 Cpa M
+1 C%ean(r)d w5 — 5 CV !
sFM = €m0 M 4+ €2 (™) H{Vmt + ] (1" C)yp (0 XM = 37 57)
—x CgFM} — WM, (2.3)
The BRST transformations of the U(1) multiplets are

s¢' = €00 + ()N - Co!
8)\15 = gnan)\lﬁ + £ (i(V*C)aﬁemn(amA; + Xm VA" = X0V CxXm@")
_i(’Y*’YmC)aﬁ(am(ﬁZ — XmV+A") + i(’y*C)aﬁSqS’)
+1 C%ap (1) J N+ 20% (1C)apd’ — 3 CV A5
sAL = €0, AL + (0™ AL + O
=268 (1:C)gad’ = € (Ym) o’ Nj- (2.4)
These transformations were obtained by analyzing the 2d supergravity algebra in pres-
ence of the scalar matter and gauge multiplets [R4] analogously to the superspace analysis

of [PJ]. A short summary of the analysis is given in appendix [J. In the supergravity
sector we used the constraints

Taga = Qi(ﬁaC)aﬁ, Tabc = Tagﬁ/ =0 (25)
and in the U(1) sector

Fiy=2(C)apd' (2.6



All constraints are conventional, i.e., can be achieved by redefinitions of the connections.
The transformations of the ghosts are such that the BRST differential s squares to zero,

s = MO + 167 (1" C)ag
SE = 08" — 1P (YO gy — F O e (va) 5 + 5 CVEY
sC = £m9,C% — 1€ S(1C)ape™ — i (V" C) paw,t” — 207 ¥ (1.C) ape™
sCV = 0,0V + 2m¢g
sn® = "0 — 1 Cn e (v) 5 +167 (Y5 (3 0nCY — 1 (xnC)+)
—1C"nr W
sW = £"0,W — 4 (Y"C)ga (V™ = 2 X,5W = 5 X0 (7)), (0.C™))
— 47X, (" g (xnC)y — CVW
sc = MO0 +16%EP (1.C)apd’ — 6P (Y C)ap Al (2.7)

We remark that the use of Weyl, super-Weyl and Lorentz transformations, as well as
the shift symmetry associated with the auxiliary field S are artefacts of the formulation
and disappear in an equivalent formulation based on a Beltrami parametrization of the
world-sheet zweibein (see sections fJ and [l). Of course we could have used the Beltrami
approach from the very beginning, but we decided to start from the more familiar
formulation presented above.

3 Superconformal tensor calculus

The first part of our cohomological analysis consists in the construction of a suitable
“basis” for the fields and their derivatives (more precisely: suitable coordinates of the
jet space associated with the fields). The goal is to find a basis {u’,v’,w!} with as
many s-doublets (uf,v%) as possible and complementary (local) variables w! such that

sw! can be expressed solely in terms of the w’s, i.e.,

sut =0, sw! =rl(w). (3.1)

On general grounds, such a basis is related to a tensor calculus [[4,R6,R7. In the
present case the tensor calculus is a superconformal one, generalizing the conformal
tensor calculus in bosonic string models found in [L9] (see also [[]). The w’s with ghost
number 1 are specific ghost variables corresponding to the superconformal algebra, the
w’s with ghost number 0 are “superconformal tensor fields” on which this algebra is
represented.

3.1 Super-Beltrami parametrization

The superconformal structure of the models under consideration is related to the super-
symmetric generalization of the so-called Beltrami parametrization [§,29]. Beltrami
differentials parametrize conformal classes of 2d metrics, and this makes them natural



quantities to be used as basic variables in the present context. Since Beltrami differen-
tials change only under world-sheet reparametrizations but not under Weyl or Lorentz
transformations, their use leads to a simpler formulation of the models under study (cf.
remarks at the end of section [, and in section ). In the following we choose a Euclidean
notation and parametrize the worldsheet with independent variables z and z rather than
with light cone coordinates, because this simplifies the notation and avoids some factors
of i.ﬂ
As it is not hard to guess the supersymmetric generalization of the Beltrami
parametrization involves in addition to the bosonic Beltrami differential p a fermionic
partner «, the Beltramino. The starting point is the parametrization of the vielbein
e# = (dz+dzus)eS

z

e = (dz+dzp’)es. (3.2)

The coefficients p;* and p,” are the Beltrami differentials
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whereas the factors e,* and e;* are referred to as conformal factors. One should note that
the Beltrami differentials transform under diffeomorphisms but do not change under
Weyl or Lorentz transformations. The latter “structure group transformations” are
carried solely by the conformal factors which form s-doublets (uf, v*) with ghost variables
substituting (in the new basis) for the Lorentz ghost and the Weyl ghost.

The fermionic superpartners of the Beltrami differentials are suitable combinations

of the gravitino fields
a = /& (G )

a = S (- X)) - (3.4)

z

The Beltraminos are also invariant under structure group transformations. Especially
they do not change under super-Weyl transformations. Again one can find comple-
mentary combinations of the gravitinos forming s-doublets with ghost variables that
substitute for the super-Weyl ghosts. The fact that Weyl, Lorentz and super-Weyl
ghosts (and not just their derivatives) occur in s-doublets as we just described reflects
that Weyl, Lorentz and super-Weyl invariance are artefacts of the formulation.

The Beltrami parametrization involves also a redefinition of the diffeomorphism
ghosts, sometimes called the Beltrami ghost fields. This again has to be supplemented

®Note that reality conditions of spinors are subtle after Wick rotation to Euclidean space: In our
left-right symmetric case of (1,1) supersymmetry we could define (¢0)* = 1 and work with manifestly
real actions, but obviously this would not be possible for heterotic theories. This is, however, irrelevant
in our algebraic context.



with a redefinition of the supersymmetry ghosts. The new ghost variables, which replace
the diffeomorphism ghosts €% and ¢7 and the supersymmetry ghosts ¢! and &2 are

n o= (& +pg)
o= (€ g
e = (@48, &= /EE

f = p(EHga), =R (35)

In terms of the new ghost variables the BRST transformations of “right-moving” and

“left-moving” quantities decouple from each other [Pg,

spo= (0—pd+ (0p)n+ae

sa = (20 —2u0+ (0p)) e +nda + 1 adn

sm = ndn—ee

se = nle—1eon, (3.6)

with analogous transformations for the right movers.

3.2 Superconformal ghost variables and algebra

We have now paved the road for the construction of field variables {uf, v, w’} fulfilling
(B1). In fact we have already identified some s-doublets (uf, v*), namely the u’s given by
the conformal factors and their fermionic counterparts and the corresponding v’s given
by ghost fields substituting in the new basis for the Weyl, Lorentz and super-Weyl ghosts.
Furthermore, the field .S obviously forms an s-doublet with a ghost field substituting
for W. The derivatives of these w’s and v’s form s-doublets as well. The Beltrami
differentials p, i and their derivatives are u’s too. From (B.6) one observes that su
and sfi contain derivatives 97 and 97 and of the reparametrization ghosts, respectively.
Taking derivatives of these transformations, one sees that the m-th derivatives of the
Beltrami differentials pair off with ghost variables that substitute in the new basis for
all (m + 1)-th derivatives of the reparametrization ghosts except for 9™ *1n and 9™*+17.
Analogously, the s-transformations of the Beltraminos contain derivatives e and 0¢ of
the supersymmetry ghosts. Thus the m-th derivatives of a and & pair off with ghost
variables substituting for all (m + 1)-th derivatives of ¢ and & except for 9™*e and
0™*1z. We introduce the following notation for those ghost variables which do not sit
in s-doublets:

1 1
(CN} = (P, 7P, P12 P72 i p=—1,0,1,...}, (3.7)



with
1

_ p+1
= (p+1)! 0"
1 _
_n p+1—
= (p+1)! N
ot _ 1 n
(p+1)!
—IH-% _ 1 517-‘1-1— 3.8
€ = a0 E. (3.8)

These ghost variables fulfill the requirement imposed in (B.]) on w’s. Indeed, using
(B.f), one easily computes their s-transformations:

s = =g f 45

— % " (r —q)oy,, — %€“€b2(5§+b (3.9)
set = _% e f e’ + %Ecnp e

— oy <§ - c> 5 (3.10)

The f’s which occur in these transformations are the structure constants of a graded
commutator algebra of operators Ay to be represented on tensor fields constructed of
the component fields of the matter and U(1) multiplets,

{AN} = {Lp,ip,GH% ,ép+% :p=—1,0,1,... }. (3.11)

This graded commutator algebra is nothing but the NS superconformal algebra
p
[L;Dv Lq] = (p - Q)Lp—l-qv {Gaa Gb} = 2Lg b, [Lpa Ga] = <§ - a) Gp+aa (3'12)

with the analogous formulas for the L’s and G’s and the usual property that the holo-
morphic and antiholomorphic generators (anti-)commute,

[Lp7 Z/q] = 07 {Ga7 éb} = 07

[Lp, Ga] =0, [Lp, Ga] = 0.

The representation of this algebra on superconformal tensor fields, and the explicit
construction of these tensor fields, will be given in the following subsection.

3.3 Superconformal tensor fields

We shall now summarize the representation of the algebra (B.1J) on superconformal ten-
sor fields constructed of the fields and their derivatives (the representation on antifields
is discussed in section fj) such that the BRST transformation of these tensor fields readsf]

_ 1
sT=Y (an,, + Ly + "G

1 _
+ &2 @ 1>T. (3.13)
p>—1

1
2 )

57 stands for any of these superconformal tensor fields; 7’s and &’s are the ghost variables (E)



The superconformal tensor ﬁelds corresponding to the fields XM, wé‘f , FM and their
derivatives are denoted by X! oM M CFM - (m,n € {0,1,2,...}). Here the
subscripts m, n denote the number of operations L_1 and L_; acting on X%, 1/)(%, 1/_)(%,
F(%, respectively (L_1 and L_; will be identified with covariant derivatives, see below),

1 - = 1 1 1
X0 = XM, iy = (e /2293, il = (e7/2)2 9], B =3 (e,?)2 ()2 FM,

XM, = (Lo)™L-)" X85 (myne{0,1,2,...}) etc.

The representation on these tensor fields can be inductively deduced from the algebra
(B.12) using that all operations Li,, Ly, Ga, G4 vanish on X00 except for L_y, L_q,

G_1/7 and G_1/2, with G_1/2X070 = wo,o and G_1/2X070 = wo,o (as can be read off from
sXM). This gives on X%n:

M
LXM  — e Xy forp<m
pP<*mm 0 forpzm
M
;v _ | emem X, fora<n
qg<*m,n 0 forqzn
G 1 XM = mpl'wmpln forp <m
p+§ m,n 0 forpzm
R
G XM = ﬁwrﬂz{n—qq for g <n
q+3 m,n 0 forqzn

The action on the other fields is then easily obtained using

Ly G 1]=3 p+ DG, 1, (G, 1.6 1} =20

D=

and the analogous formulas for L and G in (B.1J). One obtains

(m”) (m—p+5@+1))¥n,, forp<m
pwm,n
! for p >m
m! XM f
G 1 TZJM = (m—p—1)1“*m—p,n orp<m
SEE 0 forp >m
1 "tb = N (”—Z'—l)!Fm,n—q_l forg<n
q+_ 0 for g >n
L szM = ﬁ!—l)!w%n—q for g <n
o 0 for g >n
LyFp, = (mnl!”)!(m_p+%(p+1))Fn¥pn for p <m
Ptmmn T
0 for p >m
M (m—TZ'—l)l ’l)[_)fj‘r{—p,n fOI’ p <m
SR 0 for p >m



and analogous formulas for L’s, G’s, L’s and G’s acting on 1/;% ., and L’s and G’s acting
on F,J,‘{[n

The relation to the fields and their derivatives is established by identifying the op-
erations L_; and L_; with covariant derivatives D and D along the lines of [@],

L1=D=- _1W [a — 0 =S ("L, — iMPLy) — 3 (A", — gAaGa)}
p=>0 a

L,=D=- _1Mﬂ [0 40— 3 (MPL, — pNIPL,) — (4G, — pAG,)] - (3.14)
p=>0

a

MP = (p-&l)! 8”“% MP = (pil)! 5p+1la7

_ 1
8p+1a7 Ap-i-g —

1 _
AP+2 = 8p+1d.

1 1
(+1)12 )2

One readily checks that these formulas result in local expressions for the superconformal
tensor fields and their s-transformations. Introducing the following notation for the
lowest weight superconformal matter fields

xM=x00, wM=wih, oM =900, FMEFO%, (3.15)

one gets in particular the following supercovariant derivatives

1 r _ -
DXM — o (- o) XM — LaypM + %,aoaj)M]
1 r _ .
DYV = =0 a0 + O+ aFN 4§ paDX M]
_ 1 - .
DM = |0 pd)p = Opu — §aDXM - LuafM] (3.16)

and analogous expressions for DXM, DyYM and DyYM. We do not spell out higher
order covariant derivatives explicitly because it turns out that they do not contribute
nontrivially to the cohomology. The BRST transformations of the superconformal tensor
fields are summarized in appendix [D].

The construction of the superconformal tensor fields arising from the gauge multi-
plets is similar, once one has identified the suitable ghost variables and the lowest order
tensor fields. The gauge fields A, and their symmetrized derivatives Omy - - - Omy, Ainkﬂ)
(k=1,2,...) form s-doublets with ghost variables that substitute for all the derivatives
of the ghosts ¢!. Therefore one expects that only the undifferentiated ghosts ¢ give rise
to w-variables. Promising candidates for these w-variables are ghost variables C? of the
same form as in the purely bosonic case [,

C'=c +€emAL . (3.17)

10



The s-transformations of the gauge fields, written in terms of C?, and of the C’ them-
selves read

AL, = €0l — OmAL) + 0nC' — X0 Flp — €%t Fr

sC' = MM (OmAL — 0pAL) + S FL g+ MNP FL g + EMEOF, (3.18)
where we used notation of appendix [J. Since we expect C? to count among the w’s, its
s-transformation should involve only w’s again, see (B.1). This suggests a strategy to
determine the superconformal tensor fields corresponding to the undifferentiated fields
#%, A\, and to the field strengths of A’ : one tries to rewrite sC? in (B.1§) in terms of the
ghost variables (B.§) and to read off from the result the sought superconformal tensor
fields. This strategy turns out to be successful; one obtains

sC" = niEg o + nEXy o + TENy o + €80

where
¢7(;)7O = ezZGEZQSi
6o = VF (e +xEe)
Mo = VF (€N +xze')
i 1 1 _mn i i 1 —yi 1 yi 1 i
Fio = T (5™ (OmAL — 9, AL) + 5 paX' — 4 paX' — aag’) . (3.19)

An explicit computation shows that the s-transformations of these quantities are indeed
of the desired form (B.1J), with

%),OZG_%Q%,(» xizé_%d%,o, F&ozé_%G_%%,o- (3.20)

It is now straightforward to construct, along the previous lines, variables qbin,n, )\in,n,
Aty F o, on which the algebra (B.19) is represented and (B.13) and (B.14) hold. We do
not spell out these tensor fields (with m or n different from 0) explicitly because it turns
out that they do not contribute nontrivially to the cohomology. The resulting BRST
transformations are summarized in appendix [J too.

We introduce the following notation for the lowest order (i.e. lowest weight, see

below) superconformal tensor fields arising from the gauge multiplet:

O =dho, N=Ng, N=XN,, F=F,. (3.21)

Again tensor fields of higher order will be denoted by D, ﬁ({ﬁi, DD etc. but as
already stated above their explicit form will not be needed.

4 Action

We shall now determine the most general action for the field content and gauge transfor-
mations specified in section Pl The action has vanishing ghost number and is independent

11



of antifields. Furthermore the requirement that the action be gauge invariant translates
into BRST invariance up to surface terms. The integrands of the world-sheet actions we
are looking for are thus the antifield independent solutions w®? of equation ([L.). They
are related through the descent equations to the solutions of

sw=0, w#sw,
gh(w) =2, agh(w)=agh(w)=0 (4.1)

where gh is the ghost number and agh is the antifield number (=“antighost number”,
see section [ for the definition). In the previous section we have constructed a basis
for the fields and their derivatives satisfying the requirements of (B.1)). By standard
arguments this implies that w and & can be assumed to depend only on the w!, i.e., on
superconformal tensor and ghost fields introduced in section Jf] Furthermore we can
restrict the investigation to functions w and @ with vanishing “conformal weights” by
an argument used already in [f,[[J]: we extend the definition of Ly and Lg to all w’s
(including the ghost variables) by

9 I I 9 I _ 5 1
{s, 0n) }w =Low , {s, 207) }w =Low" . (4.2)
Hence, in the space of local functions of the w’s the derivatives with respect to dn and
0n are contracting homotopies for Lg and Ly, respectively, and the cohomology can be
nontrivial only in the intersection of the kernels of Ly and L.

All w’s are eigenfunctions of Loy and Ly with the eigenvalues being their “confor-
mal weights”. The only w! with negative conformal weights are the undifferentiated
diffeomorphism ghosts 7,7 and the undifferentiated supersymmetry ghosts ¢, &; their
conformal weights are (—1,0), (0,—1), (—1/2,0) and (0, —1/2), respectively [here (a,b)
are the eigenvalues of (Lo, Ly)]. The only superconformal tensor fields with vanishing
conformal weights are the undifferentiated X . These properties simplify the analysis
enormously.

Our strategy for finding the solutions to (f1) will be based on an expansion in
supersymmetry ghosts

2
w o= > wp, (Ne+ Newy = kwy
k=0
s = sy+s1+580, [Ne+ Nesi]=ksy, (4.3)

where we have introduced the counting operator N. for the susy ghost € and all its
derivatives

N =) (9" % (4.4)

n>0

"The u’s and v’s contribute only “topologically” via the de Rham cohomology of the zweibein manifold
to the s-cohomology, cf. theorem 5.1 of [E] In particular they do not contribute nontrivially to the

solutions of (@) .
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and analogously Nz counts & and derivatives thereof.j One observes that s, is the
simplest piece in the above decomposition of s. It acts nontrivially only on the
reparametrization ghosts 7, 7, derivatives thereof and on C",

Son = —ee , Soff = —&&, 89C" =&’ .

We shall base the investigation on the cohomology of so. The cocycle condition sw = 0
decomposes into

sowp, =0, swi+swi_ =0, ... (4.5)

Due to the requirement of ghost number 2 and antifield number 0 in (E.1), one is left
with 0 <k < 2. The three possible values for k are now analysed case by case.

k=0: The general form of wg according to the condition of vanishing conformal weight
is

wg = NA@L) +10nAq 0 + 107 A 0,1y + 1071 Ba.0) + 701Bo 1)
+10*1A 0,0y + 10*1A(0,0) + OnONB(0,0) + C'C? Dyj(0.0)
+1C" Dj(1,0) + 1C" Dy(o.1y + OnC" Dy(g. 0y + ONC" Dy g 0,
where the A’s, B’s and D’s do not depend on the ghosts and the subscripts (m,n)
indicate their conformal weights. It is easy to verify explicitly that
sowg =0 < wz=0. (4.6)

k=1. The general form of wy is

wi = neAp0) tN1EAW03/2)  NEAWL/2) T TEAL/2)
+10A(1/2,0) + N0EA(0,1/2) + €0NB(1 2,0y + €071B(0,1/2)
+e0NC(1/2,0) + EONC0,1/2) + €C*Dy(1 /2,0y + EC* Do, 1/2),
where again the A’s, B’s and D’s do not depend on the ghosts and their conformal
weights are indicated in brackets. A straightforward computation shows that sowi = 0
imposes
A20 = Aps/2) = Cayz0 = Co/2 =0
Az = 0 Diajo0) » Aayany = 0 Dioa)2)
Aayz0 = —2Bas20 . Awi/2) =280,/
The conformal weights (1/2,0) and (0,1/2) imply

Di1/2,0) = ¥ Dpri(X), Dyo,1/2) = ™ Dpri(X)
By2,0) = Y Bu(X), B2 = Y Bu(X)

8We note that the expansion (E) holds because we are studying the antifield independent cohomology
here. The analogous expansion in presence of antifields is more involved; in fact, it can even involve
infinitely many terms. Therefore the strategy applied here to determine the action is not practicable in
the same way for analysing the full (antifield dependent) cohomology later.
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where we indicated that the remaining B’s and D’s are arbitrary functions of the X’s.
Hence, we get

wi = (ME +eCHYM Dapy(X) + (7jed" + ECHYM Digy (X)
+(e0n — 210e)pM By (X) + (€07 — 27708)™ By (X).

The second equation ([£.5) requires that sjwy be sp-exact. This imposes

By =By =0, Dyi=Dyy, OnDiyg=0mDin
& By =Bw=0, D= Dy =0uDi(X)

where we have introduced the notation

0

Furthermore, the second equation ([L.J) uniquely determines the function wg, which
corresponds to wj [the uniqueness follows from ([.6)]. It turns out that the other equa-
tions (f.§) do not impose further conditions in this case, but are automatically fulfilled.
Altogether we find

wi = [(E¢" +eCHYM + (72" + CT)pM]0n D (X) (4.7)
wo = —ni[pMN = PMN + M pMpN 9100 Di(X)
+CH DX M + DX M)y D;(X) (4.8)

Using the freedom to add a coboundary we obtain by adding s[C*D;(X)] to wi + wp the
equivalent solution

i F* Di(X) = nif(M N — NN FM G M PN GO )0r Dy (X)
0N+ M on ) Dy (X)) + fie(N + ¢ipM 9y ) Di(X) 4 e2¢ Dy(X). (4.9)

k=2. The general form of ws is given by
Wy = 8614(170) + ggA(Ql) + 8514(1/2’1/2) + €8€B(X) + ggéB(X),
where due to the indicated conformal weights one has

Ang = DXMAN(X)+pMpN Ayn(X)
Aoy = DXMAN(X)+MPN Apn(X)
A = FYMHu(X) + ¢ Hi(X) + MY Hyn (X)
We can simplify w5 using the freedom to subtract s-exact pieces from an s-cocycle. In

particular, we can therefore neglect pieces in ws which are of the form s1@1 + sowg (i.e.
we consider w’ = w — s(@1 + @g) where w is an s-cocycle arising from ws). Choosing

o1 = 5 (M — e Hy (X)
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we get
s101 = eEFM Hy(X) + 3 (26DXM — eeDXM)Hyr (X)
— 1 (@M — ep™M) (e + eyp™)On Hu (X).
This shows that by subtracting s1@&; from w3, we can remove the piece FMy v (X) from
A1/2,1/2), thereby redefining Ay o), A1) and Hyn(X). Furthermore, we have
ecA o) +EEA(, 1) + e8¢ Hi(X) + c0eB(X) + 0eB(X) = saiv,
L:)Q = _nA(l,O) — ﬁA(OJ) + CZHZ(X) - %877B(X) - %éle(X)
Hence, we can also remove the pieces containing A o), A(o,1), Hi(X), B(X) and B(X)
f;rom ws. Without loss of generality, we can thus restrict the investigation of the case
k=2to
ws = eEpMPN Hyn (X). (4.10)
Obviously ws satisfies the first eqation ([[-j), since it does not involve 7, 7j or C*. One

now has to analyze the remaining equations ([L.H). It is straightforward to compute sjws
and to verify that the second equation ([L.5) is solved by

wi = EDXMPN — M EN p G MPN RO Ha (X)
+ie[—ypMDXN — FMYN 4 pMgN K o) Hypn (X). (4.11)
The third eq. (@) requires that spws 4+ sjw; be sp-exact. This turns out to be the case
(for arbitrary Hjpsn) and determines wgy. One finds
wy = 777797
Q = (DXMDXN 4+ FMEN 1 DYMyN — M DyNYVH v (X)
—(DXMYNGE 4 DXNYMF) O Harw (X)
+H(EM PRGN — PRYMON 1 PNMPE) o Hyp (X)
M KGN GO O Hagn (X). (4.12)
The remaining two equations ([.5) are also satisfied. The functions Hysn(X) are com-
pletely arbitrary. The symmetrized part H;n)(X) and the antisymmetrized part
Hpyny(X) give rise to the “target space metric” Gy and the “Kalb-Ramond field”
B, respectively. Despite of our string inspired terminology we stress that there are
no conditions imposed on Gyn and Bjsn apart from their symmetry properties. In

particular the “metric” Gjsn need not be invertible (in section [ we shall impose that
a submatrix of Gy be invertible). Bjsy is determined only up to

Hipyn(X) — Hipgny(X) + O By (X)

where Bj/(X) are arbitrary functions. This originates from the fact that the s-cocycle
W = w3 + w1 + wo remains form invariant under

w— w+ s[(epM + &M + yDXM + GDXM)By (X)) + ... ]

where the dots stand for terms at least bilinear in the fermions. Changing w by such
s-exact pieces results in the above change of Hy;n)(X) and modifies the Lagrangian by
a total derivative.
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4.1 Result

We conclude that up to redefinitions by coboundary terms, the general solution of ([L.1))
is given by the sum of the functions (.9)-(f.1). The solution involves arbitrary func-
tions D;(X) and Hp;n(X), which thus parametrize the various possible actions. The
antisymmetric part of Hysn(X) is determined only up to redefinitions by 0y Bn)(X), as
Hyn(X) — Hyn(X) + prByp(X) modifies the Lagrangian only by total derivatives.
The functions D;(X) are determined up to arbitrary constants, since only dpsD;(X) en-
ters in the equivalent solution (J.7) and ({.§)f] Owing to general properties of descent
equations in diffeomorphism invariant theories [[]-I4], the integrand of the action is
obtained from the solution of (1)) simply by substituting world-sheet differentials for
diffeomorphism ghosts ™. The resulting Lagrangian, written in terms of the Beltrami
fields, is a generalized version of the one found in [g]:

L = LMatter + LUI
Lytatter = ﬁ (0 — p0) XM (0 — nd) XN (G + Bun)

— ((0 = p0) XMy + (0 — pd) XM &™) G — § aap™ PN Gayn]
— (PN (0 — p0) ™M + N (8 — po)Y™M) Gun — (1 — p) FMEN Gy
—pMPN (0 — O X (Trnm — 3 Hxnm)
—pMyN (0 — pd)XE (Trnm + 3 Hxnvm)
+1 (@M P — apMypN Y Hyepry
+(1 = pp) MR gN (20 vy — Hrenwm)
+3 (1 = pp) M RPN O Riearn
Lin = F'Dj— (1= )™ (N = § 25 nad’) — oM (N — § 27 ad)
+FM Gt gMgNoN)On D; (4.13)

where we have introduced the following notations

Gun = Huyn(X)  Bun = Hpyn(X)
D; = Di(X)  F':=e™(0,A —0,A%)
Qxny = OxHyN(X) = O HrN(X) +OnHrn(X) =20 kv — Hevwm
Rixrmun = OmOgHpn(X) — ONO Hpjn(X)

The “target space curvature” Ry n we have introduced is of course not the Rieman-
nian one. The Riemannian curvature appears after eliminating the auxiliary fields from
the action.

Of course, the action can be also written in terms of the original fields introduced in
section Bl One obtains from the matter part the well known superstring action including

9A constant in D; yields a topological term in the action proportional to the Chern class of the gauge
bundle.
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the B-field background [f]

Lje = 30mXM0,XN (=™ Gy + €™ Bun) + 50 A" 0mtN G
+LIFM PN Gy N + xiyF (N 9, X M — %CXnEMT;Z)N)GMN
+(%FMEK1/1N - iEN’qu/}MamXK)FNKM
—I—%(FMEK%ZDN — 5 M B, X ) Hiy s
_ﬁXm’Yn’meMEN’Yn’Y*l/}KHMNK
o (14 30N (14 )0 R
+™ DO Al + 15N YN N0y D
+LE A = FN G+ Xy ™ N ¢) O D (4.14)

Thus the cohomological analysis shows that in the absence of gauge multiplets the
Lagrangian derived in [[] is in fact unique up to total derivatives and choices of the
background fields. It should be kept in mind, however, that this uniqueness is tied to
the gauge transformations specified in section . It can get lost when one allows that
the gauge transformations get deformed. This deformation problem can be analysed
by BRST cohomological means too, but then the relevant cohomological problem in-
cludes the antifields [[§. The results which we shall derive in the second part of this
work imply that the nontrivial consistent deformations correspond one-to-one to the
deformations of the bosonic string models. All deformations of bosonic string models
without world-sheet gauge fields were derived in [[[7]. Hence, all nontrivial deformations
of the standard superstring world-sheet action [[] and its gauge transformations are su-
persymmetric generalizations of the actions and gauge transformations given in [[[7]; in
particular this result implies that nontrivial deformations of the standard superstring
gauge transformations exist only if the background possesses special Killing vectors de-
scribed in [I7]. A full analysis (to all orders in the deformation parameters) of the
deformation problem for bosonic models with world-sheet gauge fields is missing so far,
but a complete classification of the first order deformations was given in [{]. The latter
results extend thus to the superstring models too.

5 Antifields

To proceed with our analysis we have to bring the antifields into the game. According
to the principles of the field-antifield formalism [BJ-BJ to each field a corresponding
antifield ®% is introduced with ghost number and statistics

gh (®%) = —gh (&) — 1, €(®%) = ¢(®?) +1 (mod 2),

such that the statistics of the antifields is opposite to that of the corresponding fields. It
is useful to introduce still another grading into the algebra of fields and antifields, namely
the already mentioned antifield (or antighost) number. On all the fields (including the
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ghosts) the antifield number is defined to be zero, i.e., agh () = 0. On the antifields
the antifield number equals minus the ghost number, agh (®%) = —gh (®%).
The antibracket for two arbitrary functions of the fields ®# and antifields o7 is

defined as
B orF 601G  OrF 01.G
(F.6) = / <5c1>A 50 09 5<I>A> ‘

Thus the antibracket has odd statistics and carries ghost number one. The BRST
transformations of the antifields are generated via the antibracket by the proper solution
S to the classical master equation (S,S) = 0 according to

 gS

Owing to the off-shell closure of the gauge algebra S simply reads
S=s0- [(sete,

where S is the classical action and s®“ are the BRST transformations given in section
B. Tt is useful to decompose the BRST differential according to the grading with respect
to the antifield number s = Y, ;| sx with agh (s;) = k (this decomposition should
not be confused with the one in (.3) even though we use the same notation). The
decomposition starts with the field theoretical Koszul-Tate differential 6 = s_; and the
differential v = sg. Contrary to the bosonic case the decomposition does not terminate
at this level. An additional part s; raising the antifield number by one unit shows up
reflecting field dependent gauge transformations in the commutator of supersymmetry
transformations. The Koszul-Tate differential acts nontrivially only on the antifields
and implements the equations of motion. Hence, the knowlegde of the classical action
is necessary to determine the d-transformations of the antifields. However, the action of
the part of the BRST differential leaving the antifield number unchanged is determined
solely by the imposed gauge transformations. The ~-transformations of the antifields
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corresponding to the matter fields and the U(1) multiplet read

YXi = Om(€"Xhy) = 10m (&7 (Y C)pathi?)
_% am(fa(’Yn’YmC)aﬁXQFJTJ)

VR = Om(E™YR) + €9 X — 1€ (Y C)apX et — 3 O (€7 (Y™ S F )
—L P (v ) fw e Frr — 3 0%, 0 (v C) s Xt Fiy
—5 C%ean() fu3] + 5 CV g

VEir = Om(€"Fip) = €7 Coatif — 567 (1"ChpaxiFir + CV iy

'YA:m = 871(5”14;””) - (anfm)A;m
0 (£ (1:C) g™ A

V0; = Om(€™6) — € (1C)ase™ xn (14 C)Xm A"

—i0m (£ (11 C)apA;” = 5 € (1C)apSA”
+2E X5, (1. C)ga AL™ — 217 (1.0 + CV 57

TN = O (€N) — €2 () FAT™ + €8 () £ — 1EP (1™ C) gy (X1 PN
—1E (1.C)a5™ (X (0),") AT = 1 C%eap () SN+ 5 CVAL (5)

(2
s1 acts nontrivially on A7, ¢F and on the antifields for the gravitational multiplet 7",
ex™ and S*. In particular one finds

s1 AT = 1P (v pact,  s10) = —1EYEP (1.C) pact,

where ¢! denote the antifields corresponding to U(1) ghosts.

The explicit form of the BRST transformations of the antifields for the gravitational
multiplet and the ghosts will not be needed in the following. In section [] it is shown
that they do not contribute nontrivially to the cohomology, at least at ghost number
g <4.

5.1 Superconformal antifields

We shall now identify “superconformal antifields” whose ~-transformations take the
same form as the s-transformations of superconformal tensor fields in (B.13). The iden-
tification of superconformal antifields is somewhat more involved than the procedure for
the fields. From experience with the bosonic case one expects reasonable candidates to
arise from redefinitions of the form ®% — ﬁ ®% , accounting for the fact that antifields
transform under diffeomorphisms as tensor densities rather than tensors. In addition
we have to take care of their “structure group transformations”, i.e., of their conformal
weights, their Lorentz transformations and super-Weyl transformationsﬂ. Yet this does
not suffice to obtain ~y-transformations of the desired form. It turns out that the anti-

fields have to be mixed among themselves. These considerations lead us to the following

10 Antifields transform “contragradiently” under structure group transformations as compared to the
corresponding fields.
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definitions of the lowest order matter antifields

. N 1 2y —

Fy = Fypo = 1= Mﬂ(ezze;) 2 Fy

A i 1 ok 9 uo o~

(Chs (0,0 N ,u,a(ez ) 2UMT T i M

- . i 1 .l .. ja
* = * - g 3t 1 oy

Ym Ya1(0,0) N ,u,a(ez ) 2% 1=l

- 1 no - o = ad -~
M MO0) = T 0 Mt = ﬂﬂ)M 1_Iuﬂ¢M+ =M

Their y-transformations are indeed of the desired form (B.13) and read explicitly

vEY = (D +qD)EYy — ey + &by + () + (00) Fy

VWi = (D +D)iy + Xy + EDEf + (5 (9n) + (9 + (99) Fyy
Wi = D+ D)y + XY — eDEY + (9n) + L (90)dh, — (9e)F;
vXi = (0D + D)X}y + Dy + D%, + ((9n) + (7)) X

H(0)ty + (B3NS, (5.2)

The expressions above are in fact already complete, since s; does not act nontrivially on
the matter antifields. Analogously to the situation of the superconformal tensor fields
the algebra (B.13) is represented on these fields and their derivatives, which we denote
by

immy = (L-1)™(L1)"Fyp = (D)™(D)" iy,

etc, where the operators L_; and L_; are identified with supercovariant derivatives as
in (B.14). In particular one finds on the antifields with lowest conformal weights the
following expressions

DFy = i (09— 00— 5 (0) + 5 aow) 3y — oy — 3 iy )
DFy = o (09— 0 — 5 @) + 5 u(Om)Fiy + 5 oz¢M—|—2,uoz¢M)
Doy = 1 (00— 10— 05) + 3 10w — § Xy — § aDEy; — § (9a)Fy)
Dy, = ﬁ((é (10 — & (dp) + p(Op)) by + 3 aXi + 2 paDFy + 4 (8a)FM>

and analogous formulas for D&}*V[ and 151/_)}*\/[ Again higher order antifields will not be
needed.

The construction of the covariant antifields for the gauge multiplet follows the argu-
ments given above, with the additional task to get rid of the super-Weyl transformations.
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We introduce the redefinitions

\* * 1 z 1 2\—1y*
A= /\i(o’o):_l—uﬁ( )72 (e) A
Ix * 1 z —l Z\—1 %1
A= i(0,0) — 1 ,u,a(ez ) 2(es”) A
y * 1 1 z _1 z ~1 *
(bl = ¢i(0,0) ﬁl _ MM( z ) 2 (62 ) 2 ¢z

1 1 ~ 2 —~ 2\ 1% 1 1 ~ 1 ~ 1\ %

-3 -2 A -5 . Y

T p & ) A = g (6 — ) X
Ak * o 1 1 * — A% 1 N — 1%
Ai = i(0,0) — ﬁl — i (Ai +,UAZ) . 7 (a/\i +M04>\,~)
o - 1 1 _ 1 s .
AF = A N — Ay — —— * ANt .
4 4(0,0) \/51 — uji ( i TH z) 1— pji (a/\z +/LO‘)‘1) > (5 3)

where we have used the shorthand notation for the corrections involving gravitions

L= ,/65_;2 x,! and ¥,? = ,/e% X,2 with obvious expressions for the Z components.

The ~-transformations then read

VAL = (WD +7D)N; + 300N + et — sAT

YN = (D +TD)N; + § OnN; + &6} — cAl

vd;i = (D +7D); + & (0n + n)d; + DAY + eDX;

~AY = (0D +D)A? + OnAr + EDX; — eDA; — DN

NAT = (0D +GD)Ar + OfAr + DX} — EDAF — BEAT, (5.4)

and are indeed of the desired form respecting the requirement (B.I). Note that the
combination of the gravitinos used in the redefinition of éj transforms into the super-
Weyl ghost thereby removing the unwanted transformation properties under the super-
Weyl symmetry. Again higher order antifields will not be needed.

The explicit form of the superconformal antifields given above has already been used
to derive the results for the rigid symmetries presented in [f]. A complete list of the
BRST transformations (including the Koszul-Tate part and the s;-transformations) of
the antifields needed for the cohomological analysis is given in appendix [f]. In the follow-
ing sections (and also in the appendices) we have dropped the hats on the superconformal
antifields, but it is clear from the context which set of variables is meant.

6 On-shell cohomology

We shall now define and analyse an “on-shell BRST cohomology” H(o) and show that
it is isomorphic to its purely bosonic counterpart at ghost numbers < 4, i.e., to the
on-shell BRST cohomology of the corresponding bosonic string model. The relevance of
H (o) rests on the fact that it is isomorphic to the full local s-cohomology H(s) (in the
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jet space associated to the fields and antifields), at least at ghost numbers < 4,
g<4: HI(o)~HIs). (6.1)

This will be proved in section [i.

The analysis in this and the next section is general, i.e., it applies to any model with
an action ([EI3) (or, equivalently, (f.I4)) provided that two rather mild assumptions
hold, which are introduced now. The first assumption only simplifies the action a little
bit but does not reduce its generality: as we have argued already in [f], one may assume
that the functions D;(X) which occur in the action coincide with a subset of the fields
XM We denote this subset by {3} and the remaining X’s by z*,

{XM} = {29}, DiX)=1". (6.2)

For physical applications this “assumption” does not represent any loss of generality
because it can always be achieved by a field redefinition (“target space coordinate trans-
formation”) XM — XM = XM(X). The y* may be interpreted as coordinates of an
enlarged target space leading to “frozen extra dimensions” [§. The second assumption
is that G, (z,y) is invertible (in contrast, Gy need not be invertible). This is par-
ticularly natural in the string theory context, since it allows one to interpret G, as a
target space metric. It is rather likely that our result holds for even weaker assumptions
(but we did not study this question), because the results derived in [f,[[9 for bosonic
string models do not use the invertibility of G, .

Let us remark that the isomorphism (B.J]) is not too surprising, because it is remi-
niscent of a standard result of local BRST cohomology stating that H(s) is isomorphic
to the on-shell cohomology of v in the space of antifield independent functions, where ~
is the part of s with antifield number 0 (see, e.g., section 7.2 of [[[0]). However, (B.1) is
not quite the same statement because the definition of o given below does not take the
equations of motion for u, fi, o or & into account. Hence, (@) contains information in
addition to the standard result of local BRST cohomology mentioned before: the equa-
tions of motion for u, fi, o, & are not relevant to the cohomology! This is a useful result
as these equations of motion are somewhat unpleasant, because they are not linearizable
(the models under study do not fulfill the standard regularity conditions described, e.g.,
in section 5.1 of [[Id]).

6.1 Definition of ¢ and H (o)

o is an “on-shell version” of s defined in the space of local functions made of the fields
only (but not of any antifields). We work in the ‘Beltrami basis’ and use the equations
of motion obtained by varying the action (f.1§) with respect to the fields X, 1, W, F, <;3,
A, A and A,,. The covariant version of these equations of motion can be obtained from
the s-transformations of the corresponding covariant antifields given in appendix [{ by
setting the antifield independent part (‘Koszul-Tate part’) of these transformations to
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zero. This gives the following “on-shell equalities” (=):

Fi'~ 0 (6.3)
L 0 (6.4)
P’ 0 (6.5)
Dy’ 0 (6.6)
Dy’ 0 (6.7)
¢~ 2G FP P Qg (6.8)
N 2G i, DU + Dt Qi + FFPY Qi + 00 0P Ry (6.9)
XN x =2G, DY — Dt Qi + PP Qi + VPP WP Ry (6.10)
Frox —LyigrQ,,” (6.11)
Dy —L (D2 P Qpt + L P TP QU + VP Ry (6.12)
DY~ 3 [=Da"PPQt + LMY Q) + P Rpyt] (6.13)
Fro~ QGWD@QS“ + Dx“@:p”iji - F“F”in
— DY Qi + VDY Qi
—Da P PP Rpipy — D" P Ry i
— P 0P 0,y — 5 M P 0 R (6.14)
DDat =~ L[-Dz"DxfQ, Mt + FYFrQt,,
+DYY PO, — Y DYPQF,
_ngq/jyl/;pRuapu + ’onwywapuau
H TP PPy pe + S VM YTPP O Ry p o] (6.15)

where indices p of ©, R, 0 have been raised with the inverse of G, (z,y), and P,
" and Fi belong to the same supersymmetry multiplet as y® (the auxiliary fields Fi
should not be confused with the supercovariant field strengths F* of the gauge fields).
Note that the right hand sides of (6.§), (6.9), (b.10), (p.14) and (6.15)) still contain Fr,
D" or DyY*, which are to be substituted for by the expressions given in (6.11]), (6.19)
and (f.1J), respectively. Furthermore, in (.14) one has to substitute the expression
resulting from (f.15) for DDz#. Using Eqgs. (f.) through (f-I§) and their D and D
derivatives, we eliminate all variables on the left hand sides of these equations and all the
covariant derivatives of these variables. Furthermore, we use these equations to define
the o-transformations of the remaining field variables from their s-transformations. For
instance, one gets

oyt = 0 (6.16)
oxt = (WD +nD)xt + ept + st (6.17)
ot = DY — DI PP+ TPy + PP R )

+3 Oyt + eDat + L EpPPr Q- (6.18)

The o-transformations of 0, 7, €, &, i, i, o, & coincide with their s-transformations. The
cohomology H (o) is the cohomology of o in the space of local functions of the variables
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{uz Lot WA}, where the u’s and v’s are the same as in sections [| and [, while the W’s
are given by

(W4} = {y, ", DFat, DFat D p*, D™, 0", 0"7j, 8", 0", C -
k=1,2,...,r=0.1,...} (6.19)

H(o) is well-defined because o squares to zero,
o2 =0. (6.20)

This holds because the (covariant) equations of motion of the fields X, 1, v, EF, $, \
A, A,, and their covariant derivatives transform into each other under diffeomorphisms
and supersymmetry transformations but not into the equations of motion of u, i, «
or & [as can be read off from the s-transformations of the superconformal antifields in

appendix [H].

6.2 Relation to H(o, W)

o acts on the variables {u’, v, W4} according to out = v, sW4 = rA4(W). Further-
more, analogously to () one has

9 A A 9 A T A
{a, 567 }W — LW, {a, a(an)}w — LoWA (6.21)
i.e., in the space of local functions of the W’s the derivatives with respect to dn and
07 are contracting homotopies for Ly and Lg, respectively. Hence, the same stan-
dard arguments, which were used already in section [ yield that H(o) is given by
Har(GL'(2)) ® H(o,W), where Hyr(GL™(2)) reflects the nontrivial de Rham coho-
mology of the zweibein manifold (see theorem 5.1 of [[L1]), while H(o,W) is the o-

cohomology in the space of local functions with vanishing conformal weights made solely
of the variables (6.19),

H(o) = HRr(GLT(2)) @ H(o, W), W={w:w=w(W), (Lyw,Low) = (0,0)}.
(6.22)

The factor Hqr(GL*(2)) is irrelevant for the following discussion because it just reflects
det e? # 0 and makes no difference between superstring and bosonic string models.
6.3 Decomposition of o

To study H (o, W) we decompose o into pieces of definite degree in the supersymmetry
ghosts and the fermiong[]. The corresponding counting operator is denoted by N,

N =N, +N:+ Ny + Ny (6.23)

1We are referring here to the variables ( themselves, and not to the fermions that are implicitly
contained in these variables through covariant derivatives.
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with N, and N: as in (£.4) and

T a o N, 7. 8
N¢:Z(D¢“)W, N¢—Z(D¢“)W-

r>0 r>0

Using the formulae given above, it is easy to verify that ¢ decomposes into pieces with
even N-degree,

o= Z oo 5 [N,o0,] =2no09, (6.24)
n>0

where, on each variable (p.19), only finitely many o9, are non-vanishing. For instance,

(B19) yields

oo* = nDY* — LD YO, M + L oyt + eDat
oot = =L apMTRP 0N QM — LY PYT RY gy & EGPPY QM
oo = 0 for n>1.

6.4 Decomposition of o

We shall prove the asserted result by an inspection of the cohomology of og. To that
end we decompose o( according to the supersymmetry ghosts. That decomposition has
only two pieces owing to the very definition of oy and N,

oo =000+ 00,1, [Ne+Ne,000=0, [Ne+ Ne,001] =001 - (6.25)

One easily verifies by induction that g ; has the following simple structure:

001y’ 0
00,1'DT:EM = 0
00,115T:E“ = 0
T
oo DYt = <£>8kspr+l_kx”
k=0
" /r
oo D"YH = Z (k:) Oke DIk gh
k=0
0'0718”7 =0
0010'7 = 0
0’0718T<€ = 0
0'0715T§ = 0
001C" = 0. (6.26)
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6.5 H(op, W) at ghost numbers < 5
The cocycle condition of H(og, W) reads

oow =0, weW. (6.27)

We analyse (6.27) using (p.29). To that end we decompose w according to the number
of supersymmetry ghosts,

k
w = Zwk , (N 4+ Nz)wy = kwy, . (6.28)
k=k

Note that k is finite, k¥ < gh (w). Hence, the cocycle condition (.27) decomposes into
00,1Wy, = 0, 00,0wWy + 00,1W_1 = 0, ... , 00,0WE = 0. (629)

We can neglect contributions g1 to wg because such contributions can be removed
by subtracting oow;_; from w. Hence, w; can be assumed to be a nontrivial represen-
tative of H(co1, W). That cohomology is computed in appendix [A] and yields

wp = hy,z,Ce,n],[E,7]) +nDz"hy(y, x,0n,C,[E,7])
+i Dzt by, (y, x, 07, C, e, 1)) + nifDa" Dz hy (y, x, 00, 07,C)  (6.30)

where o0p j-exact pieces have been neglected, and [e,n] and [£,7] denote dependence
on the variables 0"¢,0"n and 0"¢,0"7 (r = 0,1,...), respectively. The result (£.30)
holds for all ghost numbers and shows in particular that w; can be assumed not to
depend on the fermions (D"y*, D"y)*) at all. We now insert this result in the second
equation (p.29), which requires that op,0wy; be og1-exact. At ghost numbers < 5 this
requirement kills completely the dependence of wz on the supersymmetry ghosts as we
show in appendix [J. The result for these ghost numbers is thus that, modulo og-exact
pieces, the solutions to (f-27) neither depend on the fermions nor on the supersymmetry
ghosts,

gh(w) <5: w =00+ h(y,z,C, ], [7]) +nDx"h,(y,z,n, C, 7))
+ 7Dt hy, (y, x, 01, C, [n]) + nifDxDa” by (y, z, On, 97, C). (6.31)

Furthermore, (f.2§) and (6.26) show that a function which neither depends on the
fermions nor on the supersymmetry ghosts is og-exact if and only if it is the oo-
transformation of a function which does not depend on these variables either. Combining

this with (B.31)) one concludes
g<5: HIo9, W)~ HI (09, W), (6.32)
where W, is the subspace of W containing the functions with vanishing N-eigenvalues,

W():{WGW:NW:O}.
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This subspace can be made very explicit. The only variables (5.19) with negative con-
formal weights on which a function w € W, can depend are the undifferentiated ghosts
n and 7] [note: the only other variables (p.19) with negative conformal weights are the
undifferentiated supersymmetry ghosts, but they do not occur in w € W, by the very
definition of Wy]. Since n and 7 are anticommuting variables each of them can occur at
most once in a monomial contributing to w € Wy. Hence, since i and 7 have conformal
weights (—1,0) and (0, —1), respectively, functions in Wy can only depend on those w’s
with conformal weights < 1 (as higher weights cannot be compensated for by variables
with negative weights), and a variable with Lg-weight (Lo-weight) 1 must necessarily
occur together with 7 (7). This yields

weWy & w= f(y,z,C,0n,0n,nDa", Dzt ,n0*n, 10°7). (6.33)

Note that H (o, Wp) is nothing but the on-shell cohomology H (o, W) of the correspond-
ing bosonic string model, since elements of Wy neither depend on the fermions nor on
the supersymmetry ghosts, and since o reduces in Wy to 09, which encodes only the
diffeomorphism transformations but not the supersymmetry transformations.

6.6 H(o) at ghost numbers < 4
We shall now show that H (o, W) is at ghost numbers < 4 isomorphic to H (o9, Wp),

g<4: HY(o, W)~ Ha9,Wp). (6.34)

Because of (p.29) this implies that H (o) is isomorphic to its counterpart in the corre-
sponding bosonic string model (recall that the factor Hqr(GL™1(2)) is present in the
case of bosonic strings as well, and that HY(og, W) is the on-shell cohomology of the
bosonic string model). To derive (p.34), we consider the cocycle condition of H (o, W),

ow=0, weW. (6.35)

We decompose w into pieces with definite degree in the supersymmetry ghosts and
fermions,

W= an, Nw, = nwy, (6.36)

with NV as in (6:29) [actually there are only even values of n in this decomposition
because w has vanishing conformal weights]. The cocycle condition (6.3§) implies in
particular

oown = 0, (6.37)

where we used the decomposition (6.24) of 0. Hence, every cocycle w of H9(o, W)
contains a coycle wy, of H9(op, V). Our result (p.32) on H9(og,V) implies that this
relation between representatives of H9(o, W) and HY(og, V) gives rise to a one-to-one
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correspondence between the cohomology classes of H9(o, W) and HY (oo, Wp) for g < 4
and thus to (.34). The arguments are standard and essentially the following:

(i) When g < 5, w,, can be assumed to be nontrivial in HY(op, W) and represents
thus a class of H9(0g, Wy). Indeed, assume it were trivial, i.e., w, = oow, for some
& € W. In that case we can remove w,, from w by subtracting ow,,. v’ :=w —ow, € W
is cohomologically equivalent to w and its decomposition (6.36]) starts at some degree
n' > n unless it vanishes (which implies already w = ow,). The cocycle condition for
w’ implies oow/, = 0 and thus !, = oo/, for some &/, € W as a consequence of (.37)
(owing to n’ >n > 0). Repeating the arguments, one concludes that w is o-exact,
w = 0@y +&, +...) [it is guaranteed that the procedure terminates, i.e., that the sum
On + @0, + . .. is finite and thus local, because the number of supersymmetry ghosts is
bounded by the ghost number and thus the number of fermions is bounded too because
w has vanishing conformal weights].

(ii) When g < 4, every nontrivial cocycle wy of H9(og,Wp) can be completed to a
nontrivial cocycle w of H9(o,W). Indeed suppose we had constructed w, € W, n =
0,...,m with ghost number ¢ such that w(™ := Yo wy fulfills ow(m = Y onsmi1 Bn
with NR, = nR,, [for m = 0 this is implied by cowy = 0 which holds because wy is
a og-cocycle by assumption]. o2 = 0 implies 0 n>me1 Bn = 0 and thus ogRyq1 = 0
at lowest N-degree. Note that R,,.1 is in W (owing to W C W) and that it has
ghost number g + 1 < 5 because w(™ has ghost number g < 4. (b-32) guarantees
thus that there is some w,,+1 € W such that R,,11 = —oowm+1, which implies that
wm ) = (M 4w, fulfills ow(™ ) = 3~ 0 R/ By induction this implies that
every solution to (.37) with ghost number < 4 can indeed be completed to a solution
of (p.39) [the locality of w holds by the same arguments as above]. If wp is trivial
in H9(op, Wp), then its completion w is trivial in HY(o,)V) by arguments used in (i).
Conversely, the triviality of w in H9(o, W) (w = on) implies obviously the triviality of
wo in H9(o9, W) (wo = ogno) because there are no negative N-degrees.

7 Relation to the cohomology of bosonic strings

We shall now derive (p.]) and the announced isomorphism between the s-cohomologies
of a superstring and the corresponding bosonic string model. Both results can be traced
to the existence of variables {@f, o, WA} on which s takes a form very similar to o
on the variables {u,v*,wA} used in section fl. In the ‘Beltrami basis’ the set of @’s
consists of: (i) @’s with ghost number 0 which coincide with the u’; (i) @’s with ghost
number —1 given by the superconformal antifields Xy, 13, 1/71;[, Fy, o7, A A, Ax
(recall that we have dropped the hats on these antifields) and all covariant derivatives
of these antifields plus the A} and all their D-derivatives (D" A%, r = 0,1,... )3; (iii) @’s
with ghost number —2 given by the antifields of the ghosts, i.e., by n*, 7%, €%, &, C~
and all their derivatives. It can be readily checked that a complete set of new local jet

12'{‘heﬁ D*D" Ar with k > 0 do not count among the u’s because the antifield independent parts of
sDFD"AY and —sD* D"t Ar are equal (both are given by DkDTHyiz. Rather, they are substituted
for by the v’s corresponding to the D*~*D"C} (k > 0) owing to sD*1D"C; = —D*D" A7 + .. ..
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coordinates in the Beltrami basis is given by {&2 ) it , W(‘g)} with o = sii and

(Wi} = {y',a", Drat, Drar, Dy Dyt 07, 877, 0e, 8'e, C,
o, 0", 0 0" k=1,2,... , r=0,1,... }. (7.1)

Note that {W(‘g)_ } does not _only contain the W4 listed in (f-19), but in addition the
variables 0" p*, 0"pi*, 0"a*, 0"a*. The latter occur here because their s-transformations

contain no linear parts and can therefore not be used as ©’sf. The W(‘g) fulfull

sWiy = r (W) +0(1) (7.2)

where O(1) collects terms which are at least linear in the @’s and ©’s. As shown in [R7],

(F-2) implies the existence of variables WA = W(‘g) + O(1) which fulfill

sWA = rA(W) (7.3)

with the same functions r4 as in (F-2). Furthermore the algorithm described in [27] for

the construction of the W4 results in local expressions when applied in the present case.
This can be shown by means of arguments similar to those used within the discussion
of the examples in [R7[.

([-3) implies that the s-transformations of those W’s which correspond to the vari-
ables (6.19) can be obtained from the o-transformations of the latter variables simply
by substituting there TW’s for the corresponding W’s. For instance, this gives

sy’ = 0, (7.4)
st = n(Dat) + 5(Dat) + eyt + et (7.5)

where here and in the following a prime on a variable indicates a W-variable[d. For
instance, y” is the W-variable corresponding to y* and explicitly given by

Y =yt +eX — BN — nAf + GAF 4+ niCy (7.6)

This very close relation between s on the V~V—var~iables and o on the variables (.19)
would immediately imply H(s) ~ H(o) if the W-variables (0"u*)", (0"g*)’, (0"a™),

3The other derivatives of the antifields u*, &*, a*, @*, such as the 8*9"u* (k > 0), do not occur
among the W(0)7s because they are substituted for by the @’s corresponding to n*, 7%, €*, & and their
derivatives (e.g., one has sn* = —ou™ +...).

1n the present case, the suitable ‘degrees’ to be used in these arguments are the conformal weights
and the ghost number. Using these degrees one can prove that the algorithm produces local (though not
necessarily polynomial) expressions: the resulting W’s can depend nonpolynomially on the z*, y* and
on the two particular combinations e\] and A} but they are necessarily polynomials in all variables
which contain derivatives of fields or antifields.

1®The construction of the W’s implies (8"n)’ = 8™, (3"7) = d"7, (0"e)’ = d"¢ and (9"8) = "¢
because the s-transformation of these ghost variables do not contain any @’s or ©#’s. This has been used

in (£.9).
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(0"a*)" were not present. Nevertheless the asserted isomorphism (B.]) holds because
the conformal weights of the latter variables are too high so that they cannot contribute
nontrivially to HY(s) for g < 4. To show this we analyse H(s) along the same lines as
H (o) in section .

The first step of that analysis gives

H(s)~ Hqr(GLT(2)) ® H(s, W), W ={w:w=w(w), (Low,Low) = (0,0)}. (7.7)

This result is analogous to (f.23) and expresses that the zweibein gives the only nontrivial
cohomology in the subspace of 4’s and ©’s and that there is a contracting homotopy for
Lo and Lo because ([7.3) implies

0 i 74 O \A_7 A
= L = — L .
U g V= e g = T
The conformal weights of o, @, p* and g* are (3/2,0), (0,3/2), (2,0) and (0,2),

respectively.

H (S,W) can be analysed by means of a decomposition of s analogous to the o-
decomposition in (f.24), using a counting operator N’ for all those W’s which have
half-integer conformal weights,

N"= N+ Nz + Ny + Ngi 4 Nowr + Nar
The decomposition of s reads
s = ZSQn . [N s0n] = 2n 89, .
n>0
Next we examine the sp-cohomology. Analogously to (p.25) one has
so =500+ 501, [Ne+Nz,s00]=0, [Ne+ Nz,s01] =501 -

We now determine the cohomology of so; along the lines of the investigation of the
00,1-cohomology in appendix [J] by inspecting the part of so; which contains the undif-
ferentiated ghost e. That part is the analog of ¢ 11 in (A.3) and takes the form ¢ G

—-1/2
G, /2 acts nontrivially only on the ¢/, o* and their (covariant) derivatives according to

G’_l/z(Drdju)/ — (Dr+lxu)/ , G/_1/2(ara*)l — _(87“”*)/
We define a contracting homotopy B’ which is analogous to the contracting homotopy
B in appendix [A],
0 0
B/ — D’r‘ wy/ _ r  k\/ )
Z [( ") (D ighy (0"a%) a(arﬂ*)/]

r>0

Using B’ one proves that the functions f/ with m > 0 which are analogous to the
functions f,, in appendix [A] can be assumed not to depend on the variables (D"¢")’,
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(Dot (9"a) or (0" p*)' [9 In the case m = 0 one gets that f;) does not depend
on (0"a*) or (9"u*), simply because the conformal weights of these variables are too
large [cf. the arguments in the text after ([A.9)]. This implies the analog of equation
(A1), with functions hy, and g/, which may still depend on (D"¢*)’, (D" 1zt)’, (9" a*)
or (0"f*)". The dependence on these variables can be analysed analogously, using a
contracting homotopy B’ for these variables, along the lines of the remaining analysis

in appendix [Al. One finally obtains the following result for H(sg 1, W):

s0,1w = 0, wew =
w=nh(y,a',C" [e,n), [£,7))
+0(D2") hy(y', ', 0n, €', [£,7) + 7(Da#) hu(y', ', 0, C', e, m])
+ nii(Dx") (Dx”) hyw (y, 3’ , O, 07, C") + 5010 (w), & € W. (7.8)
Hence, H(so 1, W) is completely isomorphic to H (00,1, W) (for all ghost numbers). In
particular, the representatives do not depend on (9"a*), (9"a*)', (0"u*) or (9"n*)’
[recall that the reason is that the conformal weights of these variables are too high; if,
for instance, ©*' had conformal weights (1,0) instead of (2,0) it had contributed to ([.§)

analogously to (Dz*)’]. This implies the results announced above: arguments which are
completely analogous to those used to derive first ((.31]) and then (.34) lead to

g<4: HI(s,W)~ HI(s0,Ny), Wo={weW:Nw=0}. (7.9)
Analogously to (f.39), the elements of W, can only depend on those w’s with conformal
weights < 1, i.e.,

W eWy & W= [y, 2, C 0,00, (Dt ij(Dat) ,nd*n, 710°7). (7.10)
Because of (), so takes exactly the same form in W as oo in Wy. This implies (for
all ghost numbers)

H(SO,WO) >~ H(UQ,W@). (7.11)
Because of ([7.9) and (p.34) (as well as ([.1]) and (6.29)) this yields (6.1]). (7.9) establishes

also the equivalence between the cohomologies of the superstring and the corresponding
bosonic string at ghost numbers < 4 because Har(GL"(2)) ® H(sg, Wp) is nothing but
the s-cohomology of the bosonic string.
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For this argument it is important that there is a finite maximal value 7z of m. In the case of the
o-cohomology, m was bounded from above by the ghost number but now the ghost number alone does
not give a bound because there are variables with negative ghost numbers, the (8"a*)’, (8"a*)’, (8" u*)’
and (8"i*)". Nevertheless there is a bound because w(W) does not only have fixed ghost number but
also vanishing conformal weights. Indeed, it is easy to show that this forbids arbitrarily large powers of
€ because the (9"a*)" and (9"p*)" have ghost number —1 and conformal weights > 3/2.
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A Cohomology of 0p; in W

In this appendix we compute H (o1, W) where oo is given in (p.2G). The cocycle
condition reads

00,1W = 0, wew. (Al)

We decompose this equation into pieces with definite degree in the undifferentiated
supersymmetry ghosts €. 091 decomposes into two pieces, ¢ 1,0 and o 1,1, where 0 1,0
does not change the degree in the undifferentiated e, whereas 0 1,1 increases this degree
by one unit. g 1,1 reads

0

o011 =G 1y, Goyp=) (D'*ak) (Dripr)

r>0

(A.2)

w can be assumed to have fixed ghost number and is thus a polynomial in the undiffer-
entiated ¢,

m

w= Y " fm . (A.3)

m=m

where f,,, can depend on all variables (f.19) except for the undifferentiated . At highest
degree in the undifferentiated ¢, (A.]) implies 00.1,1(¢™ fm) = 0 and thus

é_1/2fm =0. (A.4)

We analyse this condition by means of the contracting homotopy

I ST
r>0

The anticommutator of B and G’_l /2 1s the counting operator for all variables D"y* and
Drlgh (r=0,1,...),

0

s P )

.60 =3 [0 o

r>0

Hence, (A4) implies by standard arguments that fr is G_l s2-exact up to a function
that does not depend on the D"y* or D" Tlat,

fﬁ = G—1/2 gm + hﬁ(yv T, C7 [,ljxa 1/;]7 [857 77]7 [57 f']) (A5)

where gm is a f_unc‘Eion that can depend on all Variable§ (6.19) except for the undif-
ferentiated e, [Dx,1] denotes collectively the variables D_”’la:“,D"w“, and [0e,n] and
[£,7] denote collectively the variables " Tle, 8™ and 07&, 0”7, respectively (r =0,1,...

32



in all cases). We shall first study the case ™ > 0 [the case T = 0 will be included
automatically below]. (A-§) implies

m—2
m>0: w = O'()J(Em_lgm) + ™! 1+ Z €™ fm
+e" hm(y, @, C, [Dx, ), [0, 1], [€,7)) (A.6)

where

fri1 = fm-1— 00,1,0 g -

The exact piece 0 1(¢™ 'gm) on the right hand side of ([A-f) will be neglected in the
following, i.e., actually we shall examine w’ := w — ao,l(am_l gmr) in the following. How-
ever, for notational convenience, we shall drop the primes (of w’ and fZ._,) and consider
now

m—1

m>0: w= Z " fm + €™ hm(y, x, C, [Dz, )], [0, 1], [€,7]) (A.7)
m=m
We have thus learned that, if @ > 0, the piece in w with highest degree in the undif-
ferentiated € can be assumed not to depend on any of the variables D"* or D' Hlgt
(r=20,1,...). As a consquence, the og j-transformation of that piece does not depend
on these variables either and 0w = 0, with w as in (A7), implies

é_1/2fm—1 - 0 (A8)

We can now analyse ([A-§) in the same way as (A4) and repeat the arguments until we
reach an equation

G_1/afo=0 (A.9)

where fy is a function with conformal weights (0,0) which does not depend on
the undifferentiated e [note that f,, has conformal weights (m/2,0) because ™ f,
has conformal weights (0,0); if ™ had been zero, we had arrived at (A.g) immedi-
ately]. The only way in which fy can depend nontrivially on the variables D" or
Dtlgh (r=0,1,...) is through terms of the form my"¢" f,. (y, z, dn, C, [Dz, v, £, 7]),
noey* f,,(y, z,0n, C, [Dx, ), [, 7)), or nDatg,(y,x,n,C, [Dx, ), [£,7]) [recall that the
only variables (f.19) with negative Lo-weights are the undifferentiated 7 and e and that
n is an anticommuting variable]. (A.9) implies f..(y,z,n, C,[Dz,v],[£,7]) = 0 and
fuly,z,0n,C, [Dx, 4], [£,7]) = 0. We conclude

fO = UD$“gu(y7 z, 877’ Ca [ij, 7;]7 [57 77]) + hO(ya z, Cv [15$7 7;]7 [867 77]7 [57 ’F/]) (AlO)

We thus get the following intermediate result: without loss of generality we can assume
w=>"hm(y,x,C, [Dx, V], [0e,7], [€,7]) + nDx"gu(y, x, O, C, [Dx, P}, [£, 7).

" (A.11)
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The only part of 0o 1 which is active on such an w is the part

2 A 0
00,1 = Z Z <Z> (O e Drikgh) W )

r>0 k=0

Note that 691 touches only the dependence on the variables Drypt, D'l and 0"
(r = 0,1,...) and treats all other variables as contants. Hence, for w as in ([A.11)),
00,1w = 0 implies

&O,lhm(y7x7c7 [@x71;]7 [85777]7 [57 f']) =0 vmu
&0,19u(y=3378777 C7 [vawL [57 f']) =0. (A12)

These equations are decomposed into pieces with definite degree in the undifferentiated
€ and then analysed using the contracting homotopy

B=Y (D).

Dr+1
= O(Dr+lgk)

By means of arguments analogous to those that have led to (JA.11]) we conclude that we
can assume, without loss of generality,

hn(y, @, C, [Da, ], [0e,0) [E,7]) = D & g(y, @, C,[02,m), (02, 7))

D2 g, (y, x, 07, C, 9, m)),
9u(y,x,0n,C, [Dx, P, [E,0) = > &gy, z,0n,C,[02,7))
q

+iDz” gy (y, x, C, O, O7). (A.13)

Since the hyy,. g, gm s Pu,qg and g, do not depend on the fermions, they are oq ;-invariant.
We have thus proved that (A1) implies

wo = h(y7 z,C, [67 "7]’ [57 ﬁ])

+Dathy(y, x, 0y, C, [£,7]) + 7Dz hy (y, x, 07, C, [, 1))

+7777D:E“253:”hw,(y, x,0n,0n,C) + 001w (A.14)
where the functions on the right hand side (h, nDx"h,, ..., @) are elements of W.
Note also that the sum on the right hand side is direct: no nonvanishing function
h+nDxth, + ﬁ@x“ﬁu +nnDaHDax” hyuw is 0¢ 1-exact because the various terms either do
not contain variables D" tlz# or D" tlz# at all, or they contain Dz* but no e, or Da
but no &. Hence, our result characterizes H(og 1,)V) completely.

B Derivation of (6-31))

We shall show that (6.30) implies (f-31)). The proof is a case-by-case study for g =
0,...,4. Since wg does not depend on the fermions and has vanishing conformal weights,
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it can be assumed to contain only terms with even N.-degree and even Nz-degree. Hence,
it does not depend on the supersymmetry ghosts if g = 0 or g = 1 which gives (f.31]) in
these cases. If 2 < g < 4 the assertion follows from

00,0Wg + 00,1W5_1 = 0, (Bl)

which is the second equation in (f.29).
g = 2: Only wz_, can depend on the supersymmetry ghosts. One has

wr_, = e0za(X) + £0za(X)

where a(X) and @(X) are functions of the undifferentiated z# and y'. oo ows contains
for instance 7(9¢)%a(X) and 7(9€)%a(X) because o e and ooz contain nde and 7OE,
respectively. If a # 0 or a # 0, these terms are not o -exact because they do not
contain derivatives of an x#. We conclude that a = 0 and @ = 0 and thus that (£.3])
holds for g = 2.

g = 3: Again, only w;_, can depend on the supersymmetry ghosts. The terms in
wr_, depending on € or its derivatives are

ned*ca(X) + e0e0nb(X) + edednc(X) + 0eC'd;(X)
+7Datedze, (X) +n(0e)? f(X) + 0*ne’g(X). (B.2)

In addition there are analogous terms with £ or its derivatives. A straightforward cal-
culation shows that (B.1]) imposes

b=0, ¢c=0, d;=0, e,=0ua, [f=a, g:—%a (B.3)

where a = a(X) is an arbitary function of the y* and z*. Using (B.J) in (B.2), the latter
becomes

[ned®e + nDateded,, + n(9e)? — § 9*nea(X)
= ogledea(X)] + 00,1 [ndep* Oy a(X)). (B.4)

This shows that all terms containing ¢ or its derivatives can be removed from wy_, by
the redefinition w’ = w — ogledea(X) + ndeyp"d,a(X)]. Similarly one can remove all
terms containing & or its derivatives. Hence, without loss of generality one can assume
wy_, = 0 which implies (.31) for g = 3.
g = 4: Now wz_, and ws can depend on the supersymmetry ghosts. One has
wr_, = £%0%a(X) + £%(9e)*b(X) + £39%za(X) + &%(92)*b(X) + £0=£0z¢(X).

The fact that og00d% contains —(1/2)e9%n implies a = 0. Analogously one concludes
a = 0. The fact that 0 ode and 007055 contain nd?%e and 70%E, respectively, implies
b=0,b=0and c=0.
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wy is of the form P4 (ghosts, Dx*, Dx*)as(X) where the P4 either depend on ¢
and its derivatives, or on & and its derivatives. The complete list of polynomials P4
depending on ¢ and its derivatives is
ndned®e, non(9e)?, 8*none?, nd*nede, ndne?,
nDxFned?e, Dzt n(0e)?, N DxtOnede, Dz 9?ne?,
nofed?e, non(0e)?, 0*fede, OnORede, 8*none?, Dz ORede,
nC'ed?ec,nC*(0e)?, OnCicde, 9*°nCie?, OnCede, NDxHClede, C'CI ek,

Starting with the terms

£0?endnAy(X) + (02)*nonB1(X) + 20n0?nEy(X) (B.5)
one finds that (B.1]) implies 4;(X) = B1(X) = 2F»(X). Considering the terms

£0end?*nBs(X) + e2nd®nE1(X) + e0%eniDat Ay (X))
+(0e)*niDat By, (X) + £0e0nifDat Cy (X)) + €20*niiDat Eg 1, (X)), (B.6)

one observes that the o transformation of these terms neither contain %7 or 0*¢ terms
nor U(1) ghosts. Thus they have to fulfill (B.1]) separately and one obtains

Con(X) = —0,A1(X)
B47“(X) = —6“35()() + auAl(X) — QEG,H(X)
App(X) = —20,E1(X) — 2Eg (X)),

Eliminating the coefficients one finds that (B.§) + (B.§) can be expressed by

oo (77(85)2(B5(X) — A1(X)) +ned?cE (X) + e0e0nA, (X) — 2585ﬁ1§x“E67“(X))
+00,1 (—n@n@szb“@uAl (X) — 270Dty 8, Eg, j, — ﬁn@e@x%ﬁ”QpV”Eﬁ,u) , (B.7)

where we have used the on-shell equality (p.15). Next we consider the terms involving
derivatives of 7

£0%en0nAz(X) + (0¢)?n0nBa(X) + £0en0*nBe(X)
+e0e0n0NB7(X) + €20*n0nEs(X) + £0e0niDa"Cs 1, (X)), (B.8)

which implies via (B-1])

Bi(X) =0, As(X)= By(X) = By(X) = —2E;(X),
Csu(X) = ~0, Az(X). (B.9)

Thus (B.§) can be written as

o) (686577}142()()) — 00,1 (86577771,[)“6“142()()) (B.10)
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and thus be removed from ws. In the last step we consider contributions containing
U(1) ghosts, i.e.

6626770iA3’i(X) + (66)2770Z33’2(X) + e@s@nCiBg,i(X) + 6282770iE47i(X)
+€8€5ﬁCiBg7i(X) + 686Ci’l7ﬂ§l‘”06,m(X) + €a€CiCjBlo’ij(X). (B.ll)

(B1)) imposes Bio,ij(X) = By;(X) = Bs;(X) = 0. Furthermore we derive the condi-
tions

A3i(X) = B3;(X) = —2E4;(X) Csui(X) = —0,A43,(X). (B.12)
Using the on-shell equality (f.14), (B.11]) can be written as

a0 (E@ECZ'A;),J(X))
+00,1 (8€Cin1/1“8MA3,i(X) — Ganﬁwﬂﬁx”(Qwi - QW’\GM)A&Z-(X)) . (B.13)

Hence, as in the case g = 3 one finds that (B.I]) implies wy = o¢(...) 4+ 00,1(...) which
implies (p.31]) for g = 4.

C Analysis of Bianchi identities

In this appendix we summarize briefly the investigation of the Bianchi identities for two-
dimensional supergravity coupled to Maxwell theory. The starting point is the structure
equation

[Da, D} = —Tap“Dc — Rapdr, — Fap'd;, (C.1)

where [-,-} denotes the graded commutator, {D4} = {D,,D,} contains the covariant
derivatives D, and covariant supersymmetry transformations D,, d;, = (1/ 2)€“blab is

the Lorentz generator and ¢; are the U(1) generators (represented trivially in our case).

The “torsions” T4 BC, “curvatures” Rap and “field strengths” F uB' are generically field

dependent and determined from the Bianchi identities implied by (C.1). Using the
constraints (R.5) and (R.§) one obtains for the torsions

Taﬁa = 21(’}/&0),15
T,s* = 1507a)p"
Tp® = Sew(Cr)*DgS, (C.2)

where S is the auxiliary scalar field of the gravitational multiplet. For the curvatures
one obtains

Ro.g = 19(7C)ap
Roo = %
Ry = 3ea(S*+D29), (C.3)
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and the field strengths are given by

Fog' = 2i(7.C)agd’
Fo! = (’Ya)aﬁ)\z}' (C4)

The supersymmetry transformations of )\iﬁ and Féb turn out to be
Do)y = 1(1"1:C)apDad’ + 3 (1eC)ape™ Fly + 3 (1:C)apSe’
,DaFéb = _(’7bIDa/\i)a + (Va’DbAi)a + %5abDaS¢i + %eabs(ly*)a(;)‘fi' (05)

Introducing the corresponding connection 1-forms and proceeding along the lines of [[[4]
one identifies the covariant derivatives D, in terms of partial derivatives and connections,
and the curvatures, field strengths and torsions with two lower Lorentz indices in terms
of the connections and the other field strengths. Owing to the constraint 7,,¢ = 0 this
yields the expression (P.9) for the spin connection. Furthermore one obtains

Fop' = Ed" By (0p AL, — Om Al — (Xm Yo X) + (XnmA') = 21(xm 1= Cxn) 8")

and the expression for Ty can be used to express the supersymmetry transformation
of the auxiliary field S as

DoS = 4i(7%C) 0™ Vi X — i(7"C)agXm” S

The full BRST transformations (R.1)), (.3) and (R.4) are then obtained by adding the
Weyl transformations by hand and imposing s> = 0 on all fields. To achieve this in
an off-shell setting, one introduces the super-Weyl symmetry on the gravitino and the
gaugino and the local shift symmetry of the auxiliary field S.

D BRST transformations of superconformal tensor fields

This appendix collects the BRST transformations of the superconformal tensor fields
and corresponding ghost variables derived in section [J. The transformations of the
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undifferentiated fields read

sn
S1]
se

SE

sC"
sxM
31/)M
sypM

sEM
@
s\
S\
sF

non — e

707 — &g

nde — % eon

noz — L eon

niFt 4 naX 4 geXl 4 eg¢!
nD + 7D) XM + eypM + M

(

(nD + 7D)M + S anypM 4 eDXM — M

(nD + iD)pM + L dpM + eDXM 4 e M

(nD + 7D)EM 4 L (an + 8 FM + eDYM — eDyM

(1D + D) + L (9 + N §' + X + eX’

(nD + AD)N + (9 + 3 DN + DY + EF' + e’

(nD + AD)N + (L n + N + EDY' — eF' + Dz

(D + 7D)F' + (3n 4 07)F' — eDA' + EDA' — 9eA’ + JaN!

The s-transformations of covariant D or D derivatives (of first or higher order) of a field
are obtained by applying D’s and/or D’s to the transformatif)ns given above, using the
rules Dy = 0n, Dij = 0, De = e, DE = 0 etc, as well as [D,D] = 0. E.g., one gets

sDXM
sDXM
sDDXM
sDyYM
sDyY™M
sDyYM

sDyYM

= (D +7D)DXM + anDXM + eDyYM + eDYM + depM
= (D +qD)DXM + onDXM + eDyYM + eDYM + dep™
= (nD + 7D)DDXM + (9n + 07)DDXM
+eDDYM + eDDYM + 9eDYM + deDyYM
= (yD+aD)DyY™ + 3 oDy + L 9Py
+eD?XM 4 9eDXM — eDFM
= (yD +qD)DPM + 3 ogDPM + L 0%iy™M
+eD* XM 4 9eDXM + eDFM
= (D +7gD)DYM + 1 onDyY™ + oDy
+eDDXM — §sFM — eDFM
= (D + qD)DYM + anDy™M + L oDy
+eDDXM 4+ 9eFM 4 eDFM
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E BRST transformations of superconformal antifields

In this appendix we present the full s transformations of the superconformal antifields
associated with the matter and gauge multiplets, using the following notation:

Gun = Hun(X)
D, = Dy(X)
Qxny = OxHyn(X) — O HiN(X) + OnHip(X)
= 2knm — Hrnym  (Hxny = 30k Hy)
Rixrun = OmOgHpn(X) — ONOx Hrjp (X)

= 2 (OkQun — Lk mN) = 3 (OMQrNL — ONQKML)-
Qrnym and Rigrpapn enjoy the following properties:

Qrmn + Qrenvy = Qurn + Qg = 20kGuN
Rxrun = —Rrkmn = —Rixonyv » OyRipun = 0.

The full BRST transformations of the undifferentiated superconformal matter antifields
are

sEy = —¢'0uDi+ 2GunEYN + 5PN Qe
+(nD + D) Fiy + 5 (90 + On) Fjyp — ey + €y
sy = NouD; + PN OnOy Di + 2GynDYN
+DXNPE Quennr — FNOE Quieny — 59N O Rcnrnn
+(nD + 7D)Yias + (3 On+ 0n)vss + eX i + EDFyy + 0cFy,
sy = —NouD; — NG NI D + 2G N DY
+DXNPE Oy + FNYE Qe + 59 N Ry
+(nD + 7D)Yiy; + (On + 2 0n)ss + EX3p — eDFyy — 0cFyy
sXi; = —2GunDDXYN —DXEDXYQxra + FXFXQukr
+DPE Pk — YE DY Qs
+DXNPEGE Ry prie + DXNE YL Ry penar
FENE L0 Qv + LR R N Gl oy Ricpn
+F O D; — (NN — NN 4 BN G NP G 9 ) Ondni D;
+(nD + D) X3, + (9 + 0n) X3y
+eDys; + EDYry + Oy + 020,
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The s transformation of the superconformal antifields for the gauge multiplet read

S)\;k = 1/7JM8MDZ
+(nD + AD)N; + 5 ONAS + e — EA;

85\: = —Tf)MaMDZ
+(nD + AD)A; + 5 InA; + E¢y — e A}
sp; = —FMoyD; — pMPN Ny D;

+(nD +1D)é; + 5 (9 + On)d;
+eDA; + EDX; — eeC;
sAr = —DXMoyD;
+(nD + 7D)Af + OnA:
+EDN! — eDXf — Oe\f — EeC
sAr = DXMoyD;
+(nD + 7D)Af + OnA?
+eDAf — EDAf — 0N} — ecCf
sCf = —DAf—~DA! + (WD +qD)C; + (On + 0n)C;

The BRST transformations of covariant derivatives of the covariant antifields (such
as sDX},) are obtained from the above formulae by means of the rules described in
appendix 0.
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