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THE BIANCHIIX ATTRACTOR

HANS RINGSTROM

Abstract. W e consider the asym ptotic behaviour of spatially hom ogeneous
spacetim es of B ianchitype IX close to the singularity (we also consider som e of
the other B ianchitypes, e. g. BianchiV IIT in the sti uid case). Them atter
content is assum ed to be an orthogonal perfect uid with linear equation of
state and zero cosm ological constant. In term s of the variables of W ainw right
and Hsu, we have the follow ing results. In the sti uid case, the solution

converges to a point for all the Bianchi class A types. For the other m atter
m odels we consider, the Bianchi IX solutions generically converge to an at-
tractor consisting of the closure of the vacuum type II orbits. Furthem ore,
w e observe that for allthe Bianchiclass A spacetin es, except those of vacuum

Taub type, a curvature invariant is unbounded in the incom plete directions of
inextendible causal geodesics.

1. Introduction

The last few decades, the Bianchi IX spacetin es have received considerable atten—
tion, see for instance E], @], @] and references therein. A greem ent has been
reached, at least conceming som e aspects of the asym ptotic behaviour as one ap—
proaches a singularity, but the basis for the consensus hasm ainly consisted of nu—
m erical studies and heuristic argum ents. T he ob Ective of this article is to provide
m athem atical proofs for som e agpects of the ‘accepted’ picture. Them ain resul of
this paper was for exam ple con ectured in @] p. 146147, partly on the basis of a
num erical analysis.

W hy Bianchi IX ? One reason is the fact that this class contains the Taub-NUT

gpacetin es. T hese spacetin es are vacuum m axin al globally hyperbolic spacetin es
that are causally geodesically incom plete both to the future and to the past, see
] and @]. However, as one approaches a singularity, in the sense of causal ge-
odesic ncom pleteness, the curvature rem ains bounded. In fact, one can extend
the spacetin e beyond the singularities in Inequivalent ways, see E]. It is natural
to confcture that the behaviour exhibited by the Taub-NUT spacetim es is non—
generic, and it is interesting to try to prove that the behaviour is non-generic in the
BianchiIX class. In fact we prove that allB ianchi IX initialdata considered In this
paper other than TaubNUT yild inextendible globally hyperbolic developm ents
such that the curvature becom es unbounded as one approaches a singularity. This
result is in fact m ore of an observation, since the corresponding result is known in
the vacuum case, see E], and curvature blow up iseasy to prove in the non-vacuum

cases we consider.

Another reason for studying the Bianchi IX spacetin es is the BKL congcture,

See E]. A ccording to this confcture, the Tocal’ approach to the shgularity of

a general solution should exhibit oscillatory behaviour. The prototypes for this
1
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behaviour am ong the gpatially hom ogeneous spacetin es are the B ianchiV IIT and
IX classes. Furthem ore the m atter is conctured to becom e unin portant as one
approaches a sihgularity, with som e exceptions, for exam pl the sti uid case.
W e refer to E] for argum ents supporting the BKL conpcture and to [l|] for an
overview of conjctures and resulsunder sym m etry assum ptions of varying degree.
In this paper we prove, under certain restrictions on the allowed m atter m odels,
that generic B ianchi IX solutions exhibit oscillatory behaviour and that the m atter
becom es unin portant as one approaches a singularity. W hat ism eant by the latter
statem ent w illbe m ade precise below . Ifthem atterm odelisa sti  uid them atter
w ill be In portant, and in that case we prove that the behaviour is quiescent. T his
should be com pared w ith E] conceming the structure of singularities of analytic
solutions to E Instein’s equations coupled to a scalar eld or sti uid. In that
paper, Andersson and R endall prove that given a certain kind of solution to the so
called velocity dom inated system , there is a unique solution ofE instein’s equations
coupled to a sti  uid approaching the velocity dom inated solution asym ptotically.
O ne can then ask the question whether it is naturalto assum e that a solution has
the asym ptotics they prescribe. In Section @, we show that all BianchiV IIT and
X sti uid solutions exhibit such asym ptotic behaviour.

T he results presented in this paper can be divided into two parts. The st part
consists of statem ents about developm ents of orthogonalperfect uid data of class
A .W e clarify below what wem ean by this. T he results concermn curvature blow up
and inextendibility of developm ents. T he second part consists of results expressed
n term s of the variables of W ainw right and Hsu. These variables describe the
spacetin e close to the singularity, and we prove that B ianchiIX solutionsgenerically
converge to a set on which the ow of the equation coincidesw ith the K asnerm ap.

W e consider spatially hom ogeneous Lorentz m anifolds M ;g) with a perfect uid
source. T he stress energy tensor is thus given by
(1.1) Tap= UaUp+ P(Gap+ Ualp);

where u is a unit tin elke vector eld, the 4-elocity ofthe uid. W e assum e that p
and satisfy a linear equation of state

12) p= ( 1) ;

where we In this paper restrict our attention to 2=3 < 2.Wewillalso assum e
that u is perpendicular to the hypersurfaces of hom ogeneity. E instein’s equations
can be w ritten

1
13) Rab ERgab: Tapi

whereR ;, and R are theR icciand scalar curvature of M ;g). In order to form ulate
an nitial value problem in this setting, consider a spacelike subm anifold M ;g) of
M ;qg), orthogonaltou. Lete , = 0;:;3 bea bcalframewith ¢ = u and e,
i= 1;2;3 tangent to M and Xt ki; be the second fundam ental form of M ;g).
Then g and k m ust satisfy the equations

Ry  kik™ + (tyk)? = 2R + R

and

r itrgk r jkij = Rois
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where r is the Levi€ Wvita connection of g, and Ry is the corresponding scalar
curvature, ndices are raised and lowered by g. If we specify a R iem annian m etric
g, and a sym m etric covariant 2-tensork, as initialdata on a 3-m anifold, they should
thus in our situation satisfy

ij 2
14 Ry kisk? + (k) = 2
and
1.5) ritk v ki = 0;

because of ), @) and the fact that u is perpendicular to M . In other words,
we should also specify the initial value of aspart of the data.

W e consider only a restricted classofm anifoldsM and initialdata. The 3-m anifold
M is assum ed to be a special type of Lie group, and g; k and are assum ed to
be left invariant. In order to be m ore precise conceming the type of Lie groups
M = G we consider, et e;, 1= 1;2;3 be a basis of the Lie algebra w ith structure

constants determ ined by lei;e5]= }fjek . If llj( = 0, then the Lie algebra and Lie
group are said to be of class A, and
(16) 5= ignn

where the symm etric m atrix nJ is given by
.7 = I

2
D e nition 1.1. Orthogonal perfect uid data of chss A for E instein’s equations
consist of the follow ing. A Lie group G of class A, a left iInvariant R iem annian
metricgon G, a left invariant sym m etric covariant 2-tensor k on G, and a constant

o 0 satisfying @) and ) wih replaced by o.

W e can choose a left invariant orthonom albasis fe;g w ith respect to g, so that the
corresponding m atrix n'd de ned 1 (D) isdiagonalw ith diagonalelem entsni, n,
and n3. By an appropriate choice of orthonom albasis, ni ;n,;n3 can be assum ed
to belong to one and only one of the types given in Tabl . W e assign a Bianchi
type to the initialdata accordingly. T his division constitutes a classi cation of the
clhssA Lie algebras. W e refer to Lemm a for a proof of these statem ents.

Let ki; = k(ei;ey). Then the m atrices nid and ki; comm ute according to ), [Se)
that we m ay assum e k;; to be diagonalw ith diagonal elem ents k;, k, and ks, cf.

B

D e nition 1.2. Orthogonal perfect uid data of class A satisfying k, = k3 and
n, = ns or one of the pem uted conditions are said to be of Taub type. D ata w ith
o = 0 are called vacuum data.

O bserve that the Taub condition is independent of the choice of orthonom albasis
diagonalizing n and k, cf. ©1.13).C onsidering the equations of E llisand M acC al-
m @14)-@1.), one can see that ifn, = n; and k, = ks at one point in tine,
then the equalities always hold, cf. the construction of the spacetin e carried out
n the appendix. A ccording to E], vacuum solutions satisfying these conditions are
the Taub-NUT solutions. T his jisti es the follow ing de nition.

De nition 1.3. TaubNUT initialdata are type IX Taub vacuum initialdata.
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Table 1. BianchiclassA .

Type n; np; nj3
I 0 0 0
I + 0 0
VI 0o +

vV I 0o + +
V IIT + +
X + + +

D e nition 1.4. By an orthogonalperfect uid developm ent of orthogonal perfect
uld data ofclassA ,wew illm ean the follow ing. A connected 4-din ensionall.orentz
manifold M ;g) and a 2-tensor T, as In @), on M ;g), such that there is an
embeddingi:G ! M withi @)= g,1k)=kandi ()= o, wherek isthe
second fundam ental form ofi(G) n ™ ;q).

In the appendix, we construct globally hyperbolic orthogonal perfect uid devel-
opm ents, given initial data, and we refer to them as class A developm ents, cf.
D e nition . W e also assign a type to such a developm ent according to the type
of the initial data. Let us m ake a division of the initial data according to their
globalbehaviour.

Theorem 1.1. Consider a class A devebpment with 1 2.

1. If the initdaldata are not of type IX , but satisfy tyk = 0, then ¢ = 0 and the
develpm ent is causally gecdesically com pkte. Only types I and V II; perm it
this possibility .

2. If the initial data are of type I, II, V Iy, V I or V III, and satisfy tryk < 0,
then the developm ent is future causally geodesically com plkte and past causally
gecdesically incom pkte. Such initialdata we will refer to as expanding.

3. Bianchi IX initial data yied developm ents that are past and future causally
gecdesically incom plkete. Such data are called recolbpsing.

A proof is to be found in the appendix, but observe that this theorem is not new .
A s far as class A developm ents are concemed, we w ill restrict our attention to
equations of state with 1 2. The reason is that there is cause to doubt the
wellposedness of the initial value problem for 2=3< < 1, cf. E] p.85and p. 88.
Furthem ore, in the BianchiIX case we use resuls from E] conceming recollapse,
see Lemm a . In order to be allowed to do that, we need the above m entioned
condition on . W hat ism eant by nextendibility is explained in the follow ing.

De nition 1.5. Consider a connected Lorentz m anifold M ;g). If there is a con-—
nected C 2 Lorentz m anifod (MA ;§) ofthe sam edin ension, and amap i:M ! M ,
wih iM ) & MA, which is an isom etry onto is in age, then M ;g) is said to be
C ?-extendibke and (MA ;9) iscalled a C?-extension of M ;9). A Lorentz m anifold
which is not C ?-extendible is said to be C ?—inextendible.

Rem ark. There is an analogous de nition of an ooth extensions. Unless otherw ise
m entioned, m anifolds are assum ed to be sm ooth, and m aps between m anifolds are
assum ed to be as reqular as possible.
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W e willuse the K retschm ann scalr,
(1.8) =R R ;

asourm ain m easure of whhether curvature blow s up or not, but in the non-vacuum
case it is natural to consider the R icci tensor contracted w ith itselff R R . The
next theorem states the m ain conclusion conceming developm ents.

Theorem 1.2. For class A develbpm ents with 1 2, we have the folbwing
division.

1. Consider expanding initialdata oftype I, ITor V ITp with 1 < 2 which are
not of Taub vacuum type. Then the K retschm ann scalar is unbounded along
all inextendible causalgeodesics in the incom plkte direction.

2. Consider non-Taub-NUT recolbpsing initial data with 1 < 2. Then the
K retschm ann scalar is unbounded along all inextendibke causal gecdesics in
loth incom plete directions.

3. Expanding and recollapsingdata with = 2and > 0. Then the K retschm ann
scalar is unbounded alng all inextendible causal gecdesics in all incom plkte
directions.

4. Expanding and recollapsing data with o > 0. Then R R is unbounded
along all Inextendible causal gecdesics in all incom plete directions.

In all cases m entioned above the class A developm ent is C “—inextendibk.

Rem ark. O bserve that the BianchiV III vacuum case was handled in E], and the
BianchiV Iy vacuum case in @] . The above theorem thus isolates the vacuum Taub
type solutions as the only ones am ong the B ianchiclass A spacetin es that do not
exhibit curvature blow up, given our particular m atter m odel.

W enow tum to the resultsthat are expressed in term softhe variablesofW ainw right
and Hsu. T he equations and som e of their properties are to be found in Section E
T he appendix contains a derivation. Tt is natural to divide the m atter m odels into
two categories; the non-sti uid caseand thesti uid case ( = 2).

Let us begin with the non-sti uid case, including the vacuum case. W e con ne
our attention to Bianchi IX solutions. The existence interval stretches back to

1 which corresponds to the singularity. There are some xed points to which
certain solutions converge, and data which lead to such solutions together w ith
data of Taub type will be considered to be non-generic. The K asner m ap, which
is supposed to be an approxin ation of the BianchiIX dynam ics as one approaches
a singulariy, is llustrated in Figure EI The circle In the . -plane appearing
n the gure is called the K asner circle, and we have depicted two bounces of the
Kasnerm ap. T he starting point ism arked by a star, and the end point by a plus
sign. G iven a point x on the K asner circle, the K asner m ap yields a new point
y on the K asner circle by taking the comer of the triangle closest to x, draw ing
a straight line from the comer through x, and then lktting y be the second point
of intersection between the line and the K asner circle. O ne solid line corresponds
to the closure of a vacuum type II orbit of the equations of W ainw right and H su.
A ctually, it is the profction of the closure of such an orbit to the . plane.
A vacuum type IT solution has one N ; non—zero and the other zero, and the three
di erent N ; correspond to the three comers of the triangl; the rightm ost comer
corresponds to N3 & 0 and the comer on the top left corresopondsto N3 6 0. The
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Figure 1. TheKasnermap.

constraint ) for the vacuum type IT solutions is given by

T he closure of this set is given a nam e In the follow ing de nition.
De nition 1.6. The set

A=f£(; +; NipiNgiNs): + N Noj+ NoNsj+ N3Nij= 0g\ M ;
whereM isde ned by (E),jscaﬂed the B ianchi attractor.

The maln result of this paper is that for generic Bianchi IX data, the solution
converges to the attractor. That is

(19) hml( + N N, + NyNs3+ N3N;)= 0:

This conclusion supports the statem ent that the K asner m ap approxin ates the
dynam ics, and also the statem ent that the m atter content loses signi cance close
to the singularity. Let us introduce som e term nology.

De nition 1.7. Let £ 2 C* ®";R"), and consider a solution x to the equation
dx_
i
w ith m axin alexistence interval (t ;t. ). W ecalla pontx an -lim it point ofthe
solution x, if there isa sequence tyy ! t wih x(&k) ! x . The -Imit set ofx
is the set of its —Iim it points. The ! -lim it set is de ned sin ilarly by replacing t
wih t, .

x; x(0) = %;

Remark. Ift > 1 then the -lim it set isem pty, cf. @].

Thus, the -lim it set ofa generic solution is contained in the attractor. T he desired
statem ent is that the -lim it set coincidesw ith the attractor, but the best result we
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have achieved in this direction is that there m ust at least be three -lin it pointson
the K asner circle. T his w orst case situation corresponds to the solution converging
to a periodic orbit of the K asnerm ap w ith period three. O bserve that we have not
proven anything conceming B ianchiV IIT solutions.

Let us sketch the proof. It is natural to divide it into two parts. The st part
consists of proving the existence of an -lim it point on the K asner circle. W e
achieve this in the follow Ing steps. First we analyze the -lin it sets of the B ianchi
types I, IT and VI;. An analysis of types I of IT can also be found in E llis and
W ainw right @]. Then we prove the existence of an -lim it point for a generic
Bianchi IX solution. To go from the existence of an - it ponnt to an -Im it
point on the K asner circle, we use the analysis of the lower B ianchitypes. In the
second part, we prove (L9). Let d be the fiinction appearing in that equation. W e
assum e that d does not converge to zero In order to reach a contradiction. The
existence of an -l it point on the K asner circle proves that there is a sequence
k! 1 suchthatd(yx) ! 0. Ifd doesnot converge to zero thereisa > 0,and a
sequence si ! 1 such thatd(sy) . W ecan assum e s x and conclude that
d on the whole has to grow (going backw ards) in the interval [sy; x ]. W hat can be
said about this growth? In Section @, we prove that we can control the density
param eter in thisprocess, assum Ing is sm allenough, which isnot a restriction.
As a consequence can be assum ed to be arbitrarily an all during the grow th.
Som e further argum ents, given in Section , show that we can assum e the grow th
to occur in the product N ,N 3, using the sym m etries of the equations. Furthem ore,
one can assum e the -variables to be arbitrarily close to ( . ; y= ( 1;0),
and that som e expressions dom inate others. For instance 1+ | can be assum ed to
be arbitrarity m uch sm aller than N ;N 5. T his control introduces a natural concept
of order of m agnitude. T he behaviour of the product N ;N 3 w ill be oscillatory; it
w ill Jook roughly lke a sine wave. T he point is to prove that the product decays
during a period of its oscillation; that would lead to a contradiction. T he variation
during a period can be expressed In term s of an integral, and we use the order of
m agnitude concept to prove an estin ate show ing that this Integral has the right
sign.
Now considerthesti uid casew ith positive density param eter. Tn thiscasewew ill
consider B ianchiV ITT and IX solutions. T he analysis is sim ilar for the other cases
and a description of the results is to be found in Section E A galn the shqgularity
corresponds to 1 . The density param eter converges to a non-zero value, all
the N ; converge to zero, and in the . “olane the solution converges to a point
nside the triangle shown in Fig'ureg.

In Section E, w e form ulate the equations of W ainw right and H su and brie y describe
thelr origin and som e of thelr properties. Section E contains som e elem entary
properties of solutions. W e give the existence intervals of solutions to the equations,
and prove that the + -variables are contained in a com pact set to the past
for Bianchi IX solutions. A s In the vacuum case, we also prove that ( . ; ) can
converge to ( 1;0) only if the solution is of Taub type, although this is no longer
a characterization. In Section E, we mention som e critical points and m ake m ore
precise the statem ent that solutions converging to these points are non-generic.
Inclided in this section are also two technical lem m as relevant to the analysis. The
m onotonicity principle is explained in Section E Tt is fundam ental to the analysis
of the -lim it sets of the solutions. W e present two applications; the fact that all
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Figure 2. The triangle m entioned in the text.

—lim it points of B ianchiIX solutionsare oftype I, ITorV I, and an analysisof the
vacuum type IT orbits. T he last application is not com plicated, but illustrates the
argum ents involved aswell as dem onstrating how them ap depicted n F JgureEI can
be viewed as a sequence of type IT orbits. Section |d deals w ith situations such that
one has control over the shear variables and the density param eter. Speci cally,
it gives a geom etric Interpretation of som e of the equations in + -space. As
an application, we prove that ifa Bianchi IX solution hasan -lim it point on the
K asner circle then all the points obtained by applying the K asner map to this
point belong to the -lin it set of the solution. The sti uid case is handld
In Section []. In this case the -lm it set consists of a point regardless of type.
Sectjons dealw ith the lower order Bianchi types needed in order to analyze
BianchiIX . An analysis of types I of IT can also be found in E Ilis and W ainw right
@]. Section EI gives the possbilities for a Taub type Bianchi IX solution. The
technical Section is needed In order to prove the existence of an —lin it point
for Bianchi IX solutions, and also to prove that the set of vacuum type II points
is an attractor. It is used for approxin ating the solution in situations where the
behaviour is oscillatory. Section @ proves the existence of an —Iim it point for a
Bianchi X solution and the existence of an -lim it point on the K asner circke for
generic B ianchi IX solutions. In Section @, we prove that if one has control over
the sum N 1N,j+ N,N3j+ N3N;jin some tine interval [ 1; 2], and control over

in , then one has controlover in the entire interval. T his rather technical
observation isessentialin the proof that generic solitions converge to the attractor.
T he heart of thispaper is Section [L§ w hich contains a proofof @) . It also contains
argum ents that w ill be used In Section @ to analyze the reqularity of the set of
non-generic points. In Section E, w e observe that the convergence to the attractor
is uniform , and in Section we prove the existence of at least three non-special

-lin it points on the K asner circle. W e form ulate the m ain conclusions and prove
T heorem in Section @ . In Section , we relate our results conceming sti  uid
solutions to those of E]. T he appendices contain resuls relating solutions to the
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equations of W ainw right and H su w ith properties of the class A developm ents and
som e curvature com putations.

2. Equations of W ainw right and H su

T he essence of this paper is an analysis of the asym ptotic behaviour of solutions
to the equations of W ainw right and H su )7) . One In portant property of
these equations is that they describe allthe B ianchiclassA types at the sam e tim e.
A nother In portant property is that it seem s that the variables rem ain in a com pact
set as one approaches a singularity. In the Bianchi IX case, this follow s from the
analysispresented in thispaper. Let us give a rough description ofthe origin ofthe
variables. In the situations we consider, there is a foliation of the Lorentz m anifold
by hom ogeneous spacelike hypersurfaces di eom orphic to a Lie group G ofclassA .
One can de ne an orthonom albasise , = 0;:::;3, such thate;, 1= 1;2;3, span
the tangent space of the spacelike hypersurfaces of hom ogeneity, and e, = @, for
a suitable globally de ned tin e coordinate t. It is possible to associate a m atrix
ni; with the spacelke vectors e;, as in ), and assum e it to be diagonal w ith
diagonal com ponents n;. O ne changes the tin e coordinate by dt=d = 3= , where

is m inus the trace of the second fundam ental form of the spacelike hypersurface
correspondingtot. TheN; ( ) below arethen; ( ) divided by ( ),the , and
correspond to the traceless part of the second fundam ental form of the spacelke
hypersurface corresponding to , sin ilarly nom alized, and nally = 3 =2.We
willrefer to , and as the shear variabks, and to as the density param eter.
T he question then arises to what extent this m akes sense, since  could becom e
zero. An answer isgiven In the appendix. For all the B janchitypes except IX , this
procedure is essentially hamm less, and the variables of W ainw right and H su capture
the entire Lorentz m anifold. In the Bianchi IX case, there is however a point at
which = 0, at least ifl 2, see the appendix, and the variables are only
valid for half a developm ent In that case. A s far as the analysis of the asym ptotics
are concemed, this ishowever not in portant. A derivation ofthe equations is given
n the appendix. T hey are

Ny = (@ 4 )N,
0 p_
N, = @+2 ,+2 3 N,
j o
21) Ny = @+2 ., 23 )Ns
° = 2 @ . 3s.
o = e 9 3s
= pg B 2)7:

T he prim e denotes derivative w ith respect to a tim e coordinate , and

g = 3 2) +2( %+ %)

22) S, = [N, N3 N;@N; N, N3l

3
S = 7(1\73 N2)N; Nz N3):
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T he constraint is

2 2 3 2 2 2 9.
223) + T+ +Z[[\]1+N2+N3 2(N|N,+ NoyN3+ N3Np)l= 1:
W e dem and that 2=3 < 2 and 0. The equations ()7( have certain

sym m etries, described in W ainw right and H su E]. By perm uting N ; ;N 5 ;N 3 arbi-
trarily, we get new solutions, ifwe at the sam e tim e carry out appropriate com bina—
tionsofrotationsby ntegerm ultiplesof2 =3, and re ectionsin the ( . ; )-plane.
E xplicitly, the transform ations
1
N1 ;N N3) = N3;NpN2); (7457 )= ( >
and
NN N3) = N ;N3;N2); (7057 )= (47 )
yield new solutions. Below, we refer to rotations by Integer multiples of 2 =3
as rotations. Changing the sign of all the N ; at the sam e tin e does not change
the equations. C lassify points ( ; - ; ;N1 ;N ;N 3) according to the valies of
N1;N,;N3 In the same way as In Table. Since the setsN; > 0, N; < 0 and
N ; = 0 are Invariant under the ow of the equations, we m ay classify solutions to

@)—) accordingly.

De nition 2.1. The Kasner circk is de ned by the conditionsN; = = 0 and
the constraint @) T here are three points on this circle called special: ( . ; )=
( 1;0) and (1=2; 3=2).

The ollow ing reform ulation of ¢ iswritten down for fiture reference,

2.4)

= 2 2 22 2%)(,+1

N w

9
2 ) ++§N1(Nl N, N3):

3. Elementary properties of solutions

Herewe collect som em iscellaneous observations that w illbe of In portance. M ost of
them are sin ilar to results obtained in E]. The -lim it setde ned in D e nition B
plays an in portant role in this paper, and here we m ention som e of its properties.

Lemma 3.]1.Letf and x be asin De njijon. The -Im it set of x is closed
and invariant under the ow of £. If there isa T such that x (t) is contained in a
compact set for t T, then the -lim it set of x is connected.

Proof. Seee. g. @]. 2
De nition 3.1. A solution to @)—@) satisfying N, = N3 and = 0, or one
of the conditions found by applying the sym m etries, is said to be of Taub type.

Rem ark. The sest de ned by N, = N3 and = 0 is Invariant under the ow of
ed.

Lem m a 3.2. The existence intervals for all solutions to )7@) except B Janchi
X are (1 ;1 ). For Bianchi IX solutions we have past glblal existence.
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Proof. A s In the vacuum case, see E]. 2

By observationsm ade in the appendix, 1 corresponds to the singularity.

Lemma 3.3. Let 2=3 < 2. Consider a solution of type IX . The image
(43 ; ) (( 1 ;0] is contained in a com pact set whose size depends on the initial
data. Further, ifata point in time N3 N, N; andNs3 2,then N, N3=10.

Proof. A s In the vacuum case, see @]. 2

That ( +; ; ) iscontained In a com pact set for all the other types follow s from
the constraint. The second part of this lemm a will be in portant in the proof of
the existence ofan -l it point. O ne consequence is that one N ; m ay not becom e
unbounded alone.

The nalobservation is relevant in proving curvature blow up. One can de ne a
nomn alized version ) of the K retschm ann scalar @), and it can be expressed
asa polynom ialin the variables of W ainw right and H su. O ne way of proving that a
speci ¢ solution exhibits curvature blow up is to prove that it hasan -lin it point
at which the nom alized K retschm ann scalar is non—zero. W e refer to the appendix
for the details. It tums out that this polynom ial is zero when N, = N3, N, = 0,

=0, 4+ = land = 0.The same istrue of the points obtained by applying
the symm etries. It is then natural to ask the question: for which solutions does
(43 ) converge to ( 1;0)?

P roposition 3.1. A solution to @)—@) with 2=3 < < 2 satis es
JJ'm1 (+C)i CN=(1;0);

only if it is contained in the invariant set = 0and N, = N3;.

Rem ark. The proposition does not apply to the sti  uid case. The analogous
statem ents for the points ( . ; ) = (1=2; 3=2) are true by an application
of the symm etries. W e m ay not replace the in plication w ith an equivalence, cf.

P roposition .

Proof. The argum ent is essentially the sam e as in the vacuum case, see @]. We
only need to observe that will decay exponentially when ( ,; ) is close to
( 1;0).2

4. Critical points

De nition 4.1. The critical point F isde ned by = 1 and all other variables
zero. In the case 2=3 < < 2,wede ne the criticalpoint Pf (IT) to be the type IT
point w ith =0,N;1>0, , =3 2)=8and =1 (3 2)=16. T he critical

points Pf (I1), i= 2;3 are ound by applying the sym m etries.

Tt willtum out that there are solutions w hich converge to these pointsas ! 1.
Them ain ob Fctive of this section is to prove that the set of such solutions is sm all.
O bserve that only non-vacuum solutions can converge these critical points.

De nition 4.2. Let Iy 1y, denote initialdata to )—E) oftypeVIywith > 0,
and correspondingly for the othertypes. Let Py 11, be the elem entsof Iy 17, such that
the corresponding solutions converge to one ofPf (I1) as ! 1 and sin ilarly
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for Bianchi IT and IX . Finally, let Fy 1, be the elem ents of Iy, such that the
corresponding solutions converge to F as ! 1 , and sim ilarly for the other

types.

Rem ark. The setsF 11 and so on depend on  , but we om it this reference.

Observe that Iy, I, Iy and Ix are subm anifolds of R® of din ensions 2, 3, 4
and 5 respectively. T hey are di eom orphic w ith open sets in a suitable R " ; pro fct

to zero. W e w ill prove that P 17 consists of points and that F; is the point F .
Let 2=3< < 2be xed. In Theorem [16], we willbe ablk to prove that the sets
FriFvm,Fx,Pym, and Py are C' subm anibds of R® of dinensions 1, 2, 3, 1
and 2 respectively. T his justi es the follow Ing de nition.

De nition 4.3. Let 2=3< < 2.A solution to )—)jssajdtobegenerjcjf
it isnot of Taub type, and if it doesnot belong to F 1;F 11;F v, s F  » P11, Py 1, OF
PIX .

W e w illneed the follow Ing two lemm as in the sequel.

Lemm a 4.1. Consider a soluition x to @.)-@3) such that x has P, (II) as an
—lim it point but does not converge to it. Then x has an —lim it point of type II,
which isnotP; (II).

Rem ark. T here is no solution satisfying the conditions of this lemm a, but we will
need it to establish that fact.

P roof. C onsider the solution to belong to R®, and ket the point xg representPf (I1).
There isan > 0 such that for each T, there is a T such that x( ) does not
belong to the open ballB (Xp). In Xy one can com pute that

j o
g+2 ., 23 > 0:

Let be so anall that these expressions are positive in B (xg). Let y ! 1
be a sequence such that x( ) ! xp, and let s x be a sequence such that
X(sk) 2 @B (Xg) and x((Sk; 1)) B (xp). Since x(sx) is contained In a com pact

set, there isa convergent subsequence yieldingan -lin itpointwhich isnotP, (II).
Since N, and N 3 converge to zero In y and decay In absolute value from y to sy,
the -Iim it point has to be of type II (N; has to be non-zero for the new —lin it
point if is amn allenough). 2

Lemma 4.2. Consider a solution x to @)—@) such that x hasF asan -lm it
point, but which does not converge to F'. Then x has an -l it point of type I
which isnotF .

Remark. The same rem ark as that made in connection wih Lemma @ holds
conceming this lemm a.

Proof. The idea is thg sam e as the prevjousﬁeflm a. W e need only observe that
qg 4 ,;9+2 . +2 3 andg+ 2 , 2 3 are positive in F' . 2

5. The monotonicity principle

T he follow ing lemm a w illbe a basic tool in the analysis of the asym ptotics, we w ill
refer to it as the m onotonicity principlke.
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Lemm a 5.1. Consider

dx
5.a) — =

dt
where £ 2 C' ®R";R"). Let U ke an open subset of R, and M a clbsed subset
invariant under the ow of the vector edd £f. Let G : U ! R ke a continuous

function such that G (x(t)) is strictly m onotone for any solution x (t) of (@), as
Ingasx(t) 2 U\M . Then no solution of @) whose Im age is contained in U \ M
hasan -or !-lmitpointin U.

Rem ark. Observe that one can use M = R". We willmainly choose M to be
the closed invariant subset of R® de ned by @). If one N ; is zero and two are
non-zero, we consider the num ber of variables to be four etc.

Proof. Supposep 2 U isan -lim it point of a solution x contained n U \ M . Then

G  x isstrictly m onotone. There isa sequencef ! t such thatx(t,) ! pbyour
supposition. ThusG x () ! G (p),butG x ismonotone sothatG x(t)) ! G (o).
ThusG (@) = G (p) orall -Im it pointsgofx. ShceM isclosed p 2 M . The

solution x of @), w Ith initialvaliep, iscontained n M by the invariance property

ofM , and it consistsof -lim itpointsofx sothatG (X (t)) = G (p) which isconstant.
Furthemm ore, on an open set containing zero it takes values In U contradicting the

assum ptions of the lemm a. 2

Let us give an exam pl of an application.
Lemm a 5.2. Consider a solution to @)7@) of type VIII or IX . If it has an
—lim it point, then
.]jml (NiNN3)( )= 0:

M by the constraint {2.3), and G by the filnction N ;N ;N 5. C om pute

(52) (N1NoN3)’= 3N NoNs:

Considera solution x of @)7 ). W eneed to provethat G x is strictly m onotone
aslngasx( )2 U \M . By [5P) the only problem that could occur is g = 0.
However,g= 0 inpliesj 23+ 3 ° 9> O by @)—@) so that G x has the desired
property. If the sequence i ! 1 yieldsthe -lin it pointwe assum e exists, then
we conclide that

Proof. Let U ofLemm be de ned by the union ofthe setsN; 6 0,1i= 1;2;3,

NIN,N3)(x)! O:
Since N 1N ,N 3 ism onotone, we conclude that it converges to zero. 2

O ne in portant consequence of this observation is the fact that all -lim it points
of BianchiV ITT and IX solutions are of one of the lower B ianchi types. Since the

—lim it set is invariant under the ow, it is thus of interest to know som ething about
the -l it sets of the lower Bianchi types, if one wants to prove the existence of
an —lin it point on the K asner circle.

Let us now analyze the vacuum type II orbits and de ne the Kasnerm ap.

P roposition 5.1. A Bianchi IT vacuum solution of @)7@) with N; > 0 and
N, = N3 = 0 satis es

(53) |ljm1 N;=0:
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The ! -lim it set is a point in K; and the -lim it set is a point on the K asner circk,
in the com plem ent of the closure of K ;.

Rem ark. W hat ism eant by K; isexplained in De nition @
P roof. U sing the constraint @) we deduce that

3
0= 5Nf(z o)
W e wish to apply the m onotonicity principle. T here are three variables. Let U be
de nedby N, > 0,M bede nedby €3),andG ( ,; ;N;)= . .Weconclide

thatg) istrue as follows. Let , ! 1 . A subsequence yields an ! -lin it poInt
by ). The m onotonicity principle yieldsN ( ,, ) ! 0O for the subsequence. The
argum ent for the -lim it set is sim ilar, and equation E) follow s. C om bining this
w ith the constraint, we deduce

!hml g= 2:

U sing the m onotonicity of ., we conclude that ( . ; ) has to converge. As
for the - it set, convergence to K; is not allowed sihce Nf < 0 close to K1.
C onvergence to one of the specialpoints in the closure ofK; isalso forbidden, since
P roposition @would Imply N, = 0 forthe solution in that case. A ssum e now that
(4 y! (4+5; J)as ! 1 .Compute

54 = 0:

54) 2 ;

W e get

55 =

(5.5) 5 - 5 -

for arbitrary ( ;. ; ) belonging to the solution. Since Nl0 = (g + N1 and
N; ! 0, we have to have . 1=2. If , = 1=2, then = 3=2. The
tw o corresponding lines In the “olane, obtained by substituting ( . ; ) Into

@), do not intersect any points interior to the K asner circle. Therefore , = 1=2
isnot an allowed lim it point, and the proposition follow s. 2

O bserve that by @), the pro gction ofthe solution to the “plane isa straight
line. The orbits when N, > 0 and when N3 > 0 are obtained by applying the
symm etries. Fiqureﬂ show s a sequence of vacuum type II orbits pro gcted to the

v plane. The st line, starting at the star, hasN; > 0, the second N3 > 0
and the third N, > 0.

D e nition 5.1. Ifx( isa non-specialpoint on the K asner circle, then the K asner
map applied to Xy is de ned to be the point x; on the K asner circle, with the
property that there is a vacuum type IT orbit with xg as an ! -lim it point and x;
asan -lm it point.

6. D ependence on the shear variables

In severalargum ents, we w ill have controlover the shear variables and the density
param eter In som e tin e interval, and it is of interest to know how the rem aining
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variablesbehave In such situations. C onsider for instance the expression m ultiplying
N; in the formula @erO, see @). Ttisgiven by g 4 , and equals zero when

6.1) -3 2) + (1 P+ 2 =1

The set of points in + —space satisfying this equation is a paraboloid, and
the Intersection with = OjsthedashedcjrcleshownjnFiqureﬂ.IE( HE )
belongs to the interior of the paraboloid @) w ith 0, then N ;9 will be
negative, so that N ; jincreases aswe go backw ard. O utside of the paraboloid, N 1 j
decreases. T he situation is sim ilar for N, and N 5. O bserve that the circle obtained
by ktthg = 0 in (§.1) intersects the K asner circle In two special points. The
sam e is true of the rotated circles corresponding to N, and N 3. Tt w illbe convenient
to introduce notation ©r the points on the K asner circle at which ;7 is negative.

15r b

0.5

-15 -1 -05 0 0.5 1 15 2 25

Figure 3. The circlesm entioned In the text.

De nition 6.1. We lktK i K2 and K3 bethesubsetﬁ(_)ftheKasnercjrclewhere
qg 4 ., <0;g+2 ,+2 3 <O0andg+2 ., 2 3 < 0 respectively.

Remark. On the Kasner circle, = 0 so that g= 2( f + 2) = 2 under the
conditions of this de nition.

Tt also of interest to know when the derivatives of N ;N 3 and sim ilar products are

zero. Sihce N,N3)° = @2+ 4 , )N,Ns, we consider the set on which g+ 2
equals zero. T his set is a paraboloid and is given by

1 1, 5 1

-3 2) + + =)+ = —:

4( ) (4 2) 2

T he intersection w ith the plane = 0 is the circle w ith radius 1=2 shown in F igure
E. A galn, inside the paraboloid N ;N ;3 jincreases aswe go backw ard, and outside it
decreases. T here are corresponding paraboloids for the productsN N, and N 1N 3.
O bserve that in the non-vacuum case, it is ham less to ntroduce ! = 2 and
then the paraboloids becom e half spheres.
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P roposition 6.1. Consider a Bianchi IX solution to @)—@) with 2=3 < < 2.
If the solution has a non-special -lim it point x on the K asner circk, then the
clsure of the vacuum type II orbit with x as an ! -lim it point belongs to the -lim it
set.

Rem ark. T he sam e conclusion holds for a B ianchitype V I solution with N, = O,
ifithasan -lm itpointin K, orKs.

Proof. Assum e the lim it point lies n K7 wih ( ; ; )= (4+; ). Thereis a
sequence g ! 1 , such that the solution evaluated at y converges to the point
on the K asner circle. There isa ballB ( . ; ) in the . “olane, centered at
this point, such that N,3 N3j NN,j Ni1Ns3jand alldecay exponentially, at
lrastase forsome xed > 0,andN; increasesexponentially, at leastase ,In
the closure of thisball. There isa K such that ( 4 (x); (k2B (4+; ) for
allk K .Foreach tin e we enter the ball, wem ust leave i, since ifwe stay In it to
thepast, N; willgrow to in niy whereasN , and N 3 w illdecay to zero, in violation
of the constraint. Thus foreach ¢,k K, thereisa & x corresponding to the
rst tin e we leave the ball, starting at x and going backward. W e m ay com pute

w here

In f&x; xland ! 0. Thus

(x) (&) _ khd
2 +(k) 2 +(tk) e
But 7
i hd § =5
e
and in consequence
(x) (&)

2 + (k) 2 + (tk)
W e thus get a type IT vacuum Iim it point with N, > 0, to which wem ay apply the
ow , and deduce the conclusion of the Jemm a. T he statem ent m ade in the rem ark
follow s in the sam e way. O bserve that the only iIn portant thing was that the lim it
pointwas in K; and N; was non—zero for the solution. 2

7. The stiff fluid case

In this section wewillassume > 0 and = 2 for all solutionswe consider. W e
begin by explaining the origin of the trianglk shown in F igure E Then we analyze
the type II orbits. They yield an analogue of the K asner m ap, connecting two
points nside the K asner circle, and we state an analogue of P roposition @ for this
map. W e then prove that is bounded away from zero to the past. Only in the
case of Bianchi IX is an argum ent required, but this result is the central part of
the analysis of the sti uid case. A peculiarity of the equations then yields the
conclusion that NN ,j+ N ,N3j+ N3N ;jconverges to zero exponentially. This
proves that any solution is contained in a com pact set to the past, and that all
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—lim it points are of type I or II. A nother consequence is that has to converge to
a non-zero value; this requires a proof in the Bianchi IX case. Next one concludes
that all N; converge to zero, since if that were not the case, there would be an

—lim it point of type II to which one could apply the ow, obtaining -lim it points
with di erent . Then ifa Bianchi IX solution had an -l it point outside the
triangle, one could apply the K asner’m ap to such a point, obtaining an —lin it
point with some N ; > 0. Finally, som e technical argum ents nish the analysis.

In the case ofa sti uid, that is = 2, it is convenient to Introduce
= 1=2.
W e then have, sihce 3 2= 4,
(7.1) 0= 2 o!:
T he expression + f+ 2 tumsinto ! 2+ f+ 2,andthe!; ,; -coordinates
of the type Ipoints obey
(72) 2y 24 2 =1;1 0:

+

In the sti uid case, all the type I points are xed points, and they play a role
sim ilar to that of the K asner circle In the vacuum case.

Letusm ake som e observations. IfN; & 0,then N 10 = 0 isequivalenttoq 4 , = 0.
D widing by 2 and com pleting squares, we see that this condition is equivalent to

(7.3) 124 1 L)+ 2 =1;1 0

By applying the symm etries, the conditions Ni0 = 0; N; & 0 are consequently
all fiil lled precisely on half spheres of radii 1. Since N 17 < 0 corresponds to
an ncrease n N;jas we go backward, N ;j increases exponentially as we are
inside the half sphere (7.3) and decreases exponentially as we are outside it. If one
takes the intersection of @) and E), one gets the subset , = 1=2 of ).
T he corresponding Intersections for N, and N 3 yield two m ore lines In the . -

plane. Together they yield the triangle in Fjgureﬂ. Consequently, if (! ; ,; ) is
close to @) and ( 4 ; ) is In the interior of the triangle, then all the N ; decay
exponentially as ! 1.

LetM ;1 be the subset ! . —space obeying @) wih ! > 0Oand , > 1=2 and
M ,,M 3 be the corresponding sets for N, and N3. W e also ket L1 be the subset
of the intersection betw een ) and @) wih ! > 0 and correspondingly N, and
N3 yie]d L, and Ls.

Lemma 7.1. Consider a solution to (@)7@) w ith = 2 such that N; > O,
!'>0and N, = N3= 0. Then

(7.4) I Ni()=0

and (!'; +; ) converges to a point, satisfying ) and ! > 0, in the com plem ent
of Ly [M 1, as ! 1 .In! | —space, the orbit of the solution is a straight

line connecting two points satisfying ) . If! > 0, it is strictly increasing along
the solution, going kackwards in tim e.

Proof. Since g< 2 for the entire solution, we can apply the m onotonicity principle
wih U dened by g< 2,G de ned by , and M by the constraint @J). Ifg
does not converge to 2 as ! 1 ,wegetan -limitponntwih g< 2. W e have
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a contradiction. T his argum ent also yields the conclusion thatN; ! Oas ! 1 .
E quation @) follow s. O bserve that
3 3
0 2 0 2
(7.5) y = EN]_(Z + )i = ENl
and
3

76 10= N7t
(76) SN
Consequently, ., and ! are all m onotone so that they converge, both as

' 1 and as ! 1 . It also follow s from ) and ) that the quotients
2 +)=! and =! are constant. Thus the orbit in ! —space describes
a straight line connecting two points satisfying @) . As ! 1 , the solution

cannot converge to a point In L, [ M ; for the ollow ing reason. A ssum e it does.
Since , decreasesas decreases, see ), wemust have . 1=2 for the entire
solution, sihce , by assum ption converges to a value  1=2. But then NlO < 0
for the entire solution by ) and @). Thus N; increases as we go backward,
contradicting the fact that N; ! 0.2

T he next thing we w ish to prove is that if a solution hasan -lim it point x in the
stM 1,and N; & 0 for the solution, then we can apply the K asner’m ap to that
point. W hat we m ean by that is that an entire type IT orbit with x asan ! -lim it
point belongs to the -lim it set of the origihal solution. From this one can draw

quite strong conclisions. O bserve for nstance that by ), ! is m onotone for
a Bianchi V IIT solution to @)7@). Thus ! converges as ! 1 sihce it is
bounded. If the BianchiV IIT solution has an -lin it point of type I outside the
triangle, we can apply the K asnerm ap to it to obtain —lim it points w ith di erent
! . But that is in possble.

Lemma 7.2. Consider a solution to (@)7@) w ith = 2 such that N; & 0.
Then if the solution has an -lm it point x 2 M 1, the orbit of a type II solition
with x as an ! -lim it point kelongs to the -lim it set of the solution.

Proof. T he proof is analogous to the proof of P roposition @ .2

Consider a solution such that ! > 0. W e want to exclude the possibility that ! ! 0
as ! 1 . Considering ),weseethattheonypossbﬂjty for ! to decrease is
ifg> 2. In that context, the follow ng lemm a is relevant.
Lemma 7.3. Consider a Bianchi IX solution to @)—@) with = 2. There is
an o such that if o and

NNoN3)( ) ;
then

q( ) 2 4?3

Proof. By a pem utation of the variables, we can assum e N ; N, N3 in
O bserve that

g 2 3Ni1(N,+ Ng3)

bytheconstrajnt@).Ing =2;n  ,wegetqg 2 6 4173 4f , isamall

enough. IfN 5 =210 ,weget

NN,



THE BIANCHI IX ATTRACTOR 19

A ssum e, in order to reach a contradiction, N 1N s3)( ) =3 ThenN,( ) 2=3,
sothat N () 2=3 and N5 ( ) 1:3.ByLemmawegetacontradictjonjf
0 issmallenough. Thus

g 2 3NN+ N;N3)() 3('77+ %) 47
if  issmnallenough. 2

For all solutions except those of Bianchi IX type, ! is m onotone increasing as
decreases. Thus, ! is greater than zero on the -l it set of any non-vacuum
solution which is not of type IX . It tums out that the sam e is true for a Bianchi
IX solution.

Lemm a 7.4. Consider a Bianchi IX solution to (@)7) with = 2 such that
!> 0.Then thereisan > 0 such that ! ( ) for all 0.

Proof. A ssum e all the N ; are positive. T he function

(N 1N N 3) =2
- !
satis es °= 2 . Thus, br 0,
NINN3) TP ()=1() 08& cé&;
because ofLemma@. For T 0, we can thus apply Lemm a, so that for
T,
2y 2 1 Z Z 7
((s) 2)ds= ((s) 2)ds+ (g(s) 2)ds 4C e*ds+
T
Z g Z g
+ qs) 2)yds 2ce?T + @) 2)ds c%<1
T T
C onsequently,
Z g
0
PO )="1(0)exp( @) 2)ds) ! ©;

and the lemm a follow s. 2
The next lemm a w ill be used to prove that ! converges for a B ianchi IX solution.

Lemm a 7.5. Consider a solution to )7@) with = 2and ! > 0. Then there
isan > 0 and a T such that

NiN,j+ NoN3j+ N3N, j e
for all T.

Proof. Considerg= N ,N33F!.Then
g’= @12+ 2a+ L) +2 ?%)g:
Since ! () for all 0, we conclude that
g( ) g0expR? )
so that
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T here are sin ilar estim ates for the other products. By Lemm a E, we know that
! isbounded In ( 1 ;0] so that by choosing = 2 and T negative enough the
Imma follows. 2

Corollary 7.1. Consider a solution to @)—(@) with = 2and ! > 0. Then
'y o4 ;N{;N,;N3)( 1 ;0] is contained in a com pact set and all the -lm it
points are of type I or II.

Lemma 7.6. Consider a solution to @)—@) with = 2and ! > 0. Then
|1jml V()= lg> O:

Proof. Since this follow s from the m onotonicity of ! In all cases except BianchiIX,
see (7)), we assum e that the solution isoftype IX . Let ! 1 be a sequence
such that ! () ! !'1 > 0. This is possbl since ! is constrained to belong to
a com pact set for 0 by Lemma, and since ! is bounded away from zero
to the past by Lemm a IE Assume ! does not converge to !1. Then there is a
sequence s ! 1 suchthat ! (sx)! !, wherewecan assume !, > !'1. W e can
also assume Sk . Then .
Sk

! (sk) = exp( @ 2)ds)! (x):
Since
q 2 3N 1N, + NyNs3+ N3Nq) 3e
for T by Lemma and the constraint ),we have,assiaming s T,
Z

Sk Sk

3 S
@ 2)ds 3 e d —e 7k

T hus
3 S
P(sx) exp(=e™™)! (k) ! !q;
so that !, !; contradicting our assum ption. 2

C orollary 7.2. Consider a solution to )—@) with = 2and ! > 0. Then
|]jml N;()=0
fori= 1;2;3.

Proof. A ssum e N ; does not converge to zero. T hen there isa type IT -lim it point
with N; and ! non-zero by Coro]lary@ and Lemma. Ifwe apply the ow,we
get -lim it pointsw ith di erent ! in contradiction to Lemm a E 2

Lemm a 7.7. Consider a solution to @)7) with = 2and ! > 0. If it has
an -lim it point of type T inside the trianglk, the solution converges to that point.

Proof. Let x be the lin it point. Let B be a ballofradius in ! . —space, w ith
center given by the !'; ,; -coordihatesofx. Let i ! 1 be a sequence that
yields x. Assum e the solution leaves B to the past of every . Then there is a
sequence si ! 1 ,such thatthe !; ,; -coordinates of the solution evaluated
In sy converges to a point on the boundary of B, s k, and the !'; ,;
coordinates of the solution are contained in B during [sx; x ], k Jarge enough.



THE BIANCHI IX ATTRACTOR 21

Since all expressions in the N ; decay exponentially ase ,forsome > 0, as long
asthe!; ,; -coordihatesarein B ( gmallenough), we have

JI+ 373435 ket ¥

for 2 [g; xJwhere ! 0.Weget
. . k
J + (k) +(Sk)j — ! 0;

and sin ilarly for and ! . The assum ption that we always leave B consequently
yields a contradiction. W e m ust thus converge to the given -lin it point. 2

P roposition 7.1. Consider a solution to )—@) with = 2and ! > 0. IfN;
is non—zero for the solution, it converges to a type I point in the com plm ent of M ;
with ! > 0.

Proof. If there is an -lim it point on M ;, we can use Lemma to obtain a
contradiction to Lemma [7.4. If there is an -Jin it point n M  and Ny is zero
for the solution, the solution converges to that point by an argum ent sim ilar to
the one given in the previous lemm a. W hat rem ains is the possibility that all the

—lim it pointsareon the Ly . Since ! converges, the possible points pro cted to the

+ -plane are the intersection between a triangl and a circle. Since the -Im it
set is connected, we conclude that the solution m ust converge to a point on one of
the Ly . 2

P roposition 7.2. Consider a solution to )7@) with = 2and ! > 0. IfN;
is non—zero for the solution, the solution cannot converge to a point in L.

Proof. Assume 1= 1. Then L; is the subset of ) consisting of points w ith

+ = 1=2and ! > 0. Since N,; N3; N,N3; N,N; and N3N, converge to zero
faster than N2, ¢ will in the end be positive, cf. ),sothattherejsaT such
that , () 1=2for T .SinceN; willdom inate in the end, we can also assum e

qg( )< 2 for T.By ) we conclude that Y j increases backw ard as T
contradicting C orollary .2

Adding up the last two propositions, we conclide that the . -variables of
BianchiV IIT and IX solutions converge to a point interior to the trianglk of F igure
E, and to the value then determ Ined by the constraint .» . In the BianchiV II,
case, a side of the triangle disappears, increasing the set of pointstowhich . ;

m ay converge. W e sum up the conclisions In Section .

8. Type I solutions

Considertype I solutions (N; = 0). ThepointF and the points on the K asner circle
are xed points. Consider a solution with 0 < ( () < 1. Using the constraint, we
m ay express the tin e derivative of 1n term sof . Solving the resulting equation
yields

By @) ( +; ) movesradially.
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P roposition 8.1. For a type I solution, with 2=3 < < 2,which isnotF, we have
Im (.5 ;)()=(+=33F =3 30);

where ( ,; ) is the initialvalie of ( , ; ), and j jis the Euclidean norm of
the initial value.

9. Type II solutions

P roposition 9.1. Consider a type II solution with N; > 0 and 2=3 < < 2. If
the initial value for is non—zero, the -lim it set is a point in K, [ K3. If the
initial value for is zero, either the solution is the special point Pf (IT), it is
contained in F 11, or

©.1) lliml (; +/N1)( )= (0; 1;0):

Proof. Let the inftialdata begiven by ( + ; ; o). The vacuum case washandled
in Proposition @,sowewﬂlassume o> 0.

Consider rst the case & 0. Compute

2 J 2 3N 2;

q = > ( ) > 1.
T hus, decreases if it is negative, and increases if it is positive, as we go back—
ward In tine, by @). Thus, both N; and must converge to 0 as ! 1,
since the variables are constrained to belong to a com pact set, and because of the
m onotonicity principle. Since ism onotonous and the -lim it set is connected,
seeLemma@, (45 ) must converge to a point, say (s: ;s ) on the K asner

circle. W emust haves & 0, and
ZSE + 2¢° 4s, 0;

since N1 converges to 0. There are two goecial points in this set, but we may
not converge to them , since that would mply N1 = 0 for the entire solution by
P roposition @ . The rstpart of the proposition follow s.

Consider the case = 0. There isa xed pojntPf (IT). Elm inating from
@)—), we are left with the two variables N; and | . The linearization has
negative eigenvalies at Pf (IT), so that no solution which does not equale (I1)
can have it asan -lin it point, cf. E] PP . 228234. T here is also a set of solutions
converging to the xed point F . Consider now the com plem ent of the above. T he
function

N 2m 1 m
Zg= ——;
1 v )2
wherev= (3 2)=8andm = 3v(2 )=8(1 ), found by Uggla satis es
3@ ) 1

=+ VZy:

Apply the m onotonicity principle. Let G = Z5 and U be de ned as the subset of

+ N 1 —space consisting ofpointsdi erent from Pf (IT),which have > 0,N 1> 0
and j ; j< 1.LetM bede ned by the constraint. If , = v then Z$= 0, but if
wearenotatPf (I1), + = v mplies 9 & 0. Thus, G x is strictly m onotone
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as long as X is contained In U \ M . Since the solution cannot have Pf (IT) as an
—lim it point, wemust thushaveN; = Oor = 0 In the -lim i set. O bserve that

0 3. 3
©2) y = ENl(Z +) 5(2 ) .
T hus, if the solution attains a point 0, then @) holds. W e will now prove

that this is the only possibility.

a.Assumewehavean -limitpointwih N; > Oand = 0.Then wemay apply
the ow to that lm it pointtoget , = 1 asa lim it point, but then the solution
must attain 0.

b. I > 0butN ;= 0,then wemay assume , & 0 sihcewe arenoton F 17, cf.
Lemma.Appythe ow toarriveat , = lor , = 1l.Thefom eralternative
hasbeen dealt w ith, and the latter case allow sus to constructan -lin it point w ith
N; > 0Oand = 0,sihceN ; Increasesexponentially, and decreasesexponentially,
n a neighbourhood of the point on the K asner circewih , = 1, cf. Proposition

c. The situation = N ; = 0 can be handled as above. 2

W e m ake one m ore observation that will be relevant in analyzing the reqularity of
F II-

Lemma 9.1. The clsure of F ;1 does not intersect A .

Proof. A ssum e there is a sequence xx 2 F 17 such that the distance from xx to A
goes to zero. W e can assum e that all the xx have N; > 0 by choosing a suitable
subsequence and then applying the symm etries. W e can also assum ethatxy ! x 2
A . Shhce = 0 for all the xx by Proposition @, the sam e holds for x. O bserve
that no elem ent of F' ;1 can have 0, because of @) . If N; corregponding to
X is zero, we then conclude that x isde ned by . = 1 and all the other variables
zero. Applying the ow to the past to the points x, will then yield a sequence
vk 2 F1r such that yx converges to a type II vacuum point with N; > 0 and

= 0, cf. the proof of P roposition @ . Thus, we can assum e that the 1im it point
x 2 A hasN; > 0.Applying the ow to x yleldsthepoint , = 1 on theKasner
circle by P roposition . By the continuity ofthe ow, we can apply the ow to
X, to obtain elements n Fy with , < 0 which is Inpossible. 2

10. Type VI solutions

W hen speaking of Bianchi VIl solutions, we will always assume N1 = 0 and
N,;N3> 0.Consider rstthecaseN, = N3 and =0

P roposition 10.1. Consider a type V Iy solution with N; = 0 and 2=3 < < 2.
IfN, = N3 and = 0, one of the follow ing possibilities occurs

1. The solution converges to  , = 1 on the K asner circke.
2. The solution converges to F .
3.1 , 1 y = 1;m v 1 No=n,> 0; IIm 1 = 0.

Proof. Since
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ifN , = N 3, the conclusions of the lemm a follow , except for the statem ent that N ,
converges to a non-zero value if . convergesto 1.However, w illdecay to zero
exponentially close to the K asner circk, and by the constraint, 1+ , willbehave
as cbsseto , = 1.Thus, g+ 2 , willbe integrable. 2

Before we state a proposition conceming the behaviour of generic B ianchi V I
solutions, let us give an intuitive picture. Figure@ showsa sinulation with = 1,
w here the plus sign represents the starting point, and the star the end point, going
backward. willdecay to zero quite rapidly, and the sam e holds for the product
N N 5. In that sense, the solution will asym ptotically behave lke a sequence of
type IIvacuum orbits. Ifboth N, and N 3 are am all, and we are close to the section
K, on the K asner circle, then N, will Increase exponentially, and N 3 w ill decay
exponentially, yielding in the end roughly a type IT orbit with N, > 0. If this orbit
ends In at a point in K3, then the gam e begins anew , and we get roughly a type II
orbit with N3 > 0. O bserve however that if we get close to K1, there isnothing to
m ake us bounce away, sihce N1 is zero. T he sinulation illustrates this behaviour.
Consider the gure of the solution propcted to the . plane. T he three points
that appear to be on the K asner circle are close to K,, K3 and K1 respectively.
O bserve how this correlates w ith the graphsofN,, N3 and g.

wh o
-1
-2
=2 -1 0 1 2
z_
1 1.4
1.2
0.8
1
0.6 08
o ™
pd
0.4 0.6
0.4
0.2
0.2
0 0
0 5 10 15 0 5 10 15
—t -1

Figure 4. Tlustration of a BianchiV Iy solution.

P roposition 10.2. Generic Bianchi VII; solutions with N; = 0 and 2=3 < < 2
converge to a point in K .
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W e divide the proof nto lemmas. First we prove that the past dynam ics are
contained In a com pact set.

Lemm a 10.1. For a generic BianchiV ITy solution with N; = 0 and 2=3< < 2,
N ,;N3)( 1 ;0]is contained in a com pact set.
P roof. For a generic solution,

224 Ny Nj)?

N N3

Z 1=

is never zero. C om pute

16 21+ )
(101) 2% = = 7 g
33 4+ Nz N3)
T he proof that the past dynam ics are contained in a com pact set is as in Rendall

[[d).Let  0.Then

Z 1() 2 1(0);
so that

N2N3)( ) _* .

e 32 .0

Com bining this fact w ith the constraint, we see that all the variables are contained
n a com pact set during ( 1 ;0]. 2

W e now prove that N,N3 ! 0. The reason being the desire to reduce the problem
by proving that all the lim it points are of type I or II, and then use our know ledge
about what happenswhen we apply the ow to such points.

Lemm a 10.2. Generic Bianchi VII; solutions with N; = 0 and 2=3 < < 2
satdsfy
|]J'ml N,N3z)( )= 0:

Proof.Assumethecontrary.ThenwecanuseLanma@toconstmctan —lin it
point (!; +; ;0;ny;n3) wherenynsy > 0. W e apply the m onotonicity principle
In order to arrive at a contradiction. W ith notation as In Lemm a E, ket U be
denedbyN,> 0; N3 > 0and 2+ N, N3)®>> 0.LetG bede nedby Z 1,
and M by the constraint ). W e have to show that G evaluated on a solution is
strictly m onotone as long as the solution is contained n U \ M . Consider ).
By the constraint @), 24 N, N3)?> 0 mplies , > 1. Furthem ore,
Z 1>00nU.IX¥Z% =0nU\M ,we thushave = 0,butthen ° & 0 since

24+ N, N3)2>0andN,+ N3 > 0. The -lini point we have constructed
cannot belong to U . On the other hand, n,;n3 > 0 and since Z ; Increasesaswe
go backw ard, 2+ (mp, ns3)? cannotbe zero. W e have a contradiction. 2

P roof of P roposition . Com pute
0 2 2 3
(102) o= 2 2 2 7 2 )0+ ) > @ )

by ).Assumewearenoton Py, orFyry . Let us rst prove that there is an

lim it point on the K asner circle. Assume F isan -l it point. Then we m ay
construct a type I Iim it point which isnotF , and thusa Iim it point on the K asner
circle, cf. Lemma and Proposjijon. By Lemma,wemay then assum e
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that there is a lin it point of type I or IT, which isnot P, (II) orP, (II), and does
not]jejnFIorFH,cf.Lanma.Thus,wegetaljmitpojnton the K asner circle
by P roposition and P roposition .

N ext, we prove that there hasto bean -lin it point which lies in the closure ofK; .
If the -lim it point we have constructed is in K, or K3, we can apply the K asner
m ap according to the rem ark follow ing P roposition @ A fter a nite num ber of
K asner iterateswe will end up in the desired set. Ifthe -lim it point we obtained
has , = 1,wemay constructa lm tpointwih 1+ , = > 0 by Proposition
@. W e can also assum e that = 0 for this point, sihce decays exponentially

going backward when , isclbseto 1.By Lemma @, this lim it point will be
a type I or II vacuum point, and by applying the ow we get a non gpoecial lin it
point on the K asner circle. A s above, we then get an —lin it point in the desired
set. Let the -variables of one -lim it point in the closure ofK1 be ( +; ).

By ), we conclude that once , hasbecom e greater than 0, it becom esm ono-
tone so that it has to converge. M oreover, we see by the sam e equation that then

has to converge to zero, and f + 2 hasto convergeto 1. Since the -lin it set is
connected, by Lemma@and Lemma@,we conclude that ( ;4 ; has to con-
vergeto ( +; ). By Proposition , (+; ) cannotequal (1=2; §=2), since
otherw ise N, or N 3 would be zero for the entire solution. C onsequently, ., > 1=2,
and we conclude that N , and N 3 have to converge to zero. T he proposition follow s.

2

11. Taub type IX solutions

Consider the Taub type solutions: = 0and N, = N 3. W e prove that except for
the cases when the solution belongsto Fx orPrx, ( 4+ ; ) convergesto ( 1;0).
Lemma 11.1. Consider a type IX solution with =0,N,=0Nj3and 2=3< <

2. Then 4 (o) Oand ( o)< 1 mply

Mm o Ciowq GN1NgiNs) ()= (07 1;0;0im7m2);

where 0< np < 1 .

Proof. W eprove that the ow w illtake usto the boundary ofthe parabola + f =
lwith 4 < 0, and that we will then slide down the side on the outside to reach

+ = 1,see Figure E The plus sign In the gure represents the starting point,
and the star the end point.

1.Letus rstassume 4 (g) 0, (o)< land (o)+ 2 (o) 1. Consider
C=1*f 0:t2 [ ;0]) +@® 0; (© (o0); MO+ L @® Ila:

W e prove that C is not bounded from below . A ssum e the contrary. Let t be the
In mum of C, which exists since C is non-em pty and bounded from below . Since
t2C, . ®< 0.Lett?< tbesuch that , < 0 in i°;t]. O bserve that

11.1) 3 2+ 2 1+3@ ) 21:
By the constraint,
112) + 2 1= §N12(4& 1):



THE BIANCHI IX ATTRACTOR 27

0.9 7

0.7 . 7

061 4

0.4 7

031 4

0.1F 7

Figure 5. Part ofa Taub type IX solution propgcted to the , -plane.

Since , < 0in f;t], N,=N; hcreasesaswe go backw ard in that interval, because
of

Consequently + f 1on Eto;t],by ),sothat decreases In the intervalby
f1.d). Thust®2 C, contradicting the fact that t isthe in mum ofC.

P
Let o.Then . () 1 ( 0).By {1.)), we then conclude ! 0.By

@),wea]so conclide that NN, ! OandN; ! 0.By ),wehave 4! 1.
U sing the constraint ) and ), we conclide that g+ 2 , is integrable, so
that N, = N3 will converge to a nite non-zero valie.

2.Assumenow , (g) 0, (o)< land ( o)+ f(o)< 1. O bserve that
(11.3) ‘= )4 2 4.) =@ ) 4+ 9NiNg:

Asbngas + 2 <1, , decreasesaswe go backward in time by ).Then

N =N ; will increase exponentially until + f = 1, by the constraint,and ., < 0.

2

Lemma 11.2. Consider a type IX solution with =0,N,=0Nj3and 2=3< <
2. Tt is contained in a com pact set for 0 and N3N, ! 0.
Proof. Note that N; must be bounded for 0, as follow s from Lemma, the
fact that N, = N3, and the fact that NN ;N 3 decreases backward in tine. To
prove the rst statem ent, assum e the contrary. T hen there is a sequence | ! 1
such that N, () ! 1 .WecanassumeNg(k) 0, and thus

1 2
(11 .4) -3 2) + 2 + 2 . 0
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n . SjnoeN1N22 is decreasing as we go backward, N1 and N 1N, evaluated at
must go to zero. Thus + f 1 will becom e arbitrarily smnallin « by ). If
(x) 1forallk,weget

by ), so that

204 (0 1+ =06 2F;

* 16 ’
which is a contradiction. In other words, there is a k such that , () 0, by
f14),and ( x) < 1. W e can then use Lemm a [L1.]] to arrive at a contradiction
to the assum ption that the solution is not contained in a com pact set.

To prove the second part of the lemm a, observe that N 1N 22 converges to zero, as
follow s from the existence ofan - lim it point and Lemma@. Thus

1=2 = =
NN,=N, NN CN;NjI?! O:
2

Proposition 11.1. For a type IX solution with = 0,N, = N3 and 2=3< <
2, either the solution is contained in Fy or P , or

dm o Ciowi N1NgN3) () = (07 1;0;0im7m2)

where 0< np, < 1 .

Rem ark. Com parewji'hProposjijon@. Observealso thatwhen , forthe solution
convergesto 1,weapproach . = 1; = 0 from outside theparabola + f=
1, as follow s from theproofofLenma.

Proof. Consider a solution which isnot contained In Fx orPr . By Lemma,
there isan -im it point with NN, = 0. W e can assumejtjsnotPf (II). We
have the follow ing possibilities.

l.tiscontalned in F1 [Fr [Fyr, . ThenF isan -lim it point. Since the solution
isnot contained In F r , we get a type I lim it point which jsnotF,byLemma@,
and thuseither , = 1lor , = 1 aslm it points, by Proposjijon@.The rst
altermative In plies convergence to . = 1, by Lemmam. If we have a type
I -Imitpontwith , = 1,we can apply the K asnerm ap by Proposiijon@jn
order to obtaln a type I lim t pointwith , = 1.

2. The Im it point is of type I. T his possibility can be dealt w ith as above.
3. It isof type II.W e can assum e that i isnot P, (II), by Lenma 4., and that

it isnot contained in F ;. Thusweget , = 1on theKasnercircleasan -limit
point, by P roposition @, and thus as above convergenceto  , = 1.

4. The lim it point is of type VIIp. W e can assume . & 0. If , < 0, we can
apply Lemma agaln,and if , > 0,weget , = 1 on the K asner circke as an
-Iin it point, by P roposition [10.], a case which can be dealt w ith as above. 2
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12. O scillatory behaviour

It w ill be necessary to consider B ianchi IX solutions to @)7@) under circum —
stances such that the behaviour is oscillatory. T his section provides the technical
tools needed.

Let g be a function,

(12.1) A=

Q o
o Q

and x = (x;v)" satisfy
x'= Ax+ ;
where is som e vector valued function.

Lemma 12.1. Let ( ke such that (sin( ¢);cos( o)) and ®(¢);¥( o)) are paralkel.
De ne

Z

122) ()= g(s)ds+ o
and
12.3) w( )= *C) o osno()

y() cos ()
T hen

Z

(12.4) kx( ) x( )k L @(o)+ ¥ (o)'™?F+ 3  k (s)kdsT
Proof. Let

_ Yy X

- 1
Wehave A; 1= 0, 0= 2 andxo=Ax.Weget

((x x)°= A (x x)+ @(x x)+ )=
Thus
Z
G x)( )= () (o) X))+ () (s) (s)ds

But takesvaluesin SO (2) and the lemm a ©llows. 2

In order to prove the existence of an -lim it point for B ianchi IX solutions, and
that, generically, there is a 1m it pont on the K asner circle, we need the follow ing
lemma.

Lemma 12.2. Consider a Bianchi IX solution with 2=3 < < 2. A ssum e there is

a sequence i ! 1 suchthatg(x)! 0,andN,(x); N3(x)! 1 ,then foreach
T, there is a T such that , () O.
P roof. O bserve that by ),q=0andN2+ N3 N Wmples 9 2. However,

the only term appearing in the constraint which doesnotgo to zero In  is N,
N 3)?, sihce the productN 1N N 5 decreasesaswe go backward. Thusj % (x)j! 1,
and the behaviour is oscillatory. It is clear that ¢ could becom e positive during



30 HANS RINGSTROM

the oscillations, but only when j  jisbig, so that we on the whole should m ove in
the positive direction.

Assume thereisa T such that , ( )< 0 forall T.

W e begin by exam ining the behaviour of di erent expressions in the sets
Dk = [noxln 1in]

and

D = [}1:1[11 1/'n:|:

O bserve that by the fact that ( ; 4 ; ) are constrained to belong to a com pact
sstduring ( 1 ;0], according to Lemm a,Nz and N 3 go to In nity uniform Iy in
D (by which we willm ean the follow ing):

8M 9K :k K ) Nji( ) M 8 2DL;i1i= 2;3:

ThusN; andN; (N, + N3) goto zerouniform Iy n D . By @), also converges to

zero uniform Iy in D . D ue to the constraint, we get a bound on 2 4 %(Nz N 3)?
In D. Consider @). The last two term s go to zero uniform ly. Ifthe rst term is
not negative, 1 2 2 0.By the constraint, it w ill then be bounded by
an expression that converges to zero uniform Iy in D . Thus, for every > 0 there
isaK such thatk K inplies 9 n Dy . Combining this w ith the fact that
dg(x) ! 0, and the assum ption that , ( ) < 0 for T, we conclude that .

converges uniform Iy to zero n D .

Next,weuseLemm a in order to approxin ate the oscillatory behaviour. D e ne
the functions

@ 2
p_
B 3
¥ 2
W e can apply Lemm a w ith

g= 3(N2+N3) 2@+ +)XY: gL+ 32

and y, y given by ) and ), cf. Lanma. By the above, we conclude
that ® and y are uniform Iy bounded on Dy, if k is great enough, and that k k
converges to zero uniform Iy on D . Let X, be the expression given by Lemm a ,
wih o replaced by x and ( by a suitable . Let > 0. By the above and
a(x) ! 0,weqget

(12.5) ke x)( )k
if 2 [k 1; x],and k isgreatenough. In [y 1; ], we thus have

12 6) O = 2+ 2221 )+ s

+

where the error  can be assum ed to be arbitrarily an all by choosing k great
enough, cf. @).

Let
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be asin ).SjnoeN2+ N3 goesto in nity uniform Iy, [« 1; x ] can be assum ed
to contain an arbitrary num ber of periods of , if k is great enough. Thus, we

can assum e the existence of 14x; 2x 2 [«x 1; x1, such that .k 1k 1=2
and x(1x) k(2x) isan integermultiple of . Let [1; 2] [1x; 2x] satisly
k(1) k(2)= .Wecan assume » ;1 to be arbitrarily sm allby choosing k

great enough. C onsidering @), and using the fact that g is bounded, we conclude
that N, + N 3 cannot change by m ore than a factor arbitrarily close to one during
[1; 2]. Sihce the expression nvolving N, + N 3 dom nates g, we conclude that

3
Zg(max) g(min);
where  .x and i, correspond to them aximum and them inimum of gin [1; 2].
E stin ate
Z Z Z
2 k(2)2x2(l 2) k(1) 2X2(l 2)
2%2 (1 ?)ds= k4 = e
1 k(1) g k(1) g
1 Z k(1)
2sin®( )d =
9lmin) () 9(min)
W e get
Z () Z
k 2 3 2
2
2 1= —d — 2Xk(l +)dS
() 9 I max) 4 |
C onsequently, ) yields
Z Z
2 2
Sl2) o ()= 202 1)+ 2x; (1 Z)ds+ xd
1 1
2 2
- + d
3(2 1) 1 X
Since x (1x) x ( 2% ) corresponds to an Integer multiple of , we conclude that
2 Z 25k 1 Z 2k
+ (2x) + (1x) 5(2;1( 1x)+ kd 5+ kd

1k 1k
H ow ever, the expressions on the far left can be assum ed to be arbitrarily am all, and

the Integralof y can be assum ed to be arbitrarily sm all. W e have a contradiction.
2

13. BianchiIX solutions

W e rst prove that there isan -lim it point. Ifwe assum e that there isno -lim it
point, we get the conclusion that the Euclidean norm kN k ofthe vector (N ;N 5 ;N 3)
has to converge to in nity, sihce ( ; 4+ ; ) is constrained to belong to a com pact
set to the past by Lemm a E In fact, Lemm a @ yieldsm ore; it in plies that two
N ; have to be large at any given tim e. Since the product N 1N ;N 3 decaysaswe go
backw ard, the third N ; has to be sm all. Sooner or later, the two N ; which are large
and the one which is sm allhave to be xed, since a ‘changing ofroles’would require
two N; to be amall, and thereby also the third by Lemm a @, contradicting the
fact that kN k ! 1 . Therefore, one can assum e that two N ; converge to in nity,
and that the third converges to zero. M ore precisely we have.
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Lemm a 13.1. Consider a Bianchi IX solution. IfkN k ! 1 , we can, by applying
the sym m etries to the equations, assum e thatN,; N3 ! 1 andN,; N; N,+N3) !
0.

Proof. A s in the vacuum case, see @]. 2

Lemma 13.2. A Bianchi IX solution with 2=3< < 2 hasan -lim it point.

Proof. If the solution is of Taub type, we already know that it is true so assum e
not. We assume N,; N3 ! 1 , since if this does not occur, there is an -lim it
point by Lemma B and Lenmafi3]. By @4) wehave ? < 0if , = 0usihg
the constraint (assum ing N, + N3 > 3N ;). Thus, there isa T such that if .

attains zero in T, i will be nonnegative to the past, and thus NN 5 w ill be
bounded to the past since ; has to be negative for the product to grow . If there
is a sequence i ! 1 such thatg(y) ! O,wecanapplyLanmatoarr'Ne
at a contradiction. T hus there isan S such that

(13.1) a( ) >0
for all S.
Consider

30+ M2 N3

132 Z =
( ) 1 NN

The reason we consider this function is that the derivative is in a sense alm ost
negative, so that it alm ost Increases as we go backward. On the other hand, it
converges to zero as ! 1 by our assum ptions. The lemm a follow s from the
resulting contradiction. W e have
16 2 P=
0 h T @0+ )+4 3 Ny N3N

(13.3) 70, = =
NN 3 N N3

Letting
fzg N Ny
we have, using the constraint,
B 4 2NyMNo+Na)+ 2 3NiE  NiNNaf
for, say, T S. Thus
(13 .4) z% NiN,N3Z
for all T°. Sthece g > 0 forall P S by ),weget
NINoN3)( ) MGNLN3) T )expB (1 T)]

for T0. Inserting this nequality in ) we can Integrate to obtain

1
Z 1() 2 1@T%exp( 3—(N1N2N3>(TO>>> 0

for T°. ButZ () ! 0 as ! 1 Dby our assum ption, and we have a
contradiction. 2
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Corollary 13.1. Consider a Bianchi IX solution with 2=3 < < 2.Forall > O,
there is a T such that

for all T . Furthermm ore

.]jml NN N3)( )= 0:

Proof. A s in the vacuum case, see @]. T he second part ollow s from Lemm a Q

and Lemma. 2

P roposition 13.1. A generic Bianchi IX solution with 2=3< < 2hasan -lim it
point on the K asner circke.

Proof. O bserve that by Lemm a and Corollary [13.]], there isan lin it point
oftype I, IIorVIl.

1. First we prove that we can assum e the -l it point to be a type V IIj point w ith
N;=0;0<N,=N5; = 0; =0and , = 1.

a.Ifthereisan -Imipontih Fr, FrorFyrg,F isa ln it point, but then there
isan -lim it point on the K asner circle, by Lemm a and P roposition .

b. Assum e there isan -lin it point in Py 1y, , or that one ofPi+ (IT) isan -im it
point. Then there is a lim it point of type IT which jsnotP.f (IT), by Lemm a @,
and we can assum e it does not belong to F 1. W e thusget an —lim it point on the
K asner circle by P roposition @ .

c. Consider the com plem ent of the above. W e have an -lim it point of type I, IT
or V Iy which is generic or possibly of Taub type. If the lim it point is of type I or
II,wegetan -lim it point on the K asner circle by P roposition @ and P roposition
@. If the lin it point is a non-Taub type V Iy point, we get an —lin it point on
the K asner circle by P roposition . Assum e it is of Taub type w ih = 0,
N, = N3.By Proposition ,wecan assum e that we have an -lim it point of the
type m entioned.

2.W e construct an  -lim it point on the K asner circle given an -lim it point as in
1. Since the solution is not of Taub type, we must lkeave a neighbourhood of the
pomnt ( 4 ; )= ( 1;0). IfN, and N 3 evaluated at the tim es we leave do not go
to In nity, we are done. T he reason is that we can choose the neighbourhood to be
so smallthat and N ; decrease exponentially in it, see @I). IEN, (&) or N3 ()
isbounded, we get a vacuum BianchiV Iy —lim it point which is not of Taub-type
by choosing a suitable subsequence (f we get a type I or II point we are done, see
the above argum ents). By P roposition @, we then get an -lim it point on the
K asner circle. T hus, we can assum e the existence of a sequence ty ! 1 such that
N, (&) and N 3 (&) go to in nity.

T here are two problem s we have to confront. First of allN , and N 3 have to decay
from their values In tx In order forus to get an -lim it point. Secondly, and m ore
In portantly, we need to see to it that we do not get an -lin it point of the same
type we started w ith. Let us divide the situation into two cases.
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a.Assum e that for each i thereisan st such that | (sx) = 0. Obsarve that
when , = 0,wehave

0 %N1(9N1 3N, 3Nj)

bytheconstrajnt),and @).Thus,wecanassumethatwehave3Nl N,+ N3
n sy, sincethere isan -Iim itpointwih , = 1.Thustheremustbean .
such that, at ry., either N; = N, < N3,N; = N3 < Ny, orN; < N,,N; < N3 and
3N; N+ Nj.One of these possibilities m ust occur an in nite num ber of tin es.
The rsttwo possibilities yield a type I or IT 1im it point, and the last a type I lin it
point because, of the fact that NN ,N3 ! 0 and Lemma@.Asabove,wegetan
—lim it point on the K asner circle.

b. Assume there isa T such that ; ( ) < 0 forall T.ThenNy ! 0, sihce
N;(k)! 0,and , < 0 inpliesthatN; ism onotone. A ssum e there is a sequence
k! 1 such that N, orN; evaluated at it goesto zero. Then wegetan Im it

point of type I or II, a situation wem ay dealw ith as above. Thuswem ay assum e
N ; > 0,1i= 2;3 to thepast of T. Sin ilarly to the proof of the existence of an
—lim it point, we have

2%, CcNN,N3Z ;:

Ifthere isan S and a > 0 such that g( ) > 0 Por all S, we get a
contradiction asjntheproofofLemma,sjnce NoNs3)() ! 1 . Thus there
exists a sequence i ! 1 such thatg(yx) ! 0. IfN,(x) orNs3 () contains a

bounded subsequence, we m ay refer to possibilities already handled. By Lemm a
12, weget . 0, a contradiction. 2

14. Control over the density parameter

T he idea behind the m ain argum ent is to use the existence ofan —-lim it point on
the K asner circle to obtain a contradiction to the assum ption that the solution does
not converge to the closure of the set of vacuum type IT points. T he function
d= 4+ N {Ny+ NyN53+ N3N;
is a m easure of the distance from the attractor. W e can consider d to be a fiinction
of , if we evaluate it at a generic Bianchi IX solution. If y ! 1 yields the
—lim it point on the K asner circle, then d( ) ! 0. Ifd does not converge to zero,
then it must grow from an arbirarily an all valie up to some xed num ber, say
> 0, aswe go backward. In the contradiction argum ent, it is convenient to know
that the growth occurs only in the sum of products of the N ;, and that during
the growth one can assume to be arbitrarily small. The follow Ing proposition
achieves this goal, assum ing is an allenough, which isnot a restriction. T he proof
is to be found at the end of this section.

P roposition 14.1. Consider a Bianchi IX solution with 2=3< < 2. There exists
an > 0 such that if

(14.1) NiN,+ NyN3+ NNj
in [1; 2], then
c (2)

in [1;7 2]13i ( 2) . Here ¢ > 0 only depends on
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T he dea of the proof is the follow Ing. If the sum of product ofthe N; and are
an all, the solution should behave in the follow ing way. If all the N; are am all,
then we are close to the K asner circle and  decays exponentially. O ne of the N ;
m ay becom e large alone, and then increases, but it can only be large for a short
period of tim e. A fter that it m ust decay until som e other N ; becom es large. But
this process of the N ; changing roles takes a long tin e, and m ost of it occurs close
to the Kasner circle, where decays exponentially. Thus, may ncrease by a
certain factor, but after that it m ust decay by a larger factor until it can increase
again, hence the result. Figure E lustrates the behaviour.

2
1
Wt o
-1
_2 5
=2 -1 0 1 2 2.5
z_
0.12 1.4
1
0.08
0.8
c 0.06 z
0.6
0.04 0.4
0.02 0.2
0 0
0 05 1 15 2 25 0 05 1 15 2 2.5

Figure 6. Part ofa type IX solution.
W edivide the proof into lem m as, and begin by m aking the statem ent that decays
exponentially close to the K asner circle m ore precise.

Lemma 14.1. Consider a Bianchi IX solution with 2=3 < < 2.1If

1
2 2
+ -3 +2
4 8( )
in an interval [s1;s;,], then

(s) (s 2)e

for s 2 [s1;s,], where
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Proof. O bserve that

1
(14 2) 0 gr24 2 26 205

so that under the conditions of the Jemm a
0

T he conclusion follow s. 2

Next, we prove that if the N ; all stay su ciently am all under a condition as in
) and startsout an all, then willrem ain small

Lemm a 14.2. Consider a Bianchi IX solution with 2=3 < < 2. There is an
> 0 such that if

(14 3) 3NZ L6 3)
(14.4) N{No,+ No,N3+ N1Nj3
in an interval [s;;s,], and (s32) , then (s) (sp) oralls2 [s1;5:].
Proof. Let
E=f 2 ;sl:t2 [ ;2]) © (s 2)g:

Let 2E, > s.TheremustbetwoN;,say N, and N s, such thatN, =2 and
Ns i by [14}). By the constraint [2}) and [144), wehave in

2y 2 lZNf h %(3+2)4;
so that assum ing  sm allenough depending only on , wehave °%C )y> 0,cf. ).
T hus there exists an s < such that s 2 E. In other words, E is an open, closed,
and non-em pty subset of [s1;5,], so thatE = [51;52]. 2

T he next lemm a describes the phase during which m ay increase.

Lemm a 14.3. Consider a Bianchi IX solution with 2=3 < < 2. There is an
> 0 such that if

(14.5) N7 26 3)
(14 6) NiN,+ NyN3+ NNj
in [51;9:], and (s») , then s S1 c; and (s) Cy; (sp) oralls 2

[51752], where ¢; and ¢; are positive constants depending on

Proof. Assume is an allenough that

3 1
— 26 3
4 8
so that N ; =i [s1;5.]. Assuming < lwegetN; 2 i [s1;s:) i= 2;3.
U se the constraint @)towrite
3
14.7) 1 2 2= Zle + h;

where 117 3 by [1456). Thus,

1 2 2 312 3
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so that wem ay assum e
(14.8) + 24+ ?<1

n [s1;s2].

W e now com pare the behaviour with a type IT vacuum solution. By @) and
[L4.]), we have

(149) 0 = 2(2N12+ hy)( . + 1)

+

9 2
(2 ) ++§Nl

N w

9 3,
5N1(1\12+N3)=5N1(2 +)+ hy + hs;

where h3j 17 and hvj 2 [s1;52].Leta = (6 3 )=4.Then,
Z

S2

+ (s2) y (51) a (2 s1)+ (hy + hs)dt:

H ow ever,
(s) (s 2)e

foralls 2 [s1;32], see @). T hus,
.Z > .1
] hy dsj < (s2)e
S1 2

W e get

1
() s () a s s Ee‘“SZ )17 (g s1):

T his Inequality contradicts the statem ent that s, s; m ay be taken equalto 4=a ,
by choosing snallenough.W e concludethats s 4=a = c¢; ,and thatwe
may choose ¢; = exp(l6=a ). 2

The ollow Ing Jemm a deals w ith the decay iIn  that has to follow an increase. The
dea is that if N; is on the boundary between big and am all, and is derivative is
non-negative at a point, then it w ill decrease as we go backw ard, and the solution
w illnotm ove far from the K asner circle until one of the other N ; has becom e large.
That takesa long tine and w ill decay.

Lemma 14.4. Consider a Bianchi IX solution such that 2=3 < < 2. There is
an > 0 such that if

(14.10) NN, + NyN3+ N3N

n [sis2]
3 2 1 0
ZNl(Sz):§(6 3 );Ny(s2) O

and (s3) C; , where @; is the constant appearing in Lemm a , then
decays as we go kackward starting at s;, untils = s;, or we reach a point s at
which

(s2)

(s) :

202;
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Proof. W ebegin by assum ing that > 0 isa xed num ber. A s the proofprogresses,
we w ill restrict it to be sm aller than a certain constant dependingon . W e could
spell it out here, but prefer to add restrictions successively. Let N 1 =i by sy ]
and N; ()= "t orty = s1,n caseN; doesnot attain ™ In [51;5]. As I the
proof of Lemm a ,we conclude that Ny 172, i= 2;3 in Ry;s], and that we
may assum e

14.11) o242 .

Thevariables ( ; +; ) haveto belong to the interior of a paraboloid for N f to
be negative. Since N 10 (s2) 0 we are on the boundary or outside the paraboloid.
T he boundary is given by g= 0, where
1 2 2 .
9:5(3 2) +2 [ +2 4 ,:
An outw ard pointing nom alis given by r g, where the derivatives are taken In the
order: , , and . Let

E=f 2 &;s]:t2 [ ;8]) N/® 0; ®© cu g:

Let 2 E.By [14.1])wegetqg( ) < 2 and, aswe are also outside the interior of
the paraboloid, ; () 1=2. For ,and thereby , anallenough depending only
on ,wehave

cf. ).Usjng the above observations, we estim ate In
(% 0. 0y ¢ 1=2,
4

rg 7o+ ;
where C only dependson . For amallenough, the scalar product is negative.
Thus,if( ( ); + ( ); ( )) ison the surface ofthe paraboloid, the solution m oves
away from it aswe go bad<ward,sothath Oin [s; ]forsome s < . Ifwe

are already outside the paraboloid, the existence of such an s is guaranteed by less
com plicated argum ents. A s in the proof of Lemm a, weget %> 0for amall
enough depending only on , so that E is open, closed and non-em pty. Thus Ny
decreases from s, to 5 going backward. Now,

3
2402 1 Zle hy =@ +2) o 3

n fy;sz], so that
(14.12) ty) (Sy)e @ 2w,

by an argum ent sin ilar to Lemma, if issnallenough. W e can assume is
sm allenough that the tin e required rN ; to decreaseto ~* is great enough that
ifty & s1, then the conclusion of the lemm a follow s by 14.173). 2

P roof of P roposition . Assume is snall enough that all the conditions of
Lemma are ful lled. W e divide the interval [ 1; ,] into suitable subinter—
vals, such that wem ay apply the above lemm as to them . If

3 ., 1
(1413) -N{ =6 3)

4 8
in , fori= 1;2;3,thenweletttb 2 [1; 2] be the an allest m em ber of the interval
such that ) holdsin allof fp; 2]. Otherwise, we choset, = ,.Eithert, = 1
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or 3N 12 (p)=4 (6 3 )=8, by a suitable perm utation of the variabls. Ift & 1,
let § be the am allest m em ber of [ 1 ;%] such that 3N 12=4 6 3 )=81 B;].

BecauseofLemma, decays in f[ty; 2]. Ifty = 1,wearedone; etc = 1.
O therw ise, we apply Lemm a to the interval [ ;] to conclude that ( )

C; (2) I ksl Ty = 1, wecan choosec = ¢; . Otherwise, we apply
Lemma to [1;4]. Either decays until we have reached 1, or there is a
point sy 2 [1;45]such that (s1) ( 2)=2.By the proofof Lemm a ,wecan

assum e that , s 1; som e tin e has to elapse for the decay to take place.

G iven an Interval [ 1; ;] as in the statem ent of the proposition, there are thus two
possibilities. Either ( ) c; (g2)rall 2 [1; 2] or we can construct an
s1 2 [1;2]lsuchthat , s 1, (s1) (2)=2,and () <; () foral
2 [g; 2]. Ifthe second possibility is the one that occurs, we can apply the sam e
argum ent to [ 1;51 ], and by repeated application, the proposition follow s. 2
Corollary 14.1. Consider a Bianchi IX solution with 2=3< < 2. If

l]jml N{N,+ No,N3+ N{Nj3) = 0

and there is a sequence i ! 1 such that ( ) ! O, then

15. Generic attractor for BianchiIX solutions

In this section, we prove that for a generic Bianchi IX solution, the closure of the
set of type IT vacuum points is an attractor, assum ing 2=3< < 2. W hat we need
to prove is that

l]jml (+N 1N, + NoyNj3+ N1N3): O;
sihce then wemay foreach > 0 choosea T such that at least two of the N; and
must be less than for T . The starting point is the existence of a 1lim it point
on the K asner circle for a generic solution, given by P roposition . Since there
is such a Ilim it point, there is a sequence i ! 1 such thatN;(y)and ( x) go
to zero. If

(15.0) h=N;N,+ N,N3+ N1N;

does not converge to zero, it must thus grow from an arbitrarily sm all value up
to some . By choosing so that Proposjijol is applicable, we have control
over . A few argum ents yield the conclision that we may assum e that it is
the product N ,N 5 that grows, and that the growth occurs close to the special
pomnt ( .+ ; ) = ( 1;0). Close to this point, , N 1 and N; N, + N3) decay
exponentially, so as far as intuition goes, we m ay equate them with zero. W e
thus have a BianchiV Iy vacuum solution close to the special point ( 1;0). The
behaviour of N ,N 3 w ill be oscillatory, and we m ay reduce the problem to one in
which the product behaves essentially as a sine wave. However, by doing som e
technical estim ates, one m ay see that one goes down going from top to top during
the oscillation, and that that contradicts the assum ed grow th. F jgureﬂ ilustrates
the behaviour. It is a sim ulation of part of a BianchiV Iy vacuum solution.
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Figure 7. Part ofa BianchiV Iy vacuum solution.

W e begin by rew riting the solutions in a form that m akes the oscillatory behaviour

apparent. Consider a non Taub-NUT Bianchi IX solution in an interval such that
1< 4 < 1l.De ne the functions

(152) ® = T 7y

je

15 3) ¥ = _3 w .

( 2 1 3 )1:2

T he reason why these expressions are natural to consider is that, for reasonsm en—

tioned above, N1, and so forth m ay be considered to be zero. In the situation

we willneed to consider N, N3 and w ill have m uch greater derivatives than
+ , 50 that it is naturalto consider x and y as sine and cosine, since the constraint

essentially saysx? + y° = 1. Let
(154) g= 3N+ N3) 20+ ,)xy=q+ E@:
Tn our applications, g; will essentially be constant, and g, w ill essentially be zero.
Lemma 15.1. The vector x = (X;y)t satis es
x0= Ax+ ;

where A isde ned as in ({12.0]), with g asin {54) and = (4; )%, where the
com ponents are given by {5.9) and {54).
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T he error term s are

9 3 X
(15.5) x=3N19+ (zN;N; N N3) =(@2 ) ) 5
2 2 1 <
3, 3 3 9
(=N{ 3N;WN,+ N3z)) = (2 ) 2(=N{ =N;N;z+ N3))x
2 1 . 2
and
156) =BG  2) A+ )+°@ )+ 2N, 0, N, NIt
Y y= 5 + > SNl 2 315 2
+l(3 2) y:
2 v
It is clear that if we have a vacuum type V Iy solution, . = , = 0, so that we
maywritex = (sinh( ( ));cos( ( ))), where jsas.Z).Inoursit:uatjon,there

is an error term , but by the exponential decay m entioned above, it only m akes the
technical details som ew hat longer.

W e begin by proving that we can assum e that the grow th occurs in the product
N ,N 3, and that can be assum ed to be negligible during the growth. W e also put
boundson , . They constitute a starting point for further restrictions. T he values
of certain constants have been chosen for fiiture convenience.

The lemm a below is form ulated to handle m ore general situations than the one
above. O ne reason being the desire to prove uniform convergence to the attractor.
W e will use the term inology that if x constitutes nitial data for @)—@), then
+ (;x) and so on will denote the solution of the equations w ith initial value x
evalnated at , assum ing that  belongs to the existence interval. W e will use
( ;x) to summ arize all the variables. T he goalof this section is to prove that the
conditions of the lemm a below are neverm et.

Lemma 15.2. Let2=3< < 2. Consider a sequence x; of Bianchi IX initaldata
with allN; > 0 and two sequences s 1 of realnum kers, kelonging to the existence
interval corresponding to x;, such that

15.7) Im d(17x1)= 0;
o

whered= + N N, + N,;N3+ N;N3, and
(15.8) h(s1;%1)

forsome > 0 independentofl. Then there isan > 0 and a k¥, such that for each
k ko there is an Xk, a symmetry operation on ( ;% ), and an interval fuy ;v ]
kelnging to the existence intervalof ( ;x, ), such that the transform ed variablks
satdsfy

NoN3) (esxy )= 5 MoNs3)(wixy, ) e e 1 LN ( 5x,)

(159) Ni1( ;%) exp( 30k)and 2 Np( ;x ); N3( ;x,) exp ( 25k)
for 2 [ ;v ]. Furthem ore
(15.10) ( ;%) e and 1< . ( ;x) O

in g vk ]
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Rem ark. O bserve that for the m ain application of this lemm a, the sequence x; w ill
be independent of 1.

Proof. By ) and ),therejsan > 0 such that for every k there is a
suitable ]k and Uk Vi w ith [L;lk ;Vk] [Slk 7oL ] such that

(15.11) e %1 n(;x) 2

h(ug;x, )= 2 ,h@;x,)=exp( 20k 1) where 2 lg;w].W ecan alsoassume
that

(15.12) h( ;%) 2
forall 2 [k; 1 ]. Furthem ore, we can assum e
(1513) NiNoNs)( %) “exp( 50k 1)=4

In fux; 1, ]. The reason is that d( 1;x;) converges to zero, so that (N 1NN 3) ( 1;x1)
also converges to zero. Consequently, we can assume (N 1NN 3)( 5 ;x5 ) to be as
sn all as we wish, and thus we get {15.13) by the m onotonicity of the product.
Sincewemay assume ( 3, ;X3 ) to be arbitrarily snallby (15.]), we may apply
P roposition n fuk; 3 1 by ), choosing  amall enough. Thus we m ay
assum e exp( 13k) in ;v ]. From now on, we consider the solution ( ;x, )
In the interval ux; 1, ] and only use the observations above. To avoid cum bersom e
notation, we w ill om it reference to the evaliation at x; . By ) and ),
we have In fuy ; vk ]

1 1 1
eZOk ! h:N1N2N3(N_+_+_)

2 sox 1, 2+ 1 1
( )i
1 Nz Nj

+_
N; N, N3

I
0]

so that
1 1 1 4
S N P
N; N N3
Atagiven 2 f[k;vw], oneNi,say N;,must be analler than exp( 30k). If the
second am allest is am aller than exp( 25k), the largest cannot be bigger than 2,
by Lemma@, but that will contradict h exp( 20k 1) ifk is great enough.
Thus, ifN; is the smallest N; for one , it is always the smallest. W e m ay thus
assum e

N ¢ exp( 30k) and N,; N3 exp ( 25k)

n fux;w 1. If issmallenough, we can assum e Ny ;N 3 2byLemma@.Thus,
o 20k 1 4 e3% NN, 2 + 4 e3%;

W em ay shift ux by adding a positive num ber to it so that

(15.14) N2N3)@k)= and N2N3)( )

for 2 [k;w]. W emay also shift vi In the negative direction to achieve

NoN3) ) e MoN3)’(w) < 0and MoNs)( ) e !
for 2 [k ;v ]. The condition on the derivative is there to get controlon . .

W e now establish rough controlof , . Since N,N5)°6 )< 0, 1< 4 (w)<O.
Dueto {159), £.4) and the constraint, © < 03 , = Oor , = 1. In other
words, + Wyx)= 0 Inplies . 0in ug;wgl. But ifuy < wy then , @) > 0

so that W,N3)@Uk) < NN3) W), contradicting the construction as stated In
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Table 2. Subdivision of the interval of grow th.

Interval Bound on r

[x; k] 4k r 2k
[k x] dk r 2k
[xirk] kT
[ ;i ] k r

).Wethushave . 0dn uk;w].Wealsohave 1< , in that interval.
2

Below ,wew illom it reference to the evaluation at x;, to avoid cum bersom e notation,
but it should be rem em bered that we in generalhave a di erent solution for each

k. Let
Z Vi

r( )= =2+ , )ds:

Here we mean q(s;x;, ) when we write g, and sim ilarly for , . Observe that r
depends on k, but that we om it reference to this dependence. A 1l the inform ation
conceming the grow th of N ,N 3 is contained in r, see @), and this integralw illbe
ourm ain ob gct of study rather than the product N ;N 3. Let fuy ;v ] be an interval

asin Lemma. Since

N 2N 3) (i) = &) (NN 3) (k) s
we have r(uk) 5k. Let Uk k k k Ik Vk . Startjng at ug, let k
be the last point r= 4k, so thatr 4k in [ x ;v ]. Furthem ore, et r k in
Iy ;v Jand nally, assumer 2k n [ x; x]. W e also assum e that r evaluated at

rn, x,» x and ¢ is k, 2k, 3k and 4k regpectively. See Table. W hy? The
Intervalwe willwork with in the end is [ x; « ], but the other intervals are used to
get control of the variables there. F irst of all, we want to get controlof , , and
the interval uy; x ]togetherw ith the additionaldem and on  servesthat purpose.
T he intervals at the other end, together w ith the associated dem ands, are there to
yield us a quantitative statem ent of the intuitive dea that and N ; are negligbl
relative to the other expressions of interest. Finally, we need to get quantitative
bounds relating the di erent variables; aswasm entioned earlier, them ain idea isto
prove that N ,N 3 oscillates, but that it decreases during a period. In order to prove
the decrease, we need to have controlover the relative sizes ofdi erent expressions,
and [ x; k] isusaed to achieve the desired estin ates.

From thispointuntilthe statem ent of T heorem , wew illassum e that the condi-
tionsof Lemm a are ful lled. W e w ill use the consequences of this assum ption,
as stated above, freely.

W e In prove the controlof , . Let us st give an Intuitive argum ent. O bserve
that under the present circum stances, the solution is approxin ated by a Bianchi
V I vacuum solution. For such a solution, the function Z2 ,, de ned In (),
is m onotone increasing going backw ards. A ccording to the BianchiV I, vacuum
constraint, Z ; is proportionalto (1 2)=N ,N 3. However, we know that N ,N 3
has to increase by a factor of ?°% going from v, to uy, and consequently 1 2
has to increase by an even larger factor. The only way this can occur, is if a large

part of the growth in NN 3 occurswhen . isvery close to 1. Taking this into
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account, we see that the relevant variation in 1 f = (1 +)A+ ) occursin
the factor 1+ , .Below,wewilluse the function (1+ , )=N,N3 instead ofZ ;.
Let us begin by considering the vacuum case, In order to see the idea behind the
argum ent, w thout the technical di culties associated w ith the non-vacuum case.

W e have
0

1+ 4
(15.15) <0
N N3
in our situation, cf.Lemma and ).For 2 [kivw]lwe get
N
0< 1+ . () @+ . ao—2Nell)
N N 3) (uk)

by our construction.

Let us m ake som e observations before we tum to the non-vacuum case. First we
analyze the derivative of (1 + . )=N,N; iIn general. The estinates (15.14) and
[L5.17) will in fact be i portant throughout this section.

Lemma 15.3. Letuy and vk ke as alove. Then

0 2 2 3
1+ & 2@+ L)+ 1+ L)+ 22
15.16) I ) X )+ 2 )
NN 3 N N3
and
0 3
(1517) N 5(2 )

in the interval fuy ; vk ] for k large enough.

Remark. Observe that 1+ > 0 In fux;w ] by ), so that the rst tem
appearing in the num erator of the right hand side of (15.14) has the right sign.

Proof. U sing @), we have
0

1+ 2 2 3
=te 2 25 290+ S ) .F

NN 3

9
FoNI@L Nz Ns) o Qg+ 4 L)@+ )W N s) !

C onsider the num erator of the right hand side. The term nvolving the N ; has the
right sign by ), and the term s not involving add up to the rst temm of the
num erator of the right hand side of (15.14). Let us consider the term s involving

T hey are

2 1+ L) 2(2 ) O+ +)+§(2 ) € 2) A+ )=
= E(3 2) 1+ )+§(2 ) §(2 )
T2 * 2 2

proving {[5.1§). To prove ), we observe that by the constraint and the fact
that0< 1+ 1 In the Interval of interest, we have

@ 2 22 27%)(,+1) 3N MN,+N3)Q+ ) 3N;N,+ N3):
Thserting this inequality into @), we get
3 3

1
0 e ) I+ )+ =0 )+EN1(9N1 3N, 3Ns3)

2
> > ( )

N w
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by ) and (15.1Q) ifk is large enough, proving ). 2

In the vacuum case, . ism onotone in our situation, see ), but in the general
case we have the ollow Ing weaker result.

Lemma 15.4. Consider an interval [s;t] fuyx ;vic ] such that

1
z 56 +2:
T hen
(15.18) T+ + @) ©® 1+ 4 (s)
ifk is Jarge enough.
Proof. In [s;t] we have
0 .
w here = 32 =2, seetheproofofLemma. T hus,
W) expl @ Y]

forallu 2 [s;t]. Integrating ) we get ). 2

In connection w ith ),theﬁ)]]owjng lemm a is of interest.
Lemma 15.5. Ifk is large enough and
@+ ) € ()

forsome 2 [x;w ], then

n fug; 1.

Proof. Ifthe solution is of vacuum type the lemm a ollows, so assume > 0. Letus
rst prove that 1+ (u))3 e ()ru? fux; Jl.Assumethereisans2 fu.; |
such that the reverse nequality holds. Then there is a tw ith t s, such that
@+ ) & ()i L, wih equa]ityatt.Becauseof),Lenmajs
applicable for k large enough. T hus

(15.19) & )y 1+ L (s) €7 ()
H ow ever, by the proofof Lemm a , P roposition is applicable n any subin—
tervalof fuy ;v ], so that () < (). Substiuting this nto (L5.19), we get

k 1:3( ) k=3 1:3( )

c () e

which is in possible for k large enough.
Thuswe have, foru 2 fux; ]and k large enough,
1 3 3

@ ) @) —@ ) )

3 k k =
T+ + @) e () e%(2 o 1 1

wherec isthe constant appearing in the statem ent of P roposjijon .Thelemma
follow s. 2

W e now prove that we have controlover 1+ , in [y ;v ].
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Lemma 156. Let y and v ke as alove. Then for k large enoudgh,

(1520) 0<1+ ,<efk
n vl
Proof. Assumel+ ., () eX Prsome 2 [k;vk].Becauseof),wethen
conclude thatLanmajsappljcable,sothat
0
1+ 0
N ,N 3
In fux; lby |[15.1¢). Thus
1+ o) 1+ () e * |
NoN3) @)  ON2N3)( ) (NaN3)( )
but by our construction
NoN3) ()= &™) O NN ) e 2% M aN5) (ue);
so that
e 1+ L) 1

The lemm a follow s. 2

Corollary 15.1. Let ¢ and vk ke as alove. For k large enoudh,
+ 2+ A+ L) dek

n [l

Proof. By ),wehave
Ni(N,+ Ns3) 4 e3%

n fux;vk ]. This observation, the constraint, and Lemm a yield

2
+ 1 4

2 3 k
+ ENl(N2+N3) 3e

In [ x;w ], or k large enough. T he corollary follow s using Lemma. 2

The next thing to prove isthat N; and areamnallcompared with 1+ . The
factthatr(x) = k willin ply that the ntegralofl+ , islhrge,butifl+ . is
com parable w ith N1 or , it cannot be large since N ; and decay exponentially.

The reason (1+ , )° appears in the estin ate {15 21]) below is that the nalargu-
m ent w ill consist of an estim ate of an integralup to ‘order of m agnitude’. E xpres-
sionsofthe form (1+ )" and 1+ )" =N+ N3)' willwillde ne what is big’
and ’‘am all’, and here we see to it that term s Involving and N ; are negligibl in
this order of m agnitude calculus. F nally, the factor exp ( 3k) is there in order for
us to be abl to ignore possible factors m ultiplying expressions involving N; and

. W eonly tum up the num ber k and change exp ( 3k) to exp( 2k) to elin inate
constants we do not want to think about; consider ) and ) .

Lemma 15.7. Let ¢ and x ke as above. Then for k large enoudgh,

1521) FN+ N Ny+ Ny) e X0 vy )
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in [x; x]where b > 0. Furtherm ore,
0

1+ 1+
(1522) : 2 2 a+ +)
N ,N 5 N ,N 3
n fg; k1.
Proof. N ote that
Z Vi zZ Vi Z Vi
@+ .)d (2+ .)d @2+ ,)d = k;
Iy Ty Ty
so that
Z Vi
(1523) k @+ ,)d
Tk
Let

1= +N1+N1(Nz+N3):

By the construction in Lemma,wemay assum e

12k
1) e :

Because of C orollary , we have

1( ) el2ke4b( Vi )

forall 2 [x;w ], whereb > 0 is som e constant depending only on . Let

2( ):e9keb( Vi) eSke 3b (1 wvy) 1( ):

T he assum ption that (1+ )2 > In [ ;v ] contradicts ). T hus therem ust
beaty 2 [;vw] such that (1 + +(to))9 5 (tg). In the vacuum case, 1 +
ncreases as we go backward, and , obviously decreases, and thus we are In that
case abk to conclude L +  )° 2 In [ x;rx]. In the general case, we observe
that 1+ (o ))3 e (to) by the above constructions. W e get

0
1+ , A+ 1)

2
NN 3 N N3

n fuyx ;% ], by com bining Lem m a and ). Thequality ) follow s. T hus,

if 2 [k; k],wehave

N2N3)( ) 4k
1 + — (1 n 1 n :
+ () (NzN3)(t0)( + () e @1+ (o))

Consequently, we willhave 1+ , ( )Y 5( ), sincel+ . has hcreased from
itsvalie at ty and , has decreased. The Jlemm a follow s. 2

Next we establish a relation between 1 + . and the product N,N3. W e prove
that 1+ 4 )=@N,N3) can be chosen arbitrarily an all n the interval [ ; x 1, by
estin ating it In , and then com paring the ntegralofl+ , from  to x wih
the integral of 2 over the sam e interval. The following lemm a is the starting
point.

Lemma 15.8. Let ¢; x beasalove. Then for k large enoudgh,

Z
1+ () 1 .

1524 - - = 2 24
4524) IR s
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if 2 [x; x]. Furthem ore,
1+ () 1
N2N3)( )

n fug; «1.

Proof. T he statem ent ollow s from  {L5.29), and the fact that
I+ ) 1
N 2N 3) (ux )

2

Considering the constraint, it is clear that 2 ghould be com parablewih 1+

when N, N3 and oscillate, and thus the integral should be com parable w ith
k, cf. ) . However, we have to work out the technical details.

W e carry out the com parison betw een the integrals in three steps. F irst, we estin ate
the error com m itted in view ing x and y in ) and ) as sine and cosine. Then
wem ay, up to a sm all error, express the integral of 2 asthe J'nte<_:j]:alofsjn2 ( =2),
multiplied by some function £ ( ) by changihg variabls. In order to m ake the
com parison, we need to estim ate the variation of £ during a period: the second
step. The only expressions nvolved are 1+ , and N, + N3. The thid step
consists of m aking the com parison, using the inform ation obtained in the earlier
steps.

Letx, v, g,q and g, bede ned asin ()7(), and ,x and y bede ned asin
the statem ent of Lemm a ,wjth o replaced by  and ¢ by . Observe that
%,y and In fact depend on k. W e nead to com pare x w ith x.

Lemma 159. Let ¢ and ¢ ke as albove. Then for k large enough,

(1525) 7% @ H)x*j 128 Fa+ L)
in [ x; x]. Furtherm ore,

(15.26) i e +y)) e "

and

1527) kx xk 3e F@a+ ,)°

in that interval.
Proof. W e have

SNiWN,+ Nj) 2N7

1 @)+ ¥ ()T 4 1+ — j
(15 28) e A+ 4 (x)?
by @521). Equation {524) Plows sin farly. By (15.9), @54), @521 and
[L524), we have

k (s)k 2be @+ , (s)8e®r & Vo)

for k large enough. Let us estin ate how much 1+ | may decrease as we go
backward in tine. By @5.17) and @521]), we have

3
@+ )° @ e e U vera L )?;
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so that if [5;8]  [x; « ),

(15.29) 1+ 4 explxp( 2k)T+ 4 (8);
for k large enough. T hus, for xrwWe get
Z
k
(15 30) k (s)kds e @+ ., ()f:

By (12.4), @53(), {1529) and {15.24), we thus have
5
kx xk Ee 2k(1+ )8

n [x; ], and ) follow s. Since kj 1land &j 1:d,cf. ),wehave

¥ %35 ee Fa+ L)%

so that

in the interval [ «; 1. 2

Let us introduce

(1531) ()=2 ()=2 gls)ds+ 2 k;
k

whereg= 3N,+ N3) 201+ ,)ry= g + ¢». Thereason we study instead
of is that the trigonom etric expression we w ill be interested in is sif (), which
has a period of length ,cf.Lemma.IntheproofofLemma,itjsshown
that, in the interval [ x; x ], the rst term appearing in g ism uch greater than the
second. W e can thus consider functionsof iIn the interval [« ; x ] to be functions of

.Wewillm ainly be interested in considering an interval [¢; o+ 2 Jatatine, so
that we will only need to estim ate the variation of the relevant expressions during
one such period.

Lemma 15.10.Let 14 = (x)and 2x = (x). If[1; 1+ 2 ] (17 2]
and 4; p2 [17 1+ 2 ], then for k large enough
- + N _
(1532) o 6 - N2 3)(a) &
N2+ N3);(p)
1 1+
(1533) L S V) 2
2 1+ +(b)
and
(15.34) mF2 P 2mmF
Proof.BecauseofLenma,
1+ + 1+ + 12214' +
1535 = N -+
( ) Ny+ N3 2N Nj3)=2 W2Ns) 2N 3N 3
1=2
1 NN _ 1
. 23 (N 2N 3)"2 ) e

2 N oN 3) (uy) 2 1=
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ntheiterval[«; ). By {(52§) wemayassumex’+ > 21 [y; x]. Combining

this fact with [L539) yieHds | )in [1; ). Thus,d =d < 0 in that interval
W e have
AN+ N3), |1 = .
3= 3—(g@+ 2 ;)W,+N3)+2 3 N N3))j
d 29
1 . kYD 1+
B 2y +3%+@  HFP+ +22221 0 %) 6@+ + 8"
2( ) Ji+ A ) +J ij( ) ( +) N, TN,
so that
1 d + N 1+ 1+ 1+ 1+ 3
= (NZ 3)] 6 + +8 + 6 + L2 + 2
JN2+N3 d Ny, + Nj (N2+N3)2 N, + N3 NN 3

in [y; x]fork large, by Lenmafl5.4 and (1539). IfN, + N3 hasamaxinum in
max 2 [17 1+ 2 Jandamihinum in i, weget

(NZ+N3)(max) egz R

No+N3)(nun) ’

and (15.33) ©llows. W e also need to know how much 1+ , variesover one period.
By €4

A+ =@ 2+2?% 2+ )+ £

where f; is an expression that can be estin ated as in ),sothatwejn [x; x]
have

A+ )0 . )
3 21 A+ )+ 1+ L) 13Q+ L);

for k large enough. T hus,
1 da+ 5) 1000+ ).

1536 J j
( ) Jl+ ¥ d J N, + Nj

so that (15.33) hods ifk isbigenough and j. 1 2 by {153%).2
Lemma 15.11. Let y and y be as alove. Then ifk is large enoudh,

1+ , 1
—e
N ,N 5

ck

n [ x; xklJwherec > 0.

P roof. O bserve that sim ilarly to the proofof Lemm a [L5.], we have

Z k Z 25k (1+ . )
k 1+ ,)d = —d
k 1k Zg
T he contribution from oneperiod n  isnegligble, by 15 3%) and {15.34). Com pare
this integralw ith
Z 2 z 24,2 Z 2 24,2
2k 2k (l < )X 2k (1 < )X
—d = d + d = Il;k+ IZ;k:
1k g 1k g 1k g
Now,
. 2k 1+
ki e * -
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by ). Consider an interval [ 1; 1 + 2 ]. Estim ate, letting 5, and 1 be the
minimum and maxinum of , respectively, and 1, max them in and max for
g1 In this interval,

Z Z Z
2 f)xzd P O @+, )sin®( =2,
1 g 1 g 1 d
1+ +(a) —66: 1+ +(a) —e 6 = 1+ +(b)=
2j§1(max)j 2 jgl(mm)j 4 jgl(mm)j
Z Z
1 1+ 2 1 1 1+ 2 1
=—e6: .+ +(b.)d —66: + +()d,
8 s 1 (i) 16 . g()

where we have used (L5.37), (15.33) and (15.34). A ssum ing, w ithout loss of gener—
ality, that x 1x Isan integermultiple of2 ,we get

z x z 2:k 2 1 2k 1 4 ()
2 24 = —d =L+ Ly —e®" ek R A
K 1k g 16 15k g()
1 2 2k 1+ () 1 z K k
6= 6= @+ ,)d —e®~ =ck

.
—e ——d = —e
20 g( ) 10 . 10

for k large enough and the lemm a Hllow s from (15.24). 2

T he follow Ing corollary sum m arizes the estin ates that m ake the order ofm agnitude
calculuswellde ned.

Corollary 15.2. Let ¢ and g ke as alove. Then

1+ 1
(1537) —— e K
N, + N3)
1+
(15 38) - g %
N2+N3
and
(15 39) 1 e £ 14ex
g1

in [ x; k] for k large enough.

P roof. O bserve that by Lemm a [15.11],
1+ 1+ . 1

ck
5 —e
N2+ N3) NN 3
and
1+ 1+ & 1-2 2kieck se 2
N2+ N3 2N 5N 3)t=2 2

for k large enough, cf. ) . W e have
g 1 21+ )=y .

—_—
el SN2+ N3)
By ({L524) and the above estim ates, we get (L539) ork large enough. 2

T he intervalwe w illw ork w ith from now onis [ x; k). Let bede ned asin {15.31),
butde ne 1x= (x)and 2x = (k). W eneed to In prove the estin ates of the
variation of1+ , and N, + N3 during a period contained n [ 1x; 2x ]
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Lemma 15.12. Consider an intervalI = [1; 1+ 2 ] [1x7 2x )y where 14 =

(x)and 2x = (x).Let 5 and p, correspond to themaxandmin of1+ , in
I,and et pax and i correspond to the max and min of N, + N3 in the same
interval. Then,

40 L+ 4 (p))?

1540 j o+ + (a)]
( ) J (b) ( )j (N2+N3)(max)

and

(N2+N3)(max) 20
1541 —_— k)):
to4n Wot M) (ng R eelek)

Proof. T he derivation of (15.34) is stillvalid, so that
L1 da+ ). 10d+ )
T4 N d J N, + N3

By (153() we conclude that 1+ . (a))=(0+ . ()) can be chosen to be arbi-
trarily close to one by choosing k large enough. Now,

1 d(N2+N3)7 1 ld(Nz‘l‘Nj,)i
Ny,+ N3 d N, + N3 2g d
1 1 jop g+ 2 . 4@ ?Z)xry
= — — + 2 + N3)+ 2 3 N = + ;
N2+N32g((q + )N 2 3) N 2 3)) 25 20,5 Na)g

and consequently
1 dN,+ N3), 10
] j o—e °%:
N, + Nj d
E quation ) follow s, and the relative variation ofN, + N 3 during one period
can be chosen arbitrarily an all. F inally,

1+ 4 (a .
j+(b) +(a)j= 1+ +(b)). Le) lj
1+ 4+ (p)

30 L+ 4 ()P
N2+ N3)(min)

by ( d) and the above observations. W e m ay also change i, tO 5 ax at the
cost of increasing the constant. 2

A s has been stated earlier, the goal of this section is to prove that the conditions
of Lemm a are never m et. W e do this by deducing a contradiction from the
consequences of that Jemm a. O n the one hand, we have a rough picture ofhow the

solution behavesin [ x; k1 by Lemma,Lemma and C orollary . On

the other hand, we know that, sincer( ) r(x)= Kk,
(1542)
zZ 2 2
ko1 S + .
k= =@ 2) + f+ 24 ) = k + —d
.4 - 29

W e w ill use our know ledge of the behaviour of the solution in [ x; x ] to prove that
) isfalse. Observethat 14 < 2x,and that the contribution from one period
is negligble, cf. Coro]lary. Also, x ! Oask ! 1 sothatwemay ignore
it. W e will prove that for k great enough, the integralof ( 2 + 2 + ,)=( 2q)
over a suitably chosen period is positive. From here on, we consider an interval
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[1; 1+ 2 ]which, excepting intervals of length less than a period at each end of
[1x7 2x], we can assum e to be of the form [ =2;3 =2]. There is however one
thing that should be kept in m ind; when translating the -wvariabl by 2m the

-variabl is translated by m . In other words, there is a sign involved, and iIn
order to keep track of it we write out the details. By the above observations we
have.

Lemm a 15.13. For each k there are integersm 1 x and m ;4 such that

2 3 224 2m 5, 2 2

o+ +
(15.43) k= + —_——d ;
=2+ 2m 1 29
where ! Oask! 1 ,and
1k =2+ 2mx 1x+t 2 7 2x 2 3 =2+ 2mox 2k ¢
Consider now an interval
[ =2+ 2m ;3 =2+ 2m ] [ =2+ 2my4;3 =2+ 2max J;
wherem is an integer, and m ake the substitution
~ = 2m ;7= m
n that interval. C om pute
2 2\,2 1
T+ xT+ = 0+ )+ +)5(1 cos )) =
1 1 1
= 1+ +)(§(l+ +) 5(1 +)COSN)=E(1+ @+ L) 1 +)cos~):

T his expression is the relevant part of the num erator of the integrand in the right
hand side of ). There is a drift tetm yielding a positive contribution to
the integral, but the oscillatory termm is arbitrarily m uch greater by Lemm a .
The Interval [ =2;3 =2] was not chosen at random . By considering the above
expression, one conclides that the oscillatory term isnegative in [ =2; =2]and
positive In [ =2;3 =2]. As far as obtaining a contradiction goes, the rst interval
is thus bad and the second good. In order to estin ate the Integral over a period,
the natural thing to do is then to m ake a substitution In the interval [ =2;3 =2],
so that it becom es an Integralover the interval [ =2; =2]. Tt is then In portant to
know how the di erent expressionsvary with .W ewillprove a lemm a saying that

+ roughly lncreaseswith , and it willtum out to be usefulthat , isgreater in
the good part than in the bad. Let

Z 3 —24 2m 2 2 Z 3 _p
+ + 1 1+ ~4 2
(15.44) J = N S S R ( S+ 2m OF
=2+ 2m 29 2 5 2g(~+ 2m )
Z
17 1 f (~+ 2m ))cos~
3 ~+
2 - 2g(~+ 2m )
Z
P 2 (v+2m ) (1 L (~+2m )FxP(~+2m )
* d~= J1 + Jy + J3:
=2 2g(~+ 2m )

If we can prove that J is positive regardless of m we are done, since J positive
contradicts ) . The integral J; is positive, and because the relative variation
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of the integrand can be chosen arbitrarily an all by choosing k large enough, J; is
of the order of m agnitude

1+ 2
(15.45) ar -7,

Ny,+ Nj
If negative term s In J, and J3 of the orders of m agnitude

1+ 3
(15.46) A L :

N, + N3)
or

+ L)
(1547) —

N, + N3)

occur, wem ay ignore them by ) and (1537).By ), J3 m ay be ignored.
O bserve that the largest integrand is the one appearing in J, . H ow ever, it oscillates.
C onsidering ), one can see that w riting out argum ents such as ~ + 2m  does
notm ake things all that m uch clearer. For that reason, we introduce the follow ing
convention.

Convention 151.By ; (~)and ;( ~+ ), wewillmean . (~+ 2m ) and

+ ( ~+ + 2m ) regpectively, and sin flarly for all expressions in the variables of
W ainw right and H su. H ow ever, trigonom etric expressions should be read as stated.
T hus cos(~=2) m eans just that and not cos(~=2+ m ).

De nition 15.1. Consider an integral expression
23 2
I= f(~)d~:
=2
Then we say that I is less than or equalto zero up to order of m agnitude, if
232

where g satis es a bound

+ ) + )
1 5t C2 57
N2+ N3) N2+ N3)
for k large enough, where C; and C, are positive constants independent ofk. W e
write I . 0. Thede nition of T & 0 is sim ilar. W e also de ne the concept sim ilarly
if the interval of integration is di erent.

W e willuse the sam e term inology m ore generally in nequalities betw een functions,
if those inequalities, when inserted into the proper integrals, yield inequalities In
the sense of the de nition above. W ewillwrite  if the error is of negligible order
ofm agniude.

Lemma 15.14. IfJ, as de ned alove satis es J, & 0, then J is non-negative for
k rge enoudh.

P roof. Under the assum ptions of the lemm a, we have

Z3:2 2 23:2 3 3
1 1+ 1+ 1+
;1 a+ 7 o, L P ax )

Co
2 29 TN+ Ns)? N, + Nj)?
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232 2 2 14,2
1 bq
+ ( ) d~:
=2 2g
By Corollary , Lemmafl5.14 and (1529), we conclude that for k large enough,
J is positive. 2

The ollow Ing lemm a says that , aln ost increasesw ith ~.

Lemma 15.15. Let =2 ~ 3 =2.Then

v () () @+ o )
where ~, iy corresponds to them inimum of 1+ , in [ =2;3 =2].
Proof. W e have

3
¢ Se
so that
d 3
A R —
d~ 2 29
U sing ), ) and Lemma,we conclude that
d 1
= 3 0 Caa)
The lemm a ollow s. 2
Lemma 15.16. If
Z 4 _
3214 n
I= cos~d~
=2 g
satis esI . 0, then J, & O.
P roof. C onsider
Z 3 2 2 23 =
(L ) cos ~ 3 =2 1+
7, = L )eesta L (+( ) + ) +)cos~d~+
=2 4g =2 4g
Z 5 _
3214 .
+ (1 + B =2)) cos~d~:
=2 4g

The rst integral is negligble by ). The lemm a follows. 2

Lemma 15.17. If

satis esI; . 0, then J, & O.

Proof. W e have
Z 5 _ 7 _
329, =2
I= cos~d~ =
=2 g9 =2 g =2

"
cos~d~:
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M ake the substitution = ~+

= in the second integral;
Zz Z
1+ 4 ( + ) 1+ 4 ( + )
— cos( + ) d) —— cos( )d
=2 gl + ) =2 gl + )
T hus,
2 = 1+ (~) 1+ ( ~+ )
I= - - cos~d~ =
) g(~) g( ~+ )
Z
@+ +C~+ Ngl~) @+ 4+ (Nag( ~+
= cos~d~:
-2 g~)g( ~+ )
But

I+ +C~+ Ngl~). @+ + (+Ngl~);

byLemma,sothat
2 -
1 4 (~ ~ ~
(15.48) I 1+ ~N@~) gl ~+ ))cos~d~
2 g~)g( ~+ )
Now,

g(~) gl ~+ )=g) al( ~+ )Y+ a) @ ~+ );

but since 2xy = sin ~ and the error comm itted in replacing x with x and y with y

is negligible by ), we have

RC) e ~+ ) 1+ 4 (=Dsn~+ 1+ +( ~+ )Nsih( ~+ )=

= (. (~+ ) (s~

T he corresponding contribution to the integralm ay consequently be neglected; the
error in the ntegralw ill be of type (15.47) by ) . Consequently, if

Z  _
T+ L N@e) al ~+ )
I = cos~d~
-2 g~)gl ~+ )
satis esT; . 0, then T . 0by (15.49), so that the lemm a follow s by Lemm a [L5.14.
2
Let

hij(~)=g () a( ~+ ):
W e estim ate h; by estim ating the derivative. W e have h; ( =2) = 0.
Lemma 15.18. Leth; ke as akove. In the interval [ =2; =2], we have
dh 1 2~y 1 2( ~+
(15.49) —1s3 - ) - )

+ sin ~:
d~ g(~) g( ~+ )

Proof. Com pute

But

do P
— —(@+ 2 )N+ N3)+2 3 ©N, Nj3))=
d~ 29
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1 p— N
- Z@g+2 T2 373 W2 Na),
2 g g
O bserve that x and y are trigonom etric expressions, and that
2% (~+ 2m )y(~+ 2m )= 2sihh(~=2+m )cos(~=2+m )= sih~:
W e have
b 2 2
3 N, N3) 21 Dxy= (1 L)sin~;
so that
e o e e o) Lo o2 s 2424 )
d~ 4 g
3@ ?)sh~
g
Them ddk term and all term s involving m ay be ignored. E stin ate
FECO RS O SN O3 I GRS o (RPN S RPN
2+ @ 2 =2+ m ) 1=2)+ = (1 2 v+ 4 (04
+ I~ )+ @ 2~ NES(=24m ) 1=2)+= @ T~ )+
I G = o ) = R O L

+ @ 2 ()i’ (~=2) 1=2)+ @ 2 ( ~+ ))(o$ (~=2) 1=2):

+

The rstequa]jtyjsaconsequenoeof).Duetotheﬁctthat~2 [ =2; =2],
we have cos’ (~=2) 1=2 0. Sihce ~ + ~ and , increaseswith ~ up to
order of m agnitude according to Lemm a , we have
1 2(~+ )&l Z2():
C onsequently,
1 , 1 2 . 2
5(1+ + (M) + §(l+ SO~ )P+ () (s (~=2) 1=2)+

+ @ 2( ~+ )) (oS (~=2) 1=2>&§<1+ +<~>>2+%<1+ s (~+ )+

+ @ 2 (v=2) 1=2)+ 1 2 (~))(of (~=2) 1=2) O:

In other words, we have ) . Here the In portance of the fact that , isgreater
n the good part than in the bad becom es apparent. 2

Lemma 15.19. LetI; ke de ned as alove. Then I; . O.
Proof. Let ~yax and ~y i corresoond to the max and min of g In the interval

[ =2;3 =2],and ket ~+ and ~, corregoond to them ax and m n of , , in the same
Interval. Observe that for ~ 2 [ =2;3 =2], we have

I 2(a) 1 2() 1 % ()



58 HANS RINGSTROM

In order not to obtain too com plicated expressions, ket us introduce the follow ing
term nology:
1 P 1 T 1 I(w)

a; =6 6 6 = a, and
I (m ax) g(~) I (~m in
_ 1+ +(“‘b) 1+ + (~) 1+ +(~a)7 .
O ) 9t~ ) Fma)
where ~ 2 [ =2;3 =2]. Observe that
(15 50) i 2o o 2o

k!'1 ap k!lbzi

by Coro]lary and Lemma. Consider the Interval 0; =2]. By ),we

have
dh; .
(15.51) — & a;sm~;
d,v
so that
Z
dh;
hi(~)= Iy ( =2) ——d~ . & cos~
. d~
n the Interval 0; =2]. Now consider the nterval [ =2;0]. W e have
dhy .
— & azsin~:
dN
C onsequently,
Z
0 gh,
hi (~) = I (0) ?d~. a+ al cos~)
In the nterval [ =2;0]. E stim ate
Z _
T L NE@E) gl ~+ )
cos~d~ =
0 g~)gl ~+ )
L0 L el ) SR
- * L cos~d~ — " ( ajco ~)d~
0 g(~)gl ~+ ) o g()gl ~+ )
z b
ajby cof ~d~ = & :
0 4
W e also estim ate
0+ @) gl ~+ )
cos~d~ =
=2 g(~)gl ~+ )
Z 4 Z 4
T+ L () (~) @+ 4+ )
= cos~d~ . g cos~d~+
2 gl ~+ ) 2 g()g( ~+ )
Z Z
R ¢ o)) °
+ as (I cos~)cos~d~ aby cos~d~+
2 g(~)gl ~+ ) =2
Z g

+ ab (I cos~)cos~d~ ab + (1 Z)azbz:
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A dding up, we conclude that
aiby
axky
which is negative for k large enough by ). ThusI; . 0.2

I . 1+ =4ab + 1 =Hap = [ A+ =4)

+ =4)laskp ;

Theorem 15.1. The conditions of Lemm a [L5.] are never m et.

Proof. Ifthe conditions arem et, then Lemm a |i5 .13 follow s, and also that it is false,
by Lemmas[l519,[1517, 1514 and (15.44). 2

Corollary 15.3. Let2=3< < 2.Forevery > 0thereisa > 0 such that ifx
constitutes Bianchi IX initialdata for (2.1 )7@) and
infkx vk

y2A

then

nfk ( ;x) yk
Y2 A

for all 0, where isthe ow of @)7@).

Proof. A ssum ing the contrary, there isan > 0 and a sequence x ! A such that

infk (s1;x1) vk

Y2 A
forsomes; 0.Let ;= 0.Shced(1;x1)! Oandwecanassume issmallenough
that P roposition is applicable, theremust be an > 0 such that h(g;x1) >
for 1 Jarge enough, contradicting T heorem .2

Corollary 15.4. Consider a generic Bianchi IX solution with 2=3< < 2. Then

l]jml ( + N {Ny,+ N,y,N3+ N;N3)= 0:

Proof. If h does not converge to zero, then the conditions of Lemm a are
m et, since there for a generic solution is an -l it point on the K asner circke by
P roposition E Corollary |14 . then yields the desired conclusion. 2

Let A be the set of vacuum type I and IIpointsas in De nition E By Corollary
, a generic type IX solution with 2=3< < 2 convergesto A .

Corollary 15.5. Let 2=3 < < 2. The clbsure of Fx and the closure of Pk do
not intersect A . Furthemm ore, the set of generic Bianchi IX points is open in the
set of Bianchi IX points.

Rem ark. T he closure of the Taub type IX points does intersect A .

Proof. A ssum e there is a sequence x; 2 Fy such that x; ! x2 A. Let ;= 0.
O bserve that then d(x;; 1) ! 0. By Theorem , there is foreach > 0 and for
eachL an1l L suchthath( ;x) for 1= 0.By choosing L large enough,
we can assume ( 1;X1) to be arbirarily sm all and by choosing  an all enough,
we can assum e that P roposition is applicable. Consequently, we can assum e

( ;x1) to be as anall as we wish for 2 (1 ;.1], contradicting the fact that

(;x1)! 1las ! 1 . The argum ent for Py is sim ilar, since the -coordinate
of P (II) is positive.
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Consider now a generic point x in the set of Bianchi IX points. There is a neigh-
bourhood of x that does not intersect the Taub points. Let us prove the sin ilar
statem ent forF y and P ¢ . A ssum e there isa sequence x; 2 F ¢y such thatx; ! x.

Foreach > OthereisaT 0 such thatd(T; (T;x)) =2, by Corollary[15}.
By continuity of the ow and the function d, we conclude that for 1 large enough
we have d(T; (T;x1)) . Since (T;x1) 2 Frx, we get a contradiction to the

rst part of the lemm a. T hus, there is an open neighbourhood of x that does not
ntersect F ¢ . The argum ent for Py is sin ilar. 2
Corollary 15.6. Let 2=3 < < 2. The closure of Fy 11, and the closure of Py 1y,
do not intersect A . Furthem ore, the generic Bianchi V IT; points are open in the
set of Bianchi V IT; points.

Proof. T he argum ent proving the rstpartisasin theBianchiIX case, onceonehas
checked that analogues of P roposition and T heorem hold in the Bianchi
V Iy case. T he second part then follow sas in the BianchiIX case, using P roposition

fo3.2

16. Regularity of the set of non-generic points

O bserve that the constraint ) together w ith the additional assum ption 0
de nes a 5-din ensional subm aniold of R® which has a 4-din ensional boundary
given by the vacuum points. W e have the follow ing.

Theorem 16.1.Let2=3< < 2.ThesetsFy;Fyr,,Fx,Pym, andPr are C*
sulm anifods of R® of dimensions 1, 2, 3, 1 and 2 respectively.

W e prove this theorem at the end of this section. The idea is as follows. The
only obstruction to e. g. F 11 belng a C! subm anifold, is if there is an open set O
containing F and a sequence xx 2 F1r such that x, ! F, but each x¢ has to leave
O before it can converge to F . If there is such a sequence, we produce a sequence
vk 2 F1r such that the distance from yx to A converges to zero, contradicting
Lemma[9.]. The argum ent is sin ilar in the other cases.

W e willneed som e results from @]. T he theorem stated below is a special case of
Theorem 6.2, p. 243.

Theorem 16.2. In the di erential equation
16.1) =B +G()

ktG beofclassC! and G (0)= 0; @ G (0) = 0. LetE have e> 0 eigenvalues with
positive real parts, d > 0 eigenvalues with negative real parts and no eigenvalies
with zero realpart. Let = (&; o) be the solution of ) satisfying  (0;0)= o

and T* the correspondingmap T5( ) = (£ o). Then there exists amap R of a
neighlourhood of = 0 in  —space onto a neighlourhood of the origin in Euclidean
(u;v)-space, where din (u) = d and dim (v) = e, such that R is C I with non-
vanishing Jacobian and RT"R ! has the form
162) Ue o _ e':z Up+ U (tqufVO)

Ve e” vy + V (Gup;vo)

U; V and their partial derivatives with respect to ug; vp vanish at (ug;vp) = 0.
Furthetmore V.= 0 if vy = 0 and U = 0 ifug = 0. Finally kefk < 1 and
ke 9k < 1.
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Let us begin by considering the local behaviour close to the xed points.

Lemm a 16.1. Consider the critical point F . There is an open neighbourhood O

of F in R®, and a 1dinensionalC?! submaniod M ;1  Fir of O \ Iy, such that
foreach x 2 O \ I, either x 2 M 17, or x will kave O as the ow of @)7@)

is applied to x in the negative tim e direction. Sin ilarly, we get a 2-dim ensional
C! sutmaniod M v, of0 \ Iy, and a 3-dim ensional C ! sulm anifod M  of
O \ Iy with the sam e properties. Consider the critical point Pf (IT). W e then
have a sim ilar situation. G ive the neighlourhood corresponding to O the name P,
and use the ketter N instead of the ktter M to denote the relevant sukm anifolds.
Then Ny, hasdimension 1 and N x has dim ension 2.

Proof. O bserve thatwhen > 0,we can consider (—( to be an unconstrained
system of equations In  ve variables. U sing the constraint ) to express in
term s of the other variables, we can ignore and consider the rst ve equationsof
@) as a set of equations on an open subm anibld of R°, de ned by the condition

> 0 (considering as a function of the other variables). In the Bianchi VII g
case, we can consider the system to be unconstrained in four variables.

Let us rst deal with the Bianchi VI, case. Consider the xed point Pf (I1).
Considering the BianchiV Iy pointswih N,; N, > 0 and N 3 = 0, the linearization
has one eigenvalue w ith positive real part and three w ith negative real part, cf.
E]. By a suitable translation of the variables, reversal of tin e, and a suitable
de nition of G and E in @), we can consider a solution to (@)—(E) converging
to P (II) as ! 1 asa solution to|(16]l) convergihgto 0 ast! 1 . E
has one eigenvalue w ith negative real part and three w ith positive real part, so
that Theorem [16.] yieldsa C* map R of a neighbourhood of 0 w ith non-vanishing
Jacobian to a neighbourhood of the origin in R*, such that the ow takes the form
)whereuZ Randv2 R3.

Obsarvethat since = 0isa =xed point, there isa neighbourhood ofthat point such
that the ow isde ned for j 1. There is also an open bounded ballB centered
at the origin in (ug;vp)-space such that U and V are de ned in a neighbourhood
N of [ 1;1] B.Leta= ke"kand l1=c= ke %k.Forany > 0,we can choose B
and then N am allenough that the nom sofU; V and their partial derivatives w ith
respect to u and v are anallerthan in N .AssumeB and N are such for some
satisfying

.o c 11 a
(16 .3) < minf ;

2 2

Consider a solution to ) such that R t)2 B forallt T.Let Gw)
R( () ort T.W ewish toprovethatv = 0, and assum e therefore that vy, 6 0
forsomety T.W ehave

kv nk  k€? Vigin 1+ V (LiVgen 17Ugen 1)K

1+ c

KViysn 1K kv, +n 1k kvi e n 1k;

where we have used ),the fact that V is zero when vy = 0, and the fact that
Ue;ve) ramain n B fort T . Thus,

n
1+ c

kv« nk kv, k;
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w hich is Irreconcilable w ith the fact that v rem ains bounded.
If Uy sV, ) 2 B and vy, = O, ) yields vy .1 = 0 and

a 1+ a
Ykug k =

kug,+ 1k (a+ kug k:
Consequently, allpoints (u;v) 2 B wih v= 0 converge to (0;0) as one applies the
ow .

W e are now In a position to go backwards in order to obtain the conclusions of
the mma. The set R ! (B ) will, after suitable operations, incliding non-unique
extensions, tum into the set P and R ' (fv = 0g\ B) tums into Ny 1z, . O ne can
carry out a sin ilar construction in the Bianchi IX case. O bserve that one m ight
then get a di erent P, but by taking the intersection we can assum e them to be
the sam e. The din ension of N y follow s from a com putation of the eigenvalues.

T he argum ent concerming the xed point F is sin ilar. 2

Proof of T heorem |16.]]. Let O ,M 11 and so on be as in the statem ent of Lem m a.
O bserve that if there is a neighbourhood O 0O ofF such thatF 1\ O =M 1\ O,
then F 17 isaC ! subm aniold. T he reason isthat given any x 2 F 17, there isa T such
that ( ;x)2 O forall T.By Lenm a,we conclude that (T;x) 2 M 1.
T hen there isa neighbourhood 0° O of (T ;x) such thatO \F= O\M 1. We
thus get, or 0% suitably chosen, a C* map :0°! R® with C! inverse, sending
Fi\ 0% to a one dim ensional hyperplane. If 0° is sn all enough, we can apply
( T; ) to it obtaining a neighbourhood of x. By the invariance ofFrr, we have

( T;09\Fg= ( T;0°\Fp):

In otherwords, (T; ( )) de nescoordhateson ( T;0Y straightening outF 1.
T he argum ents for the other cases are sin ilar.

Let us now assume, in order to reach a contradiction, that there is a sequence
X 2 Fr\ 0 suchthatx, ! F butxx 2M p or allk. fwe 2t 0° 0O be a
am all enough ball containing F , we can assum e that N;§ 0 fori= 1;2;3 109,
cf. the proofof Lemm a . For k large enough, x, 2 0° and applying the ow to
them we obtain ponntsyy 2 Frr\ Q0. By choosing a suitable subsequence, we can
assum e that yx converges to a type Ipoint y which isnotF . Given > 0, there
isaT such that ( T;y) isatdistance lessthan =2 from A . For k large enough,

( T;vx) 2 Frrwillthen be atdistance lessthan from A . W e get a contradiction
to Lemm. The argum ents for Fy 17y and F i are sim ilar, due to C orollaries

and .
For Py and P, we need to m odify the argum ent. A ssum e there is a sequence
Xk 2 Py, \ P such that xx ! P, (II), but x, & Ny, for allk. By choosing
P? P asa snallenough ball, we can assume that ¥;f 0 n P ori= 2;3,
cf. the proofofLemm a . For k large enough, x¢ 2 P and applying the ow to
them we obtain points yx 2 Py, \ QP 0, By choosing a suitable subsequence, we
can assum e that yx converges to a type II point y which is notPl+ (IT). fy 2 F 11,
we can apply the sam e kind of reasoning as before, using P roposition @ to get a
contradiction to the consequences of Corollary |154. Ify 2 F 11 we get, by applying
the ow to the points yix, a sequence z, 2 Py converging to F . Applying the
ow again, as before, we get a contradiction. The Bianchi IX case is sin ilar usihg

C orollary . 2
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17. Uniform convergence to the attractor

Ifx constitutes initialdata to @)7@) at = 0, then wedenote the corresponding
solution , ( ;x) and so on.

P roposition 17.1. Let 2=3 < 2 and kBt K ke a compact set of Bianchi IX
initial data. Then NN ,N 3 converges uniform Iy to zero on K . That is, for all
> 0 there isa T such that

(N 1N 2N3)( ;%)
for all T and allx 2 K .
Proof. A ssum e that N 1N ,N 3 does not converge to zero uniform ly. Then there is
an > 0, a sequence g ! 1 and x¢x 2 K such that

(N 1NN 3) ( x i%x)

W em ay assum €, by choosing a convergent subsequence, that x, ! x ask ! 1 .
Because of the m onotonicity of W 1N ,N3)( ;x), we conclude that

N 1NN 3) (%)
for 2 [x;0]. Thus
(N 1NN 3)( ;X):kJ!jm1 N1NoN3) (%)
for all 0. W e have a contradiction. 2

Corollary 17.1. Let 2=3 < 2 and EtK e a compact set of Bianchi IX initial

data. Then for every > 0, there isa T such that
+ f+ 2 1+

forallx 2 K and T.

Proof. A s before. 2
Consider
d= + N Ny + NoN3+ N3Nq:

Proposition 17.2. LetK ke a com pact set of generic B ianchi IX initialdata with
2=3< < 2. Then d converges uniform Iy to zero on K .

Proof. A ssum e that d does not converge to zero uniform . Then thereisan > 0,
a sequence i ! 1 and a sequence xx 2 K such that

17.1) d(kixg)
W e now prove that there isno sequence s, such that x, s¢, 0and
d(sg, ixk,) ! 0:

A ssum ethere is. By Theorem [15.]], thereisno > Osuch thatmaxinum ofh ( ;¥ )
In [x, isk, ]exceeds foralln.For smallenough,we can apply Proposiijo
to the interval [k, ;sk, ] to conclude that for somen, cannotgrow In very much
n that intervaleither. W e obtain a contradiction to ) for anallenough and
n big enough.
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Thus there isan > 0 such that

d( %)
forall 2 [x;0]and allk.Assumexix ! x .Then
d( jx)= Im d( ;%) >0
k! 1

for all 0. But x constitutes generic nitialdata. 2

18. Existence of non-special -linit points on the Kasner circle

W e know that there isan -lin it point on the K asner circle, but in order to prove
curvature blow up we w ish to prove the existence of a non-gpecial -lim it point on
the K asner circle.

Lemm a 18.1. Consider a generic Bianchi IX solition with 2=3 < < 2. Ifit
has a specialpoint on the K asner circk as an -l it point then it has an in nite
num ber of -lim it points on the K asner circk.

Proof. By applying the sym m etries, we can assum e that there isan -lim it point

on the K asner circle with ( , ; )y = ( 1;0). Since the solution is not of Taub
type, ( +; ) cannot converge to ( 1;0) by Proposition @ T hus there is an
1> > 0 such that for each T there is a T such that 1+ () . Let
k! 1 besuch that , () ! 1.

Let > Osatisfy < .W ewish to prove that there is a non-special -lin it point
on the Kasner circle with 1 + . There is a sequence x such that
1+ , &) = and 9 () 0 assum ing k is large enough. The condition on

the derivative is possible to In pose due to the fact that 1 + , eventually has to
becom e greater than . Choosing a suitable subsequence of ftg, we get an —lin it
point which has to be a vacuum type I or IIpoint by Corollary |15 4. If it is of type
I, wegetan -limitpointon theKasnercirckewih 1+ , = and we are done.
The -im it point cannot have N; > 0, because of the condition on the derivative,
cf. the proof of P roposition @ If it is of type II with N, or N3 greater than
zero, we can apply the ow to get a type II solution, call it x, of -lim it points
to the original solution. Since a type IT solution with N, or N 3 greater than zero
satis es 9 < 0,the ' dm it point y of x musthave 1+ , < . By Proposition
@y 2 K, [ K3, so that it is non-special.

Let 0 < 1 < . Asabove, we can then construct a non-goecial -l it point x
on the Kasner circle with , coordinate ,; such that 1+ 1. Assume
we have constructed non-special —lin it points x; on the K asner circle, 1= 1;:5m
with , coordinates ., satisfying ;3 < 4+; 1. LetO0O< 41 < 1+ 4pq.
T hen by the above we can construct a non-special -l i pointxy, ;1 on theK asner
circle with , coordinate 4 p+1, satisfying 4+ m+1 <  + @ . Thus the solution
hasan In nite number of -Iim it points on the K asner circle. 2

Corollary 18.1. A generic Bianchi IX solution with 2=3 < < 2 hasat kast three
non-special —lim it points on the K asner circle. Furtherm ore, no N ; converges to
Zero.

Proof. Assume rst that the solution has a special -lim it point on the K asner
circle. By Lemma , the rst part of the lemma follows. By the proof of
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Lemma , there is a non-special -lin it point on the K asner circle with
coordinate arbitrarily close to 1, say that it belongs to K, . R epeated application
of P roposition @ then gives -lim it points rst in K 3, and after enough iterates,
either an -lim i point in K1, or a special -lim it point on the K asner circle w ith
+ = 1=2. If the lJatter case occurs, a sin ilar argum ent to the proof of Lemm a
yieldsan -lm it point on K;. By P roposition @, we conclide that there are
—lim it pointswith N, > 0,with N, > O and with N5 > 0.
A ssum e that there is no special -lim it point on the K asner circle. Repeated
application of the Kasner map yilds -lim it ponnts in K;, i = 1;2;3, and the
conclusions of the lemm a ollow as in the previous situation. 2

19. Conclusions

Let us st state the conclusions concerming the asym ptotics of solutions to the
equations of W ainw right and Hsu. W e begin with the sti uid case.

Theorem 19.1. Consider a solution to @I)—@) with = 2and > 0. Then
the solution converges to a type I point with f + 2 < 1. For the Bianchi types
other than I, we have the follow ing additional restrictions.

1. If the solution isoftype Twith N; > 0, then ., < 1=2.
2.Foratype VI or VIIj with N, and N 3 non- , then 3 > 1.
3. If the solutdon is of type VIII or IX, then . 3 > land , < 1=2.

Rem ark. Figure E illustrates the restriction on the shear variables. The types
depicted are I, I, VI and V Iy, and V IIT and IX , counting from top left to bottom
right.

Proof. T he theorem follow s from Proposiijons and @ 2

Consider now the case 2=3 < < 2. Let A Dbe the closure of the type II vacuum
points.

Theorem 19.2. Consider a genericBianchi IX solution x with 2=3< < 2. Then
it converges to the clbsure of the set of vacuum type IT points, that is

Iim infkx( ) vyk=0
Tl y2a

where k  k is the Euclidean norm on R. Furtherm ore, there are at kast three
non-special -lim it points on the K asner circle.

Rem ark. O ne can start out arbitrarily close to this set w ithout converging to it, cf.
P roposition .

Proof. The rstpart follow s from Corollary and the second part follow s from
C orollary . 2

P roof of T heorem s m and . Let M ;g) be the Lorentz m anifold obtained in
Lemma w ith topology I G . It is globally hyperbolic by Lemma.

If the initial data satisfy tryk = 0 for a developm ent not of type IX, then it is

causally geodesically com plete and satis es = 0 for the entire developm ent, by
Lemma and Lemma. The rst part of T heorem @ follow s.
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2 2
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-2 -2
-2 -1 0 1 2 -2 -1 0 1 2
bX z
+ +
2 2
1 1
w0 w0
-1 -1
-2 -2
-2 -1 0 1 2 -2 -1 0 1 2
z z
+ +

Figure 8. The points to which the shear variablesm ay converge
forasti ud.

Consider initialdata oftype I, I, VI, VI or VIII such thattryk € 0. By Leanma
and Lemm a,wem ay then tim e orient the developm ent so that it is future
causally geodesically com plete and past causally geodesically incom plete, and the
second part of T heorem @ follow s. T he third part ollow s from Lemm a.

Consider an nextendible future directed causalgeodesic in the above developm ent.
Since each hypersurface fvg G is a Cauchy hypersurface by Lemm a , the
causal curve exhausts the intervalT.

1. If the solution is not of type IX , then the solution to )7), which isused
In constructing the class A developm ent, corresoonds to a solution to @)7@),
because of Lemm a . Furthemore, t! t ocorresoonds to ! 1 , because of
Lemma .

a.In allthe sti uid cases, the solution to (E)—() converges to a non-vacuum
type I point by Theorem , so that Lemma and Lemma yield the
desired conclusions in that case.

b.TypeI ITand VI with 1 < 2. That the K retschm ann scalar is unbounded
n the cases stated in T heorem E follow s from P roposition @, P roposition @,

Proposjijon,Lenmaand and Lanma.

c. Non-vacuum solutions which are not of type IX . Then R R is unbounded

using Lemma.
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2. If the solution is of type IX , then halfofa solution to 21 .4 )—) corresponds
to a Bianchi IX solution to @)—@), because of Lemm a .By Lemma ,
t! t correspondsto ! 1.

a.In thesti uld case, we get the desired statem ent as before.

b. If1l < 2, we get the desired conclusions, conceming blow up of the
K retschm ann scalar, from C oro]]arym,Proposjijon , Lemm a and Lemm a
p2 3.

c. Nonvacuum solutions. Then R R is unbounded using Lemm a .

Letusnow prove that the developm ent is inextendible in the relevant cases. A ssum e
there is a connected Lorentz m anifold (MA ;§) of the sam e dim ension, and a m ap
i:M ! M whih isan isom etry onto its in age, with iM ) & M . Then there is
ap2M iM ) and a tinelke geodesic  : g;b] ! M such that (R;b)) i)
and (o) = p. Since ) can be considered to be a future or past inextendible
tin elke geodesic in M , either it has in nite length or a curvature invariant blow s
up along it, by the above argum ents. Both possibilities lead to a contradiction.
T heorem @ follow s. 2

20. A symptotically velocity term dominated behaviour near the
singularity

In this section, we consider the asym ptotic behaviour of BianchiV ITT and IX sti

uid solutions from another point of view . W e w ish to com pare our results w ith
E], a paper which dealsw ith analytic solutions of E instein ’s equations coupled to a
scalar edorasti uid.In [ZEl], Andersson and Rendall prove that given a certain
kind of solution to the so called velocity dom inated system , there isa unique solution
of E Instein’s equations coupled to a sti  uid approaching the velocity dom inated
solution asym ptotically. W e w illbem ore speci ¢ concerming the detailsbelow . The
question which arises is to what extent it is natural to assum e that a solution has
the asym ptotic behaviour they prescribe. W e show here that allBianchiV ITT and
X sti  uid solutions exhibit such asym ptotic behaviour.

Tn order to gpeak about velocity term dom inance, we need to have a foliation. In our
case, there is a natural foliation given by the spatial hypersurfaces of hom ogeneity.
Relative to this foliation, we can express the metric as in @1.14) according to
Lemma. In what ollow s, we w ill use the fram e e(i) appearing in Lemm a ,
and Latin indices w ill refer to this fram e. Let g be the R Jem annian m etric, and k
the second fundam ental form of the spatial hypersurfaces of hom ogeneity, so that

20.1) g5 = gelied) = a; % i

where g isas in ) . The constraint equations in our situation are

(202) R kyk+ (tk)? = 2

(20 3) rky ritk) = 0;

which are the sam e as ) and (1.4) regpectively. T he evolution equations are
(20.4) Cuaiy = 2kij

(20 5) @k = RY+ (kk':
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T he evolution equation for the m atter is
(20 .6) @ = 2(txk)

W e wish to com pare solutions to these equations w ith solutions to the so called
velocity dom inated system . This system also consists of constraints and evolution
equations, and we w illdenote the velocity dom inated solution w ith a left superscript
zero. T he constraints are

(20.7) %% + @@'k)? = 2°
(20 .8) or k) ‘riwefkx) = 0
T he evolution equations are

(209) e’qy = 2%y
(20.10) e’k = @'k)%kY;

and the m atter equation is
(20.11) e’ = 2i’k)°

W e raise and lower indices of the velocity dom inated system with the velociy
dom nated m etric. In E], Andersson and Rendall prove that given an analytic
solution to )—) on S (0;1 ) such that tr’k = 1, and such that the
eigenvaluesof t’k’; arepositive, there is a unique analytic solution to o) -go 9
asym ptotic, In a suitable sense, to the solution of the velocity dom inated system . In
fact, they prove this statem ent in a m ore general setting than the one given above.
W e have specialized to our situation. O bserve the condition on the eigenvalues of

tokij . Our goal is to prove that this is a natural condition in the BianchiV IIT
and IX cases.

Theorem 20.1. ConsideraBianchiVIITor IX sti uid developm entas in Lemm a
D14 with o > 0. Choose tim e coordinate so thatt = 0. Then there is a solution
to 0.7 )7() such that tr’k = 1, the eigenvalues of tokij are positive, and
the follow ing estim ates hod

i

1. Ogﬂglj = ij + O(t j)
2. %Y = %+ o 1)
3. =0 4oy,

where ij and 1 are positive realnum bers.
Rem ark. In E] tw o m ore estim ates occur. They are not included here as they are
replaced by equalities in our situation. O bserve that the di culties encountered in

E] conceming the non-diagonal term s of kij disappear in the present situation.

Proof. Below we willuse the results of Lemm a and its proof im plicitly. W hen
we gpeak of 35, ij, ,nyy and , wewillrefer to the solution of )7) and
the indices of these ob Fcts should not be understood in tem s of evaluation on a
fram e. Since i and so on are alldiagonal, we w ill som etim eswrite ; etc instead,
denoting diagonal com ponent i. T here are two relevant fram es: e(i) and e; = aie(i).
The latter fram e yields n;; through ). W hen we speak ofkij, R and so on,
we will alw ays refer to the fram e ). W e have
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(no summ ation on i). The m etric is given by @) above. Let us choose

0pi _ 0 i,
(20.12) k' = iy

et =0, 40,49 5 and

O%j = Oai 2 ij
(no summ ation on i). Because of ),equatjon ) w illbe satis ed sihce it is
a statem ent concerning the com m utation of °k*; and nj;. T he existence interval for
the solution to E Instein’s equations is (0;t, ) by our conventions, and since we w ish
to have t’k = 1 we need to de ne ° (t) = 1=t. O bserve that? i=0 is constant
In tin e, and that ;= convergesto a positive value ast! 0;this is a consequence
of Theoram |19.] and the de nition () of the variables , and . Choose ? ;
so that © ;= concides with the lim it of ;= . Sinilarly® =° 2 is constant, = 2
converges to a positive value, and we choose © = 2 to be the lim it. Since R= 2
is a polynom ial in the N ; and the N ; converge to zero by T heorem , equation
@0.}) willbe fil Iied. By our choices, Q0.10) and @Q011)) willalso be ful lied. W e
w ill specify the nitialvaluie of °a; later on, and then de ne %a; by dem anding that
) holds.
Ttw illbe of interest to estim ate term s ofthe form Rij= 2. T hese term sare quadratic
polynom ials in the N ;. By abuse of notation, we willwrite N;( ) when we wish
to evaluate N; In the W ainwright¥H su tin e ) and N ; (t) when we wish to
evalnate in the tin e used in this theorem . By T heorem , there isan > 0 and
a o such that

Ni( )] exp( )
for all 0. W e wish to rewrite this estin ate In term s of t. Let us begin w ith
©1.13). Shcewe can assume that g 3 for o weget
() expl 4C o)l (o);
so that for 1; 0 We get, using ),
Z
t) th)= Eds 43(0)(e><p[4( 0] exp@(1 o))
1
Letting ;1 goto 1 and observing thatt( 1 )= 0, cf. Lemma and Lemm a
, we get for som e constant ¢
et ot );
so that
Ni() exp( () Ct
for som e positive num ber . Consequently expressions such as Rij= 2 and R= 2

satisfy sin ilar bounds.

Letusnow prove the estin ates form ulated in the statem ent of the theorem . O bserve
that for t an allenough, we have
Z
t R .
=tk = ( [+ 1ds)
0
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since the singularity isat t= 0 and trk m ust becom e unbounded at the singularity,
cf. Lemmap24,p24and @1.19). Thuswe get

Z . R Z . R
(20 13) L —dsft [+ 1dsg "= o ' 1)
0 0

for some 1 > 0. In order to m ake the estim ates concerming kij, we need only
consider ; and ? ;. W e have

o

i R RY

i i 5
2

@ (

’|
-
|
)
[
|

w ith no summ ation on the i in R ii. T his com putation, together w ith the estim ates
above and the fact that ;= 0 ,=% converges to zero, yields the estin ate

I\
-

(20.14) - = oft?);
forsome , > 0. However,
0 0. 0 .0
(20.15) = == R
C om bining ), ) and {20.19), we get estin ate 2 of the theorem . Sin ilarly,
we have
0 2 R
@t(—2 ﬁ): @t_2: — ¢
Integrating, usig the fact that = 2 convergesto ° = 2, we get
0
(20.16) — —=o")
where 3> 0.Using
0 0 0 02 2
Z 02~ 2 ‘Yoz =2 7

©0.13) and 0.14), we get estin ate 3 of the theoram . F inally, we need to specify
the initialvalie of %a; and prove estin ate 1. Since

Gea; = i8i7

(no summ ation on i) and s ilarly for %a;, we get

aj ai o
@tO_ = (
ai

0a, i 1):

Byourestinateson’ ;  ;, we see that this in plies that a;="a; convergesast! 0.
Choose the value of %a; at one point in tin e so that this Iin it is 1. W e thus get,
using estin ate 2 of the theorem ,

aj i

1= of 73):
Oa; ( )
E stin ate 1 of the theorem now follow s from this estim ate and the fact that
04 2
0. i1 _ i i
g glj a; b

T he theorem follows. 2
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21. A ppendix

T he goalof this appendix is to relate the asym ptotic behaviour of solutions to the
ODE @)7@) to the behaviour of the spacetin e In the incom plete directions of
nextendible causal curves. W e proceed as follow s.

1. First, we form ulate E instein 's equationsas an O DE, assum ing that the space-
tim e has a given structure ). The rst formulation is due to E llis and
M acCalum . W e also relate this form ulation to the one by W ainw ight and
Hsu.

2. G iven initial data as in De nition @, we then show how to construct a
Lorentzm anifold as In ), satisfying E instein’s equations and w ith initial
data as speci ed, using the equations of E llisand M acC allum . W e also prove
som e properties of this developm ent such as G lobalhyperbolicity and answer
som e questions conceming causal geodesic com pleteness.

3. Finally, we relate the asym ptotic behaviour of solutions to @)—@) to the
question of curvature blow up in the developm ent obtained by the above
procedure.

W e consider a soecial class of spatially hom ogeneous four din ensional spacetin es
of the form

(21.1) Mg = (@ G; df+ 5o )

where I is an open interval, G is a Lie group of class A, ;5 is a an ooth positive
de nite m atrix and the ' are the duals of a keft invariant basis on G . The stress
energy tensor is assum ed to be given by

(212) T= df+plg+ df);

wherep= ( 1) .Below, Latin indices willbe raised and lowered by ;5.
Consider a four dimensional M ;g) as In ) wih G of class A. In order to
de ne the di erent variables, we specify a suitable orthonom albasis. Let eg = @
and e; = ai]Zj, +=1,2,3, be an orthonorm albasis, where a isa C! m atrix valued
function of t and the Z; are the duals of *.

By the follow ing argum ent, we can assum e that < r ¢ ej;e5 >= 0. Let them atrix
valied function A satisfy eg A ) + AB 0,A(0)= MwhereBjj =< r ¢ e1785 >
and Id is the 3 3 dentity m atrix. Then A is smooth and SO (3) valued and if
ef = A ey, then < reoeg;eg >= 0.

Let
(21 .3) X;Y)=<rxe Y >;

= ej;e)and k ;e 1= e where G reek indices run from 0 to 3. The
ob pcts and will be viewed as an ooth functions from I to som e suitable
R¥, and our variables w illbe de ned in term s of them .

Observe that [Z;:;e0]= 0. Thee; span the tangent space ofG , and < [gyjeil;ep > =

0. Weget o0 = o5 = 0 and symmetric. We also have 2 = 2 = 0 and

ij
0§ = i5-Weltnbede ned asin @)and
1

ij ij 3 ijr
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where we by abuse of notation have written tr( ) as
W e express E instein’s equations in termm s of n, and . The Jacobi dentities for
e vyild

1
21.4) e (i3)  2n,; 4 + = ng = O:

w

T he 0i-com ponents of the E Instein equations are equivalent to
(21.5) -lkl’lkj n-k ki = 0:

1

Letting by = 2niknkj trn)ni; and si; = by
ij equations are

%tr(b) ij, the trace free part of the

(@1.6) e (5)+ 45+ si5=0:

T he 00-com ponent yields the R aychaudhuriequation

001
(21.7) e ( )+ ij I+ 5(3 2) =0;
and using this together w ith the trace of the ij-equations yields a constraint
iy - 2
(21.8) 5 T+ (yn? 5tr(n)z)+ 2 =3 o

E quations )—) are gpecial cases of equations given in E 1lisand M acC allum
. Ata point ty, wem ay diagonalizen and  sinultaneously since they com m ute
). Rotating e by the corresponding elm ent of SO (3) yields upon going
through the de nitions that the new n and are diagonalat ty. Collect the o —
diagonalterm s of n and  in one vector v. By ) and ),therejsatime
dependent m atrix C such thatv= Cv so thatv(t) = 0 forallt, shee v(p) = 0.
Since the rotation was tin e independent, < r ¢,ei;e5 > = 0 holds In the new basis.

The fact that T is divergence free yields
@1.9) e ( )+ = 0:

Introduce, as In W ainw right and H su @],

ij =  i3=—

and de ne a new tim e coordinate , independent of tin e orientation, satisfying

dt 3
(21.10) — = -

d
For Bianchi IX developm ents, we only consider the part of spacetin e where  is

strictly positive or strictly negative. Let
p

(21.11) = 5( 22+ 33) and =

Ifwe et N ; be the diagonalelem ents of N 5, equations ) and ) tum into
@) w ith de nitions as in (@), except for the expression for °. It can however
be derived from 1Jd). The constraint £1.4) tums into €3). The Raychaudhuri
equation ) takes the form

21.12) °— 1+ q

( 22 33):

N
[
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Before using the equations of E llis and M acC allum to construct a developm ent, it
is convenient to know that one can m ake som e sin plifying assum ptions concerming
the choice of basis. The next lemma ful 1Is this obfctive, and also proves the
classi cation of the class A Lie algebrasm entioned in the introduction.

Lemma 21.1. Table constitutes a classi cation ofthe classA Lie algebras. Con-—
sider an arbitrary lkasis feijg of the Lie algebra. Then by applying an orthogonal
m atrix to i, we can construct a kasis felg such that the corresponding n® de ned
by @) is diagonal, with diagonal elem ents of one of the types given in Tabk [.

Proof. Let e; be a basis for the Lie algebra and n be de ned as in (m). Ifwe
change the basis according to €] = & '),”e;, then n transform s to

(21.13) n’= deta) 'Atna

Since n is symm etric, we assum e from here on that the basis is such that it is
diagonal. The matrix A = diag( 1 1) changes the sign of n. A suitable
orthogonalm atrix perform seven perm utations of the diagonal. T he num ber ofnon-
zero elem ents on the diagonal is invariant under transform ations ) taking one
diagonalm atrix to another. IfA = (ajj) ai:’)ld the diagonalm atrix n° is constructed
as in @113), we have n), = (detA) * i: L a4 ni, so that if all the diagonal
elem ents of n have the sam e sign, the sam e is true ©r n’. The statem ents of the
lemma follow . 2

W e now prove that if we begin with initial data as in De nition E, we get a
developm ent as in De nition @ of the form (R1.l), w ith certain properties.

Lemma 21.2. Fix2=3< 2.LetG; g; kand o be initHaldata asin De nition
@. Then there is an orthonomrm al kasis e(i) i= 1;2;3 of the Lie algebra such that
n{; de ned by (1.]) and ky; = k (€};e}) are diagonaland nf; is of one of the form s
given in Tabk [, Tet

©0)= tgk; 50)= k(e(i);eg) + % 0) 155 ni50) = 1'1(1)j and (©0)= o:
Sole (121.4), d21.6|), (I21.1) and () w ith these conditions as initialdata to obtain
n; ; and , and ket I ke the corresponding existence interval. Then there are
an ooth functionsa; :I! (0;1 ) i= 1;2;3, with a;(0) = 1, such that

X3
(21.14) g= d+ a ot &

1

i=1
where 1 is the dualofeg, satis es E instein’s equations @) onM =1 G,with
T as in )withu=e0, as alove and p= ( 1) . Furthem ore,

1

< Te€i&y>= ij+§ iy

where r is the Levi-C vita connection ofg and e; = aieg, ifwe consider the keft hand
side to ke a function oft. C onsequently, the induced m etric and second fundam ental
form on fO0g G are g and k, and we have a developm ent satisfying the conditions

of De nition .

Proof. Let eg, i= 1;2;3 be a lkft invariant orthonom albasis. W e can assum e
the corresponding n° to be of one of the form s given in Tab]eﬂ by Lemm a .
The content of @) is that ky; = k(eQ;eg) and n are to commute. We may

1
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thus also assum e k;5 to be diagonalw ithout changing the earlier conditions of the
construction. If we let n(0) = nO, ) = gk, 130) = kiy + 15=3 and
0)= ¢, then ) is the sam e as ). Letn, , and satisfy ), ),
©1.1) and ) w ith Initial values as speci ed above. Since ) is satis ed at
0, it is satis ed for all tim es. For reasons given in connection w ith ), n and
w ill rem ain diagonal so that {21.3) will aways hold. Let n; and ; denote the
diagonalelem ents of n and respectively.

How are we to de ne the a; In the statem ent of the Jemm a? T he r obtained from
e; by ) should coincide with n. This leads us to the follow Ing de nitions. Let
£50)= 1and £=f; = 2 ; =3.Leta = ( jif;)'™? and de ne e; = a;e?. Then
n associated to e; equals n. W e com plkte the basis by lktting ¢y = @.. De ne
a metric < ;> oM by demanding e to be orthonomm al with e, tin elke
and e; spacelike, and ket r be the associated Levi€ vita connection. Com pute

< Tegeye;>=0.If"X;¥Y)=<rxey Y >and”™ = "(e;e ), then o= Ty =
“0i = 0. Furthem ore,
1 ~
a—jeo @) 5= i
(no summ ation over j) so that ™5 isdiagonaland tr™ = . Finally,
~ o= NH+ l p— L.
i = it 3 = it

The lemm a follow s by considering the derivation of the equations of E llis and M ac-
Calum . 2

D e nition 21.1. A developm ent as In Lemma willbe called a class A devel-
opm ent. W e will also assign a type to such a developm ent according to the type of
the initialdata.

T he next thing to prove is that each M , = fvg G isa Cauchy surface, but st
weneed a lemm a.

Lemma 21.3. Let kea kft invariantR iem annian m etricon a Lie group G . Then
is geodesically com pkte.

Proof. Assume :(t ;t,)! G isa geodesic satisfying (% 9= 1,witht < 1.
Thereisa > 0 such thatevery geodesic satisfying (0) = e, the identity elem ent

ofG,and °0)= vwih (v;v) lisdenedon ( ; ).IfL, :G ! G isde ned
by Ly (h1) = hhy, then Ly is by de nition an isometry. Let tp 2 (¢ ;t. ) satisfy
t b =2.Letv 2 T.G be the vector correspondingto °(ty) under the isom etry
L (,)-Let beageodesicwith (0)= eand °0)= v.Thenl ,, isa geodesic

extending .2
Let us be precise concerming the concept C auchy surface.

D e nition 21.2. Consider a tin e oriented Lorentzm anifold M ;g). Let I be an
ntervallnR and :I! M bea contihuousm ap which is am ooth except fora nite
num ber of points. W e say that  is a future directed causal, tin elike or null curve if
ateach t2 I where isdi erentiable, °(t) is a firture oriented causal, tin elike or
null vector respectively. W e de ne past directed curves sin ilarly. A causal curve is
a curve w hich iseither a future directed causalcurve or a past directed causalcurve
and sim ilarly for tim elke and null curves. Ifthere isa curve :I; ! M such that
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(I) is properly contained in (&), then is said to be extendible, otherw ise it is
called inextendible. A subset S M is called a Cauchy surface if it is intersected
exactly once by every nextendible causalcurve. A Lorentzm anifold asabove w hich
adm its a C auchy surface is said to be G blally hyperlolic.

Lemma 21.4. ForachssA development, eachM , = fvg G isa Cauchy surface.

Proof. The m etric is given by ). A causal curve cannot intersect M , tw ice
since the t—com ponent of such a curve must be strictly m onotone. A ssum e that

:(s ;s ) ! M isan inextendilble causal curve that never intersects M . Let
t:M ! Ibede nedby tl(s;h)]= s.Letsy 2 (s ;s; ) and assumethat ®( ()) =
ty < vand that < %@ >< 0 where i isde ned. Thus t( (s)) increaseswith s
and ®( ([g;s:))) iz ;v]. Since we have uniform bounds on a; from below and
above on [y ;v] and the curve is causal, we get

X3
(21.15) ( T 092yi=2 Cc < %e >
i=1

on that interval, with C > 0. Since

Z S Z S
+ O + dt
(21 .106) < ;> ds=
ds

Sg So

ds v t;

the curve jg ;6. ), Profcted to G, willhave nite length in the metric on G
de ned by m aking eg an orthonom al basis. Since  is a left invariant m etric on
a Lie group, i is com plete by Lemm a [21 .4, and sets closed and bounded in the
corresponding topologicalm etricm ust be com pact. A dding the above observations,
we conclude that ([g;s: )) is contained in a com pact set, and thus there is a
sequence sy 2 [spjsy ) wih s ! s,y such that (s) converges. Since €( (s)) is
m onotone and bounded it converges. U sing ) and an analogue of ),
we conclude that has to converge as s ! s . Consequently, is extendible
contradicting our assum ption. By this and sin ilar argum ents covering the other
cases, we conclude that M , isa Cauchy surface oreach v2 (t ;t, ). 2

Before we tum to the questions conceming causal geodesic com pleteness, let us
consider the evolution of for solutions to the equations of E 1lis and M acC allum .
T his is relevant also for the de nition of the variables of W ainw right and H su, since
there onedividesby .W e rst consider developm entsasin Lemm a which are
not of type IX .

Lemm a 21.5. Consider class A developm ents which are not of type IX . Let the
existence intervalle I = (t ;t, ). Then there are two possibilities.

1. & 0 for the entire developm ent. W e then tim e orient the m anifold so that
> 0. W ith this time orientation, &t = 1 .

2. =0, 3= 0and = 0 for the entire developm ent. Furthem ore, ni; is
constant and diagonal and two of the diagonal com ponents are equal and the
third is zero. T he only B ianchi types which adm it this possibility are thus type
Tand type VIIy. Furthermore I= ( 1 ;1 ).
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Proof. Since nj; is diagonal, see the proof of Leamm a , we can form ulate the
constraint (21.9) as
g, 1.2 2 2,
1 +§ﬁ11+ (nz n3)® 2n; M2+ n3)l+ 2 =3

w here the n; are the diagonalcom ponents ofn;;. C onsidering Table ﬂ, we see that,
excepting type IX , the expression In the n; isalwaysnon-negative. Thuswe deduce
the nequality

y 2
(21.17) i3 H+2 Z 2,

3

Combiing it with @1.]), we get & ( )j 2, using the fact that 2=3 < 2.
Consequently, if is zero once, it is always zero. T ine ordent the developm ents
wih 6 O0sothat > O.

Consider the possibility = 0. Equation ) then mplies ;5= 0and = O,
sihce > 2=3. Equations ) and [214) then imply ky = 0, and ) n plies
ni; constant. A 1l the statem ents except the the fact thatt, = 1 inthe > 0 case
follow from the above.

O bserve that  decreases In m agnitude w ith tine, so that it is bounded to the
future. By the ), the same istrue of i3 and . Using ), we get control
ofn;; and conclude that the solution m ay not blow up in nite tin e. W em ust thus
havet, =1 .2

By a theorem ofLin and W ald @], B ianchi IX developm ents recollapse.

Lemm a 21.6. Consider a Bianchi IX class A developm ent with 1 2 and
I= (t ;). Thenthereisaty2 Isuchthat > O0in (t ;tp) and < O0in (B;t ).

Proof. Let us begih by proving that can be zero at most once. If (¢) = O,
i= 1;2and < tp,then = 0 i (§;t) sihce it is m onotone by {21.]). Thus
@1.]) inplies 5= 0= i (4;t) aswell Combining this fact with @1.4) and
1m ), we getby; = 0, which is inpossible for a Bianchi IX solution. Assume is
never zero. By a suitable choice of tin e orientation, we can assum e that > 0 on
I.Letusprovethatt, = 1 .Sihce isdecreasingon k = [0;t; ) and non-negative
on I i isbounded on I;. By ), ninyns3 decreases so that it is bounded on I; .
By an argum ent sim ilar to the proof of Lemm a @, one can com bine this bound
w ith ) to conclude that i and arebounded on I . By ), we conclude
that nj; cannot grow faster than exponentially. C onsequently, the fiture existence
Intervalmustbe in nite, thatist, = 1 , since I wasthem axin alexistence interval
and solutions cannot blow up in nite time. In order to use the argum ents of Lin

and W ald, we de ne
z t z t

1
iD= i(s)ds+ {; (= = (s)ds+ o;
0 0o 3
0 P 0
where 2 0=Inm;0)and _,; ;= 0.Then
n;= exp@ ; ):
Let = =8 and P; = p=8 = ( 1) =8 , 1= 1;2;3. Equations ) and

£1.]) then i ply equations (1.4) and (15) of [L4], and equations (16) and (1.7)
of [L4] ollow from @1.4). W e have thus constructed a solution to (1.4)—(1.7) of
@] on an Interval 0;1 ) wih d =dt> 0. L1 and W ald prove in their paper @]
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that this assum ption leads to a contradiction, if one assum es that P;j and
P11+ P, + P53 0. However, these conditions are fi1l lled In our situation, assum ing
1 2. In other words, there is a zero and since  is decreasing it must be
positive before the zero and negative after it. The lemm a ollow s. 2

The lemm a conceming causal geodesic com pleteness w ill build on the follow ing
estin ate.

Lemm a 21.7. Consider a class A development. Let  :(s ;s;) ! M ke a future
directed inextendible causal gecdesic, and

©1.18) £ ) =< %s)e j > ¢
If = 0 for the entire developm ent, then £ g constant. O therw ise,
21.19) 4d (o ) 2z 2£2:

ds 3

Rem ark. W e consider functions of t as functions of s by evaluating them at €( (s)),
w here ¢ is the function de ned in Lemma.

Proof. C om pute, using the proof of Lemm a ,

3
dfo X
£:< O(S);r O(S)eo > = kf}f;
k=1
where  arethediagonalelmentsof i;.If = 0 for the entire developm ent, then
x = 0 for the entire developm ent by Lemm a and Lemm a , so that fy is
constant. C om pute, using R aychaudhuri’s equation ),
3 3 3
d 1, X 2 X 2 2 X 2 Lo 1 2
d_s(fo ):g fk+ kfk+f0 k+§ f0+§(3 2)f0
k=1 k=1 k=1
where i are the diagonalelem ents of ;;. Estimate
!

%3 1=2 ¥3 T2

: ) 2
i k] 3 : £;
k=1 k=1 k=1

using the tracelessnessof ;5. By m aking a division into the three cases | _, ]f
2=3, °=3 i: 1 ]f 2 ?=3and 2 °=3 i: 1 }f, and using the causality of

we deduce 21.19). 2

Lemm a 21.8. Consider a classA developm entw ith existence intervalI = (£ ;t. ).
T here are three possibilities.

1. = 0 for the entire developm ent, in which case the developm ent is causally
gecdesically com plkte.

2. The develbpm ent is not of type IX and > 0. Then all inextendibke causal
gecdesics are future com pkte and past incom pkte. Furthermore, t > 1
and t, =1 .

3. If the developm ent is of type IX with 1 2, then all inextendiblke causal
gecdesics are pastand future incom pkte. W ealsohavet > 1 andt, < 1 .

Proof. Let :(s ;s:) ! M be a future directed Inextendible causalgeodesic and
f bede ned asin @1.19). Let furthemore I = (t ;t, ) be the existence nterval
mentioned in Lemma 1 4. Sihce every M , v 2 I is a Cauchy surface by Lemm a
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, t( (s)) must cover the Interval I as s runs through (s ;s; ). Furthem ore,
( (s)) ism onotone increasing so that
(21 20) t( (s))! t ass! s
Letsg 2 (s ;sy ) and com pute

Z S
(21.21) fo)du= &( (s)) Tl (9)):

So

Considerthecase = 0 forthe entire developm ent. By Lemm a[21.], & isthen con—
stant,and I= ( 1 ;1 )by Lemma. E quations ) and @1 2(0) then prove
that we must have (s ;s ) = ( 1 ;1 ). Thus, all nextendible causal geodesics
m ust be com plete.

A ssum e that the developm ent isnot oftype IX and that > 0. Sincefy isnegative
on [sp;s: ), s absolute value is bounded on that interval by ). Ifs, were
nite, would be bounded from below by a positive constant on [g;s: ), sihce
45 85? c
J@ J 0
on that interval for some C > 0, cf. ) and the observations follow ing that
equation. Since f; is bounded, we then deduce that fj is bounded on [sp;s;: ).
But then £12() and @L21) cannot both hold, since t, = 1 by Lemma P1J.
Thus, s; = 1 and all inextenddble causal geodesics m ust fiture com plete. Since
fo is negative on (s ;s: ), ) proves that this expression must blow up In
nite stin e going backward, so thats > 1 . Since the curve (s)= (s;e) isan
nextendible tin elikke geodesic, we conclude thatt > 1 .

Consider the BianchiIX case.By Lemma P1.4 and ,we conclude the existence
ofan sp 2 (s ;s; ) such that f3 isnegative on (s ;5p) and positive on (Sp;S+ ).
By ),fo must blow up a nite stin e before 55, and a nite stim e after s¢.
E very nextendible causalgeodesic is thus fiiture and past lncom plete. W e conclude
t > 1 andt <1 .2

22. A ppendix

In this appendix, we consider the curvature expressions. A ccording to @], p. 40,
the W eyltensor C isde ned by
1
R =C TRy 9rRy) 3R gy

wherethebarin g and so on Indicates that we are dealing w ith spacetin e ob Fcts
as opposed to obects on a spatial hypersurface. U sing this relation and the fact
that our spacetin e satis es @), where T isgiven by (@) and @), one can derive
the follow ing expression for the K retschm ann scalar

(22.1) =R R =C C + 2R R

|
)
Il

1
=C c +5[4+(3 2¥] %:

H ow ever, according to @], p. 19, we have
(22.2) C C =8E E H H );
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w here, relative to the framee appearing in Lemm a , all com ponents of E and
H involving ey are zero, and the ij com ponents are given by

1 1
k k1
Ey = = 5 (i x3 =z x1 ij) + Sij
J 3 J i J 3 ] J
k k1 1y A
H i = 3 (inj)k + Nk1 i+ El’l x ijrs

w here si5 is the sam e expression that appears in ), e p. 40 of @]. O bserve
that in our situation, E and H are diagonal, since we are interested in the devel-
opm ents obtained in Lemm a . It is natural to nom alize E'j; = E 5= 2 and
sin ilarly for H . W e w ill denote the diagonal com ponents of E'jj by E;. W e want

to have expressions in  , , and so on, and therefore we com pute
1
Hy = N; ++19—§(Nz N 3)
1 - 1 1
H, = —No(,++ 3 )+ -(N3z Np)( 4 P= )
2 2 3
2
E, E3 = gp—g @ 2 )+ Wy, N3)W2+ N3 Nj)
E,+ E; = 2 a+ ) 2 2 2N2+1(N N)2+1N(N+N)'
2 3 = 9 + + 9 3 1 3 2 3 3 1 2 37/

O bserve that all other com ponents ofE; and H'; can be com puted from this, askE i;
and H j; are both traceless.

Tt is convenient to de ne the nom alized K retschm ann scalar

2223) ~=R R =":

T he latter ob fct can be expressed as a polynom ial in the variables of W ainw right
and Hsu. By the above observations and the fact that = 3 = 2, we have

~= 8[§(E“ +E3) }(E." E3)? 207 2HZ  2H H,]+ i[4+ 3 2¢]1 %

2 2 3 2 2 3 1 2 12 27 .
Wewillassociatea andaR R to a solution to @)7@) n the follow ing
way. Since = ? can be expressed in tem s of the variables of W ainw right and
Hsu, i is naturalto de ne by this expression multiplied by ¢, where obeys
©1.13). There is of course an am biguity as to the initialvalie of , butwe are only
Interested In the asym ptotics, and any non-zero value w illyield the sam e conclusion.
W eassociate R R to a solution sim ilarly.

Lemm a 22.1. The nom alized K retschm ann scalar ) is non—zero at the xed
points F ; Pf (IT), at the non—-special points on the K asner circl, and at the type I
sti uld pointswith > 0. Consequently

(22.4) Im supj ( )j=1
[
for all solutions to (@)—(@) which have one such point as an —lim it point.

Proof. T he statem ent conceming the nomm alized K retschm ann scalar is a com pu—
tation. E quation ) is a consequence of this com putation, the fact that = ~ ¢
and the factthat ! 1 as ! 1 ,cft |211R). 2

For som e non-vacuum Taub type solutionsw ith 2=3 < < 2, the Pllow Ing lemm a
is needed.
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Lemma 22.2. Consider a solution to @)—@) with > 0 and 2=3 < < 2
such that

(22.5) ]ijl (+7 )= ( 1;0):
T hen
!]jml (=1
Proof.ByProposjtjon@,the solution m ust satisfy = 0and N, = N3.Obsarve

that because of ), wehave ! 0,shce decaysexponentially for 2 large,
cf. the proof of Lemm a . Consequently, g ! 2. One can then prove that for
any > 0,thereisa T such that

(22 0) expl@ + ) 1 () expl@a ) ]
(22.7) exp[6+ ) 1 N( ) expl® ) ]
(22.8) exp[6+ ) ] MNNz+ N3)() expl® ) ]
(22.9) expl( 6+ ) 1 () expl( 6 )]
for all T,wherea = 3(2 ). However, the constraint can be w ritten
@ @+ )= + NZ IN @, 4N
4 2

By @ )*), w il dom inate the right hand side, since it is non-zero. Since
1 + convergesto 2, 1+ . willconsequently have to be positive and of the order
ofm agnitude . In particular, forevery > 0 thereisa T such that

(22.10) expl@a + ) 1 @1+ +)() explla )]

O bserve that since a < 4, 2and 1+ ) ? both diverge to in nity as !
1,by 24, €29) and @21d). O ther expressions of interest are N; * and
N1 Mo+ N3) 2. Theestin ates 1@ )—) do not yield any conclisions conceming
w hether they are bounded or not. H ow ever, using ), we have
Z o
Ni()?()=N10) “O)expl @+ q+ 4 ,)ds]=

ZO
=N:(0) *O)expl Q@A+ )+ =@ 2) +2 1+ 4))dsk

which is bounded since all the term s appearing in the Integral are Integrable by
©24) and @2.1d). A sinilar argum ent yields the sam e conclusion concerning
N;(N,+ Nj3) 2.
Since the solution is of Taub type, we have H; = N1 , and H, = H3 = H=2.
W e also have E', = E'3 and
2Ei= 2 L (4 L) SNEe INL0,+ N
9 3 3

Consequently theE eld blowsup and theH eld rem ainsbounded, and the lemm a
follow s. 2

Finally, we observe that R R becom es unbounded in the m atter case.
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Lemm a 22.3. Consider a solution to (@)—) wih > 0. Then
I]jm1 R R =1 :

Remark. How to associate R R to a solution of )—) is clari ed In the
rem arks preceding the statementofLemma.

Proof. W e have

R R = “+3p°= [L+ 3( 1)2]2=%[1+3< 7] % %
But by @) and ),wehave
Z
()= 20 *Oexp( ( 4g+ 2@  2)+ 4+ 4qg)ds) =

and the lemm a follow s. 2

Lemm a 22.4. Consider a class A develbbpment, notof type X, with I = (£ ;t, )
and > 0. Then the corresponding solution to the equations of W ainwright and
Hsu has existence intervalR, and t ! t corresponds to ! 1.

Proof. The function hasto convergeto in niy ast! t forthe follow ing reason.
Assum e i doesnot. As ism onotone decreasing, we can assum e it to be bounded

on (t ;0]. By the constraint ij and are then bounded on (t ;0], so that
P14

the sam e will be true of ni; by ) and the fact that t > 1 . But then one
can extend the solution beyond t , contradicting the fact that I is the m axin al
existence interval. By 21.]), ! Oast! 1 = § . Equation )de nes a
dieomorphism ~ :(t ;) ! ( ; +), and we get a solution to the equations of
Wahwright and Hsuon ( ; 4 ). By ), we conclude that the statem ent of

the lemm a holds. 2

Lemm a 22.5. Consider a Bianchi IX chss A developmentwith I = (t ;t ) and
1 Z.AooordjngtoLemma,thereisathIsuchthat >0inI =
t ;h)and < 0inI = (H;t ). The solution to the equations of W ainwright and
H su corresponding to the interval I  has existence interval ( 11 ; ),and t! t
corresponds to ! 1. Similrly, T oorresponds to (1 ; +) with t ! t
corresponding to ! 1.

Proof. Let us relate the di erent tin e coordinates onRI . A ccording to equation
©1.1Q), hasto satisfy dt=d = 3= .Dene ~ (t) = ttl (s)=3ds, where § 2 I
Then ~ :I ! ~ (I ) isa dieomorphism and strictly m onotoneon I . Since is

positive in T , ~ Increasesw ith t.

Since  is continuous beyond t3, it is clear that ~ (t) ! 2R ast! t.To prove

that t! t oorresponds to ! 1 , wem ake the ollow iIng observation. O ne of
the expressions and d =dt is unbounded on (t ;t; ], since if both were bounded

the sam e would be true of i3, and nyj by ) and ) respectively. T hen

we would be abl to extend the solution beyond t , contradicting the fact that T

is the m axin al existence interval (Observe thatt > 1 by Lemma ). If ~

were bounded from below on I , then and ° would be bounded on ~ ((t Hel)]

by Lenm a @, and thus and d =dtwould be bounded on (t ;y]. Thust! t
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corresponds to ! 1 . Sin ilar argum ents yield the sam e conclusion concerming

I, .2
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