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Abstract
Bianchi VIII vacuum solutions to Einstein’s equations are causally geodesically
complete to the future, given an appropriate time orientation, and the objective
of this paper is to analyse the asymptotic behaviour of solutions in this time
direction. For the Bianchi class A spacetimes, there is a formulation of the
field equations that was presented in an article by Wainwright and Hsu, and we
will analyse the asymptotic behaviour of solutions in these variables. We also
try to give the analytic results a geometric interpretation by analysing how a
normalized version of the Riemannian metric on the spatial hypersurfaces of
homogeneity evolves.

PACS numbers: 0420, 0440

1. Introduction

Let us begin by defining what we mean by Bianchi class A spacetimes. We do this by defining
the concept of class A vacuum initial data. Let us introduce some terminology. Let G be
a three-dimensional Lie group, ei , i = 1, 2, 3 be a basis of the Lie algebra with structure
constants determined by [ei, ej ] = γ kij ek . If γ kik = 0, then the Lie algebra and Lie group are
said to be of class A and

γ kij = εijmn
km (1)

where the symmetric matrix nij is given by

nij = 1
2γ

(i
kl ε

j)kl . (2)

Definition 1.1. Class A vacuum initial data for Einstein’s equations consist of the following. A
Lie groupG of class A, a left invariant metric g onG and a left invariant symmetric covariant
2-tensor k on G satisfying

Rg − kij kij + (trg k)
2 = 0 (3)
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Table 1. Bianchi class A.

Type n1 n2 n3

I 0 0 0

II + 0 0

VI0 0 + −
VII0 0 + +

VIII − + +

IX + + +

and

∇i trg k − ∇j kij = 0 (4)

where ∇ is the Levi-Civita connection of g and Rg is the corresponding scalar curvature,
indices are raised and lowered by g.

Consider class A vacuum initial data. We can choose a left invariant orthonormal basis {ei}
with respect to g so that the corresponding matrix nij defined in (2) is diagonal with diagonal
elements n1, n2 and n3. By an appropriate choice of orthonormal basis n1, n2, n3 can be
assumed to belong to one and only one of the types given in table 1. We assign a Bianchi
type to the initial data accordingly. This division constitutes a classification of the class A Lie
algebras, see lemma 3.1.

We can divide the initial data into three classes.

(a) Bianchi IX initial data. In this case the maximal globally hyperbolic development of the
initial data is future and past causally geodesically incomplete. It expands for a certain
period of time, reaches a moment of maximal expansion and then recollapses.

(b) Bianchi I and VII0 initial data with trg k = 0. The corresponding developments are
causally geodesically complete.

(c) The remaining types of initial data. With a suitable time orientation such data evolve into
a future causally geodesically complete spacetime expanding forever into the future. The
development is, however, past causally geodesically incomplete.

In this paper we are interested in the third class of initial data.
There is a formulation of Einstein’s equations due to Ellis and MacCallum [1] covering,

among other things, the Bianchi class A spacetimes. In an article by Wainwright and Hsu [2],
a normalized version of the corresponding variables together with a different time coordinate
were introduced. The main part of this paper consists of an analysis of the asymptotic behaviour
of these variables (see section 2 for a description). Our main interest is in Bianchi VIII, but
we also consider the other Bianchi class A spacetimes in the third class as above. The Bianchi
I, II and VI0 cases are quickly handled, and are included for completeness, but it takes some
time to analyse the asymptotics of Bianchi VII0. The main result stated in the variables of
Wainwright and Hsu is the following.

Theorem 1.1. Consider a Bianchi VII0 solution to (5)–(7) with N2, N3 > 0 which never
satisfies N2 = N3 and �− = 0 simultaneously. Then

lim
τ→∞(�+, �−) = (−1, 0) and lim

τ→∞N2 = lim
τ→∞N3 = n0

where ∞ > n0 > 0.
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The statement follows from propositions 7.2 and 7.3. The condition N2, N3 > 0 can be
assumed without loss of generality, but demanding that N2 = N3 and �− = 0 never be
satisfied simultaneously excludes a simple subcase, see proposition 7.1. Observe that the line
N2 = N3 > 0, N1 = 0, �+ = −1 and �− = 0 represents spacetimes that are isometric to
a part of Minkowski spacetime. Thus the solution asymptotically approaches Minkowski in
some sense. In particular, the conditionsN2 = N3 and�− = 0 represents solutions which are
locally rotationally symmetric, and since these conditions are satisfied in the limit, the solutions
in some sense seem to become ‘more symmetric’ asymptotically. Finally, let us observe that
Bianchi VII0 perfect fluids have been considered in [3].

Bianchi VIII is dealt with definitively, in the sense that it is proven to what the variables
of Wainwright and Hsu converge.

Theorem 1.2. Let (�+, �−, N1, N2, N3) be a Bianchi VIII solution to (5)–(7) with N1 < 0
and N2, N3 > 0. Then

lim
τ→∞N1 = 0, lim

τ→∞N2 = ∞, lim
τ→∞N3 = ∞.

Furthermore,

lim
τ→∞�+ = 1

2 , lim
τ→∞�− = 0

and

lim
τ→∞N1(N2 +N3) = − 1

2 , lim
τ→∞(N2 −N3) = 0.

The proof of this theorem occupies a large part of the article, and the last step is to be found
at the end of section 8. Observe again that N2 − N3 → 0 and �− → 0, so that the solution
in some sense becomes locally rotationally symmetric asymptotically. Finally, let us note that
in certain situations knowing the asymptotic behaviour of the Wainwright–Hsu variables may
be insufficient. It is conceivable that if one is interested in computing curvature invariants for
instance, one has to consider expressions of the form N2

2 − N2
3 , concerning which the result

above says nothing.
Let us also mention that even though it does not require much time to sort out the

asymptotics for Bianchi VI0, the results yield an interesting consequence. In fact, one reaches
the conclusion that Bianchi VIII is very different from Bianchi IX as far as the behaviour
towards the singularity is concerned. In [4] it was proven that generic Bianchi IX solutions
converge to an attractor, where by the attractor, we mean the set of vacuum type I and II points,
and the generic points are obtained by subtracting a finite number of positive codimension
submanifolds from the manifold of Bianchi type IX points. It was also proven that for generic
Bianchi IX solutions, the convergence to the attractor is almost monotonic in the following
sense. Given an ε > 0, there is a δ > 0 such that if x constitutes Bianchi IX initial data closer
to the attractor than δ, then applying the flow to x in the past time direction will not result in
points further away from the attractor than ε. By distance, here we mean the ordinary Euclidean
distance in the Wainwright–Hsu variables in R

6, the relevant space in the Bianchi IX matter
case. This result, together with the result that generic Bianchi IX solutions have an α-limit
point on the Kasner circle, yield the conclusion that generic solutions converge to the attractor.
The almost monotonic convergence constitutes the most difficult step. In proposition 6.2, we
prove that the corresponding statement for Bianchi VIII is not true. In fact, we prove that there
is a fixed number η > 0, such that for any ε > 0 we can find Bianchi VIII initial data closer to
the Kasner circle than ε which will at one point to the past be at a distance further than η away
from the attractor. This does not of course prove that Bianchi VIII solutions may not converge
to the attractor, but it does imply that the main part of the argument concerning Bianchi IX
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presented in [4] is of no help in proving convergence to the attractor, and that a completely
different method is required, assuming one still believes that generic Bianchi VIII solutions
converge to the attractor towards the singularity.

Let us try to explain the argument concerning the future asymptotics of a Bianchi VIII
solution with N1 < 0 and N2, N3 > 0. By a monotonicity argument, one can prove that
N1 → 0 and N2, N3 → ∞ as τ → ∞. This is a very important observation in that it
introduces a natural concept of order of magnitude; powers ofN2 +N3. Writing the constraint
as

�2
+ +�2

− + 3
4 [N2

1 + (N2 −N3)
2 − 2N1(N2 +N3)] = 1,

we conclude that all the terms involved are bounded since they are all non-negative. The
derivatives of �+ and N1(N2 + N3) are bounded by constants independent of the initial data,
but we have

x̃ ′ = −3(N2 +N3)ỹ + · · · , ỹ ′ = 3(N2 +N3)x̃ + · · ·
where x̃ = �− and ỹ = √

3(N2 − N3)/2, and the dots represent expressions that can be
bounded by constants independent of which Bianchi VIII solution we are considering. Thus,
if (x̃2 + ỹ2)1/2 is big in comparison with (N2 +N3)

−1, ỹ and x̃ will essentially behave as sine
and cosine, and the frequency of the oscillation will go to infinity as τ → ∞. The oscillations
in x̃ and ỹ are not so interesting, but the evolution in �+ and N1(N2 +N3) is. For that reason,
it is natural to consider what happens from, say, one time at which�− = 0 to the next. Before
doing so, some effort has to be put into estimating the error committed in approximating ỹ and
x̃ with a sine and cosine, into proving that there actually are zeros of �− and estimating the
variation of different objects during the time that elapses between the zeros. After having done
that, it will be possible to express �+ and N1(N2 +N3) at a zero of �− in terms of the values
of the same expressions in the previous zero. In other words, it will be possible to replace the
continuous flow with a discrete map depending on only two variables. This approximation will
not always be valid, but when it is not, it can be replaced by less sophisticated arguments. The
discrete map is then the main tool in a sequence of technical arguments proving the desired
result.

When we evolve initial data we obtain a Lorentz metric ḡ = −dt2 +g(t) on I×G, where I
is an open interval and g(t) is a Riemannian left invariant metric onG. Let � be a subgroup of
the group of diffeomorphisms ofG, acting properly discontinuously onG. We can consider �
as acting on I ×G by letting � act only onG. In situations where g(t) is invariant under �, we
can take the quotient to obtain a solution to Einstein’s equations on I ×M , whereM = G/�.
AssumingM to be compact we can define the reduced Hamiltonian, cf [5],

Hreduced = −(trg k)3vol(M, g),

where k(t) is the second fundamental form of {t} ×M . We can consider it to be a function of
t . This object is of interest in the context of the work by Fischer and Moncrief [5]. We prove
that the reduced Hamiltonian converges to zero for all the initial data in class three, though it
should be remarked that the spatial hypersurfaces should be of Yamabe type −1, see [5], for
this result to be of interest. Finally, let us refer the reader to [6] and references therein for
further discussion of Bianchi VIII vacuum solutions.

The equations of Wainwright and Hsu are to be found in section 2. We mention some
properties and describe an important tool in the analysis of the asymptotics of solutions to
these equations; the monotonicity principle. In section 3 we relate the Lorentz metric on
the development with the Wainwright–Hsu variables. A formula expressing the reduced
Hamiltonian in terms of these variables is also given. The main part of this paper consists
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of an analysis of the asymptotic behaviour of solutions to the equations of Wainwright and
Hsu. This analysis occupies the remaining sections except for the last. The final section
contains an analysis of the asymptotic behaviour of the Riemannian metric on the spatial
hypersurfaces of homogeneity.

2. The equations of Wainwright and Hsu

We formulate the equations we will use here and state some properties. The following section
contains a derivation. Einstein’s vacuum equations take the following form in the formulation
due to Wainwright and Hsu:

N ′
1 = (q − 4�+)N1

N ′
2 = (q + 2�+ + 2

√
3�−)N2

N ′
3 = (q + 2�+ − 2

√
3�−)N3 (5)

�′
+ = −(2 − q)�+ − 3S+

�′
− = −(2 − q)�− − 3S−

where the prime denotes a derivative with respect to τ and

q = 2(�2
+ +�2

−)

S+ = 1
2 [(N2 −N3)

2 −N1(2N1 −N2 −N3)] (6)

S− = 1
2

√
3(N3 −N2)(N1 −N2 −N3).

The vacuum Hamiltonian constraint is

�2
+ +�2

− + 3
4 [N2

1 +N2
2 +N2

3 − 2(N1N2 +N2N3 +N1N3)] = 1. (7)

The above equations have certain symmetries described in Wainwright and Hsu [2]. By
permuting N1, N2, N3 arbitrarily we obtain new solutions if we at the same time carry out
appropriate combinations of rotations by integer multiples of 2π/3 and reflections in the
(�+, �−)-plane. Changing the sign of all theNi at the same time does not change the equations.
Classify points (N1, N2, N3, �+, �−) according to the values of N1, N2, N3 in the same way
as in table 1. Since the sets Ni > 0, Ni < 0 and Ni = 0 are invariant under the flow of
the equation we may classify solutions to (5)–(7) accordingly. When we speak of Bianchi
VIII solutions we will assume two Ni > 0 and one < 0. The Kasner circle is the subset of
�+�−N1N2N3-space where Ni = 0 and �2

+ +�2
− = 1.

We only consider solutions to (5)–(7) which are not of Bianchi IX type. By the constraint
(7) we conclude that q � 2 for the entire solution. Consequently, Ni cannot grow faster than
exponentially due to (5). The solutions we consider can thus not blow up in a finite time so
that we have existence intervals of the form (−∞,∞).
Definition 2.1. Let K1,K2 and K3 be defined as the subset of the Kasner circle on which
q − 4�+ < 0, q + 2�+ + 2

√
3�− < 0 and q + 2�+ − 2

√
3�− < 0, respectively, cf (5).

The set�− = 0,N2 = N3 is invariant under the flow of (5)–(7). Applying the symmetries
to this set we obtain new invariant sets.

The concepts of an α- and ω-limit set will be useful.



3796 H Ringström

Definition 2.2. Let f ∈ C∞(Rn,Rn), and consider a solution x to the equation

dx

dt
= f ◦ x, x(0) = x0, (8)

with maximal existence interval (t−, t+). We call a point x∗ an ω-limit point of the solution x,
if there is a sequence tk → t+ with x(tk) → x∗. The ω-limit set of x is the set of its ω-limit
points. The α-limit set is defined similarly by replacing t+ with t−.

Lemma 2.1. Let f and x be as in definition 2.2. The ω-limit set of x is closed and invariant
under the flow of f . If there is a T such that x(t) is contained in a compact set for t � T , then
the ω-limit set of x is connected.

Proof. See, e.g., [7]. �

The following lemma will be a basic tool in the analysis of the asymptotics, we will refer
to it as the monotonicity principle.

Lemma 2.2. Consider (8). Let U be an open subset of R
n and M a closed subset which is

invariant under the flow of the vector field f . Assume there is a function F ∈ C(U,R) such
that F(x(t)) is strictly monotonic for any solution x(t) of (8), as long as x(t) ∈ U ∩M . Then
no solution of (8) whose image is contained in U ∩M has an α- or ω-limit point in U .

Remark. Observe that one can use M = R
n. We will mainly choose M to be the closed

invariant submanifold of R
5 defined by (7). If oneNi is zero and two are non-zero we consider

the number of variables to be four, etc.

Proof. Let x be a solution to (8) which is contained inU∩M , and which has maximal existence
interval (t−, t+). Then F ◦ x is strictly monotonic. Suppose p ∈ U is an ω-limit point of x, so
that there is a sequence tn → t+ such that x(tn) → p. Thus F(x(tn)) → F(p), but F ◦ x is
monotonic so that F(x(t)) → F(p) as t → t+−. Thus F(q) = F(p) for all ω-limit points q
of x. SinceM is closed p ∈ M . The solution x̄ of (8) with initial value p is contained inM by
the invariance property ofM , it consists of ω-limit points of x so that F(x̄(t)) = F(p) which
is constant. Furthermore, on an open set containing zero it takes values in U contradicting the
assumptions of the lemma. The argument for the α-limit set is similar. �

3. Relation between the variables of Wainwright and Hsu and the spacetime metric

We need to relate the evolution of the variables in the formulation due to Wainwright and
Hsu to the evolution of the corresponding spacetime. In order to do this we first derive the
formulation first presented by Ellis and MacCallum [1]. Then we derive equations (5)–(7) as
in [2]. Secondly, we turn the argument around and start with solutions to the equations of
Ellis and MacCallum and then construct the spacetime metric. The second part uses the first
part. We can then express the spacetime metric in terms of the variables of Wainwright and
Hsu. Finally, we find expressions for the reduced Hamiltonian in terms of the Wainwright–Hsu
variables.
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3.1. Derivation of the equations of Wainwright and Hsu

Consider first a special class of spatially homogeneous four-dimensional Lorentz manifolds of
the form

(I ×G,−dt2 + χij (t) ξ
i ⊗ ξ j ) (9)

where I is an open interval,G is a Lie group of class A, χij is a smooth positive-definite matrix
and the ξ i are the duals of a left invariant basis on G.

We express the condition that a manifold of the form (9) satisfies Einstein’s vacuum
equations in terms of the variables of Ellis and MacCallum. As these variables are defined in
terms of a suitable orthonormal basis, we begin by constructing it. Let e0 = ∂t and ei = ai

jZj ,
i = 1, 2, 3, be an orthonormal basis, where a is a C∞ matrix-valued function of t and the Zi
are the duals of ξ i . Below, Latin indices will be raised and lowered by δij .

By the following argument we can assume 〈∇e0ei, ej 〉 = 0. Let the matrix A satisfy
e0(A)+AB = 0, A(0) = Id, where Bij = 〈∇e0ei, ej 〉 and Id is the 3 × 3 identity matrix. Then
A is smooth and SO(3)-valued and if e′i = Ai

j ej then 〈∇e0e
′
i , e

′
j 〉 = 0.

Let

θ(X, Y ) = 〈∇Xe0, Y 〉, (10)

θαβ = θ(eα, eβ) and [eβ, eδ] = γ αβδeα where Greek indices run from 0 to 3. The objects θαβ
and γ αβδ will be viewed as smooth functions from I to some suitable R

k and the variables will
be defined in terms of them.

Observe that [Zi, e0] = 0. The ei span the tangent space of G and 〈[e0, ei], e0〉 = 0. We
obtain θ00 = θ0i = 0 and θαβ symmetric. We also have γ 0

ij = γ 0
0i = 0 and γ i0j = −θij . We let

n be defined as in (2) and

σij = θij − 1
3θδij

where by anabuse of notation we have written tr(θ) as θ .
We compute the Einstein tensor in terms of n, σ and θ . The Jacobi identities for eα yield

e0(nij )− 2nk(iσ
k
j) + 1

3θnij = 0. (11)

The 0i-components of the Einstein equations are equivalent to

σi
knkj − nikσkj = 0. (12)

Letting bij = 2niknkj − tr(n)nij and sij = bij − 1
3 tr(b)δij the trace-free part of the ij equations

are

e0(σij ) + θσij + sij = 0. (13)

The fact that R00 = 0 yields the Raychaudhuri equation

e0(θ) + θij θ
ij = 0 (14)

and using this together with the trace of the ij -equations yields a constraint

σijσ
ij + (nijn

ij − 1
2 tr(n)2) = 2

3θ
2. (15)

Equations (11)–(15) are special cases of equations given in Ellis and MacCallum [1]. At t = 0
we may diagonalize n and σ simultaneously since they commute (12). Rotating eα by the
corresponding element of SO(3) yields upon going through the definitions that the new n and
σ are diagonal at t = 0. Collect the off-diagonal terms of n and σ in one vector v. By (11) and
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(13) there is a time-dependent matrix C such that v̇ = Cv so that v(t) = 0 ∀t since v(0) = 0.
Since the rotation was time independent 〈∇e0ei, ej 〉 = 0 holds in the new basis.

Introduce, as in Wainwright and Hsu [2], �ij = σij /θ,Nij = nij /θ, Bij = 2NikNkj −
NkkNij and Sij = Bij − 1

3B
k
kδij and define a new time coordinate τ , independent of the time

orientation, by

dt

dτ
= 3

θ
. (16)

Let�+ = 3
2 (�22 +�33) and�− = √

3(�22 −�33)/2. If we letNi be the diagonal elements of
Nij , equations (11) and (13) turn into (5)–(7). The Raychaudhuri equation (14) takes the form

θ ′ = −(1 + q)θ. (17)

3.2. Construction of the spacetime

Above we derived Einstein’s equations assuming the spacetime to be of a special form. Next
we construct a spacetime of the form (9) beginning with initial data as in definition 1.1. The
construction allows us to express the evolution of the metric in terms of the variables of
Wainwright and Hsu. One step is the following lemma, which also classifies the class A Lie
algebras.

Lemma 3.1. Table 1 constitutes a classification of the class A Lie algebras. Consider an
arbitrary basis {ei} of the Lie algebra. Then by applying an orthogonal matrix to it, we can
construct a basis {e′i} such that the corresponding n′ defined by (2) has diagonal elements of
one of the types given in table 1.

Proof. Let ei be a basis for the Lie algebra and n be defined as in (2). If we change the basis
according to e′i = (A−1)i

j ej then n transforms into

n′ = (detA)−1AtnA. (18)

Since n is symmetric we assume from here on that the basis is such that it is diagonal. The
matrix A = diag(1 1 − 1) changes the sign of n. A suitable orthogonal matrix performs
even permutations of the diagonal. The number of non-zero elements on the diagonal is
invariant under transformations (18) taking one diagonal matrix to another. If A = (aij ) and
the diagonal matrix n′ is constructed as in (18) we have n′

kk = (detA)−1 ∑3
i=1 a

2
iknii so that

if all the diagonal elements of n have the same sign the same is true for n′. The statements of
the lemma follow. �

Consider class A vacuum initial data (G, g, k) with notation as in definition 1.1. We
construct a spacetime of the form (9) whose induced metric and second fundamental form on
{0} ×G is g and k. Let e′i , i = 1, 2, 3 be a left invariant orthonormal basis. We can assume
the corresponding n′ to be of one of the forms given in table 1 by lemma 3.1. The content of
(4) is that kij = k(e′i , e

′
j ) and n′ are to commute. We may thus also assume kij to be diagonal

without changing the earlier conditions of the construction. If we let n(0) = n′, θ(0) = − trg k
and σij (0) = −kij + θδij /3 then (3) is the same as (15). Let n, σ and θ satisfy (11), (13) and
(14) with initial values as specified above. Since (15) is satisfied at t = 0 it is satisfied for all
times. For reasons given in connection with (15) n and σ will remain diagonal so that (12)
will always hold.

Let M = I × G, where I is the maximal existence interval for solutions to (11)–(15)
with initial data as above. We construct a basis eα with the same properties as the basis used
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in deriving (11)–(15). Then we define a metric by demanding that the basis be orthonormal
and show that the corresponding ñ, σ̃ and θ̃ coincide with n, σ and θ . We will thereby have
constructed a Lorentz manifold satisfying Einstein’s vacuum equations with the correct initial
conditions.

Let ni and σi denote the diagonal elements of n and σ , respectively. Let fi(0) = 1 and
ḟi/fi = −2σi + θ/3. Let ai = (;j �=ifj )1/2 and define ei = a−1

i e
′
i . Then ñ associated with ei

equals n. We complete the basis by letting e0 = ∂t . Define a metric 〈·, ·〉 onM by demanding
eα to be orthonormal with 〈e0, e0〉 = −1 and 〈ei, ei〉 = 1, i = 1, 2, 3 and let ∇ be the associated
Levi-Civita connection.

Compute 〈∇e0ei, ej 〉 = 0. If θ̃ (X, Y ) = 〈∇Xe0, Y 〉 and θ̃µν = θ̃ (eµ, eν), then
θ̃00 = θ̃i0 = θ̃0i = 0. Furthermore,

aj e0(a
−1
j )δij = −θ̃ij

(no summation over j ) so that θ̃ij is diagonal and tr θ̃ = θ . Finally,

−σ̃ii = −θ̃ii + 1
3θ = −σi.

The constructed Lorentz manifold thus satisfies Einstein’s vacuum equations. By the above
we have.

Lemma 3.2. Given initial data as in definition 1.1, we obtain a solution to Einstein’s equations

ḡ = −dt2 +
3∑
i=1

a2
i (t)ξ

i ⊗ ξ i (19)

where ξ i are the duals of a basis of the Lie algebra of G and

ai(t) = exp

(∫ t

0

(
σi + 1

3θ
)

ds

)
(20)

where θ, σi (and ni) constitute solutions to (11)–(15) with suitable initial conditions. If I is
the corresponding existence interval, the metric (19) is defined on the manifold I ×G.

By [4] this metric is globally hyperbolic, future causally geodesically complete and τ → ∞
corresponds to the geodesically complete direction, assuming the initial data are not of type IX.

3.3. The rescaled metric

Equations (19) and (20) express the spacetime metric in terms of the Ellis–MacCallum
variables. Let g(t) denote the Riemannian metric induced on {t} × G, which we will also
consider to be a metric on G. Define a rescaled version of this metric by

g̃(t) = (a1a2a3)
−2/3(t)

3∑
i=1

a2
i (t) ξ

i ⊗ ξ i . (21)

We can write it as

g̃(t) =
3∑
i=1

λi(t) ξ
i ⊗ ξ i (22)

where

λi(t) = exp

(∫ t

0
2σi ds

)
.
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Defining a new time coordinate by

dt

dτ
= 3

θ
τ(0) = 0 (23)

we obtain ∫ t

0
2σi ds =

∫ τ

0
2σi

3

θ
dτ ′ =

∫ τ

0
6�i dτ ′.

Thus if we consider the λi to be functions of τ we have

λi(τ ) = exp

(∫ τ

0
6�i dτ ′

)
. (24)

Similarly,

ai(τ ) = exp

(∫ τ

0
(3�i + 1) ds

)
. (25)

However, �i can be expressed in terms of �+ and �−. We have

�1 = −2

3
�+, �2 = 1

3
�+ +

1√
3
�−, �3 = 1

3
�+ − 1√

3
�−. (26)

Thus, if we know what �+ and �− converge to as τ → ∞, we roughly know how g̃ behaves
asymptotically.

3.4. The reduced Hamiltonian

As mentioned in the introduction, there is in some situations a subgroup � of the group of
diffeomorphisms ofG, acting properly discontinuously onG, such that g(t) is invariant under
� for all t . In such situations, we can consider g to be a metric on M = G/�. Observe,
however, that the basis e′i need not necessarily descend to a basis on M . Let us assume M to
be compact. We can then consider the reduced Hamiltonian

H(t) = −[−θ(t)]3V (t)

where V (t) = vol(M, g(t)).

Lemma 3.3. In terms of the time coordinate τ defined by (23) we have

H(τ) = θ3(0)V (0) exp

(
−3

∫ τ

0
q ds

)
. (27)

Proof. Since M is compact we can choose a finite partition of unity φi i = 1, . . . , k
subordinated to coordinate charts. We can then write

V (t) =
k∑
i=1

∫
M

φi
√

det g(t)(∂j , ∂m) dx1 · · · dx3.

We compute

dV

dt
= θV

so that
dV

dτ
= θV

dt

dτ
= θV

3

θ
= 3V.

Considering H as a function of τ , we obtain (27) using (17). �
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4. Bianchi I

Bianchi I solutions of (5)–(7) are of the form (σ+, σ−, 0, 0, 0), where (σ+, σ−) are independent
of time and satisfy σ 2

+ + σ 2
− = 1.

5. Bianchi II

Proposition 5.1. A Bianchi II solution of (5)–(7) with N1 > 0 and N2 = N3 = 0 satisfies

lim
τ→∞N1 = 0 (28)

and

lim
τ→∞(�+, �−) = (σ+, σ−) (29)

where (σ+, σ−) belongs to K1.

Proof. Using the constraint (7) we deduce that

�′
+ = 3

2N
2
1 (2 −�+).

We wish to apply the monotonicity principle. There are three variables. Let U be defined
by N1 > 0, M be defined by (7) and F(�+, �−, N1) = �+. Equation (28) follows, since if
N1 does not converge to zero, we can construct an ω-limit point in U due to the fact that the
variables are contained in a compact set. Combining this with the constraint we deduce

lim
τ→∞ q = 2.

Since �+ is monotonic and bounded, it converges. Since q → 2 and the ω-limit set is
connected, cf lemma 2.1, equation (29) holds, but we do not yet know anything about the limit.
Compute

(
�−

2 −�+

)′
= 0.

We obtain

�−
2 −�+

= σ−
2 − σ+

(30)

for arbitrary (�+, �−) belonging to the solution. Since N ′
1 = (q − 4�+)N1 and N1 → 0

we have to have σ+ � 1
2 . If σ+ = 1

2 then σ− = ±
√

3
2 . The two corresponding lines in the

�+�−-plane obtained by substituting (σ+, σ−) into (30) do not intersect any points interior to
the Kasner circle. Therefore, σ+ = 1

2 is not an allowed limit point and the proposition follows.
�
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6. Bianchi VI0

Proposition 6.1. Consider a Bianchi VI0 solution of (5)–(7) withN1 = 0,N2 > 0 andN3 < 0.
Then

lim
τ→∞N2 = 0, lim

τ→∞N3 = 0 (31)

and

lim
τ→∞�− = 0, lim

τ→∞�+ = −1. (32)

Proof. By the constraint (7) the variables belong to a compact set. Since

�′
+ = −(2 − q)(1 +�+),

�+ is strictly monotonic as long as q < 2 which is true for the entire solution. The monotonicity
principle yields

lim
τ→∞ q = 2 (33)

for similar reasons as in the proof of proposition 5.1. By the constraint we conclude that (31)
holds. Since �+ is monotonic, equation (33) holds and the ω-limit set is connected, we have

lim
τ→∞(�+, �−) = (σ+, σ−)

with σ 2
+ + σ 2

− = 1. Since N2 and N3 converge to zero and since they satisfy (5) we must have

2(σ 2
+ + σ 2

−) + 2σ+ + 2
√

3σ− � 0

2(σ 2
+ + σ 2

−) + 2σ+ − 2
√

3σ− � 0.

Adding these inequalities we obtain 4 + 4σ+ � 0. Equation (32) follows. �

Let us now record the fact that Bianchi VIII is very different from Bianchi IX in the
direction towards the singularity.

Proposition 6.2. For every ε > 0, there exists Bianchi VIII vacuum initial data yε and a real
number Tε > 0, where yε is closer to the Kasner circle than ε, such that evolving yε a time Tε
to the past yields a Bianchi VIII point with the property that

|N1N2| + |N2N3| + |N3N1| � 1
4 .

Remark. By distance to the Kasner circle, here we mean the Euclidean distance in R
5.

Proof. Let ε > 0 and x be any Bianchi VI0 initial data. By proposition 6.1, there is a Tε > 0
such that applying the flow to x,A(Tε, x) is closer to the Kasner circle than ε/2, whereA(τ, x)
represents the solution to (5)–(7) with initial data x evaluated in τ . However, there are Bianchi
VIII points as close to A(Tε, x) as we wish. Given an η > 0, we can thus, by the continuity
of the flow, choose Bianchi VIII initial data yε with the property that yε is closer to the Kasner
circle than ε and A(−Tε, yε) is closer to x than η. Choosing x to have �+ = �− = 0
and N2 = −N3 = 1√

3
and letting η be small enough, we obtain the conclusion of the

proposition. �
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7. Bianchi VII0

The following proposition is a consequence of (5)–(7).

Proposition 7.1. Consider a Bianchi VII0 solution to (5)–(7) with N2 = N3 > 0, N1 = 0 and
�− = 0. Then one of the following statements holds:

• �+ = 1 for the entire solution and N2 = N3 → ∞ as τ → ∞;
• �+ = −1 and N2 = N3 are constant for the entire solution.

Given a solution to (5)–(7), ifN2(τ ) = N3(τ ) and�−(τ ) = 0 for one τ then the two equalities
hold for all τ . Thus the above proposition together with that below exhaust the possibilities
for Bianchi VII0 solutions.

Proposition 7.2. Consider a Bianchi VII0 solution to (5)–(7) with N2, N3 > 0 and N1 = 0
which never satisfies N2 = N3 and �− = 0 simultaneously. Then

lim
τ→∞�+ = −1, lim

τ→∞�− = 0

and

lim
τ→∞(N2 −N3) = 0.

Remark. In proposition 7.3, we also prove that N2 and N3 converge to finite positive values.

Proof. Assume first that there is an ω-limit point. Then the monotonicity principle suffices.
Consider

�′
+ = −(2 − q)(�+ + 1). (34)

We apply the monotonicity principle with F(�+, �−, N2, N3) = �+,M defined by (7) and U
defined by �2

− + (N2 − N3)
2 > 0 and N2 + N3 > 0. F is strictly monotonic on a solution in

U∩M since if�′
+(τ ) = 0 then [N2−N3](τ ) = 0 so that�−(τ ) �= 0 whence [N2−N3]′(τ ) �= 0,

cf (5)–(7). If τk → ∞ yields an ω-limit point, we must thus have [�2
− + (N2 −N3)

2](τk) → 0
or (N2 +N3)(τk) → 0 by the monotonicity principle. However,

Z−1 =
4
3�

2
− + (N2 −N3)

2

N2N3
=

4
3 (1 −�2

+)

N2N3

has a non-positive derivative, and consequently [�2
− + (N2 − N3)

2](τk) → 0 (if it does not
converge to zero, Z−1(τk) → ∞). We conclude that �+(τk) → −1. By the monotonicity of
�+ the proposition follows.

Assume that there is no ω-limit point. If there is a sequence τk → ∞ such that N2(τk) is
bounded, then there is an ω-limit point by the constraint (7). Similarly, if there is a sequence
such that N3 is bounded. We can thus assume that N2 and N3 converge to ∞.

The variable �+ is still decreasing and bounded. We can thus assume it to converge to σ+

with −1 � σ+ < 1. If σ+ = −1 we are done, so assume not. We prove that this assumption
leads to the consequence that (2 − q) /∈ L1([0,∞)). Combining this with (34) we conclude
that �+ → −1 contradicting our assumption.

The intuitive idea is as follows. �+ → σ+, but �− will oscillate between ±(1 − σ 2
+ )

1/2,
roughly speaking. When �− is small we obtain a contribution to the integral of 2 − q. If �−
spends most of its time close to ±(1 − σ 2

+ )
1/2 we would have a problem, but that turns out not

to be the case.
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If N2 and N3 converge to infinity, we will see that the solution will become oscillatory.
To be more precise, let x and y be defined by

x = �−
(1 −�2

+)
1/2

(35)

y =
√

3

2

N2 −N3

(1 −�2
+)

1/2
. (36)

Since �2
+(τ ) < 1 for all τ , x and y are smooth. Let

g = 3(N2 +N3) + 2(1 +�+)xy. (37)

Then x ′ = −gy and y ′ = gx. By the constraint x2 + y2 = 1 so that we can choose a φ0 such
that (x(τ0), y(τ0)) = (cos(φ0), sin(φ0)). Define

ξ(τ ) =
∫ τ

τ0

g(s) ds + φ0. (38)

Then x(τ) = cos(ξ(τ )) and y(τ) = sin(ξ(τ )).
As mentioned it suffices to prove that 2 − q /∈ L1([0,∞)) under the assumption that

−1 < σ+ < 1. Consider

2 − q = 2(1 −�2
+ − (1 −�2

+) cos2(ξ)) = 2(1 −�2
+) sin2(ξ) � 2(1 − σ 2

+ ) sin2(ξ)

= c sin2(ξ),

where c > 0 by assumption. Consider a period. Assume T is great enough that 1 <

5(N2 + N3)/2 � g � 7(N2 + N3)/2 for τ � T and that ξ(τ2) − ξ(τ1) = 2π , where
T � τ1 < τ2. Let us estimate Dτ = τ2 − τ1. By considering (38) we conclude that Dτ
can be chosen arbitrarily small if T is great enough since N2, N3 → ∞. Using (5) we derive
the consequence that for every ε > 0

1 − ε � (N2 +N3)(τ )

(N2 +N3)(τ1)
� 1 + ε

for every τ ∈ [τ1, τ2] if T is great enough. Thus

Dτ =
∫ τ2

τ1

dτ =
∫ ξ(τ2)

ξ(τ1)

1

g
dξ �

∫ ξ(τ2)

ξ(τ1)

2

5(N2 +N3)
dξ � 8π

5(N2 +N3)(τ1)

if T is great enough. However, then∫ τ2

τ1

(2 − q) dτ �
∫ τ2

τ1

c sin2(ξ) dτ =
∫ ξ(τ2)

ξ(τ1)

c sin2(ξ)
1

g
dξ

�
∫ ξ(τ2)

ξ(τ1)

c sin2(ξ)
2

7(N2 +N3)
dξ � c

7(N2 +N3)(τ1)

∫ ξ(τ2)

ξ(τ1)

sin2(ξ) dξ

= cπ

7(N2 +N3)(τ1)
� 5c

56
Dτ = c′Dτ

if T is great enough. Here c′ > 0. Let M > 0 be any number. Consider an interval [τa, τb]
where τa is great enough that the above conditions are met, (τb−τa)/c′ > M and ξ(τb)−ξ(τa)
is an integer multiple of 2π . Then∫ τb

τa

(2 − q) dτ � M

and consequently 2 − q /∈ L1([0,∞)). The proposition follows. �
It will be of interest to know that N2 is bounded away from zero.
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Lemma 7.1. Consider a Bianchi VII0 solution to (5)–(7). Then

N2N3 � c > 0

on [0,∞), where c is a positive constant.

Proof. Assume there is a time sequence τk → ∞ such that (N2N3)(τk) converges to zero.
Since N2 − N3 → 0, we conclude that the solution evaluated at τk converges to the Kasner
circle. Since the flow is continuous, and Bianchi VII0 belongs to the boundary of Bianchi
IX, we can construct a sequence of Bianchi IX initial data xk converging to the Kasner circle,
such that A(−τk, xk) converges to a Bianchi VII0 point with N2N3 > 0. This is impossible
by theorem 15.1 of [4]. �

As was noted in the proof of proposition 7.2, the objects x and y defined in (35) and (36)
can be written as

x(τ) = cos ξ(τ ), y(τ ) = sin ξ(τ )

where ξ is defined in (38). SinceN2 +N3 is bounded away from zero to the future by lemma 7.1
and 1 +�+ converges to zero, we can assume that

g(τ) � 2(N2 +N3)(τ ) � c > 0 ∀τ � τ0 (39)

for some positive constant c, where g is defined by (37). In other words, the expressions x and
y will carry out an infinite number of oscillations as time progresses. It is natural to average
over a period of this oscillation in order to analyse the asymptotics, and we need to know how
certain expressions vary over a period to be able to do this.

In the rest of this section we will implicitly assume that all Bianchi VII0 solutions satisfy
�2

− + (N2 −N3)
2 > 0.

Lemma 7.2. Consider a Bianchi VII0 solution to (5)–(7) with N2, N3 > 0, and let τ0 be such
that (39) is fulfilled. Let τ0 � τa < τb, and assume

ξ(τb)− ξ(τa) = π.

Then there is a T such that∣∣∣∣1 − (1 +�+)(τ1)

(1 +�+)(τ2)

∣∣∣∣ � C
(1 +�+)(τb)

(N2 +N3)(τmax)
(40)

and ∣∣∣∣1 − (N2 +N3)(τ1)

(N2 +N3)(τ2)

∣∣∣∣ � C
(1 +�+)(τb)

(N2 +N3)(τmax)
(41)

if τa � T , where τmax yields the maximum value of N2 +N3 in [τa, τb] and τ1, τ2 are arbitrary
members of [τa, τb]. The constant C only depends on the constant c appearing in (39).

Proof. Observe that

π =
∫ τb

τa

g(s) ds � c(τb − τa),

so that

τb − τa � π

c
. (42)
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Consider

(N2 +N3)
′ = (q + 2�+)(N2 +N3) + 2

√
3�−(N2 −N3).

Estimate

|q + 2�+| � 2|�+(1 +�+)| + 2�2
− � 2(1 +�+) + 2(1 −�2

+) � 6(1 +�+),

and

|2
√

3�−(N2 −N3)| � 2
[
�2

− + 3
4 (N2 −N3)

2
]

� 2(1 −�2
+) � 4(1 +�+).

Since N2 +N3 is bounded below by a positive constant for τ � τ0, we conclude that

|(N2 +N3)
′| � C1(1 +�+)(N2 +N3)

for some positive constant C1. Letting τ1, τ2 ∈ [τa, τb], we obtain

ln α = ln

(
(N2 +N3)(τ1)

(N2 +N3)(τ2)

)
� C1

∫ τb

τa

(1 +�+) ds = β, (43)

where we have introduced the quantities α and β in order to make the following arguments
easier to follow. If α � 1, then

0 � α − 1 � eβ − 1 =
∞∑
k=1

βk

k!
� βeβ. (44)

If α � 1, then (44) also holds if we replace α with 1/α, since τ1 and τ2 in (43) are arbitrary.
Multiplying this inequality with α then yields the conclusion

|1 − α| � βeβ

without any conditions on α. Since we have the bound (42) and 0 � 1 +�+ � 2, we conclude
that eβ is bounded by a constant, so that∣∣∣∣1 − (N2 +N3)(τ1)

(N2 +N3)(τ2)

∣∣∣∣ � C2

∫ τb

τa

(1 +�+) ds. (45)

Observe that this inequality proves that the left-hand side can be chosen to be arbitrarily
small by demanding τa to be big enough. Let us estimate the integral on the right-hand side.
Assuming τa to be great enough that the right-hand side of (45) is less than 1

2 , and using (39)
and the fact that �+ is monotonic, we conclude that∫ τb

τa

(1 +�+) ds � (1 +�+)(τa)

∫ ξ(τb)

ξ(τa)

1

g
dξ � (1 +�+)(τa)

∫ ξ(τb)

ξ(τa)

1

2(N2 +N3)
dξ

� 3π

4

(1 +�+)(τa)

(N2 +N3)(τmax)

where τmax corresponds to the maximum value of N2 + N3 in [τ1, τ2]. Combining this with
(45) we obtain ∣∣∣∣1 − (N2 +N3)(τ1)

(N2 +N3)(τ2)

∣∣∣∣ � C3
(1 +�+)(τa)

(N2 +N3)(τmax)
. (46)

Consider now

(1 +�+)
′ = −(2 − q)(1 +�+). (47)
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Since

0 � 2 − q � 4(1 +�+),

we conclude that∣∣∣∣1 − (1 +�+)(τ1)

(1 +�+)(τ2)

∣∣∣∣ � C3
(1 +�+)(τa)

(N2 +N3)(τmax)
(48)

by an argument similar to that proving (46). By assuming τa to be big enough (48) leads to
the conclusion that we, at the cost of increasing the constants, can replace (1 + �+)(τa) on
the right-hand side of (46) and (48) with the same expression evaluated in τb, yielding the
statement of the lemma. �

The following lemma constitutes the main observation.

Lemma 7.3. Consider a Bianchi VII0 solution to (5)–(7) with N2, N3 > 0, and let τ0 be such
that (39) is fulfilled. Let τ0 � τa < τb, and assume

ξ(τb)− ξ(τa) = π.

Then there is a T such that∣∣∣∣
∫ τb

τa

[�2
− − (1 +�+)] ds

∣∣∣∣ � C

∫ τb

τa

(1 +�+)
2 ds (49)

if τa � T , for some constant C depending only on the constant c appearing in (39).

Proof. Observe first that

�2
− = (1 −�2

+)x
2 = (1 −�+)(1 +�+)x

2 = 2(1 +�+)x
2 − (1 +�+)

2x2.

Consequently, the integrand of interest is

2(1 +�+)x
2 − (1 +�+) = (1 +�+) cos η

where η(τ) = 2ξ(τ ). Let ηa = η(τa) and ηb = η(τb) = ηa + 2π and observe that∫ τb

τa

(1 +�+) cos η dτ =
∫ ηb

ηa

1 +�+

2g
cos η dη

=
∫ ηa+π

ηa

(
1 +�+(η)

2g(η)
− 1 +�+(η + π)

2g(η + π)

)
cos η dη

where in order to obtain the last equality we have divided the integral into one part from ηa
to ηa + π and one from ηa + π to ηa + 2π , and then made the substitution η → η − π in the
second integral. We now wish to prove that the absolute value of the integrand in the integral
from ηa to ηa + π can be bounded by

C1
[1 +�+(η)]2

2g(η)
+ C2

[1 +�+(η + π)]2

2g(η + π)
,

since this would prove the assertion. Let us first rewrite

1 +�+(η)

2g(η)
− 1 +�+(η + π)

2g(η + π)
= 1 +�+(η)

2g(η)

(
1 − g(η)

g(η + π)

)
− �+(η + π)−�+(η)

2g(η + π)
.
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Using (40) and the fact that N2 + N3 is bounded from below by a positive constant, we note
that the second term can be estimated in the desired way; multiply (40) by 1 +�+(τ2) in order
to obtain an estimate of �+(τ1)−�+(τ2). If we had

1 − (N2 +N3)(η)

(N2 +N3)(η + π)

instead of

1 − g(η)

g(η + π)

in the first term, then we could estimate the first term in the desired way as well. However,
using (40), (41) and the fact that g and N2 + N3 can be bounded from below by a positive
constant, one can show that

(N2 +N3)(η)

(N2 +N3)(η + π)
− g(η)

g(η + π)

is small enough to yield the desired bound. �

Lemma 7.4. Consider a Bianchi VII0 solution to (5)–(7) with N2, N3 > 0, and let τ0 be such
that (39) is fulfilled. Then

lim
τ→∞

∫ τ
τ0
�2

− ds∫ τ
τ0
(1 +�+) ds

= 1 (50)

and

lim
τ→∞

∫ τ
τ0
(2 − q) ds∫ τ

τ0
2(1 +�+) ds

= 1. (51)

Proof. Observe first that since (47) is fulfilled and 1+�+ → 0 as τ → ∞, 2−q /∈ L1([τ0,∞)).
Moreover,

2 − q � 2(1 −�2
+) � 4(1 +�+),

so that 1 +�+ /∈ L1([τ0,∞)). In order to prove (50), let us prove that

lim
τ→∞

∫ τ
τ0

[�2
− − (1 +�+)] ds∫ τ
τ0
(1 +�+) ds

= 0.

Let ε > 0 and let T be such that lemma 7.3 can be applied and such that 1 +�+(τ ) � ε/(2C)
for τ � T , where C is the constant appearing in (49). Given τ > T , let τ1 be the greatest
number smaller than τ such that ξ(τ1)− ξ(T ) is an integer multiple of π . We have∣∣∣∣
∫ τ

τ0

[�2
− − (1 +�+)] ds

∣∣∣∣ �
∫ T

τ0

|�2
− − (1 +�+)|ds +

∣∣∣∣
∫ τ1

T

[�2
− − (1 +�+)] ds

∣∣∣∣
+

∫ τ

τ1

∣∣∣∣�2
− − (1 +�+)

∣∣∣∣ ds.

We should divide this expression by
∫ τ
τ0
(1 + �+) ds, and then evaluate the limit as τ → ∞.

After having carried out this division, the first and the third terms will yield something that
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can be assumed to be arbitrarily small by assuming τ to be big enough. Using (49), the middle
term can be bounded by∣∣∣∣
∫ τ1

T

[�2
− − (1 +�+)] ds

∣∣∣∣ � C

∫ τ1

T

(1 +�+)
2 ds � C[1 +�+(T )]

∫ τ1

T

(1 +�+) ds

� ε

2

∫ τ1

T

(1 +�+) ds.

After having carried out the division, the corresponding contribution can consequently be
assumed to be less than or equal to ε/2. Equation (50) follows. In order to prove (51), observe
that

(2 − q)− 2(1 +�+) = 2(1 +�+)− 2�2
− − 2(1 +�+)

2.

Consequently, the proof of (51) is similar to the proof of (50). �

Lemma 7.5. Consider a Bianchi VII0 solution to (5)–(7) with N2, N3 > 0, and let τ0 be such
that (39) is fulfilled. Then, if p > 1,

1 +�+ ∈ Lp([τ0,∞)).

Proof. By (51) we conclude that for each α1 < 2 < α2, there is a T such that τ � T implies

α1 <

∫ τ
τ0
(2 − q) ds∫ τ

τ0
(1 +�+) ds

< α2.

Introduce the notation

α = 1 +�+(τ0)

and

h(τ) =
∫ τ

τ0

[1 +�+(s)] ds.

By (47) we conclude that

α exp[−α2h(τ)] � h′(τ ) � α exp[−α1h(τ)] (52)

for all τ � T . Integrating the leftmost inequality, we obtain

1

α2
ln[exp[α2h(T )] + αα2(τ − T )] � h(τ)

for all τ � T . Inserting this in the rightmost inequality of (52), we conclude that

h′(τ ) � α[exp[α2h(T )] + αα2(τ − T )]−α1/α2 .

Since h′ = 1 + �+, and since the quotient α1/α2 can be chosen to be arbitrarily close to one,
the lemma follows. �

Proposition 7.3. Consider a Bianchi VII0 solution to (5)–(7) with N2, N3 > 0. Then

lim
τ→∞N2(τ ) = lim

τ→∞N3(τ ) = n0

where 0 < n0 < ∞.
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Proof. It is enough to prove that N2N3 converges to a positive number. The reason is that this
would prove that all the variables are contained in a compact set to the future, so that

N2 = (N2N3)
1/2 +N1/2

2

N2 −N3

N
1/2
2 +N1/2

3

converges, since N2N3 converges, N1/2
2 +N1/2

3 is bounded from below by a positive constant,
N

1/2
2 is bounded from above, and N2 −N3 → 0 by proposition 7.2. Since N2 −N3 → 0, the

limit for N3 follows. Since

(N2N3)
′ = (2q + 4�+)N2N3,

the essential point is to prove that∫ τ

τ0

(q/2 +�+) ds

converges as τ → ∞. Observe now that

q/2 +�+ = �+(1 +�+) +�2
− = (1 +�+)

2 − (1 +�+) +�2
−.

Since 1 +�+ ∈ L2([τ0,∞)) by lemma 7.5, we need only consider

ψ(τ) =
∫ τ

τ0

[�2
− − (1 +�+)] ds.

Let T be big enough that (49) is applicable. If τ2 � τ1 � T and τ3 is the largest number
smaller than τ2 such that

ξ(τ3)− ξ(τ1)

is an integer multiple of π , then

ψ(τ2)− ψ(τ1) =
∫ τ3

τ1

[�2
− − (1 +�+)] ds +

∫ τ2

τ3

[�2
− − (1 +�+)] ds.

The second integral converges to zero as τ1 and τ2 go to infinity, since the integrand goes to
zero and the length of the interval is bounded (42). By (49) we conclude that∣∣∣∣

∫ τ3

τ1

[�2
− − (1 +�+)] ds

∣∣∣∣ � C

∫ τ3

τ1

(1 +�+)
2 ds.

Since 1 + �+ ∈ L2([τ0,∞)), this expression converges to zero as τ1 goes to infinity. The
lemma follows. �

8. Bianchi VIII

We assume that N2, N3 > 0 and N1 < 0. Let us begin by giving the asymptotic behaviour of
Ni .

Lemma 8.1. Consider a Bianchi VIII solution to (5)–(7) with N1 < 0 and N2, N3 > 0. Then,

lim
τ→∞N1(τ ) = 0, lim

τ→∞N2(τ ) = lim
τ→∞N3(τ ) = ∞.
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Proof. Reformulate the constraint (7) as

�2
+ +�2

− + 3
4 [N2

1 + (N2 −N3)
2 − 2N1(N2 +N3)] = 1.

Observe that all terms appearing on the left-hand side are non-negative so that the absolute
values of, for instance, N1 and N2 − N3 are bounded by numerical constants. Assume
there is a sequence τk → ∞ such that N2(τk) � C < ∞. Then the Ni(τk) are uniformly
bounded. By the constraint �+ and �− are contained in a compact set. Thus we can choose
a convergent subsequence so that we have an ω-limit point (σ+, σ−, n1, n2, n3). We apply
the monotonicity principle with U defined by Ni �= 0, i = 1, 2, 3, M defined by (7) and
F(�+, �−, N1, N2, N3) = N1N2N3. F , evaluated on a solution contained in U ∩ M , is
strictly monotonic since (N1N2N3)

′ = 3qN1N2N3. If q(τ) = 0 then either �′
−(τ ) �= 0 or

�′
+(τ ) �= 0 by (5)–(7). By the monotonicity principle one of the ni must be zero contradicting

the growth of |N1N2N3|. We conclude that N2 → ∞, but then N3 → ∞ and N1 → 0 since
N1(N2 +N3) and N2 −N3 are bounded by the constraint (7). �

8.1. The NUT case

Consider the special case N2 = N3 and �− = 0.

Proposition 8.1. A Bianchi VIII solution with N1 < 0, satisfying N2 = N3 > 0 and �− = 0
has the following asymptotic behaviour:

lim
τ→∞�+(τ ) = 1

2 , lim
τ→∞N1(τ ) = 0, lim

τ→∞N2(τ ) = ∞ lim
τ→∞(N1N2)(τ ) = − 1

4 .

Proof. The constraint implies

�′
+ = (1 −�2

+)(1 − 2�+) + 9
4N

2
1 .

Observe that we cannot have �+ → 1 since N1N2 diverges to infinity there, cf (5). Also,
�+ → −1 is an impossibility since �′

+ is always positive when �+ is close to −1. Since
N1 → 0 by lemma 8.1 and −1 < �+(τ ) < 1 ∀τ by the constraint (7) �+ → 1

2 follows. The
last limit follows from the first and the constraint. �

8.2. Oscillatory behaviour

The behaviour of a Bianchi VIII solution as τ → ∞ is in some sense oscillatory. The
quantities that oscillate are�− and N2 −N3. In order to analyse the asymptotics, we quantify
this behaviour. Let

x̃ = �−, ỹ =
√

3

2
(N2 −N3). (53)

We have

x̃ ′ = −3(N2 +N3)ỹ + εx, εx = −(2 − q)�− + 3N1ỹ.

Furthermore,

ỹ ′ = 3(N2 +N3)x̃ + εy, εy = (q + 2�+)ỹ.

Observe that by the constraint (7) |x̃|, |ỹ|, |εx | and |εy | are bounded by numerical constants,
whereas N2 +N3 → ∞ by lemma 8.1. Let g = 3(N2 +N3),

A =
(

0 −g
g 0

)
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x̃ = (x̃, ỹ)t and ε = (εx, εy)
t so that x̃′ = Ax̃ + ε. Let

ξ(τ ) =
∫ τ

τ0

g(s) ds + φ0 (54)

for some φ0 and x1(τ ) = cos(ξ(τ )), y1(τ ) = sin(ξ(τ )). Then, if x1 = (x1, y1)
t , x′

1 = Ax1.
Define

A =
(

x1 y1

−y1 x1

)
.

Then A′ = −AA and [A,A] = 0. Let

r(τ ) = (x̃2(τ ) + ỹ2(τ ))1/2 (55)

and

x(τ ) = (x(τ ), y(τ ))t = (r(τ0) cos[ξ(τ )], r(τ0) sin[ξ(τ )])t (56)

where φ0 has been chosen so that x(τ0) = x̃(τ0). Since [A(x − x̃)]′ = −Aε and
A(τ) ∈ SO(2) ∀τ we have

‖x̃(τ )− x(τ )‖ �
∣∣∣∣
∫ τ

τ0

‖ε(s)‖ ds

∣∣∣∣.
By the constraint (7), we have ‖ε‖ � 9, and thus

‖x̃(τ )− x(τ )‖ � 9|τ − τ0|. (57)

The next lemma collects some technical estimates. We present them here in order not to
interrupt the flow of later proofs.

Lemma 8.2. Consider a Bianchi VIII solution of (5)–(7) and let C be a constant. Then there
is a T depending on C and the initial values such that if [τ1, τ2] is a time interval with τ1 � T

and

|τ2 − τ1| � C

(N2 +N3)(τ3)

for some τ3 ∈ [τ1, τ2], then

|�+(t1)−�+(t2)| � C1

(N2 +N3)(t3)
(58)

|[N1(N2 +N3)](t1)− [N1(N2 +N3)](t2)| � C2

(N2 +N3)(t3)
(59)

∣∣∣∣1 − (N2 +N3)(t1)

(N2 +N3)(t2)

∣∣∣∣ � C3

(N2 +N3)(t3)
(60)

for arbitrary t1, t2, t3 ∈ [τ1, τ2] where C1, C2 and C3 are constants only depending on C.

Proof. By lemma 8.1 we can assume T to be great enough that Dτ = τ2 − τ1 � 1. The
inequality ∣∣∣∣ (N2 +N3)

′

N2 +N3

∣∣∣∣ � 8
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follows from (5)–(7). Thus∣∣∣∣ (N2 +N3)(t1)

(N2 +N3)(t2)

∣∣∣∣ � e8(τ2−τ1)

so that if (N2 +N3)(t1) � (N2 +N3)(t2),∣∣∣∣1 − (N2 +N3)(t1)

(N2 +N3)(t2)

∣∣∣∣ � |e8Dτ − 1| � 8e8Dτ (61)

since Dτ � 1. Multiplying this inequality by (N2 + N3)(t2)/(N2 + N3)(t1) � 1 we conclude
that the assumption (N2 + N3)(t1) � (N2 + N3)(t2) is not essential. There is thus a constant
c < ∞ such that

(N2 +N3)(t1)

(N2 +N3)(t2)
� c

for any t1, t2 ∈ [τ1, τ2]. Consequently,

Dτ � C

(N2 +N3)(τ3)
� cC

(N2 +N3)(t3)
. (62)

By (5)–(7) |�′
+| and |[N1(N2 + N3)]′| are bounded by constants independent of the Bianchi

VIII solution. Equations (58) and (59) follow from (62). Equation (60) follows from (61) and
(62). �

Let us give the intuitive idea behind the next lemma. How the variables vary during a
period is not so interesting, what is interesting is to compute the change over a period. In that
way the continuous time evolution is replaced with a discrete evolution. To make the time
step independent of approximation we wish to see what happens from x̃ = 0 to the next time
x̃ = 0, but then we need to know that we have such zeros of x̃. In order to be able to prove
this we assume that r (55) is not too small. The assumption is not too restrictive; our ultimate
goal is to prove that r → 0 and that a general Bianchi VIII solution in some sense converges
to a NUT solution. If r is big our iteration is well defined and we will use it to prove that r
decreases and if r is already small we do not need it.

Lemma 8.3. Consider a Bianchi VIII solution of (5)–(7). There is a T depending on the initial
values such that if τ0 � T and r(τ0) � [(N2 + N3)(τ0)]−1/2, then x̃ has at least four zeros
τa < τb � τ0 � τc < τd in

[τ1, τ2] =
[
τ0 − π

(N2 +N3)(τ0)
, τ0 +

π

(N2 +N3)(τ0)

]

such that x̃ is non-zero in (τa, τb), (τb, τc) and (τc, τd). Furthermore, for any two consecutive
zeros, for example τa and τb, we have

|ξ(τb)− ξ(τa)− π | � C

[(N2 +N3)(τa)]1/2
(63)

where C is a numerical constant.

Proof. Let T be great enough that if τ ∈ [τ1, τ2] then

3(N2 +N3)(τ ) � 5(N2 +N3)(τ0)/2 � 5(N2 +N3)(τ )/4. (64)

This is possible by lemmas 8.2 and 8.1. Let x be as in (56) where φ0 ∈ [0, 2π ] in (54) has
been chosen so that x(τ0) = x̃(τ0). If τ ∈ [τ1, τ2] then

|ξ(τ )− ξ(τ0)| =
∣∣∣∣
∫ τ

τ0

g(s) ds

∣∣∣∣ � 5
2 (N2 +N3)(τ0)|τ − τ0|.
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Since ξ is a monotonically growing function we conclude

[0, 2π ] ⊆ [
φ0 − 5

2π, φ0 + 5
2π

] ⊆ [ξ(τ1), ξ(τ2)].

We pick out the zeros in the interval [0, 2π ]. Let ξ(τα) = 0, ξ(τβ) = π/4, ξ(τγ ) = 3π/4,
ξ(τδ) = 5π/4 ξ(τε) = 7π/4 and ξ(τζ ) = 2π , where τα and so on belong to [τ1, τ2]. In the
intervals [τα, τβ], [τγ , τδ] and [τε, τζ ] x̃ cannot be zero if T is great enough because of (57)
and the fact that r(τ0) � [(N2 +N3)(τ0)]−1/2. For the same reason x̃ ′ cannot be zero in [τβ, τγ ]
and [τδ, τε] since x̃ ′ = −gỹ + εx . Thus there is exactly one zero in [τβ, τγ ] and one in [τδ, τε]
and no zeros in between. The remaining zeros are picked out in the same way. By the above it
follows that for two consecutive zeros, for example τa and τb, π/2 � ξ(τb)− ξ(τa) � 3π/2.
Thus

|ξ(τb)− ξ(τa)− π | � π

2
| sin(ξ(τb)− ξ(τa)− π)| � π

2
(| cos(ξ(τa))| + | cos(ξ(τb))|)

� π

2r(τ0)
(|x̃(τa)− x(τa)| + |x̃(τb)− x(τb)|) � 9π2

[(N2 +N3)(τ0)]1/2

� 18π2

[(N2 +N3)(τa)]1/2

using (57) and (64). �

Lemma 8.4. Consider a Bianchi VIII solution of (5)–(7). There is a T such that if τa and τb
are two consecutive zeros of x̃ and r(τa) � [(N2 +N3)(τa)]−1/2, τa � T , then if z1 and z2 are
�+ evaluated in τa and τb, respectively, andw1 andw2 are −N1(N2 +N3) evaluated in τa and
τb, respectively, we have

z2 − z1 = [−(1 − z1)(1 + z1)
2 + 3

2w1(2 − z1)
]
(τb − τa) + ε1 (65)

and

w2 − w1 = (2z2
1 − 2z1 + 2 − 3w1)w1(τb − τa) + ε2 (66)

where

|εi | � C

(N2 +N3)3/2(τa)
(67)

for i = 1, 2 and some numerical constant C.

Remark. We will prove that τb − τa is of the order of magnitude 1/(N2 +N3). Consequently,
we can ignore the error terms in (65) and (66) as long as the polynomial expressions appearing
in front of τb − τa are of the order of magnitude 1.

Proof. The idea is to consider the derivatives of�+ and −N1(N2 +N3) and to integrate between
τa and τb. We will see that �+ and −N1(N2 + N3) vary slowly so that we can replace them
with constants, up to an error we estimate. However, �− and N2 − N3 do not vary slowly so
that we will have to use (57) and to estimate

∫ τb
τa

sin2(ξ(τ )) dτ .
All numerical constants below will be denoted by C. Observe that

|τb − τa| � C

(N2 +N3)(τa)
(68)

by the arguments presented in the proof of lemma 8.3, assuming T to be great enough. We
will assume T is great enough that 3(N2 + N3)(τ ) � 5(N2 + N3)(τ0)/2 � (N2 + N3)(τ ) for
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all τ ∈ [τa, τb], as is possible by lemma 8.2. We begin by analysing the variation of some
relevant expressions in [τa, τb]. By lemma 8.2 we conclude

|�+(τ )−�+(τa)| � C

(N2 +N3)(τa)
(69)

for all τ ∈ [τa, τb] and similarly forN1(N2 +N3). AssumeN2 +N3 has a max in τmax in [τa, τb]
and a min in τmin in the same interval. Then∣∣∣∣ 1

(N2 +N3)(τmax)
− 1

(N2 +N3)(τmin)

∣∣∣∣ � 1

(N2 +N3)(τmax)

∣∣∣∣1 − (N2 +N3)(τmax)

(N2 +N3)(τmin)

∣∣∣∣
� C

(N2 +N3)2(τa)
(70)

by (60). Since ξ as defined in (54) is a diffeomorphism we can consider functions of τ as
functions of ξ . We will be interested in the following integral:∫ τb

τa

sin2 ξ(τ ) dτ =
∫ ξ(τb)

ξ(τa)

sin2(ξ)
1

g
dξ = 1

g(τa)

∫ ξ(τa)+π

ξ(τa)

sin2(ξ) dξ

+
1

g(τa)

∫ ξ(τb)

ξ(τa)+π
sin2(ξ) dξ +

∫ ξ(τb)

ξ(τa)

sin2(ξ)

(
1

g
− 1

g(τa)

)
dξ

= π

2g(τa)
+ δ1

where

|δ1| � C

[(N2 +N3)(τa)]3/2

due to (63) and (70). Furthermore,

τa − τb =
∫ τb

τa

dτ =
∫ ξ(τb)

ξ(τa)

1

g
dξ = π

g(τa)
+ δ2, (71)

by similar arguments, where δ2 is of the same order of magnitude as δ1. Consequently,∫ τb

τa

sin2 ξ(τ ) dτ = 1
2 (τb − τa) + δ3 (72)

where δ3 is of the same order of magnitude as δ1. We now have all the necessary estimates at
our disposal. In [τa, τb] we have

�′
+ = −(2 − q)�+ − 3S+ = −(2 − 2�2

+)�+ + 2�2
−�+ − 3

2 (N2 −N3)
2 + 3N2

1

− 3
2N1(N2 +N3) = −(2 − 2z2

1)z1 + 2z1r
2(τa) cos2(ξ)

−2r2(τa) sin2(ξ) + 3
2w1 + ε3

where

|ε3| � C

(N2 +N3)(τa)

due to (69), the analogous estimate for N1(N2 + N3), equation (57) and the fact that N1 is of
the order of magnitude (N2 +N3)

−1 (7). Integrating, using (72), we have

z2 − z1 = [−(2 − 2z2
1)z1 + z1r

2(τa)− r2(τa) + 3
2w1

]
(τb − τa) + ε4
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where

|ε4| � C

(N2 +N3)3/2(τa)
.

Using the constraint (7) to express r2(τa) in z1 and w1 (and N1), we deduce (65) and (67),
i = 1. The argument to obtain (66) is similar. �

Lemma 8.5. Consider a Bianchi VIII solution of (5)–(7). For all ε > 0 there is a T such that
τ � T implies �+(τ ) � 1

2 + ε.

Proof. Let ε > 0. If �+(τ ) � 1
2 + ε/2 for all τ � T , then −N1(N2 + N3) → ∞ by (5)–(7)

and lemma 8.1. Since this cannot occur by (7) we conclude the existence of a t � T such that
�+(t) � 1

2 + ε/2. If there is an s � t such that �+(s) � 1
2 + ε there is an interval [τ1, τ2] with

τ1 � t , �+(τ1) = 1
2 + ε/2, �+(τ2) = 1

2 + ε and 1
2 + ε/2 � �+(τ ) � 1

2 + ε for all τ ∈ [τ1, τ2].
Using the constraint (7) to eliminate N1(N2 +N3) in the expression for �′

+, we conclude that

1
2ε =

∫ τ2

τ1

�′
+(τ ) dτ � 9

4

∫ τ2

τ1

N2
1 (τ ) dτ.

Since N ′
1 � −2εN1 in [τ1, τ2] we conclude that

ε

2
� 9N2

1 (τ1)

16ε
.

For T great enough this inequality is impossible by lemma 8.1. The lemma follows. �

Lemma 8.6. Consider a Bianchi VIII solution of (5)–(7). N1(N2 + N3) does not converge to
zero.

Proof. Assume N1(N2 + N3) → 0. We prove that this assumption forces �+ to become
negative which, in turn, forces −N1(N2 + N3) to increase, leading to a contradiction. We use
lemma 8.4 to achieve the decrease in �+. To apply it we need r to be big. However, the
constraint yields

r2 = 1 −�2
+ + 3

2N1(N2 +N3)− 3
4N

2
1 . (73)

Since the last two terms converge to zero due to our assumption and lemma 8.1, only 1 −�2
+

is of relevance. From the above we have control over �+ by lemma 8.5 and if �+ � − 1
2 we

have nothing to prove as it turns out.
Let us be more precise. Let T be large enough that �+(τ ) � 3

4 for all τ � T . This is
possible by lemma 8.5. Assume also T to be great enough that if t � T and − 3

4 � �+(t), then

r2(t) � 1

4
� 1

(N2 +N3)(t)
. (74)

In order to achieve this we use (73), lemma 8.1 and N1(N2 +N3) → 0. Finally, let T be great
enough that lemmas 8.3 and 8.4 are applicable to all τ0 � T such that r(τ0) � (N2+N3)

−1/2(τ0).
Let t � T . We prove that we can iterate �+ to become less than or equal to − 1

2 using
lemma 8.4. If �+(t) � − 1

2 we are done. The first zero after t , say t1, which exists by (74)
and lemma 8.3, can for the same reason be assumed to satisfy �+(t1) � − 1

2 . Because of (65),
(67), (71) and the fact that N1(N2 +N3) → 0, we conclude

�+(t2)−�+(t1) � − 1
9 (t2 − t1) (75)
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if T is great enough and t2 is the first zero after t1. If �+(tk) � − 1
2 , the next zero tk+1 will

satisfy a relation similar to (75). Sooner or later we will thus have �+(tk) � − 1
2 . Since

the distance between two zeros becomes arbitrarily small as time goes on and the derivative
of �+ is uniformly bounded, �+ cannot at late enough times become greater than − 1

4 after
having been smaller than − 1

2 due to (75). Consequently, there is a T ′ such that τ � T ′

implies �+(τ ) � − 1
4 . We conclude that −N1(N2 + N3) → ∞ by considering the derivative

of N1(N2 +N3) and using lemma 8.1. �

Lemma 8.7. Consider a Bianchi VIII solution to (5)–(7). For all ε > 0 there is a T such that
τ � T implies −N1(N2 +N3) � 1

2 − ε.

Proof. Assuming −N1(N2 + N3) � 1
2 − ε/2, we prove that the expression grows at late

enough times. Under certain conditions on �+ this will be seen by considering the derivative
of −N1(N2 +N3), but under other circumstances we apply lemma 8.4. In order for the iteration
to work, we will have to have a good upper bound on�+, cf (76). We will also need lemma 8.6 in
order to obtain a starting point greater than or equal to some fixed positive number, irrespective
of at how late a time we start.

Let 1
10 > ε > 0 and S be such that

�+(τ ) � 1
2 + ε2 (76)

for all τ � S. Define w = −N1(N2 + N3). Since w does not converge to zero there is an
η > 0 such that for all S ′ there is a t � S ′ satisfying w(t) � η. Let t � S be such a time. We
prove that there is a t ′ � t with the property that

w(t ′) � 1
2 − 1

2ε. (77)

Assume

w(t) � 1
2 − 1

2ε. (78)

There are two possibilities. Either �+ � − 1
4 , in which case we will be able to see that w

increases by considering its derivative. If �+ � − 1
2 we will be able to apply lemma 8.4.

(a) There is a T ′ such that if [t1, t2] is an interval in which �+ � − 1
4 and t1 � T ′, then

w(t2)− w(t1) � 1
2w(t1)(t2 − t1). (79)

This can be seen by applying lemma 8.1 and equations (5) and (7).
(b) There is a T ′′ such that if t1 < t2 are two consecutive zeros of �− with T ′′ � t1,

�+(t1) � − 1
2 and 1

2 − ε/2 � w(t1) � η/2, then

w(t2)− w(t1) � εw(t1)(t2 − t1). (80)

We obtain, in t1

r2 = 1 −�2
+ − 3

4N
2
1 + 3

2N1(N2 +N3) � 3
4ε − 3ε2 (81)

if T ′′ is great enough. If T ′′ is great enough we can apply lemma 8.4. Consider (66)
with τa replaced with t1 and τb replaced with t2. Since 2z2

1 − 2z1 + 2 � 3
2 ∀z1 ∈ R and

1
2 − ε/2 � w(t1) we obtain

w(t2)− w(t1) � 3
2εw(t1)(t2 − t1) + ε2.

Since w(t1) � η/2 we can use (67) and (71) to prove that (80) holds if T ′′ is big enough.
This is where we need lemma 8.6.
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Assume t to be greater than T ′ and T ′′ and that w(τ) � 1
2 − ε/2 for τ ∈ [t, s]. We can

divide [t, s] into t = s0 < s1 < s2 < · · · < sk < sk+1 = s where �+(si) = − 1
3 , i = 1, . . . , k

and�+ is either � − 1
2 or � − 1

4 in each [si, si+1]. If 1 � i � k then we can change si so that it
becomes a zero of �− without changing the earlier conditions of the construction except that
the new�+(si) need not necessarily equal − 1

3 , cf (81). This is due to the fact that we can apply
lemma 8.3 if t is great enough, that |�′

+| is uniformly bounded and the fact that the distance to
the next zero goes to zero as t goes to infinity.

Sincew(t) � 1
2 −ε/2 we can apply lemma 8.3 to obtain a zero s1/2 with t � s1/2 assuming t

is great enough and�+(t) � − 1
2 , cf (81). Since s1/2−t is of the order of magnitude 1/(N2+N3)

and w′ is uniformly bounded we can assume w(s1/2) � η/2. If �+ � − 1
4 in [s0, s1], we let

s1/2 = t . Observe that the condition w(v) � η/2 will be satisfied for a zero v of �− with
s � v � s1/2 by 1 and 2. If�+ � − 1

2 in [sk, s] we have to take into account the possibility that
s need not be a zero of �−. In that case let sk+1/2 be the last zero of �− before s. If �+ � − 1

4
in [sk, s] we let sk+1/2 = s. We have, applying (80) or (79) in the intervals [si, si+1]

w(sk+1/2)− w(s1/2) � 1
2εη(sk+1/2 − s1/2).

Using the fact that |w′| is uniformly bounded and the estimates of s1/2 − t and s − sk+1/2 we
conclude that

w(s)− w(t) � 1

2
εη(s − t)− C

(N2 +N3)(t)
− C

(N2 +N3)(s)

for some constant C > 0. We conclude the existence of a t ′ � t as in (77). Finally, w cannot
become smaller than 1

2 − ε once it has become greater than 1
2 − ε/2 given t great enough.

We only have to apply the above and observe that |w′| is uniformly bounded and the distance
between two zeros of �− becomes arbitrarily small as t → ∞. �

Proof of theorem 1.2. We begin by proving that for every ε > 0 there is a T such that τ � T

implies �+(τ ) � 1
2 − ε. We will then be able to draw the conclusions of the theorem. Use the

constraint (7) to obtain

�′
+ = − 3

2 (N2 −N3)
2(�+ + 1) + 3

2N1(N2 +N3)(2�+ − 1) + 3
2N

2
1 (2 −�+). (82)

Observe that by lemma 8.7 we can assume −N1(N2 + N3) to be big. By lemma 8.1 we can
disregard the term involving N1. If �+ is smaller than, say, 1

2 − ε/2, we want �+ to increase.
Considering (82) two things can happen. Either r is small, in which case the first term is
negligible and then the second term which is positive will dominate. Thus �+ increases. If r
is big, we have to use lemma 8.4. We make these observations more precise in the following
two statements.

(a) There is a T ′ such that if r2(τ ) � ε/36 and�+(τ ) � 1
2 − ε/2 for τ ∈ [t, s] where t � T ′,

then

�+(s)−�+(t) � 1
3ε(s − t). (83)

The proof is as follows. If T ′ is great enough then −[N1(N2 +N3)](τ ) � 1
3 for τ � T ′ so that

if �+(τ ) � 1
2 − ε/2 then

3
2N1(N2 +N3)(2�+ − 1) � 1

2ε

in τ . Assume T ′ to be great enough that we also have

3
2 [N2

1 (2 −�+)](τ ) � 1
12ε
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for τ � T ′. If τ ∈ [t, s] we thus conclude that

�′
+(τ ) � 1

3ε

using (82). The statement follows.

(b) There is a T ′′ such that if r2(τ ) � ε/100 and �+(τ ) � 1
2 − ε/2 for τ ∈ [τ1, τ2] where

τ1 � T ′′ and τ1 and τ2 are consecutive zeros of �− then

�+(τ2)−�+(τ1) � 1
10ε

2(τ2 − τ1). (84)

The proof is as follows. We have

r2(τ ) � 1

(N2 +N3)(τ )

for τ ∈ [τ1, τ2] if T ′′ is large enough. If T ′′ is large enough, we can apply lemma 8.4. Consider
(65). The relevant polynomial expression is

−(1 − z1)(1 + z1)
2 + 3

2w1(2 − z1) = −(1 − z1)(1 + z1)
2 + 3

4 (2 − z1)

+ 3
2 (w1 − 1

2 )(2 − z1) = (z1 + 2)(z1 − 1
2 )

2 + 3
2 (w1 − 1

2 )(2 − z1).

Since −1 � z1 � 1
2 − ε/2 in our situation, and since we can assume T ′′ to be great enough

that w1 � 1
2 − ε2/36 by lemma 8.7, we conclude

−(1 − z1)(1 + z1)
2 + 3

2w1(2 − z1) � 1
4ε

2 − 1
8ε

2 = 1
8ε

2.

Thus (84) follows, in which we have absorbed the error term in (65) using (67) and (71).
Let S be greater than T ′ and T ′′. We start by proving the existence of a t � S such

that �+(t) � 1
2 − ε/2. Assume �+(τ ) � 1

2 − ε/2 in [S, s]. We can divide the interval by
S = s0 < s1 < · · · < sk < sn = s, where r2 is either � ε/100 or � ε/36 in each [si, si+1]
and r2(si) = ε/50 for all si , i = 1, . . . , k. If S is large enough we can assume the si ,
i = 1, . . . , k to be zeros of �− without changing the earlier conditions of the construction
other than r2(si) = ε/50, i = 1, . . . , k. The reason is that we can apply lemma 8.3 to si ,
i = 1, . . . , k, if S is large enough, to obtain a zero within a distance of the order of magnitude
1/(N2 + N3). Using the estimate (57) and the fact that r2 = x̃2 + ỹ2, r2 can be made to vary
an arbitrarily small amount from the original si to the first zero after it by choosing S large
enough. If r2(τ ) � ε/100 in [s0, s1], we let s1/2 be the first zero after s0. Otherwise, we let
s1/2 = s0. We define sk+1/2 analogously. Using (83) and (84) we conclude

�+(sk+1/2)−�+(s1/2) � 1
10ε

2(sk+1/2 − s1/2)
assuming ε < 10

3 . If we use our estimates of s1/2 − S and s − sk+1/2 we obtain

�+(s)−�+(S) � ε2

10
(s − S)− C

(N2 +N3)(S)
− C

(N2 +N3)(s)
.

If S and s − S are large enough this is not possible and there must thus be a t such that
�+(t) � 1

2 − ε/2.
If S big is enough, �+ cannot become smaller than 1

2 − ε once it has been larger than
1
2 − ε/2 due to (84), (83), the fact that |�′

+| is uniformly bounded and the fact that the distance
between two zeros of �− goes to zero as τ → ∞.

Combining this observation with lemma 8.5 we conclude that

lim
τ→∞�+(τ ) = 1

2 .
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The constraint (7) then yields

−N1(N2 +N3) � 2
3 (1 −�2

+ −�2
− − 3

4 (N2 −N3)
2 − 3

4N
2
1 ) � 2

3 (1 −�2
+).

Since the right-hand side converges to 1
2 we can use lemma 8.7 to conclude that

lim
τ→∞N1(N2 +N3) = − 1

2 .

By the constraint we can then conclude that

lim
τ→∞(N2 −N3) = 0

and

lim
τ→∞�− = 0. �

9. Conclusions

For all class A spacetimes except IX, q converges to a non-zero value as τ → ∞. Thus, by
(27), the following theorem follows.

Theorem 9.1. For all Bianchi class A vacuum spacetimes except those of type IX, the
asymptotic behaviour of the reduced Hamiltonian in the expanding direction is given by

lim
τ→∞Hreduced(τ ) = 0.

Consider the metric g̃. By (22) we have

g̃(τ ) =
3∑
i=1

λi(τ ) ξ
i ⊗ ξ i

where

λi(τ ) = exp

(∫ τ

0
6�i dτ ′

)

by (24). Note that�i is a vector determined by�+ and�− and that the sum of its components
is zero. Let us introduce some terminology.

Definition 9.1. If two λi converge to zero and one to infinity, we say that the evolution exhibits
a cigar degeneracy. If one λi converges to zero and two to infinity, we call it a pancake
degeneracy.

9.1. Bianchi I

In this case the �i are constants satisfying

3∑
i=1

�2
i = 2

3 .

Thus λi converges to 0, ∞ or 1 depending on the solution. We obtain both pancakes and
cigars. Concerning the ai in (25), we observe that if the Bianchi I solution corresponds to a
special point on the Kasner circle, then two ai are constant and one goes to infinity. For all
other Bianchi I solutions, one ai goes to zero and the other two to infinity.
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9.2. Bianchi II

The �i converge to si where the si satisfy
3∑
i=1

s2
i = 2

3 .

The points (s1, s2, s3) = ( 2
3 ,− 1

3 ,− 1
3 ) and those obtained by permutating its coordinates are,

however, not allowed as limit points (they correspond to the flat Kasner vacuum solutions).
Again we obtain pancakes or cigars depending on the solution. As far as the ais are concerned,
one goes to zero and two go to infinity.

9.3. Bianchi VI0

In this case the �i converge to ( 2
3 ,− 1

3 ,− 1
3 ) or one of the points obtained by permuting its

coordinates. We obtain a cigar degeneracy.
Considering the ai , equation (25) shows that one of the ai goes to infinity, but what happens

to the other two is unclear.

Proposition 9.1. Consider a Bianchi VI0 solution to (5)–(7). Then all the ai converge to
infinity as τ → ∞.

Proof. Considering (25) and (26), we are interested in the integrals∫ τ

0
(1 +�+ ±

√
3�−) ds = 1

2

∫ τ

0
(2 + 2�+ ± 2

√
3�−) ds.

Observe, however, that

(1 +�+)
′ = −(2 − q)(1 +�+)

whence

1 +�+(τ ) = exp

[
−

∫ τ

0
(2 − q) ds

]
[1 +�+(0)],

so that, using the expressions for N ′
2 and N ′

3 in (5), we obtain

a2
2 = c2

N2

1 +�+

and

a2
3 = c3

−N3

1 +�+

where c2 and c3 are positive constants. Consider now the function

Z1 =
4
3�

2
− + (N2 −N3)

2

−N2N3
.

This function is monotonically decreasing to the future, and bounded from below by 2, since

(N2 −N3)
2 � −2N2N3.

Thus it converges to a positive real number, and consequently, the same is true of 1/Z1. Thus,
using the constraint,

−N2N3

1 +�+
= 4

3
(1 −�+)

−N2N3
4
3 (1 −�2

+)
= 4

3
(1 −�+)

1

Z1
→ α

where α is a positive real number. Since N2 and N3 converge to zero as τ → ∞ by
proposition 6.1, we conclude that a2 and a3 converge to infinity. �
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9.4. Bianchi VII0

There are two possibilities. Either �i are constants equal to (− 2
3 ,

1
3 ,

1
3 ), to ( 2

3 ,− 1
3 ,− 1

3 ) or
one of the vectors obtained by permuting the coordinates or they converge to ( 2

3 ,− 1
3 ,− 1

3 ) (or
a permuted vector). The first possibility yields a pancake or cigar degeneracy. The second
possibility yields a cigar degeneracy.

Considering the ai we have the following proposition.

Proposition 9.2. Consider a Bianchi VII0 solution to (5)–(7). Then all the ai converge to
infinity as τ → ∞.

Proof. The argument is similar to the Bianchi VI0 case, but easier. We just need to observe that
N2 and N3 are bounded away from zero, and 1 + �+ → 0 by lemma 7.1 and proposition 7.2.

�

9.5. Bianchi VIII

In this case the �i converge to (− 1
3 ,

1
6 ,

1
6 ) up to permutations. We have a pancake singularity.

Let us also consider what happens to the ai appearing in (19). Considering (25), two of
the ai converge to infinity, but what happens to the third one is more difficult to say, since the
integrand tends to zero. Here we wish to prove that it is bounded away from zero.

Proposition 9.3. Consider a Bianchi VIII solution to (5)–(7). The ai in (19) are bounded from
below by positive constants as τ → ∞.

Proof. As already mentioned two of the ai converge to infinity. Let us consider the third one.
Since �1 = −2�+/3, we have

a1(τ ) = exp

(
−

∫ τ

0
(2�+ − 1) ds

)
, (85)

and consequently our goal is to prove that �+ does not become that much bigger than 1
2 . By

theorem 1.2, we conclude that q − 4�+ → − 3
2 , so that there is a T1 such that

N1(τ ) � e−τ

for all τ � T1. Using the constraint (7) to eliminate N1(N2 +N3), we deduce

�′
+ = −(1 −�2

+ −�2
−)(2�+ − 1)− 9

4 (N2 −N3)
2 + 9

4N
2
1 .

Observe that in the first term, 1 −�2
+ −�2

− → 3
4 . The term involving N2

1 is undesirable, but
it can be handled in the following way. Let

f = �+ − 1
2 +N1.

Then

f ′ = −(1 −�2
+ −�2

−)(2�+ − 1)− 9
4 (N2 −N3)

2 + 9
4N

2
1 + (q − 4�+)N1.

If �+(τ ) >
1
2 , and if τ is greater than some T2, then we can absorb the term involving N2

1 in
the term arising from the derivative of N1, and conclude that

f ′(τ ) � −αf (τ), (86)

where 1 > α > 0 is a suitable constant. If there is a T such that �+(τ ) � 1
2 for all τ � T ,

we are done, so assume not. Let us divide the problem into two subcases. Either there is a
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T � T1, T2 such that �+(τ ) >
1
2 for all τ � T , or there is a time sequence τk → ∞ such that

�+(τk) = 1
2 . It is convenient to assume τ1 � T1, T2 in this case. In the first case, we have

f (τ) � f (T ) exp[−α(τ − T )]
by integrating (86), and, in particular,

0 � �+(τ )− 1
2 � f (T ) exp[−α(τ − T )]

so that the integral appearing in (85) is finite. Now consider the second subcase. Assume
�+(τ ) >

1
2 with τ > τ1. Let t < τ be the first point before τ at which �+(t) = 1

2 . Then

f (τ) � f (t) exp[−α(τ − t)] � exp[−t − α(τ − t)] � exp[−ατ ]

since α < 1 and f (t) = N1(t) � e−t . Thus the integral appearing in (85) cannot diverge to
infinity. �
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