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finite without any renormalization. As opposed to previous lower order calcula-

tions existing in the literature, internal vertex diagrams no longer cancel identically

and lead to subleading corrections to the dominant ladder diagrams. Taking lim-

its, we proceed to extract the two-loop static potential corresponding to two infinite

anti-parallel lines. Our result gives some evidence that the existing strong-coupling

calculations using the AdS/CFT conjecture might sum up the full set of large N

planar Feynman diagrams.
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1. Introduction and Conclusions

Interest in ’t Hooft’s 1973 proposal [1] to consider the limitN → ∞ of U(N) quantum

gauge theory such that λ = Ng2 stays finite is not waning even after nearly thirty

years of, to date, futile attempts to analytically perform the sum over the resulting

planar Feynman diagrams. In the original work it was already conjectured that an

indirect approach using string theory might be more likely to succeed. The first-ever

concrete suggestion for formulating such a string theory “dual” to the very special

four-dimensional gauge theory invariant under N = 4 supersymmetries has been

made by Maldacena [2]. In its most modest form the conjecture holds that the limit

of strong ‘t Hooft coupling λ → ∞ in the N = ∞ gauge theory is reproduced by

the low energy supergravity limit of IIB string theory in the background AdS5 × S5.

This proposal does lead to very explicit, analytic predictions for the large N and λ

limit of various observables in the gauge theory. It is usually believed that instanton

effects are inessential at N = ∞; therefore the predictions should coincide with

the two-step procedure of first calculating the observables in question to all orders

in planar perturbation theory and, barring large N phase transitions, subsequently

taking the large λ limit of the resulting sum. Our inability, however, of actually

carrying through this program constituted the chief motivation for seeking a dual
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formulation in the first place. In short, we are in the frustrating situation of being

presented with a proposed solution of a notorious problem without being able to

prove that the solution is indeed correct!

Recently, there has been some interesting progress towards making much more

direct contact between the Euclidean N = 4 gauge theory and its suggested super-

gravity dual. In [3] Maldacena introduced a non-local loop operator, which differs

from the usual Wilson loop in a subtle way: In addition to the gauge field the six

scalars of the model are also coupled to the loop C. The coupling is such that the

new operator W[C], which we will call a Maldacena-Wilson loop operator, is no

longer unitary and its magnitude is thus no longer bounded by one (see eq.(2.1) for

a precise definition). A priori it is therefore not even clear whether the expectation

value of this operator exists. AdS/CFT, for various types of contours C, leads to

some very explicit results [3],[4], see also [5]. A straight infinite line e.g. is a BPS

object and should satisfy

〈W[C]〉 = 1, C = straight line. (1.1)

Furthermore, in the double limit N → ∞, λ = Ng2 → ∞ one finds for a circular

contour, independently of the radius,

〈W[C]〉 = e
√
λ, C = circle. (1.2)

Finally for a rectangular Maldacena-Wilson loop of sides T ×L the prediction reads,

for N = ∞, λ→ ∞ and T → ∞,

〈W[C]〉 = exp

(

4π2

Γ4(1/4)

√
λ
T

L

)

. C = rectangle, (1.3)

which may be used to define the so-called static potential V (L) = −1/T log〈W[C]〉.
In [6],[7] the authors pioneered the weak coupling, perturbative analysis of Malda-

cena-Wilson loops. They found that up to one-loop order (i.e. O(g4)) all Feynman

diagrams cancel for a straight line, as is required if eq.(1.1) is to hold in the gauge

theory. Furthermore, for a circle and a rectangle (with T → ∞, i.e. infinite anti-

parallel lines) all non-ladder diagrams (i.e. containing internal interaction vertices)

cancel. The authors went on to sum up ladder diagrams to all orders for the circle

and the anti-parallel lines. Interestingly, for N = ∞ (planar ladders) and for the

circle they found exactly eq.(1.2), while the anti-parallel lines yielded something very

similar to eq.(1.3):

〈W[C]〉ladder approx. = exp

(

1

π

√
λ
T

L

)

. C = rectangle. (1.4)

Closer inspection of these calculations reveals a number of interesting features:
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• The celebrated
√
λ strong coupling “screening” behavior of eqs.(1.2),(1.3) is seen to

be a large N artifact: If one looks at the ladder approximation at finite N one easily

proves that the behavior is always ∼ exp g2 ∼ exp λ/N . Incidentally, the ladder

approximation has been argued to be exact for a circle even at finite N and λ [8]. If

true, the result for, say, SU(2) would read

〈W[C]〉SU(2) = (1 +
1

8
g2) e

1
16
g2 C = circle. (1.5)

• Individual non-ladder diagrams are divergent. After adding all interactive diagrams

the divergences cancel. It is particularly intriguing that some divergent contact

interactions at the boundaries of the loops (which are present in an ordinary unitary

Wilson loop, even in N = 4 theory) are precisely canceled by a bulk divergence

in the supersymmetric self-energy. This demonstrates that the Maldacena-Wilson

loop might turn out to be a field theoretic observable that is finite to all orders in

perturbation theory! A proof of this is, however, currently lacking.

• For the circle the ladder approximation reproduces the AdS/CFT strong coupling

result, which is consistent with it being exact. For the anti-parallel lines we notice

by comparing eq.(1.3) and eq.(1.4) that the result is qualitatively, but not quantita-

tively correct. Turning this around we see that AdS/CFT predicts that non-ladder

diagrams must contribute to the static potential: The cancellation mechanism of

internal vertex diagrams at O(g4) found in [6],[7] should not extend to all orders in

perturbation theory, for in that case the AdS/CFT correspondence, in its current

form, would be proven wrong.

In the present paper we are aiming at extending and deepening the results of

[6],[7]. Clearly one should perform a two-loop calculation in order to investigate

whether internal vertex diagrams begin to contribute, as well as to further test the

finiteness of the Maldacena-Wilson loop. Unfortunately the number of diagrams

relevant to the so far mentioned contours is discouragingly large. We therefore found

it convenient to study a slightly different situation which nevertheless allows to gain

new insight: We will consider two closed, axisymmetric, parallel circles. As will be

shown in the following section a large number of diagrams are zero for group theoretic

reasons and a two-loop calculation becomes feasible (see the figure in section 2 for

the relevant diagrams). The configuration of two circular loops has been studied

before in the literature. Strong-coupling supergravity computations were done in

[9], and it was found, notably, that the limit of very large, nearby circles exactly

reproduces the anti-parallel lines potential of eq.(1.3). Furthermore, the sum over

all ladder diagrams for this situation was obtained in [10], reproducing, in the anti-

parallel lines limit, the result of eq.(1.4). Hence from the strong-coupling perspective

our scenario of two parallel, axisymmetric circles does not seem to differ from the

anti-parallel lines situation in the static potential limit.

Despite the considerable reduction of the number of diagrams mentioned above

our two-loop perturbative calculation is quite lengthy and will be presented below.
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We decided to detail some of the techniques employed since they might be found

useful for further investigations.

For our geometry we are able to exhibit the complete finiteness of the Maldacena-

Wilson loop up to O(g6). Some interactive diagrams (see the X- and H-graphs

in sections 3.4 and 3.5) are superficially divergent due to contact interactions at

the circular boundaries. However, due to the special nature of the loop operator

the divergent contributions cancel between gauge and scalar degrees of freedom.

An even more intricate cancellation takes place between a divergent “bulk” self-

energy contribution (section 3.2) and a divergent “boundary” contact interaction

(the IY-graph in section 3.3), repeating a phenomenon first discovered in [7]. We find

this perturbative finiteness of the Maldacena-Wilson observable quite remarkable; it

certainly deserves a deeper understanding.

Adding the finite contributions of all non-ladder diagrams we establish that,

to two-loop order, they no longer cancel. For finite geometry, this requires some

numerical analysis in the final steps. Taking, in section 4, the limit of very large, near-

by circles we analytically complete the computation and extract the static potential

limit corresponding to infinite anti-parallel lines1. It is then proved that the vertex-

diagrams contribute in a weak, but non-vanishing fashion. We will end by discussing

whether these weak, non-zero corrections to the ladder approximation might be of

help in explaining the discrepancy between eqs.(1.3) and (1.4).

In an outlook (section 5) we collect some of the exciting unsolved mysteries

surrounding Maldacena-Wilson loops.

2. The Graphs and the Computation to Order g2 and g4

An interesting modification of the standard (Euclidean) Wilson loop operator, appro-

priate for N = 4 gauge theory, was introduced in [3]. Its transformation properties

under supersymmetry were elucidated in [11]. It couples not only to the gauge po-

tentials Aµ(x), but also to the six scalar fields ΦI(x) of N = 4 SYM theory

W[C] = Tr P exp
[

∮

C
dτ(iAµ(x)ẋ

µ + ΦI(x)θ
I |ẋ|)

]

(2.1)

Here θI is a point on the unit five-sphere, i.e. θIθI = 1, and xµ(τ) parameterizes

the curve C. The gauge field and the scalars are in the fundamental representation

of U(N) with generators T a (a = 0, . . . , N2 − 1), which we normalize according to

Tr T a T b = 1
2
δab and which obey the U(N) algebra

[T a, T b] = ifabcT c (2.2)

1Due to the circular boundary conditions our static potential result differs to O(g4) from the

perturbative calculations of [6],[7]. As mentioned above, this difference is a weak coupling feature

that is expected to go away at strong coupling.

4



Ladder-Graphs Non-Ladder-Graphs

g2:

g4:

(1)

g6:

Figure 1: The connected nonvanishing graphs up to order g6. The propagators stand

for the combination of scalar and gluon exchange and the bubble denotes the one loop

self-energy contribution. We will denote the non-ladder diagrams in the above figure by

the self-energy, IY, IYT , X and H-graph by obvious correspondence. Note that the g6

ladder-graphs in the last line of the figure are non-planar.

Note that Tr T a =
√

N
2
δa0, f 0bc = 0 as well as fabcfabc = N(N2 − 1). Due to

the absence of an i in front of the scalar fields ΦI in eq.(2.1) the Maldacena-Wilson

operator differs from an ordinary Wilson operator in an important way: It is no

longer a pure phase factor, and therefore not bounded in field space.

We employ the Euclidean action of N = 4 supersymmetric Yang-Mills theory

S = 1
2g2

∫

d4x
[

1
2
(F a

µν)
2 + (DµΦ

a
I)

2 + iψ̄aγµDµψ
a + ifabcψ̄aΓIΦb

Iψ
c

+1
2
(fabcΦb

IΦ
c
J)

2 + ∂µc̄
aDµc

a + (∂µA
a
µ)

2
]

(2.3)

in the Feynman gauge with ghosts ca and c̄a. Here Dµ(·)a = ∂µ(·)a + fabcAbµ(·)c, ψa
is a sixteen component Majorana spinor and (γµ,ΓI) are ten 16× 16 Dirac matrices

stemming from the reduction of the ten dimensional model.

We shall be interested in the connected correlator of two Maldacena-Wilson loops

〈W(C1)W(C2)〉c = 〈W(C1)W(C2)〉 − 〈W(C1)〉 〈W(C2)〉 (2.4)

where we take the curves C1 and C2 to be two parallel, axisymmetric circles of

opposite orientation and, respectively, radii R1 and R2 separated by a distance h

xµ(τ) = (R1 cos τ, R1 sin τ, 0 , 0)

yµ(σ) = (R2 cosσ,−R2 sin σ, h , 0) τ, σ ∈ [0, 2π] (2.5)
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Performing the diagrammatic expansion in this geometry up to order six in the

coupling constant g it is seen that a large number of diagrams vanish identically by

taking into account the following two identities

= 0
a

∼ fabc Tr T bT c = 0 (2.6)

where the box in the first graph stands for any interaction vertex of the theory and

the open leg of the second graph may be contracted with either interaction vertices

or the second Wilson loop. Moreover at order g6 the cancellation of

+ = 0 (2.7)

may be taken into account, a consequence of the cancellation of the graphs with

internal vertices for the circular loop at order g4 shown in [7]. The remaining, highly

reduced set of 20 non-vanishing planar and non-planar graphs is depicted in the

figure.

Let us explicitly compute the leading one ladder graph at order g2. The Feynman

gauge propagators of the bosonic fields following from (2.3) are

〈Aaµ(x)Abν(y)〉 = g2 δab δµν
4π2 (x− y)2

〈φaI(x)φbJ(y)〉 = g2 δab δIJ
4π2 (x− y)2

. (2.8)

One then has

= −g2 Tr (T a) Tr (T a)
∫ 2π

0

dτ dσ

4π2

ẋ · ẏ − |ẋ| |ẏ|
(x− y)2

=
g2N

4

∫ 2π

0

dφ

2π

1 + cos φ
R2

1+R2
2+h2

2R1R2
− cos φ

= −g
2N

4

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]

(2.9)

where we have made use of the parameterization of (2.5).

Turning to the three graphs at g4 one notices that there are no path ordering

effects at this order, which means that the computation factorizes into products of

one ladder graphs. Taking care of combinatoric factors one finds

=
1

2

[g2N

4

(

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

)]2

= −g
4N2

32

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]

= (2.10)

for the diagrams at order g4.
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3. Order g6

3.1 The Ladder Graphs

At order g6 the computation becomes more challenging. Whereas the two and one

ladder diagrams remain easy

=
g6N3

3 · 27

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]2
=

= −g
6N3

3 · 28

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]

=

= −g
6N3

28

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]

=
g6N

3 · 28

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]2
=

= − g6N

3 · 29

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]

= (3.1)

the three ladder graph requires considerably more care. One has

= g6N3

3·26

∫ 2π

0

dφ

2π

dθ1
2π

dθ2
2π

∫ θ1

0

dψ1

2π

∫ θ2

0

dψ2

2π
×

×1 + cos φ

κ− cosφ

1 + cos(ψ1 + θ2 + φ)

κ− cos(ψ1 + θ2 + φ)

1 + cos(ψ2 + θ1 + φ)

κ− cos(ψ2 + θ1 + φ)
(3.2)

where we have abbreviated κ :=
R2

1+R2
2+h2

2R1R2
. It is convenient to change to complex

coordinates (z, z1, z2, w1, w2) = (eiφ, eiθ1, eiθ2 , eiψ1 , eiψ2) and to introduce the auxiliary

parameter a through κ := 1
2
(a+a−1). Then the integrations on w1, w2 are elementary

and we obtain a triple contour integral:

= g6N3

3·26(2π)2

∮

dz

2πiz

dz1
2πz1

dz2
2πz2

(z + 1)2

(z − a)(z − a−1)
×

×
[

log z1 −
1 + a

1 − a
log

zz1z2 − a

zz2 − a
− 1 + a

1 − a
log

1 − azz2
1 − azz1z2

]

×

×
[

log z2 −
1 + a

1 − a
log

zz1z2 − a

zz1 − a
− 1 + a

1 − a
log

1 − azz1
1 − azz1z2

]

(3.3)

Carefully keeping track of the cuts introduced by the logarithms the integrals may

be computed term-by-term with the help of Dilogarithms:

= g6N3

12

{

[

−1

4

(

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

) ]3

− 3

25π2

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]

(R1+R2)2+h2

(R1−R2)2+h2 Li2(a
2)

}

(3.4)

where a2 =

(

h2 +R2
1 +R2

2 −
√

(h2 +R2
1 +R2

2)
2 − 4R2

1R
2
2

)2

4R2
1R

2
2
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The non-planar cousin of the three ladder diagram is obtained by the same methods

and reads

= g6N
12

{

[

−1

4

(

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

)]3

+
3

25π2

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]

(R1+R2)2+h2

(R1−R2)2+h2 Li2(a
2)

}

. (3.5)

3.2 The Self-Energy Graph

N = 4 gauge theory is a finite theory. This, however, does not mean that gauge de-

pendent, individual Feynman diagrams are finite as well. An important example are

the self energies of the gauge bosons and scalars, which are infinite in four dimensions.

In order to isolate the divergences we use regularization by dimensional reduction

which maintains supersymmetry. This procedure considers supersymmetric Yang-

Mills theory in 2ω dimensions as a dimensional reduction of the ten dimensional

model. One hence has a 2ω component gauge field Aaµ, 10 − 2ω scalars and a 16

component fermion field at every stage of the computation. The one-loop self en-

ergy of the vector and scalar fields was computed in this regularization in [7]. In

configuration space one has

µ

a

ν

b
= δµν δ

ãb̃ g4N Aω[x] +
δãb̃ g4N Γ2(ω − 1)

27π2ω (ω − 2)2 (ω − 3) (2ω − 3)
∂xµ∂xν

(

[x2]4−2ω
)

a b

I J
= δIJ δ

ãb̃ g4N Aω[x] (3.6)

with group indices ã, b̃ = 1, . . . , N2 − 1 in the interacting SU(N) sector and where

the universal function Aω[x] is given by

Aω[x] =
Γ2(ω − 1)

25π2ω (2 − ω) (2ω − 3)

1

[x2]2ω−3
(3.7)

which diverges in four dimensions.

Turning toward the evaluation of the self-energy graph itself we find

(1) =
4 g6N

2! 2!

[

Tr (T ã T b̃)
]2
∫ 2π

0
dτ1 dσ1 (ẋ1 · ẏ1 − |ẋ1| |ẏ1|)∆ω[x1(τ1) − y1(σ1)]

×
∫ 2π

0
dτ2 dσ2 (ẋ2 · ẏ2 − |ẋ2| |ẏ2|)Aω[x2(τ2) − y2(σ2)] (3.8)

Here ∆ω denotes the propagator (2.8) in 2ω dimensions with stripped off coupling

constant and Kronecker delta-functions

∆ω(x) =
Γ(ω − 1)

4πω
1

[x2]ω−1
. (3.9)

We stress that the double derivative term in the vector self-energy of (3.6) drops out

as it constitutes a total derivative here. However, at higher orders this inhomogenous
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contribution to the one loop self-energy might become relevant. The self-energy graph

(3.8) is divergent in 4d – this divergence will cancel against the IY graphs. We leave

it as it stands for the time being, noting that the prefactor in (3.8) takes the value

g6N(N2 − 1)/4.

3.3 The IY-Graphs: Cancellation of Divergences

When evaluating the two IY-diagrams we encounter a second type of infinity distinct

in origin from the type of “bulk” divergences discussed in the last subsection. When

two of the three legs of the three-vertex come close on the boundary, the confluence

causes a logarithmic “boundary” divergence. To be consistent, we regulate it by the

same procedure of dimensional reduction used above. We then find that it cancels

against the self-energy divergence. One furthermore needs to carefully extract the

finite contribution next to the infinite piece, which is subtle and technically quite

involved. In fact, we will only do this explicitly for the special case R1 = R2 – the

finite part for the case of more general geometries is not needed for reaching our

physical conclusions. Using the parameterization of (2.5) we denote the three points

on the upper loop by xi(τi) (i = 1, 2, 3) and the two points on the lower loop by

yj(σj) (j = 1, 2). Path ordering only occurs for the upper loop in the τi parameters.

Performing the usual Wick contractions one is confronted with the integral

= g6N (N2−1)
8

∫ 2π

0
dτ1dτ2dτ3

∫ 2π

0
dσ1dσ2 ǫ(τ1, τ2, τ3) (ẋ3 · ẏ1 −R1R2) ∆ω(x3 − y1)

×
{

(ẋ1 · ẏ2 −R1 R2) [ẋ2 · ∂y2 − ẋ2 · ∂x1
] − (ẋ1 · ẋ2 − R2

1) ẏ2 · ∂x2

}

G(x1, x2, y2)

(3.10)

where an ordering symbol has been introduced obeying ǫ(τ1, τ2, τ3) = 1 for τ1 > τ2 >

τ3 and antisymmetric under any permutation of τi. Moreover we have defined the

dimensional regulated three-point function

G(x1, x2, y2) =
∫

d2ωr∆ω(x1 − r) ∆ω(x2 − r) ∆ω(y2 − r) (3.11)

with ∆ω(x) given by (3.9). As the “I”-leg term (ẋ3 · ẏ1 −R1R2) ∆ω(x3 − y1) depends

homogeneously on the angular combination (σ1+τ3) a shift in the lower σ1 integration

by σ1 → σ1 −τ3 lets the “I” leg of the IY-graph decouple. Then the only dependence

on τ3 in the integrand of (3.10) sits in the ordering symbol ǫ(τ1, τ2, τ3) and this integral

may be performed to yield

∫ 2π

0
dτ3 ǫ(τ1, τ2, τ3) = 2π sgn(τ1 − τ2) − 2(τ1 − τ2) ≡ E(τ1.τ2) . (3.12)

In order to proceed one now introduces Feynman parameters for (3.11) and performs

the integral over r. Collecting the dependence on the “I”-leg and the prefactor of
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(3.10) in the symbol (I),

(I) ≡ g6N (N2 − 1)

16π

∫ 2π

0
dτ dσ (ẋ · ẏ − R1R2)∆ω[x(τ) − y(σ)] (3.13)

the expression (3.10) takes the rather complicated form

= (I)
Γ(2ω − 2)

25π2ω

∫ 2π

0
dτ1dτ2dσ2

∫ 1

0
dαdβdγ (αβγ)ω−2 δ(α + β + γ − 1)E(τ1, τ2)

×
{

−R1R2 (1 + cos(σ2 + τ1))
[

R1R2 sin(σ2 + τ2) (2α+ β)γ +R1
2 sin τ12 (2γ + β)α

]

+R1
3R2(1 − cos τ12) sin(σ2 + τ2) (2α+ γ)β

} 1

∆2ω−2
. (3.14)

where τ12 = τ1 − τ2 and

∆ = (1 − γ)γ(R1
2 +R1

2 + h2) + 2αβ R2
2(1 − cos τ12)

−2R1R2

(

αγ cos(σ2 + τ1) + βγ cos(σ2 + τ2)
)

(3.15)

In order to split off the divergent part of the integral we make use of the following

key identity for the integrand of (3.14)

E(τ1, τ2)
{

−R1R2 (1 + cos(σ2 + τ1))
[

R1R2 sin(σ2 + τ2) (2α+ β)γ

+R1
2 sin τ12 (2γ + β)α

]

+R1
3R2(1 − cos τ12) sin(σ2 + τ2) (2α+ γ)β

} 1

∆2ω−2
=

−1
2
R1

2 ∂τ2

(

E(τ1, τ2)
1 − cos τ12

∆2ω−3

)

+R1R2 ∂τ1

(

E(τ1, τ2)
1 + cos(σ2 + τ1)

∆2ω−3

)

+1
2
R1R2 ∂τ2

(

E(τ1, τ2)
1 + cos(σ2 + τ1)

∆2ω−3

)

+ (IY)SE + (IY)1 + (IY)2 + (IY)ω−2

(3.16)

where

(IY)SE =
2πδ(τ12)

2ω − 3
R1R2

1 + cos(σ2 + τ1)

∆2ω−3

(IY)1 = − 1

2ω − 3

{

R1
2 1 − cos τ12

∆2ω−3
+R1R2

1 + cos(σ2 + τ1)

∆2ω−3

}

(IY)2 =
E(τ1, τ2)

∆2ω−2

[

(R1 +R2)
2 + h2

]

γ (1 − γ)
[

R1R2 sin(σ2 + τ1) − 1
2
R1

2 sin τ12
]

(IY)ω−2 =
2ω − 4

2ω − 3

E(τ1, τ2)

∆2ω−3

{

1
2
R1

2 sin τ12 −R1R2 sin(σ2 + τ1)
}

(3.17)

which holds under integration over the angles τ1, τ2, σ2 and the Feynman parameters

α, β, γ. Plugging this relation back into (3.14) one sees that the total derivative

terms of the right-hand-side of the identity (3.16) drop out. Moreover one can show

that the integral over (IY)ω−2 is finite in 2ω = 4 dimensions, therefore due to the

(2ω − 4) prefactor this term drops out as well.
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To continue let us investigate the contribution of the (IY)SE term coupling to the

δ-function. Here the Feynman parameter integral factorizes and may be performed

to yield
∫

(IY)SE = 2π (I)
∫ 2π

0
dσ2dτ1

Γ(2ω − 2)R1R2

25π2ω(2ω − 3)

1 + cos(σ2 + τ1)

[R1
2 +R2

2 + h2 − 2R1R2 cos(σ2 + τ2)]2ω−3

×
∫ 1

0
dαdβdγ

(αβγ)ω−2 δ(α+ β + γ − 1)

(γ(1 − γ))2ω−3

= −2π (I)
Γ2(ω − 1)

25π2ω (2 − ω) (2ω − 3)

∫

dσ2dτ1
ẋ1 · ẏ2 − R1R2

[(x1 − y2)2]2ω−3
= −1

2
(1) (3.18)

where we have undone the parameterization of (2.5) in the second step. In the last

step we see that upon using (3.13) this part of the IY-graph precisely cancels half of

the self-energy graph (3.8). The second half comes from the mirror IYT -graph which

may be obtained from the above by swapping R1 ↔ R2. To summarize we thus have

= −1
2

(1) +
∫

(IY)1 +
∫

(IY)2 (3.19)

in a symbolic notation.

For the evaluation of the (IY)1 contribution we go back to exactly 2ω = 4

dimensions: (IY)1 turns out to be finite. We found it useful to reintroduce the

integral over r in (3.11) again and remove the Feynman parameters. One may then

treat the angular integrals by contour techniques and is left with an integral over the

space-point r. Doing this one starts with
∫

(IY)1 = − (I)

25π6

∫ 2π

0
dτ1dτ2dσ2

∫

d4r
ẋ1 · ẋ2 − R1

2 + ẋ1 · ẏ2 − R1R2

(x1 − r)2 (x2 − r)2 (y2 − r)2
. (3.20)

Noting that in four dimensions the symbol (I) takes the value

(I)ω=2 =
g6N(N2 − 1)

32π

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]

(3.21)

and performing the angular integrals leads to the final result

∫

(IY)1 = −g
6N(N2 − 1)

256π3

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]

∫ ∞

0
dρ
∫ ∞

−∞
dr3

∫ ∞

−∞
dr4

1

ρL1

√

Lh2

×
[

ρ4 + h2 (
√

L1 − ρ2 −R2
1 − r2

3 − r2
4) + 2 h r3 (−

√

L1 + ρ2 +R2
1 + r2

3 + r2
4)

−(
√

L1 − R2
1 − r2

3 − r2
4) (

√

Lh2 + 2R2
1 − R2

2 + r2
3 + r2

4)

−ρ2 (
√

L1 −
√

Lh2 + 5R2
1 + 4R1R2 +R2

2 − 2 (r2
3 + r2

4))
]

(3.22)

where we have introduced

L1 =
[

(ρ− R1)
2 + r2

3 + r2
4

] [

(ρ+R1)
2 + r2

3 + r2
4

]

Lh2 =
[

(ρ− R2)
2 + (r3 − h)2 + r2

4

] [

(ρ+R2)
2 + (r3 − h)2 + r2

4

]

. (3.23)
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Note that due to the symmetry of our loop configuration in the 1 − 2 plane one

is able to reduce (3.20) to a three dimensional integral. This is as far as one can

get analytically – (3.22) may be evaluated with good precision numerically. We will

return to an analytical treatment of (3.22) in the potential limit.

Turning to the (IY)2 contribution one finds the following compact expression via

a derivative with respect to h2

∫

(IY)2 =
(I)

25π6

∂

∂h2

[

∫ 2π

0
dτ1dτ2dσ2E(τ1, τ2)

∫

d4r
ẏ2 · x1 + 1

2
ẋ2 · x1

(x1 − r)2 (x2 − r)2 (y2 − r)2

]

(3.24)

after reintroducing the r integration. Now the integration over the angles is less

straightforward due to the path ordering symbol E(τ1, τ2). The calculation pro-

ceeds along lines similar to the three-ladder case: One introduces complex variables

(z, w1, w2) = (eiσ2 , eiτ1 , eiτ2) and rewrites the loop part of eq.(3.24) as a multiple,

open contour integral:

∫

(IY)2 =
(I)

26π6

1

R1R2

∫

d4r
1

r1 − ir2

1

r2
1 + r2

2

∂

∂h2

∮

dz

iz

∮

dw2

iw2
{ }

where

{ } =

[

−4πi
∫ w2

1

dw1

iw1
+
∮ dw1

iw1
(logw1 − logw2)

]

×

× R1 z (w2
2 − w2

1) + 2R2w2 (w2
1z

2 − 1)

(z − z−)(z − z+)(w1 − w−)(w1 − w+)(w2 − w−)(w2 − w+)
(3.25)

Here z±,w± are, respectively, the roots of the quadratic equations

z2 − 1

R2

R2
2 + ρ2 + (r3 − h)2 + r2

4

r1 + ir2
z +

r1 − ir2
r1 + ir2

= 0

w2 − 1

R1

R2
1 + ρ2 + r2

3 + r2
4

r1 − ir2
w +

r1 + ir2
r1 − ir2

= 0 (3.26)

Now the integrations on w2,w1 are elementary, if tedious, and the z-integration can

be performed by the residue theorem. The final expression is

∫

(IY)2 =
g6N(N2 − 1)

64π3

[

1 −
√

(R1+R2)2+h2

(R1−R2)2+h2

]

[

h2 + (R1 +R2)
2)
]

×
∫ ∞

0
dρ
∫ ∞

−∞
dr3

∫ ∞

−∞
dr4

h− r3
h ρ

√
L1(Lh2)

3/2

{

ρ4 + h2 (R2
1 + ρ2 + r2

3 + r2
4)

−2 h r3 (R2
1 + ρ2 + r2

3 + r2
4) + (R2

1 + r2
3 + r2

4) (R2
2 + r2

3 + r2
4)

+ρ2
(

R2
1 − 3R2

2 + 2 (r2
3 + r2

4)
)}

× log

[

2 +

√
L1 (R2

1 + ρ2 + r2
3 + r2

4) − (R2
1 + ρ2 + r2

3 + r2
4)

2

2ρ2R2
1

]

(3.27)

which completes the computation of the IY-graphs.
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As already mentioned above, this integral still has a residual logarithmic diver-

gence unless R1 = R2. However, one can show that for R1 6= R2 this divergence is

precisely canceled by the analogous divergence coming from (IYT )2.

3.4 The X-Graph

The next graph on our list is the X-graph. Let us denote the two points on the upper

loop by xi(τi) and the two points on the lower loop by yi(σi) (i = 1, 2). Happily no

path ordering is required and the graph turns out to be finite in four dimensions.

After taking care of combinatorial factors and performing the usual Wick contractions

one arrives at

= g6N(N2−1)
8

∫ 2π

0
dτ1 dτ2 dσ1 dσ2

×
[

(ẋ1 · ẏ2 − R1R2) (ẏ1 · ẋ2 − R1R2) − (ẋ1 · ẋ2 −R1
2) (ẏ1 · ẏ2 −R2

2)
]

× 1
(4π2)4

∫

d4r
1

(x1 − r)2 (x2 − r)2 (y1 − r)2 (y2 − r)2
(3.28)

Leaving the r integral untouched for the moment, we first perform the four angular

integrals over τi and σi which are all elementary. One then obtains the following

compact result

=
g6N(N2 − 1)

256π3

∫ ∞

0
dρ
∫ ∞

−∞
dr3

∫ ∞

−∞
dr4

1

ρL1 L
h
2

[

−h2R1 +
√

Lh2 R1

+
√

L1R2 + 2 hR1 r3 − (R1 +R2) (ρ2 +R1R2 + r2
3 + r2

4)
]2

(3.29)

where we again made use of the abbreviations (3.23) for L1 and Lh2 . The integrations

over ρ, r3 and r4 appear to be not expressable in terms of known functions.

3.5 The H-Graph

For the computation of the H-graph we denote the two points on the upper loop by

xi(τi) and the two points on the lower loop by yi(σi) (i = 1, 2). Again there is no

path ordering for this graph, and it is completely finite due to cancellations between

gauge and scalar degrees of freedom, allowing us to work in four dimensions from

the outset. One then starts off with the following integral

= g6N(N2−1)
8

∫ 2π

0
dτ1 dτ2 dσ1 dσ2

×
[

2 ẏM1 ẋ1 · ∂y1 − 2 ẋM1 ẏ1 · ∂x1
+ (ẋ1 · ẏ1 −R1R2) (∂xM

1
− ∂yM

1
)
]

×
[

2 ẏM2 ẋ2 · ∂y2 − 2 ẋM2 ẏ2 · ∂x2
+ (ẋ2 · ẏ2 −R1R2) (∂xM

2
− ∂yM

2
)
]

(3.30)

× 1
(4π2)5

∫

d4z d4w
1

(x1 − z)2 (y1 − z)2 (z − w)2 (x2 − w)2 (y2 − w)2

13



where we have made use of a handy five dimensional index (M = µ, 5) notation

where ẋMi = (ẋµi , |ẋi|) and ∂xM
i

= (∂xµ
i
, 0). As usual we will now perform the an-

gular integrals (τ1, τ2, σ1, σ2) and leave the space-integrals over z and w untouched.

The angular integration factorizes and one is left with the computation of the five

dimensional vector HM(z)

HM(z) ≡
∫ 2π

0
dτ dσ

[

2 ẏM ẋ · ∂y − 2 ẋM ẏ · ∂x + (ẋ · ẏ − R1R2) (∂xM − ∂yM )
]

× 1

(x− z)2 (y − z)2
. (3.31)

After taking the derivatives in (3.31) and inserting the parameterization (2.5) all an-

gular integrals are elementary and may be performed straightforwardly. Interestingly

enough one finds the following identity

∫ 2π

0
dτ dσ

ẏM ẋ · (ẏ − z)

(x− z)2 [(y − z)2]2
=
∫ 2π

0
dτ dσ

ẋM ẏ · (ẋ − z)

[(x− z)2]2 (y − z)2
(3.32)

which lets the fifth component of HM vanish and reduces (3.31) to

Hµ(z) = −2
∫ 2π

0
dτ dσ

ẋ · ẏ − R1R2

(x− z)2 (y − z)2

[

xµ − zµ

(x− z)2
− yµ − zµ

(y − z)2

]

. (3.33)

Using this the full H-graph may be represented as

= g6N(N2−1)
8

1
(4π2)5

∫

d4z d4w
H(z) ·H(w)

(z − w)2
(3.34)

Performing the angular integrations in (3.33) one findsHµ(r) = (r1H
ρ, r2H

ρ, H3, H4)

where

Hρ = −2

ρ

[4 π2 ρR1 R2 (−R1 +
√

ρ2 + r2
3 + r2

4) (R1 +
√

ρ2 + r2
3 + r2

4)

L
3/2
1

√

Lh2

−4 π2 r R1R2 (h2 + ρ2 −R2
2 − 2 h r3 + r2

3 + r2
4)√

L1 (Lh2)
3/2

+
π2 (−

√

Lh2 + ρ2 +R2
2 + (h− r3)

2 + r2
4

2L
3/2
1

√

Lh2 ρ
3

(

−L3/2
1 + 8 ρ4R2

1 − 8 ρ2R4
1 +R6

1

−8 ρ2R2
1 (ρ2 + r2

3 + r2
4) + 3R4

1 (ρ2 + r2
3 + r2

4) + 3R2
1 (ρ2 + r2

3 + r2
4)

2 + (ρ2 + r2
3 + r2

4)
3
)

+
π2 (−1 + (ρ2 +R2

1 + r2
3 + r2

4)/
√
L1)

2 (Lh2)
3/2 ρ3

(

− h6 + (Lh2)
3/2 − ρ6 + 6 h5 r3

−3 ρ4 (R2
2 + r2

3 + r2
4) − (R2

2 + r2
3 + r2

4)
3 − 3 h4 (ρ2 +R2

2 + 5 r2
3 + r2

4)

+4 h3 r3 (3 ρ2 + 3R2
2 + 5 r2

3 + 3 r2
4) + ρ2 (R2

2 + r2
3 + r2

4) (5R2
2 − 3 (r2

3 + r2
4))

−h2 (3 ρ4 − 2 ρ2 (R2
2 − 9 r2

3 − 3 r2
4) + 3 (R2

2 + r2
3 + r2

4) (R2
2 + 5 r2

3 + r2
4))

+2 h r3
{

3 ρ4 + 3 (R2
2 + r2

3 + r2
4)

2 + ρ2 (−2R2
2 + 6 (r2

3 + r2
4))
})]

(3.35)
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and

H3 = − 8 π2

L
3/2
1 (Lh2)

3/2

[

L1R1 R2 (h− r3) (R2
2 + (h− r3)

2 + r2
4 + ρ2)

+Lh2 R
2
1 r3 (−

√

Lh2 +R2
2 + (h− r3)

2 + r2
4 + ρ2) + Lh2 R1R2 r3 (R2

1 + r2
3 + r2

4 + ρ2)

+L1 R
2
2 (h− r3) (−

√

L1 +R2
1 + r2

3 + r2
4 + ρ2)

]

(3.36)

and

H4 = − 8 π2 r4

L
3/2
1 (Lh2)

3/2

[

−(Lh2)
3/2R2

1 + h2R1 (Lh2 R1 − L1 R2) − 2 hR1 (Lh2 R1 − L1R2) r3

+Lh2 R1 (R1 +R2) (R1R2 + r2
3 + r2

4 + ρ2) + L1R2 (
√

L1 R2

−(R1 +R2) (R1R2 + r2
3 + r2

4 + ρ2))
]

(3.37)

with ρ2 = r2
1+r2

2. Again this is as far as one gets analytically for the general geometry

– a number of further integrals may be performed in (3.34) in the flat (h = 0) or

“cake” (R1 = R2) cases.

3.6 Putting Everything Together

We have thus shown for our geometry that, due to subtle cancellations, the Maldacena-

Wilson loop is completely finite to O(g6). Let us now verify whether or not the finite

parts of non-ladder diagrams cancel as well: We simply have to add the finite contri-

butions of the interactive graphs worked out in sections 3.2 -3.5. For simplicity, as

discussed above, we will content ourselves with the case R := R1 = R2, h 6= 0. The

quickest, yet safe way to arrive at the answer is to numerically compute the contri-

butions of all finite parts for some specific values of R and h and to subsequently add

the obtained numbers. This can be done with great accuracy since our final expres-

sions are finite, low dimensional integrals. We tested various combinations of R and

h and found that the sum of finite parts yields in all instances a non-zero number,

exceeding the margin of error by many orders of magnitude. In conclusion, to O(g6)

non-ladder diagrams no longer cancel. Therefore no unknown “non-renormalization

theorem” is at work, and we explicitly demonstrated that the quite amazing O(g4)

cancellations observed in the calculations of [7] are not generic. Our ultimate goal,

however, is to verify whether internal vertex diagrams contribute to the static po-

tential in order to explain the discrepancy between eqs.(1.3) and (1.4). We will now

apply our results to obtain some new insights into this question.

4. The Static Potential Limit

The geometric set-up analyzed in this work is clearly sufficiently rich to recover the

case of infinite, anti-parallel lines, corresponding to the static potential limit: We
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simply take the radii of the circles to infinity while keeping their separation finite.

Luckily, in this limit the contributions of all graphs found above can be worked out

explicitly. We can therefore analytically demonstrate the non-cancellation of internal

vertex diagrams, serving as a check on the numerical result of the previous section.

We will take the following limiting procedure:

R1 = R2 =: R, T := 2πR→ ∞ while L := h→ 0 (4.1)

Let us briefly discuss the subtle issue of the precise definition of the static po-

tential. For a rectangle, cf. section 1, the measured operator is a single loop and the

usual definition is V (L) = −1/T log〈W[C]〉. Clearly this assumes the loop operator

to be of the form W[C] = exp[V (L) T ]. Explicit calculations [6],[7] demonstrate

that perturbatively this is not the case2. In our case, we should analogously define

the static potential through V (L) = −1/T log〈W(C1)W(C2)〉c. The just mentioned

problem of the perturbative definition of V (L) is further aggravated since now the

connected two-loop correlator does not even exponentiate in terms of a power series

in the gauge coupling g2. We will therefore avoid any attempt to define V (L) at weak

coupling, and use the notion “static potential limit” simply as a façon de parler to

denote the perturbative evaluation of 〈W[C]〉 and 〈W(C1)W(C2)〉c in the geometric

limit of infinite anti-parallel lines:

〈W(C1)W(C2)〉c
∣

∣

∣

∣

∣T
L

→∞
=

∞
∑

k=1

W2k(T/L) g2k (4.2)

However, we do expect that at strong coupling V (L) turns out to be well defined –

at any rate, this is a prediction of AdS/CFT, cf. eq.(1.3).

Let us now find the first three coefficients W2k(T/L) in eq.(4.2) from the results

of section 3. Applying the limiting procedure (4.1), W2 and W4 are immediately

found from eqs.(2.9),(2.10):

W2 =
g2N

4π

T

L
(4.3)

and

W4 =
g4N2

32 π2

(

T

L

)2

− g4N2

32 π

T

L
(4.4)

To two-loop order the contributions of the ladder graphs are directly obtained from

the explicit results eqs.(3.1),(3.4),(3.5):

W ladders
6 =

g6N3

384 π3

(

T

L

)3

− g6N(N2 − 1)

32 π4

(

T

L

)2
(

log
(

4π
T

L

)

+ 1

)

+
g6N(N2 − 1)

32 π3

T

L
log

T

L
+ O

(

T

L

)

(4.5)

2E.g. at O(g4) a term T

L
log T

L
appears. There is some discussion in [6],[7] arguing that this

term should be replaced by T

L
log 1

λ
. It is not obvious to us whether this is fully consistent, and in

particular how to extend this procedure to higher loops.

16



where we did not write out the subleading terms growing like T/L and log T/L.

Let us now investigate the contributions of the non-ladder diagrams in the static

potential limit. In the limit (4.1) the finite parts of the IY-graph integrals (3.22) and

(3.27) are dominated by the region around ρ ∼ R, r3 ∼ 0, h and r4 ∼ 0. The leading

contribution in the static potential limit may then be extracted from the reduced

integrals

∫

(IY)1

∣

∣

∣

∣

∣T
L

→∞
= −g

6N(N2 − 1)

128π3

R

h

∫ ∞

0
dρ
∫ ∞

−∞
dr3

∫ ∞

−∞
dr4

× 1

(ρ− R)2 + r2
3 + r2

4

1

[ (ρ− R)2 + (r3 − h)2 + r2
4 ]1/2

= −g
6N(N2 − 1)

64π3

T

L
log

T

L
+ O

(

T

L

)

(4.6)

and

∫

(IY)2

∣

∣

∣

∣

∣T
L

→∞
= −g

6N(N2 − 1)

64π3

∫ ∞

0
dρ
∫ ∞

−∞
dr3

∫ ∞

−∞
dr4

× h− r3
[ (ρ− R)2 + r2

3 + r2
4 ]1/2

log[ 2
[ (ρ−R)2+r23+r24 ]1/2

R
]

[ (ρ− R)2 + (r3 − h)2 + r2
4 ]3/2

=
g6N(N2 − 1)

32π2
log

T

L
+ O(1) . (4.7)

telling us that this graph is dominated by the (IY)1 piece in the T/L → ∞ limit.

The mirror IYT -graph yields the same contributions (4.6) and (4.7) to the static

potential limit. Turning to the X-graph in the limit (4.1) one finds from (3.29) the

leading behaviour
∣

∣

∣

∣

∣T
L

→∞
=
g6N(N2 − 1)R

256π3

∫ ∞

0
dρ
∫ ∞

−∞
dr3

∫ ∞

−∞
dr4

× 1

(ρ−R)2 + r2
3 + r2

4

1

(ρ− R)2 + (r3 − h)2 + r2
4

=
g6N(N2 − 1)

512π

T

L
+ O

(

log
T

L

)

. (4.8)

In order to extract the static potential limit of the H-graph it is technically preferable

to consider a different limit than (4.1) and rather take

h = 0, T := 2πR2 → ∞ while L := |R2 − R1| → 0 , (4.9)

which leads to rotational symmetry also in the 3-4 plane. For the leading contribution

in T/L this limit is completely equivalent to (4.1). Introducing σ as the radius in
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the 3-4 plane, the integral (3.34) reduces in this flat geometry to

∣

∣

∣

∣

∣

h=0

= g6N(N2−1)
8·(4π2)4

∫ ∞

0
dρ dρ̄ dσ dσ̄

∫ 2π

0
dφ dθ ρ ρ̄ σ σ̄

× HρH ρ̄ ρ ρ̄ cosφ+HσH σ̄ σσ̄ cos θ

ρ2 + ρ̄2 + σ2 + σ̄2 − 2ρ ρ̄ cosφ− 2σ σ̄ cos θ
(4.10)

where the barred and unbarred quantities are associated with the 1-2 and 3-4 plane

radii of the space-points w and z of (3.34) respectively, and φ and θ are the relative

angles. In the limit (4.9) this integral is dominated by the region (ρ, ρ̄) ∼ [R1, R2],

(σ, σ̄) ∼ 0, φ ∼ 0 and θ ∈ [0, 2π]. Within this region the functions Hρ and Hσ

following from (3.35),(3.36),(3.37) read

Hρ = 2π2 R1 −R2

R1 +R2

(ρ− R1) (ρ−R2)

[ (ρ−R1)2 + σ2 ]3/2 [ (ρ− R2)2 + σ2 ]3/2

Hσ = 2π2 (R1 −R2)
ρ− (R1 +R2)/2

[ (ρ−R1)2 + σ2 ]3/2 [ (ρ− R2)2 + σ2 ]3/2
(4.11)

Plugging (4.11) into the static potential limit of (4.10) and performing the integral

over θ one discovers that the dependence on T/L may be scaled out of the integral.

Finally one has

∣

∣

∣

∣

∣T
L

→∞
= c · g6N(N2 − 1)

T

L
+ O

(

log
T

L

)

c = 7.23(9) · 10−5 (4.12)

where c is a number expressed through a finite yet complicated five dimensional

integral independent of T/L, which we evaluated numerically.

To summarize, we have thus analytically proven the non-cancellation of the in-

ternal vertex diagrams. In particular, we notice that the T/L behavior is different

for the various graphs: Independently of the symmetry factor they cannot possibly

cancel. The strongest contribution in the non-ladder sector comes from the IY-graph

so that

W non−ladders
6 = −g

6N(N2 − 1)

32 π3

T

L
log

T

L
+ O

(

T

L

)

(4.13)

which presicely cancels the subleading T/L logT/L ladder-term in (4.5).

Despite the fact that the non-ladder-diagrams do not cancel, our results indicate

that their contribution to the limit of infinite anti-parallel lines is rather weak (at

O(g6) T/L logT/L vs. (T/L)3). Unfortunately their quantitative influence on the

strong coupling potential is difficult to estimate. Naively, one could speculate that

the fact that the vertex contributions are strongly subleading might explain the

near coincidence of eqs.(1.3),(1.4). However the issue is rather subtle: In the planar

(N = ∞) limit we expect that summing up perturbation theory correctly reproduces
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the non-perturbative physics3. In principle it is therefore conceivable that the ladder-

approximation still captures the correct gauge-theory result in the large N , strong-

coupling and T/L→ ∞ limits. If true, and if eq.(1.4) is correct this would contradict

the AdS/CFT prediction eq.(1.3). Clearly we need to increase our understanding on

how the subleading terms in the T/L expansion of the coefficients W2k influence the

strong coupling static potential extracted from eq.(4.2). This will be left for future

work.

5. Outlook

The AdS/CFT correspondence has been inspiring since it appears to allow for an-

alytic calculations in strongly coupled U(N) gauge theory, at least when N is infi-

nite and N (the number of supersymmetries) is large (N = 4). However, we feel

more attempts should be made to state the consequences of the correspondence for

the gauge theory more precisely in order to perform quantitative, non-kinematical

analytic tests. A perfect comparison would be to use supersymmetry to obtain a

non-trivial strong coupling result on the gauge theory side that unequivocally agrees

with the “corresponding” classical supergravity computation. Clearly non-unitary

Maldacena-Wilson loops, as opposed to ordinary unitary Wilson loops, are perfect

candidates for such a test: They appear to be completely finite gauge invariant ob-

servables with intriguing properties on both sides of the correspondence. As such,

they deserve to be much more carefully studied:

• To date, no rigorous proof exists in N = 4 gauge theory that all perturbative

corrections cancel in the case of a straight line:

〈W[C]〉 = 1, C = straight line. (5.1)

• It has been argued in [8] but by no means proven that only ladder diagrams

contribute to a circular Maldacena-Wilson loop for all finite gauge groups U(N) and

SU(N) (see e.g. eq.(1.5)). If true this would lead to

〈W[C]〉 =
1

N
L1
N−1(−g2/4) eg

2/8, C = circle, (5.2)

where L1
N−1 is a Laguerre polynomial of degree N in g2. In [12] a variation of the

anomaly arguments of [8] proposing a zero-dimensional matrix model description of

the circular loop was considered. However, the relation of the considered matrix

model potential to the full field theoretic problem remains unclear. An important

3There is a caveat: A large N phase transition, triggered by the increase in the number of non-

planar diagrams, might take place at some finite value of the ‘t Hooft coupling λ = Ng2: In that

case the weak and strong coupling phase might turn out to be analytically unrelated, yielding one

possible explanation for the discrepancy between the strong coupling ladder-approximation eq.(1.4)

and the AdS/CFT result eq.(1.3).
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further question is the strength of instanton contributions to the Maldacena-Wilson

loop – preliminary results were reported in [13].

• The subtle cancellations of divergences found in this and previous work required

a serious calculational effort; they are far from obvious. An all-orders result for

arbitrary smooth contours would be very desirable. In fact one should prove the

highly non-trivial property

0 < |〈W[C]〉| <∞ C = (any?) contour. (5.3)

• A perfect quantitative test for the correspondence would be the verification of the

strong coupling static potential as predicted by AdS/CFT: How to find in the gauge

theory the non-trivial number in front of the Coulomb potential (see eq.(1.3))

V (L) ∼ 4 π2 Γ−4(1/4) L−1 ? (5.4)

In the present work we discussed some of the subtleties surrounding this major chal-

lenge. Our result shows that non-ladder diagrams are non-vanishing but subleading,

and one wonders whether the ladder approximation of [6] could be improved in order

to systematically approximate the correct result.

• Our results can also be used to consider the limit R2 → 0 and h ≫ R1, which

should be related to the scenario of [14].

• There has been some confusion in the literature as to whether the Maldacena-

Wilson loop operator (2.1) is the final object to be compared to supergravity. The

issue is whether or not supersymmetry requires also fermionic degrees on the bound-

ary.

• The existing perturbative studies do not make any explicit use of supersymme-

try. In fact, in this work supersymmetry only entered in the fermionic contribution

to the gauge/scalar self energy, and, quite indirectly, in the “BPS” property of the

Maldacena-Wilson loop [11]. Is there a more appropriate gauge (e.g. Mandelstam-

Leibbrandt) or a better technique (e.g. supergraphs) that renders higher order cal-

culations feasible?
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